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Although neurons in columns of visual cortex of adult carnivores and primates
share similar orientation tuning preferences, responses of nearby neurons are sur-
prisingly sparse and temporally uncorrelated, especially in response to complex
visual scenes. The mechanisms underlying this counter-intuitive combination of
response properties are still unknown. Here we present a computational model
of columnar visual cortex which explains experimentally observed integration of
complex features across the visual field, and which is consistent with anatomi-
cal and physiological profiles of cortical excitation and inhibition. In this model,
sparse local excitatory connections within columns, coupled with strong unspe-
cific local inhibition and functionally-specific long-range excitatory connections
across columns, give rise to competitive dynamics that reproduce experimental
observations. Our results explain surround modulation of responses to simple
and complex visual stimuli, including reduced correlation of nearby excitatory
neurons, increased excitatory response selectivity, increased inhibitory selectivity,
and complex orientation-tuning of surround modulation.

In species with highly developed neocortices, such as cats and primates, cortical
neurons are grouped into columns that share functional similarities1. In primary visual
cortex, columns of neurons have highly similar preferred orientations of visual stimuli2, 3.
However, given that neurons in a column share the same retinotopic location and have
common orientation preferences, their firing activity is surprisingly poorly correlated4–6,
even in response to drifting grating stimuli5, 6.

Since natural sensory inputs are highly temporally correlated7, 8, an active mech-
anism is required to reduce correlations, and consequently, to improve information
coding efficiency8, 9. This is beneficial because strong correlations across a neuronal
population can impair the ability to extract information from their response to sensory
stimuli10, 11. “Sparse coding” of responses to sensory stimuli is therefore a valuable
goal for cortex: sparse coding serves to increase storage capacity12, 13 and information
efficiency10, 11 of cortical populations. In visual cortex, the functional relationships
between nearby neurons is modulated by the information from the visual surround:
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wide-field stimulation with natural scenes promotes more selective and less correlated
excitatory activity14, 15, while inhibitory activity becomes stronger and less selective15.

How does this reduction in response correlation come about, given the prevalence
of strong spatial and temporal correlations present in natural visual scenes7, 8, and
given that neurons in a column share common preferences for visual features? Several
neural models have been proposed to reduce correlations in network activity, including
non-linearity of spike generation, synaptic-transmission variability and failure, short-
term synaptic depression, heterogeneity in network connectivity, intrinsic neuronal
properties and recurrent network dynamics 16–20. A particularly appealing form of
recurrent dynamics is that involving inhibitory feedback loops, which are abundant
in cortical networks5, 8, 9, 20–23. When configured appropriately, inhibitory feedback
promotes competition between the activity of a set of excitatory neurons, such that
weaker responses are suppressed in a non-linear fashion24–27.

As discussed above, competition directly reduces correlations within a network
(in the sense of making correlation coefficients more negative). Local competition
within a cortical column would result in a few “winning” neurons with increased
activity, while a majority of “losing” neurons would decrease their activity. Grating
stimuli presented in the visual surround predominately suppress neural responses28–35,
with more than 50% of neurons reducing their firing rate31. A comparatively smaller
proportion of neurons undergo facilitation in response to surround stimulation30, 31, 36.
We therefore suggest that the physiology of surround suppression and facilitation in
columnar cortex is consistent with local competitive mechanisms operating within a
cortical column.

Local excitatory connections are sparse in cortex, with maximum connection
probabilities between closest proximal cells (i.e. ≈ 50µm) of only 20 % to 30 %37–40

and with connection probability falling off sharply with distance 41, 42. In contrast, local
connections between excitatory and inhibitory neurons are dense in rodents43–46. In
animals with columnar visual cortices, inhibitory inputs are simply integrated from the
nearby surrounding tissue47, suggesting a similar pattern of dense local connectivity.
Long-range excitatory connections (i.e. 500 µm to 1500 µm) within columnar visual
cortex are made selectively between points across the cortical surface with similar
functional preferences48–54. Similarly, excitatory connections in rodents are made
selectively37, 55, between neurons with correlated functional properties39, 46, 56.

Here we propose a computational model that, consistent with anatomy, exploits
both long-range and local excitatory interaction between cortical circuits connecting
neurons in the superficial layers of cortex to explain the observed sparse response
properties of cortical neurons. Local excitatory interactions result in local competition
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within a cortical column, which is recruited and modulated by information conveyed
over long-range excitatory projections, including from the visual surround. The network
proposed models the superficial layers of cat primary visual cortex (area 17), including
several populations designed to simulate distinct portions of the visual field (“centre”
and “surround”). We present the model’s response to a range of simulated visual stimuli,
designed in analogy to experimental investigations of centre/surround visual interactions,
and show how the mechanism of local competition is recruited by visual stimulation to
reduce local correlations and to suppress neuronal responses. The mechanism of within-
column competition explains the complex physiology of suppressive and facilitatory
influences from the visual surround 29, 31, 33, 35, 57.

Results

Network architecture. We developed a spiking network model for adult columnar pri-
mary visual cortex, composed of 7 populations of neurons, each representing a distinct
location on the visual field (Fig. 1a; see Methods). Each population consisted of a ring
representing one hypercolumn — a full ordered sequence of preferred orientations cor-
responding to approximately 1 mm of cat area 17 (V1)53. One population was arbitrarily
chosen as the center of visual stimulation; the other populations represented surrounding
areas of visual space (i.e. the visual surround). Each population was composed of a
series of columns consisting of excitatory and inhibitory neurons, where each column
contained neurons with a common preferred orientation. Inhibitory neurons made only
short-range recurrent connections within their source population; in contrast, excitatory
neurons made wider-ranging recurrent connections within their source population, as
well as long-range connections to the other populations in the model (Fig. 1b). All
connections were made symmetrically following Gaussian profiles over difference in
preferred orientation, taking into account the ring topology within each population.
Long-range connections were therefore biased to connect columns with similar orienta-
tion preference, as is observed in cat visual cortex51, 53. In this paper, we refer to this
form of functional synaptic specificity as θ -specific (i.e. orientation-specific).

Within each column, excitatory neurons were assumed to form sub-populations
(“specific subnetworks”, or SSNs; Fig. 1c), which have a higher-than-chance probability
of forming recurrent excitatory connections. In contrast, inhibitory neurons have equal
probabilities of forming recurrent inhibitory connections to all neurons within a column,
regardless of SSN membership. This architecture is known to exist in rodent visual
cortex37, 39, 46, 55, 56, but has not been examined experimentally or computationally in
columnar visual cortex. In this paper we refer to this form of specificity as SSN-specific
connectivity. SSN-specificity in our model could be replaced by the presence of strong
recurrent excitatory feedback on the scale of single cortical neurons, if necessary. The
strength of SSN-specificity was under the control of a parameter P+ (see Methods). As
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Figure 1 The network architecture of the center-surround model. (a) We simulated
several populations representing non-overlapping locations in primary visual cortex
(dashed cicrles), covering distinct locations of the visual field. Each population was
simulated as a ring of neurons considered to span an orientation hypercolumn, i.e.
containing a set of columns with a complete ordered sequence of orientation prefer-
ences. One population (“C”) corresponded to the centre of visual stimulation; the others
corresponded to the visual surround (“S”). Scale bar: 1 mm (b) Excitatory (triangles)
and inhibitory neurons (circles) in each population were arranged in orientation columns
around the ring, with preferred orientations indicated by coloured bars. Local excitatory
and inhibitory connections within each population, as well as long-range excitatory
connections between populations, were modelled as Gaussian fields over difference
in preferred orientation (curves in b). For simplicity only projections from a single
population are shown (“C” ring; upper); connections were made identically within and
between each population in the model. (c) Connections from single neurons were made
both within a column, and between populations. Excitatory neurons within a column
were distributed evenly across several subnetworks (SSNs; see Methods for details of
parameters). A proportion of local excitatory synapses was reserved to be made only
with other neurons within the same SSN (P+). Long-range excitatory connections were
also sensitive to SSN membership, under the parameter PM. JE , JI : Strength of excita-
tory (E) and inhibitory (I) synapses. PIN , PI : Fraction of synapses onto excitatory (IN)
and inhibitory (I) targets made locally within the same hypercolumn, as opposed to
long-range projections to other hypercolumns. For simplicity, only connections from a
single excitatory and inhibitory neuron are shown; projection rules are identical for all
neurons in the model. (d) Placed in visual space, the central population corresponded
to approximately 1° of visual space; the surround populations were defined to cover
approximately 4.5° of visual space. Scale bar: 1°v
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P+→ 1, all excitatory connections are made within the same SSN. As P+→1/M, all
synapses are distributed equally across all SSNs; equivalent to fully random connectivity
within a column (here, M is the number of SSNs in each column). Long-range con-
nections were also SSN-specific under the control of a parameter PM (with analogous
definition as P+). All parameter values were selected to be realistic estimates for cat
area 17 (see Table 1).

Our model examined modulation of orientation-tuned responses, caused by inputs
from the visual surround, carried by long-range excitatory connections within the
superficial layers of columnar cortex. Our model did not investigate the emergence of
orientation tuning, which occurs from convergence of thalamic afferents into cortex58.
We assumed that the neurons in our model resided in the superficial layers of cortex,
and therefore received orientation-tuned input primarily from layer 4.

Neurons within a column are similarly tuned, but without temporally correlated
responses. We tested the response of our model to simulated grating visual stimuli,
presented first to the classical receptive field only (cRF; centre-only stimulus), and
under wide-field stimulation (centre-surround stimulus) (Fig. 2). Stimulation of the
cRF with grating stimuli of a single orientation provoked a response over the central
population according to the similarity between the stimulus and the preferred orientation
of each column (Fig. 2a).

Orientation tuning curves were similar between excitatory and inhibitory neurons
(Fig. 2e; tuning widths 25.9° half-width at half-height for excitatory neurons and 27.1°
for inhibitory neurons; P < 10−10, t-test, 200 neurons). Although neurons within the
same column were tuned to identical preferred orientations and responded with a higher
average firing rate to the same stimuli, temporal patterns of activation were weakly but
significantly negatively correlated on average within a column (Fig. 2c and f; median
corr. −0.06; P < 10−10, rank-sum test, 200 trials).

Wide-field presentation of simulated grating stimuli provoked stronger negative
correlations between neurons within a column (Fig. 2b, d and f; median corr. −0.06
vs −0.24; P < 10−10, rank-sum test, 200 trials). Wide-field stimulation also in-
creased the firing rate of the inhibitory population (21.2 Hz to 26.0 Hz; P < 10−10,
t-test, 200 trials) and decreased the firing rate of the excitatory population (16.4 Hz
to 11.7 Hz; P < 10−10, t-test, 200 trials), consistent with experimental observations in
visual cortex15. The orientation tuning width of inhibitory neurons increased slightly
under wide-field stimulation (27.1° to 28.0°; P < 10−10, t-test, 200 trials).

Non-random excitatory connectivity promotes negative correlation of neural re-
sponses. What parameters of cortical connectivity lead to competition in response to
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Figure 2 Neurons within a column are not temporally correlated in response to
centre-surround grating stimulation. (a–b) Spiking responses of neurons in the
centre population, in response to centre-only (a) and centre-surround stimulation (b)
with 90° orientation stimulus. Inhibitory neurons: blue-green; two of four excitatory
SSNs: red and yellow. (c–d) Firing rates over time for neurons with 90° orientation
preference (colours as in a–b). e Orientation tuning curves for excitatory and inhibitory
neurons are similar. Under centre-only stimulation (a and c), excitatory neurons within
a column respond together, since they share a common preferred orientation, but are
temporally decorrelated (correlation coefficient close to zero; c and f). Under wide-field
stimulation (b and d), responses of neurons within the same column become more
negatively correlated (negative correlation coefficient; d and f). *** p < 0.001.
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Figure 3 Non-random excitatory connectivity underlies competition and reduced
correlation in response to centre-surround stimulation. (a–c) Correlation between
the neurons in a column, as a function of the SSN-specificity parameters P+ and PM

(see Methods; Fig. 1). Grey dots and circles: measurements from individual simulations
of the spiking network model. Surface in (a) and curves in (b–c): smooth fit to individual
simulations. Both local recurrent specificity (P+) and long-range specificity (PM) promote
competition within single columns (negative correlation coefficients).

centre-surround stimulation? We explored the dependence of competition on the degree
of non-random connectivity, both local (P+) and long-range projections (PM; see Meth-
ods). We simulated the presentation of wide-field stimulation with grating stimuli, as in
Fig. 2, and measured the average correlation coefficient between neurons in the same
column. Measurements of correlation coefficients over many network instances with
varying P+ and PM are shown in Fig. 3. In all cases, connections within and between
populations were θ -specific. However, competition depended strongly on non-random
excitatory connectivity, such that when connections were made without local or long-
range SSN-specificity (i.e. low P+ and PM), responses within a column were correlated.
In contrast, when connections were highly non-random (i.e. P+, PM→1) then responses
within a column were negatively correlated.

The effects of local and long-range non-random connectivity are mutually support-
ive. When either of local or long-range connections are made SSN-specific then weak
competition is introduced. However, when both connection pathways are SSN-specific
then competition is significantly strengthened.

We hypothesised that the negative correlations introduced by non-random connec-
tivity depends on the mechanism of competition within a cortical column. We therefore
used nonlinear dynamical analysis to explore the presence of competition within a mean-
field version of the model, and the dependence of competition on network parameters.
Our mean-field model included only two populations from the full spiking model, with
each population reduced to a single column; that is, the orientation-selective profile of
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connectivity is neglected (see details in Methods). In this analysis we systematically
vary the parameters of the model under centre-only and centre-surround stimulation,
and characterise the strength of competition within a column (Competition Index — CI;
see Methods).

Results of this analysis are shown in Fig. 4. In general, increasing the strength of
excitatory connections (JE ) increased the strength of competition, and the opposite was
true for the strength of inhibitory connections (JI). Although competition is mediated via
disynaptic inhibitory interactions between excitatory neurons, competition also requires
strong excitatory interaction within SSNs, and increasing the strength of inhibition
reduces the ability of excitatory neurons to recruit others within the same SSN.

Under our estimates for synaptic strengths approximating cortical connectivity
(red crosses in Fig. 4a and b; Table 1; see Methods), activity within a column is balanced.
Neurons within a column undergo mutual soft winner-take-all competitive interactions
(sWTA; gray shading in Fig. 4; 26). In this regime, increasing the activity of one
excitatory neuron results in a decrease of the activity of the other neurons within the
column, but is not able to reduce their activity to below the firing threshold. If excitation
is strengthened, a regime of hard competition is reached (hWTA), whereby only a single
excitatory neuron can be active at a given time. If inhibition is made too weak, then
activity within a column becomes unbalanced and saturates, and no competition is
possible (UN).

Providing wide-field input to center and surround modules strengthens and
changes the profile of competition within a column. For a given choice of param-
eters, competitive interactions are strengthened by surround stimulation (compare CI
at red crosses in Fig. 4a and b; c and d). This occurs simultaneously with a shifting of
the parameter regions of the model, such that the size of the region of hard competitive
interactions is increased (Fig. 4b). Consistent with competition being responsible for
reduced correlation in the spiking model, the strength of competition was related to the
degree of local and long-range non-random connectivity (P+ and PM; Fig. 4c and d).

Local competition coupled with tuned long-range connections explains orientation-
tuned surround suppression. In visual cortex, the strength of suppression induced
by wide-field grating stimulation depends on the relative orientations of the grating
stimuli presented in the cRF and in the visual surround29, 31, 33, 35. We examined the
tuning of suppression in our model by simulating the presentation of two gratings to
the centre and surround populations, while varying the relative stimulus orientations
(Fig. 5). Consistent with experimental findings, the strongest suppression occurred
in our model when the orientations of the center and surround stimuli were aligned
(∆θ = 0; Fig. 5a and b).
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Figure 4 Dependence of competition on stimulation type and model parameters.
Both synaptic strength (a–b; inhibitory: JI ; excitatory: JE ) and degree of SSN-specificity
(c–d; local: P+; long-range: PM) affect the strength of competition within a column (neg-
ative competition index; grey shading. See Methods). Centre-surround stimulation (b
and d) generally increases the strength of competition. Both soft and hard competitive
regimes exist. sWTA: soft winner-take-all (WTA) regime; hWTA: hard WTA regime; UN:
unbalanced regime.
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Figure 5 Orientation-tuned suppression under centre-surround stimulation. (a)
Centre-surround grating stimulation (black line: mean response; shading: std. dev.)
provokes suppression on average, compared with centre-only stimulation (dashed
line: response for centre-only stimulation at preferred orientation). (b) In agreement
with experimental findings, our model exhibits orientation-tuned suppression that is
strongest when centre and surround orientations are aligned29,31,33. (c) Responses of
neurons preferring vertical gratings (90◦) that exhibit suppression under center-surround
stimulation with gratings (orientation of surround stimulus indicated on x-axis). Mean
response (thick lines) and standard deviations (shading) are shown. The profile of
suppression shifts depending on the orientation presented to the cRF (colours of curves
corresponding to pips at bottom, indicating orientation of cRF stimulus). The orientation
that provokes maximum surround suppression depends on the orientation presented
to the classical receptive field of a neuron, not on the preferred orientation of that
neuron35.
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Somewhat surprisingly, experimental results show that the orientation tuning of
surround suppression in visual cortex is not locked to the preferred orientation (θ0) of the
neuron under examination35. If a non-optimal stimulus (θn) is presented in the cRF, then
the strongest suppression occurs when the grating orientation presented in the surround
matches the non-optimal stimuls (θn), rather than the neuron’s preferred orientation
(θ0). This phenomena results in a progressive shift of the surround suppression response
tuning curve, such that the minimum of the curve is aligned with the orientation of the
stimulus presented in the cRF.

Our model reproduces both these aspects of surround suppression, by combining
local competition with orientation-tuned long-range excitatory connections (see Fig. 5).
Note that long-range excitatory connections are made with no inhibitory bias in our
model. That is, synapses are made onto excitatory and inhibitory targets in proportion to
the existence of those targets in the cortex, as observed experimentally59. In our model,
80% of local and long-range excitatory synapses are made onto excitatory targets (see
Methods). Excitatory synapses are evenly split between local and long-range projections
(i.e. PIN ,PI = 50%; see Methods); this is also in line with experimental observations60.

Consistent with experimental findings in columnar visual cortex, the strongest
surround suppression occurs in our model when the stimulus orientation presented in
the cRF and in the visual surround are aligned (Fig. 5a–b). This is because strongest
local competition is recruited when the long-range connections from the visual surround
are activated simultaneously with local input. Responses in our model are suppressed on
average under wide-field stimulation (see Fig. 5a). Due to the competitive mechanism
responsible for suppression in our model, one of the local subnetworks will have stronger
activity than the others. As a consequence, a subset of neurons express facilitation under
surround stimulation (suppression index SI < 0 in Fig. 5b). The proportional size of the
facilitated population depends on the number of local subnetworks (four in our model,
implying that 1/4 of excitatory neurons exhibit facilitation).

Our model replicates the phenomenon of maximum suppression shifting with the
orientation presented to the cRF (Fig. 5c; experimental observations in 35). When non-
preferred stimuli are presented in the cRF (pips in Fig. 5c), the profile of suppression
shifts in response such that strongest suppression occurs when the surround orientation
matches the cRF orientation (colored curves in Fig. 5c).

Local competition explains sparsening of local responses to wide-field natural
stimuli. Responses of neurons in visual cortex are poorly correlated in response to
natural stimuli4, 6, 14, 15, and even more negatively correlated in response to wide-field
stimulation compared with cRF-only stimulation14, 15. Reduced correlation of responses
leads to increased population sparseness, increasing information coding efficiency of
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cortex as discussed above. At the same time, lifetime sparseness also increases with
wide-field stimulation14, 15 — this further improves the selectivity of neurons in cor-
tex, by ensuring they fire in response to only few configurations of visual stimuli. It
should be noted that population and lifetime sparseness are not necessarily correlated in
populations of neurons61, meaning that increases in one do not imply a corresponding
increase in the other measure.

We probed our model with simulated natural stimuli, presented either to the cen-
tral population only, or as wide-field stimuli (Fig. 6). Responses of a column of neurons
to center-only stimulation were significantly less correlated than the correlations present
in the input stimulus, measured by recording the responses of a control network with no
recurrent connectivity (Fig. 6c; med. correlation coefficients 0.59 vs 0.63; P < 10−10,
rank-sum test, 4 neurons × 60 columns × 15 trials). However, wide-field stimulation
further reduced response correlations within a column (med. correlation 0.28; P≈ 0
versus centre-only stimulation, rank-sum test, 4 neurons × 60 columns × 15 trials).
This decorrelation led to a significant increase in population sparseness in response to
wide-field stimulation (Fig. 6d; med. sparseness 0.11 vs 0.62; P ≈ 0, rank-sum test,
240 neurons × 15 trials), consistent with experimental observations4, 14.

The response selectivity of excitatory neurons, measured by lifetime sparseness,
was also increased in our model under wide-field stimulation (Fig. 6e; med. sparseness
1.10 vs 0.17; P ≈ 0, rank-sum test, 240 neurons × 15 trials), also consistent with
experimental observations4, 14, 15. This increase in excitatory selectivity came at the
cost of inhibitory selectivity (Fig. 6f). Inhibitory activity was increased on average
between cRF and wide-field stimulation (mean response 15.5 vs 18.3 Hz; P≈ 0, t-test,
60 neurons), and lifetime sparseness decreased slightly but not significantly under the
kurtosis measure and decreased significantly under the Vinje-Gallant measure (med.
sparseness 0.14 vs 0.17; P < 10−7, rank-sum test, 60 neurons × 15 trials; see Methods).
This inverse relationship between excitatory and inhibitory selectivity is consistent with
experimental observations15.

Discussion

We constructed a model for columnar visual cortex, that proposes a mechanism for
integration of information from the visual surround which is consistent with both recent
neuro-anatomical and -physiological measurements. Specifically, the network proposed
is consistent with the known meso-scale architecture of columnar cortex, which is
characterised by long-range, functionally specific (i.e. orientation specific) lateral
excitatory projections coupled with short-range local inhibition15, 56, 62–64. We include
excitatory specificity over a set of local excitatory subnetworks (SSN-specificity) in
order to explore the effect of local competition within a cortical column64.
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Figure 6 Sparsening of responses to simulated natural stimuli. (a–b) Firing rate
profiles in response to cRF-only (a) and wide-field natural stimuli (b). Colors are
as indicated in Fig. 2a–d. Firing rate curves show the responses of neurons tuned
for 90° orientation, as indicated in a and b. See Methods for a description of the time-
varying natural stimulus. (c–e) Wide-field stimulation provokes a significant reduction
in correlations within the local population (c), reflected in a significant increase in both
population (d) and lifetime sparseness (e). Colors and curve styles as indicated in
(e2). (f) Responses of the inhibitory population to wide-field stimulation are significantly
elevated, and are less sparse under the Vinje-Gallant measure (right; V&G) but not
under a kurtosis measure (left; Kurt.). Inset: statistical comparison for (f1). Stronger and
less sparse inhibitory responses have been observed experimentally14,15. “Specific”:
full network. “Unspecific”: network without local competition in c–f, P+ = PM = 25%, with
other parameters unchanged. “No recurrent”: network with all recurrent connections
removed, JE = JI = 0. a.u.: arbitrary units. Horizontal bars indicate significance; n.s.:
not significant, p > 0.05; * p < 0.05; *** p < 0.001.
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Local competition versus inhibitory specificity. Several previous models of surround
visual interactions have proposed alternative mechanisms for surround suppression.
Schwabe and colleages explained the suppressive effects of far surround visual stimula-
tion through fast axonal transport over inter-areal connections65, but did not examine
orientation tuning of surround suppression. They also require that long-range excitatory
projections preferentially target inhibitory neurons, which is not justified by anatomical
studies of columnar visual cortex66 but which may underlie a portion of surround sup-
pression in the rodent67. Shushruth and colleagues proposed a model that reproduces
the fine orientation tuning of surround suppression35, which relies on strongly tuned
feedforward inhibition from the visual surround in a hand-crafted inhibitory network.
Several other models for surround suppression (e.g. Somers and colleagues68; Stetter
and colleagues69; Rubin and colleagues70) assume horizontally-expressed inhibition on
the spatial scale of orientation hypercolumns – a region of the cortical surface spanning
all preferred orientations, corresponding to around 1 mm in cat primary visual cortex.
However, competition on this scale is poorly supported by cortical anatomy64.

In our model, suppression provoked by surround stimulation arises through a
local competitive mechanism, mediated by strong inhibition within the cortical col-
umn balancing local and long-range excitation60, 71. Competition arises from local
SSN-specific excitatory and non-SSN-specific inhibitory recurrent connections, and is
recruited by SSN- and θ -specific long-range excitatory to excitatory (E→E) projections.
As a result, the strongest competition — and as a corollary, the strongest suppression —
is elicited when the center and surround visual fields are stimulated with gratings of the
same orientation. Recruitment of local competition via orientation-tuned E→E connec-
tions elicits the shift of suppression with cRF orientation observed experimentally35.
Importantly, long-range excitatory projections in our model are not class-specific; they
target excitatory and inhibitory neurons according to their proportions in the cortex.

Sharpening of responses; correlation and information. In our model, competition
leads to sharpening of response preferences (i.e. increased lifetime sparseness) as well
as reducing correlations in activity across the local population (i.e. increased population
sparseness), implying that more information about the stimulus is transmitted by each
spike. Competition therefore reduces correlation in the sense of signal correlation, which
did not occur in a network with local connectivity modified to remove competition
(Fig. 6c). Inhibitory feedback loops, which are abundant in cortical networks, efficiently
reduce correlations in neuronal activity, to the extent that neurons receiving identical
presynaptic input can fire nearly independently20, 22, 72.

Using this architecture of specific excitation and non-specific inhibition, our
model reproduces many features of visual responses related to surround integration, such
as orientation-tuned surround suppression and sparsening of excitatory responses under
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wide-field stimulation. In addition, local competition between neurons within a column
in our model explains the surprisingly low noise correlations between neighbouring
neurons in columnar visual cortex6, 73.

Natural stimuli are extremely redundant 7, 8. If responses of neurons in visual
cortex reflected this redundancy by simply relaying input stimuli, then the information
transmitted per neural spike would be low (i.e. a non-sparse encoding). Instead,
responses in visual cortex are decorrelated or anticorrelated, implying the presence of a
neuronal or network mechanism that reduces correlations in response to visual stimuli.
Some temporal whitening may take place at the level of the retina or LGN74, and some
low-level reduction of spatial correlation is implemented by surround inhibition in
the retina75, 76 and dLGN77. However, active correlation reduction of nearby neurons
in cortex with similar orientation preference, or between cortical neurons distributed
across visual space, cannot occur in either the retina or dLGN. Stimulation of the
visual surround leads to increased response sparseness and therefore improved coding
efficiency from an information-theory perspective, possibly to reduce the deleterious
effect of natural stimulus redundancy78.

Competition and response suppression. Due to the presence of local competition
in our model, the majority of neurons within a column will show suppression at any
given time. As a corollary, some minority of neurons will show facilitation in response
to surround stimulation (the “winners” of the competition). In fact, the proportion of
facilitating neurons is directly related to the number of local network partitions that are
in competition and to the strength of competition. This result implies that experimental
quantification of the proportion of facilitation will provide a direct estimate of that
parameter of network connectivity. In our model, only a single subnetwork can win
the competition; all other subnetworks are suppressed. Therefore, the proportion of
neurons undergoing facilitation will converge to 1/M, where 1/M is an estimate of the
size of a local subnetwork and M is an estimate for the number of local subnetworks.
This parameter can be estimated directly from in vivo recordings of facilitation and
suppression under centre-only and full-field visual stimulation, as long as neurons are
roughly evenly distributed between local subnetworks in cortex.

Formation of local and long-range specificity. Our model assumes that local exci-
tatory neurons form ensembles within which recurrent connections are made more
strongly, called specific subnetworks or “SSNs”. Patterns of local connectivity consis-
tent with a subnetwork architecture have been described in rodent cortex37, 39, 46, 55, 56,
but have not been examined in animals with columnar visual cortices. Nevertheless,
plastic mechanisms within recurrently connected networks of excitatory and inhibitory
neurons lead to partitioning of the excitatory network into ensembles79. This process
occurs during development in rodent cortex after the onset of visual experience80; we
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suggest that similar fundamental plastic mechanisms could apply in columnar visual
cortex.

Long-range horizontal connections develop in several stages in cat area 17. Initial
sparse outgrowth is followed by pruning and increasingly dense arborisation81, with the
result that regions of similar orientation preference are connected51, 53. The mechanism
for surround suppression exhibited by our model is strongly expressed when long-range
excitatory projections between two distant populations preferentially and reciprocally
cluster their synapses within individual SSNs in the two populations (i.e. PM > 0.5; see
Figs 3 and 4). Note that the precise identity of the two SSNs is not crucial; for simplicity
we give them the same index in our model.

We propose that specific targetting of long-range projections could come about
through similar mechanisms described above for local partitioning of cortex into SSNs.
Initially, long-range projections would be made nonspecifically, across SSNs. However,
the tendency for local populations to compete will lead to the activity of individual
SSNs to be out of phase with each other. SSNs that happen to be concurrently active
in two distant populations will induce reciprocal clustering of long-range projections
between the two SSNs in the two populations. Concurrently active SSNs will therefore
begin to encourage each other’s activity, leading to stronger clustering of long-range
projections.

s

Competitive mechanisms are known to promote sparse coding82, 83; we showed
that the architecture of columnar visual cortex lends itself well to local competition as a
fundamental computational mechanism for cortex. Local competition can be recruited
by excitatory influences from the visual surround to increase response selectivity; this
mechanism explains many features of surround visual stimulation in columnar visual
cortex. Local excitatory SSN-specificity, over and above connection preference for
similar preferred orientations, has not been sought experimentally in mammals with
columnar cortices, although it is is important for shaping visual responses in rodent
cortex56. Our results suggest that careful experimental quantification of local circuitry,
in functionally-identified neurons, will be important to identify the mechanisms of
surround integration in columnar visual cortex.

Methods

The spiking center-surround model. All parameters used for the spiking simulations
are summarised in Table 1.
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Neuron model Excitatory (E; exc.) and inhibitory (I; inh.) neurons are modeled as
leaky integrate-and-fire neurons 84, characterized by a resting potential VL =−70mV, a
firing threshold Vth =−50mV and a reset potential Vreset =−55mV. The subthreshold
membrane potential dynamics VE,I(t) evolve under the differential equation

Cm
dV (t)

dt
=−gL [V (t)−VL]− Isyn(t), (1)

where the membrane capacitance Cm = 0.5nF for excitatory neurons and Cm = 0.2nF
for inhibitory neurons; the leak conductance gL = 25nS for excitatory neurons and
gL = 20nS for inhibitory neurons. After firing, the membrane potential Cm is reset
to Vreset and held there for a refractory period of τref seconds. Refractory periods
are τref = 2ms for excitatory neurons and τref = 1ms for inhibitory neurons. Isyn(t)
denotes the total synaptic input current.

Synaptic interactions Excitatory postsynaptic currents (EPSCs; IE); inhibitory post-
synaptic currents (IPSCs; II); excitatory input currents arising from external network
input (IExt); and noisy background synaptic inputs (IBack) are modelled as

IE(t) = gE
[
V (t)−V E

rev
]
∑

s
ns ·SE,s(t), (2)

II(t) = gI
[
V (t)−V I

rev
]
∑

s
ns ·SI,s(t), (3)

IExt(t) = gExt
[
V (t)−V E

rev
]

SExt(t) and (4)

IBack(t) = gBack
[
V (t)−V E

rev
]

SBack(t) (5)

respectively, where the sums are over the set of input synaptic gating variables S∗; ns is
the number of synapses formed in a particular connection; and the reversal potentials are
given by V E

rev = 0mV and V I
rev =−70mV. The synaptic gating variables S∗(t) evolve in

response to an input spike train of spike time occurrences tp, under the dynamics

dS∗(t)
dt

=−S∗(t)
τ∗

+∑
p

δ (t− tp). (6)

Here τ∗ are time constants of synaptic dynamics, and are given by {τE ,τI,τExt,τBack}=
{5ms,20ms,2ms,2ms} for excitatory, inhibitory, external and background synapses,
respectively. Note that axonal conduction times are not considered, such that network
interactions are considered to be instantaneous. Synaptic peak conductances g∗ are
class- and pathway-specific, and are defined in more detail below.

Network architecture The centre-surround model network consists of several popu-
lations i ∈ [1 . . .N], each representing a hypercolumn of cat primary visual cortex (area
17; see Fig. 1). For the sake of simplicity we choose only seven populations in this work,
i.e. N = 7. As such, each population i contains several columns, with each column k
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corresponding to a preferred orientation θk, where θk ∈ [0 . . .180°] and k ∈ [1 . . .NCol],
such that θk = (k−1)180/NCol. We take NCol = 60 in this paper. In addition, excita-
tory neurons within each column are partitioned into a set of M subnetworks indexed
with j ∈ [1 . . .M]. For simplicity, a single excitatory neuron is defined per subnet-
work, such that no additional index is needed to distinguish neurons within the same
subnetwork. Only a single inhibitory neuron is present in each column θk.

Within a single population i, synaptic connections are modulated by similarity of
preferred orientation ∆θ , which has a one-to-one mapping with physical cortical space
under the transformation 180°≈ 1mm53. To avoid edge effects in our model we adopt a
circular topology of preferred orientations θ , with a periodicity of 180°. ∆θ is therefore
defined as the minimum distance around a ring according to the relative orientation
preference of two neurons; that is, ∆θ = min(|θ1−θ2|,180−|θ1−θ2|).

Both local (within-population) and long-range (between-population) excitatory
connections are modulated by similarity in orientation preference between source and
target neurons (∆θ ), as well as by whether or not the source and target neurons share
subnetwork membership j. For orientation-specific connectivity, we use a Gaussian
function over ∆θ , given by

G (∆θ ,σθ ) =
180√

2π ·NCol ·σθ

exp
(
−∆θ 2

2σ2
θ

)
. (7)

Excitatory and inhibitory synapses are distributed over connection pathways
under a set of functions n∗(i1, i2, j1, j2,∆θ), which define the number of synapses made
between any two neurons. These functions for recurrent excitatory connectivity are
defined as

nE→E(i1 = i2, j2 = j2,∆θ) = PIN ·P+ · fE ·NSyn,E ·G
(
∆θ ,σLocal

E
)

(8)

nE→E(i1 6=i2, j2 = j2,∆θ) = (1−PIN)PM · fE ·NSyn,E ·G
(

∆θ ,σ
Long
E

)/
(N−1) (9)

nE→E(i1 = i2, j2 6= j2,∆θ) = PIN (1−P+) fE ·NSyn,E ·G
(
∆θ ,σLocal

E
)/

(M−1) (10)

nE→E(i1 6=i2, j2 6= j2,∆θ) = (1−PIN)(1−PM) fE ·NSyn,E ·G
(

∆θ ,σ
Long
E

)/
(N−1)(M−1)

(11)

These functions define rules for excitatory connections that are local and within the
same SSN (equation 8); long-range and within the same SSN (equation 9); local across
different SSNs (equation 10); and long-range across different SSNs (equation 11)
respectively. Connection fields are modulated by parameters σ∗; “Local” denotes
connections within the same population and “Long” denotes connections between
populations.

Note that a fraction PIN ∈ [0 . . .1] of excitatory synapses are formed locally,
and the remainder are distributed across the N−1 other populations. Similarly, frac-
tions P+ ∈ [0 . . .1] and PM ∈ [0 . . .1] of excitatory synapses are formed within the same
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SSN, while the remainder are distributed across the M−1 other SSNs; P+ controls local
subnetwork-specificity, while PM controls long-range subnetwork specificity.

Similarly, connectivity functions involving inhibitory neurons are defined as

nE→I(i1 = i2,∆θ) = PI · fI ·NSyn,E ·G
(
∆θ ,σLocal

E
)

(12)

nE→I(i1 6= i2,∆θ) = (1−PI) · fI ·NSyn,E ·G
(

∆θ ,σ
Long
E

)
/(N−1) (13)

nI→E(∆θ) = fE ·NSyn,I ·G (∆θ ,σI)/M (14)

nI→I(∆θ) = fI ·NSyn,I ·G (∆θ ,σI) (15)

These functions define E → I connections made within (equation 12) and between
(equation 13) populations; I→ E connections (equation 14); and recurrent inhibitory
connections (equation 15). Note that PI ∈ [0 . . .1] excitatory synapses are made with
local inhibitory targets, with the remainder made with long-range inhibitory targets. In
addition, connections involving inhibitory neurons are θ -specific but not subnetwork-
specific, and inhibitory projections are made only locally (i.e. within the same popula-
tion).

We therefore define ISyn,E(i, j,θk, t) as the total synaptic current input to the
excitatory neuron in population i, subnetwork j, with preferred orientation θk, at time t.
Similarly, we define ISyn,I(i,θk, t) as the total synaptic current input to the inhibitory
neuron in population i, in the column with preferred orientation θk. Input currents ISyn,∗

are of the form
ISyn,∗ = ILocal

∗ + ILong
∗ + IExt→∗+ IBack→∗, (16)

where “Ext” denotes external inputs provides as stimuli to the network; and “Back”
denotes background inputs representing spontaneous activity. Each term in equation 16
evolves according to the synaptic dynamics in equation 5, weighting input from the rest
of the network according to the connectivity functions Eqs 8–15.

Background noise and stimulation protocol All neurons receive an excitatory back-
ground noise input, modeled as independent Poisson spike trains at a rate of vBack→E =

180Hz for excitatory neurons and vBack→I = 50Hz for inhibitory neurons.

Our model of cat primary visual cortex (area 17) is designed to explore the
computational effects of long-range synaptic input from the visual surround on local
representations of orientation preference in the superficial layers of cortex. We therefore
assume that orientation preference itself is computed within layer 4, and that inputs to
the neurons in the superficial layers are already tuned for orientation.

We simulated external visual stimuli as independent Poison spike trains. For
oriented grating stimuli, the rate vGrat(θk, t) of the input spike trains received by both
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Table 1 Parameters used in simulations of the spiking model. Exc., E: excitatory /
excitation; Inh., I: inhibitory / inhibition; Prop.: proportion of; Syn.: synapses; SSN:
Specific subnetwork.

Parameter Description Value

VL Neuron resting potential −70 mV

Vth Neuron firing threshold voltage −50 mV

Vreset Neuron reset voltage −55 mV

Cm,E ; Cm,I Exc. and Inh. neuron membrane capacitance 0.5 nF; 0.2 nF

gL,E ; gL,I Exc. and Inh. neuron leak conductance 25 nS; 20 nS

τref,E ; τref,I Exc. and Inh. neuron refractory periods 2 ms; 1 ms

gE→E ; gE→I ; gI E→ E, E→ I and Inh. syn. conductances 0.05 nS; 0.2 nS; 0.12 nS

gExt Synaptic conductance for external inputs 11.43 nS

gBack Synaptic conductance for spontaneous inputs 11.43 nS

V E
rev; V I

rev Exc. and Inh. syn. reversal potentials 0 mV; −70 mV

τE ; τI ; τExt; τBack Time constants governing syn. dynamics 5 ms; 20 ms; 2 ms; 2 ms

N Number of populations (hypercolumns) 7
NCol Number of columns in each population 60
M Number of subnetworks (SSNs) 4

fE Prop. syn. made by all neurons onto Exc. tar-
gets

80%

fI Prop. syn. made by all neurons onto Inh. targets 20%

PIN Prop. E→E syn. made locally 50%

P+ Prop. local E→E syn. reserved to be made
within the same SSN

95%

PM Prop. long-range E→E syn. reserved to be
made within the same SSN

95%

PI Prop. E→I syn. made locally, versus long-range
E→I projections

50%

σLocal
E ; σ

Long
E ; σI Functional tuning of orientation-specific connec-

tions
20°; 20°; 20°

NSyn,E ; NSyn,I Total syn. made by each exc. or inh. neuron 3000; 4500

excitatory and inhibitory neurons depended on the preferred orientation θk of the neuron
and the instantaneous stimulus orientation θGrat(t), under

vGrat(θk, t) = αGrat ·h(t)exp

[
−∆θ(θk,θGrat(t))

2

σ2
Grat

]
, (17)

where σGrat = 27° is the tuning sharpness of orientation-tuned inputs, and ∆θ describes
orientation differences around the ring topology as described above. The amplitude of
stimulus input αGrat = 270Hz and 29 Hz for excitatory neurons and inhibitory neurons,
respectively. During center-only visual stimulation, h(t) = 1 for the center population
and 0 for surround populations. During center-surround stimulation, h(t) = 1 for both
center and surround populations.

The simulated natural stimulus was generated as a complex pattern of varying
oriented input over the visual field, which shifted over time. Neurons within the same
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column received similar input vNat(θk, t), by virtue of their shared orientation preference,
depending on the difference between the orientation of the stimulus θNat,k and their
preferred orientation θk, under

vNat(θk, t) = h(t)

{
vconst +αNat exp

[
−

∆θ(θk,θNat,k(t))
2

σ2
Nat

]}
, (18)

where σNat = 20°. In columnar visual cortex, neighbouring neurons are likely to re-
ceive less correlated input than this, due to relative shifts in receptive field location.
However since the goal of our model is to investigate local competition and reduc-
tion of correlations, we designed our stimulus to contain local correlations. During
center-only visual stimulation (0 s to 50 s), h(t) = 1 and 0 for the center and surround
hypercolumns, respectively. During center-surround stimulation h(t) = 1 for both
hypercolumns. αNat = 40Hz and 0 Hz for excitatory neurons and inhibitory neurons,
respectively, while vconst = 148Hz and 29 Hz for excitatory neurons and inhibitory
neurons, respectively.

The stimuli provided to each column θNat,k(t) for both center and surround
populations were generated by spatially and temporally filtering independent white
noise signals for each column. An ergodic noise process ϑk(t) was generated for each
column, and evolved under the dynamics

ϑk(t +∆t) = ϑk(t)+λnoiseηk(t) and (19)

τnoise
dηk(t)

dt
=−ηk(t)+σnoiseξ (t)

√
τnoise, (20)

where τnoise = 2ms, σnoise = 0.18° and ξ (t) is a gaussian white noise process with zero
mean and unit variance. The time step of the stimulation ∆t = 0.1ms; and λnoise = 20.
These ergodic noise processes were then spatially filtered under the relationships

θNat,k(t) = arctan


NCol

∑
l=1

sin [ϑl(t)]G [θl(t),θk(t)]

NCol

∑
l=1

cos [ϑl(t)]G [θl(t),θk(t)]

 (21)

where G(θl,θk) = A0 · exp
[
−∆θ(θl,θk)

2/2σ2
θ

]
, A0 = 0.6 and σθ = 2°.

Parameters for the spiking model Axons of pyramidal neurons in cat visual cortex
make a roughly even split of boutons between local and long-range arbors60, providing
estimates for PIN = 0.5 and PI = 0.5. Excitatory neurons make NSyn,E = 3000 total
synapses per excitatory neuron; inhibitory neurons make NSyn,I = 4500 total synapses
per inhibitory neuron60, 85. All neurons in the model connect to excitatory and inhibitory
targets roughly in proportion to the prevalence of excitatory and inhibitory neurons
in cortex59: fE = 80% of synapses in the model are made with excitatory targets and
fI = 20% of synapses are made with inhibitory targets.
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Specificity of connections between excitatory neurons has been observed in
several cortical areas in the rodent37, 86, 87, and is correlated with similarity in visual
feature preference in rodent visual cortex39, 46, 56. The presence of functionally specific
connectivity of the type proposed in this paper has not been investigated in columnar
visual cortex (e.g. in cat or monkey), leading us to explore a range of specificity levels
P+ and PM. We used nominal values of P+ = PM = 95%.

Since inhibitory responses are similarly tuned as excitatory responses in cat
primary visual cortex 88, all σθ are 20°. Since the mapping from orientation to physical
distance in the central visual field of cat area 17 is approximately 1 mm per 180°
hypercolumn, this corresponds to a local anatomical projection field of approximately
450 µm width53.

Nonlinear dynamical analysis of the system stability and steady-state response.
Parameters for the mean-field non-spiking model are give in Table 2.

Mean-field dynamics We used mean-field analysis methods to investigate the dy-
namics of the center-surround model. First, we introduce the activation function for
excitatory and inhibitory nodes, defined as 89

r
[
Isyn(t)

]
=

φ
[
ISyn(t)

]
1+ τref ·φ

[
ISyn(t)

] and (22)

φ [ISyn(t)] =
γ · ISyn(t)− IT

1− exp
{
−c
[
γ · ISyn(t)− IT

]} , (23)

where r
[
ISyn(t)

]
is the firing rate of a neuron in response to the instantaneous synaptic

input current ISyn(t); c and γ are the curvature and gain factors of the activation function,
respectively. The activation function becomes a linear threshold function with IT/γ as
the threshold current when c is large. τref is the refractory period of the neuron, which
also determines its maximum firing rate.

We redefine the synaptic gating variables S∗(t) for excitatory and inhibitory
synapses in the mean-field model as89

dS∗(t)
dt

=−S∗(t)
τ∗

+ r
[
I*,Syn(t)+ I*,Ext + I*,Back

]
, (24)

in which the total synaptic input currents I*,Syn(t) are given by

I∗(t) = J∗∑
s

ns ·S∗,s(t), where (25)

J∗ = g∗ [〈V (t)〉−V ∗rev] , (26)

and we assume the average membrane potential for each neuron 〈V (t)〉 ≈ −52.5mV.
The parameters JE and JI therefore represent constant synaptic weights (for excitation
and inhibition, respectively), rather than synaptic conductances as in the spiking model.
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Reduced model For simplicity, we present only the analysis of a reduced model, such
that we consider only two populations (N = 2), each containing only two SSNs (M = 2)
and without considering orientation such that (NCol = 1; see Fig. 1c). The connectivity
functions n∗ from the spiking model apply as before, but neglecting the indices for pre-
ferred orientation. S∗(t) therefore has the form S∗(t) = [x1,1, x1,2, x2,1, x2,2, y1, y2]

T (t).
Here xi, j(t) is the instantaneous value of the gating variable for the excitatory neu-
ron in population i, subnetwork j, and yi(t) is the value for the inhibitory neuron in
population i.

To investigate the dynamics of the mean-field model we calculate the steady-state
responses S̄ of the system, that is S̄ = S∗(t) : dS∗(t)/dt = 0. We solve the simplified
system in equation 24, under centre-only (“CO”) or centre-surround (“CS”) stimulation,
defined as

IExt,CO = [ιE ,0, ιE ,0, ιI,0]
T and (27)

IExt,CS = [ιE , ιE , ιE , ιE , ιI, ιI]
T , (28)

where ιE and ιI are stimulation currents delivered to exc. and inh. neurons respectively,
to obtain S̄CO and S̄CS. We then numerically obtain the system Jacobian JS̄∗ at these
fixed points, and examine the eigenvalues of JS̄∗ to determine the stability of the system
around these fixed points.

Competition index and computational regimes We also define a competition index
(“CI”) to quantify the strength of competition exhibited between excitatory neurons in
different subnetworks. The competition index measures how strongly the activity of an
excitatory neuron in one SSN in the “centre” population is suppressed, when input to
the other subnetwork is increased, either for centre-only or centre-surround stimulation.
This index is defined as

CI ≡ dS̄1,1

d∆IC
(29)

where ∆IC defines a perturbation in the input to a selected set of neurons in the network.
In the case of centre-only stimulation, ∆IC = [0,1,0,0,0,0]T ; CI therefore quantifies
the suppression evoked in the neuron in population 1, SSN 1 by an increase in input to
SSN 2 in population 1. That is, population 1 is defined as the “central” population, and
we measure competition between SSNs within that population.

In the case of centre-surround stimulation, ∆IC = [0,1,0,1,0,0]T ; CI therefore
quantifies the suppression provoked by input to the SSN 2 in both populations 1 and 2.
The competition index CI is only defined in the case of stable S̄, i.e. when the eigenvalues
of JS̄ have non-positive real parts.

We use the eigenvalues of JS̄∗ in conjunction with the CI to identify parameter
regimes of stability and computation (see Fig. 4). If JS̄∗ has one or more eigenvalues
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with positive real part, the system operates in a hard winner-take-all regime (“hWTA”),
in which only a single SSN is permitted to be simultaneously active. This is because
competition between SSNs is so strong, that activity of a single SSN is capable of
entirely suppressing the activity of the other SSNs, via shared inhibitory feedback.

Alternatively, if all eigenvalues of JS̄∗ are negative, then the system operates in
either a “soft” winner-take-all regime (“sWTA”; if CI < 0), such that several simultane-
ously active SSNs are permitted at steady state, or in a non-competitive regime (“NC”;
if CI > 0). In the sWTA regime, increasing the external stimulus to one SSN will lead
to the decreasing of neural activities of the remaining SSNs, implying competition
exists between neurons within a column. Stronger competition is indicated by more
negative CI. In the NC regime, however, increasing the input to one SSN will increase
the activity of the remaining SSNs. The absence of competition is reflected in a positive
CI.

When strong excitation is unbalanced by inhibition, the network is in an “unbal-
anced” regime (“UN”). This regime is defined as when firing rates of all neurons are
close to saturation in the steady state, and all eigenvalues are negative.

Parameters for the firing-rate model We estimated parameters values from experi-
mental measurements of the properties of cortical neurons. The slope of the I–F curve
of an adapted cortical pyramidal neuron, corresponding to γE in Eqn. 23 is approxi-
mately 66 Hz/nA90. The corresponding value for basket cells (γI) is approximately
351 Hz/nA91. The I–F curvature parameters cE and cI were chosen to approximate
the spiking model. The strength of a single excitatory synapse is estimated by the
charge injected into a post-synaptic neuron by a single spike, given by ISyn = JE ·SE(t).
At steady-state, SE(t) = τE , therefore JE = ISyn/τE . We estimated nominal values
of JE = 2.6pA and JI = 2.1pA92. We estimated firing thresholds for our neurons of
IT,E/γE = 0.4nA and IT,I/γI = 0.2nA90, 91. The average input currents ιE and ιI injected
during visual input were estimated from the average currents received by single pyrami-
dal neurons in visual cortex during visual stimulation90. We used values of ιE = 0.90nA,
and a proportional value of ιI = 0.087nA60, 90.

Population and lifetime sparseness measures. The measure of the population sparse-
ness and the life-time sparseness we used mainly is the kurtosis, which measures the 4th

moment relative to the variance squared 13 and is given by

sk =
1
n ∑

i

(ri− r̄)4

σ4 −3, (30)

where ri is the firing rate of each neuron during the presentation of the ith natural
stimulus, and n is the number of natural stimuli frames for lifetime spareness. For
population sparseness, ri is the firing rate of neuron i during a frame of natural stimuli,
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Table 2 Parameters used in analysis of the mean-field model that differ from those
given in Table 1.

Parameter Description Nominal value

cE ; cI Exc. and Inh. neuron activation function curva-
ture parameters

160×10−3;
87×10−3

IT,E/γE ; IT,I/γI Exc. and Inh. threshold currents 0.4 nA; 0.2 nA

〈V (t)〉 Assumed average membrane potential −52.5 mV
JE ; JI Exc. and Inh. total synaptic weights 2.6 pA; 2.1 pA

N Number of populations (hypercolumns) 2
NCol Number of columns in each population 1
M Number of subnetworks (SSNs) 2

ιE ; ιI Input currents representing external stimuli to
Exc. and Inh. neurons

0.90 nA;
0.087 nA

and n is the number of simultaneously recorded neurons in our model. r̄ is the mean
firing rate and σ is the standard deviation of the firing rate. For a sparse (i.e. heavy-
tailed) distribution, sk > 0.

In addition we used the Vinje-Gallant measure for sparseness, a nonparametric
statistic employed previously in 4, 14, given by

sV&J =

1−

(
∑

i

ri

n

)2/(
∑

i

r2
i

n

)/(1−1/n), (31)

where sV&J ∈ [0,1]. A larger sV&J indicates a more sparse response.

Suppression index. The strength of surround suppression was quantified using a sup-
pression index (SI), which is defined as

SI (θ) = 1− RCS (θ)

RCO
, (32)

where θ is the center-surround orientation difference, RCO is the response to the center-
only stimulus, RCS(θ) is the response to the center-surround stimulus. Therefore, SI = 1
indicates that the response in the center population is completely suppressed by the
surround stimulus, whereas SI = 0 indicates the absence of any suppression from the
surround.

Statistical methods. All tests are non-parametric two-sided tests of medians (Wilcoxon
Rank Sum), unless stated otherwise.
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