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Abstract5

During perception, the brain combines information received from its senses with prior information6

about the world (von Helmholtz, 1867) – a process whose neural basis is still unclear. If sensory7

neurons represent posterior beliefs in a Bayesian inference process, then they, just like the beliefs8

themselves, must depend both on sensory inputs and on prior information. We derive predictions9

for how prior knowledge relates a neuron’s stimulus tuning to its response covariability in a way10

specific to the psychophysical task performed by the brain, and for how this covariability arises11

from both feedforward and feedback signals. We show that our predictions are in agreement with12

existing measurements. Finally, we demonstrate how to use neurophysiological measurements to13

reverse-engineer information about the subject’s internal beliefs about the structure of the task.14

Our results reinterpret neural covariability as signatures of Bayesian inference and provide new15

insights into their cause and their function.16

Introduction17

At any moment in time, the sensory information entering the brain is insufficient to give rise to our18

rich perception of the outside world. To compute those rich percepts from incomplete and noisy19

inputs, the brain has to employ prior experience about which causes are most likely responsible20

for a given input (von Helmholtz, 1867). Mathematically, this process can be formalized as proba-21

bilistic inference in which posterior beliefs about the outside world (our perception), are computed22

as the product of a likelihood function (based on sensory inputs) and prior expectations. While23

there is ample empirical evidence that human behavior is consistent with such probabilistic com-24

putations (reviewed in (Pouget et al., 2013; Ma and Jazayeri, 2014)), how these computations are25

implemented in the brain is far from clear. Our work builds on the previous observation that these26

Bayesian computations map naturally onto a cortical architecture in which feedforward (bottom-27

up) pathways communicate the information in the likelihood function about the sensory inputs,28

feedback (top-down) pathways communicate prior expectations, and cortical sensory neurons com-29

pute posterior beliefs about the variables that they represent (Mumford, 1992; Lee and Mumford,30

2003). While it is conceptually straightforward to investigate the feedforward pathway by varying31

the external stimulus in a way controlled by the experimenter and recording neural responses and32

behavior (reviewed in (Parker and Newsome, 1998)), it is less obvious how to probe the feedback33
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Figure 1: Illustration of the components of the probabilistic inference framework and how they
relate to experimentally observed quantities. The experimenter varies the sensory inputs, E, (e.g.
images on the retina) according to s (e.g. orientation). The brain computes P px, I|Eq, its beliefs
about its variables of interest conditioned on those inputs. We have split the relevant internal
variables into two groups: x which represents the variables encoded by the neurons that are being
recorded from, and I, other variables that are probabilistically related to x. The recorded neurons
are assumed to encode the brain’s posterior beliefs about x through some representation scheme,
R. The observed behavior, which we assume to be related to x, will therefore reflect some aspect
of I. The solid arrows represent statistical dependencies in the implicit generative model, not
information flow (for that see Figure 5g).

influences on sensory neurons without control of internal representations (see Figure 1). There are34

two principal ways to overcome this challenge: correlational studies that rely on changes to internal35

representations over natural development (Berkes et al., 2011), and – as we describe below – causal36

studies that affect internal representations in an experimenter-controlled way.37

In the first part of this paper, we describe a general hypothesis of ‘posterior coding’ that38

relates firing rates directly to Bayesian inference with few assumptions. From this hypothesis we39

derive relationships between sensory neurons’ stimulus tuning and their (co-)variability while the40

experimenter keeps the external stimulus constant. Importantly, those relationships are specific41

to the task context defined by the experimenter and thereby allow interventional tests of the42

predictions. A comparison of our task-specific predictions with existing empirical studies confirms43

them. We further relate these predictions to the ongoing debate about the cause and interpretation44

of decision-related signals and response correlations in sensory cortex.45

The functional implications of response variability and covariability for sensory coding has46

almost exclusively been analyzed and discussed in the context of classical feedforward encod-47

ing/decoding models (Zohary et al., 1994; Abbott and Dayan, 1999; Shamir and Sompolinsky,48

2006; Ecker et al., 2011) (reviewed in (Kohn et al., 2016)), even when explicitly acknowledging49

that some of that variability may be induced by extrasensory common inputs (Ecker et al., 2014,50

2016). While it enables one to compute the effect of covariability on the information contained in51

neural responses about the external stimulus, the classical framework makes no predictions about52

its structure or source.53

Our results extend those in a recent numerical study (Haefner et al., 2016) based on specific54

assumptions about how exactly probabilities are represented in the brain, about the stimulus tuning55

of the sensory neurons, and about the structure of the internal model. Our results further expose56

the analytical relationships that drive the numerical observations in that study.57

In the second part of this paper, we build on insights from the first part and demonstrate a way58
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Figure 2: Illustration of hierarchical inference in the visual system. (a) Neurons in visual cortex
represent latent, unobserved variables in a hierarchical probabilistic model. Posterior beliefs about
x (the variables encoded by visual cortex) depend both on the image on the retina, E, and relevant
higher-level components of the internal model I. Black arrows depict the implicit generative model,
while red and blue arrows indicate the actual information flow necessary to perform inference over
x given E (Lee and Mumford, 2003). (b-c) Top (blue): prior; middle (gray): posterior; bottom
(red): likelihood. x lives in a high dimensional space, but only one dimension is illustrated here.
In general, an informative likelihood and uninformative prior (b) can yield the same posterior as
an informative prior and uninformative likelihood (c). Although we have illustrated the prior as
flat in (b), in general it will not be, but will instead reflect learned statistics of the world.

to use recordings of sensory neurons’ responses to infer aspects of a subject’s internal, prior beliefs.59

In particular, we describe how to interpret them in terms of the stimulus to yield information about60

the subject-specific strategies in psychophysics tasks.61

Results62

Our central hypothesis is of ‘posterior coding’ – that sensory neurons encode posterior beliefs over63

latent variables in the brain’s internal model (Lee and Mumford, 2003; Hoyer and Hyvärinen, 2003;64

Fiser et al., 2010; Haefner et al., 2016). If they do, then their responses will depend both on65

information from the sensory periphery (likelihood), and on relevant information in the rest of the66

brain (prior). In a hierarchical model, the former are communicated by feedforward connections67

from the periphery, and the latter are relayed by feedback connections from higher-level areas (Lee68

and Mumford, 2003) (Figure 2a). Many of our predictions below stem from the simple insight that69

any given posterior (Figure 2b-c, middle row) may arise from the combination of an uninformative70

prior with an informative likelihood (Figure 2b), or from the reverse (Figure 2c), implying that71

neurons that encode the output of the Bayesian computation (posteriors) will respond equivalently72

when they are informed by the stimulus or when they are informed by prior expectations about73

the stimulus.74

We formalize these ideas in a hierarchical generative model (Figure 1, Figure 2a). E represents75

the directly observed variable – the sensory input, and x represents the variable corresponding to76

the recorded neural population under consideration. I is a high-dimensional vector representing77

all other internal variables in the brain that are probabilistically related to x. For instance, when78

considering the responses of a population of V1 neurons, E is the high-dimensional image projected79

onto the retina, and x has been hypothesized to represent the presence or absence of Gabor-80
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Figure 3: Illustration of ‘posterior coding.’ (a) In visual psychophysical tasks, the experimenter
varies some parameter s to generate an image (e.g. changing the orientation of a grating pattern).
This will cause changes to the distribution P pxq if x depends on s. x̄psq represents the direction
along which the posterior mean varies with s. (b) The ‘posterior coding’ hypothesis: a neuron’s
response, r, depends on some statistics of the posterior distribution over x through an unknown
encoding R. Tuning curves fpsq in this framework reflect consistent changes in r as the posterior,
P px|Eq, changes as a function of s.

like features at particular retinotopic locations (Bornschein et al., 2013) or the intensity of such81

features (Olshausen and Field, 1996; Schwartz and Simoncelli, 2001), though the exact nature of82

these variables is not important for our results. In higher visual areas, variables are likely related83

to the identity of objects and faces (Kersten et al., 2004). I represents these higher-level variables,84

as well as knowledge about the visual surround, task-related knowledge about the probability of85

upcoming stimuli, etc. There is an important distinction between the variables in the brain’s86

internal model (i.e. x and I) and the responses of neurons that encode the distributions of these87

variables via some representation R (Figure 3).88

In this framework, classical feedforward tuning curves (Dayan and Abbott, 2001) reflect proba-89

bilistic relationships between the variables represented by a neuron and the sensory inputs. Changes90

to the evidence E along an experimenter-defined direction s (e.g. rotating an image of a grating)91

affect the inferred probability of P px|Eq. If the variable x represented by the recorded neurons is92

statistically dependent on s, then the likelihood P pE|xq will vary as s is varied. As a result, the93

posterior P px|Eq will also vary (Figure 3a), and in turn so will the neural responses representing94

it. The dependence of the mean of those responses on s gives rise to tuning curves, denoted fpsq95

(Figure 3b, Methods). Furthermore, for small changes in s around some reference point, s “ 0, we96

can linearly approximate the average neural responses: r̄ “ fp0q ` f 1p0qs. That is, the population97

response, r, changes in the f 1 ” df{ds-direction due a changing posterior belief about x, which in98

turn is driven by changes in the external stimulus Epsq (Averbeck et al., 2006).99

We now derive predictions for the effect of the prior on sensory responses. When a subject100

performs a perceptual decision-making task, the experimenter defines a distribution of stimuli101

PtaskpEq used in that task. Learning a task implies an increase in the subject’s prior for PtaskpEq as102

they begin to expect stimuli drawn from this distribution. In discrimination tasks, the stimulus is103

varied along the experimenter-defined axis s, and subjects must make decisions about the category104

of s by observing E. For example, s could be the orientation coherence of a grating (Bondy and105

Cumming, 2016), dot motion coherence (Britten et al., 1992), or the frequency of tactile stimulation106

(Romo and Salinas, 2001). The experimenter also determines the distribution of stimuli at a107

particular value of s (e.g. by embedding the signal in noise), as well as the distribution of s, P psq.108

Consequently, PtaskpEq “
ş

P pE|sqP psqds. If the subject has completely learnt the task, the prior109
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over x will correspond to the average likelihood in the task (Berkes et al., 2011):110

P pxq “

ż

P px|IqP pIqdI
loooooooomoooooooon

avg. effect of prior

“

ż

P px|EqPtaskpEqdE
loooooooooooomoooooooooooon

avg. effect of stimulus

(1)

Intuitively, P pxq defines a small volume of increased probability mass in x´space, elongated along111

a line x̄psq given by the dependence of the mean of P pxq on s (Figure 3a).112

For illustration, consider a stimulus distribution, P psq, that is symmetric with respect to the113

decision-boundary, s “ 0, i.e. training with an equivalent number of trials for each signal level for114

both choices. This induces a symmetric prior along x̄psq in the brain. Many experiments contain115

a fraction of ‘zero-signal’ trials in which the average stimulus is uninformative about the correct116

decision (Britten et al., 1996; Nienborg et al., 2012); that is, the likelihood is symmetric with respect117

to the two categories. If both categories are equally likely a priori, then performing exact inference118

in these trials will yield a symmetric posterior (Figure 4a for an example). However, inference in119

the brain is at best approximate, both in terms of computation and in terms of representation.120

Hence on any one trial, the actual likelihood and prior used by the brain deviates from the correct121

one. The likelihood varies as the result of noise in the stimulus and because of noise in the afferent122

pathway. The prior varies if the subject erroneously assumes serial dependencies between trials123

(Fischer and Whitney, 2014), or if the subject develops a belief about the value of s over the course124

of each trial (Haefner et al., 2016).125

Trial-to-trial changes in the likelihood entail trial-to-trial changes in the posterior that lie pri-126

marily along x̄psq since that is the line along which most of the prior mass is concentrated (Figure127

4b; see also Figure S1). Furthermore, changes in the subject’s internal beliefs about s – both128

within and across trials – will by definition cause a shift in the posterior mass along x̄psq, this129

time through the prior (Figure 4c; see also Figure S2). At the same time, any changes along x̄psq130

entail changes in the neural responses along the f 1´direction – at least to a linear approximation131

as explained above (Figure 4d). Intuitively, this means that both variation in the stimulus and132

variation in the subject’s beliefs about the stimulus are reflected in changes in neural responses133

along f 1. The consequence is increased covariability proportional to f 1f 1J. Dividing both sides by134

the response variability, task-dependent noise correlations are predicted to be proportional to the135

product of the neural sensitivities: cij 9 d1id
1
j (using d-prime to measure sensitivity). This predicted136

proportionality has two direct implications: first, performing a task should most change the noise137

correlation between neurons that are the most informative for this specific task, i.e. for whom138

d1i ” f 1i{σi has the largest magnitude. Second, this change should be positive for neurons with the139

same task-specific selectivity, i.e. should both increase or both decrease their activity in response to140

a stimulus predictive of a particular choice, and negative for those with opposite preferences. This141

is exactly the correlation structure observed in the empirical data recorded from primary visual142

cortex while a monkey was performing a coarse orientation discrimination task (Bondy and Cum-143

ming, 2016). Furthermore, it explains and generalizes numerical results generated for the specific144

case of a neural sampling-based representation (Haefner et al., 2016) to a wide range of represen-145

tations including neural sampling and probabilistic population codes (Tajima et al., 2016; Hoyer146

and Hyvärinen, 2003; Haefner et al., 2016; Buesing et al., 2012; Pecevski, 2011; Savin and Denève,147

2014).148

We emphasize that our predictions only describe how learning a task-specific prior changes149

response correlations, and makes no predictions about correlations induced by the prior that the150

brain has learnt for natural images (Olshausen and Field, 2004; Berkes et al., 2011), or those that151

are the result of specific connectivity patterns between neurons. One strategy to experimentally152
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Figure 4: Posterior coding in a discrimination task, with P pxq reduced to a single dimension
along x̄psq. (a-c) as in Figure 2b-c. (a) The subject has learned to expect stimuli from either
of the categories, increasing prior mass in x along x̄psq. ‘Zero-signal’ trials in which the given
stimulus contains no information about the correct category correspond to a likelihood with mass
on either side of the decision boundary. Whether the prior is bimodal depends on the fraction
of zero-signal and zero-signal trials in the experiment and is not important for our argument (see
Figure S1). (b) Trial-to-trial changes in the likelihood, whether due to changes in the stimulus
or due to noise in its representation, will shift mass in the posterior along the x̄psq direction. (c)
Unequal prior expectations about the upcoming category at the beginning of the trial (e.g. due
to serial dependencies) will shift the posterior along x̄psq similar to the changing likelihoods in
(b). (d) Axes and fpsq as in Figure 3b, with the change in mean firing rates around the decision
boundary (s “ 0) indicated by the derivative of the tuning curves, f 1. The equivalence of posteriors
in (b) and (c) implies that firing rates will move along f 1 regardless of whether the stimulus itself
changed or beliefs about it changed. f must be measured during the task in order to account for
the task-specific prior.
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test the task-specific predictions is to hold the stimulus constant while switching between two153

comparable tasks a subject is performing, predictably altering their task-specific prior (Methods).154

The difference in neural responses to zero-signal stimuli will isolate the task-dependent component155

to which the above predictions apply (Figure 5b). At least two existing studies have used a similar156

approach (Cohen and Newsome, 2008; Bondy and Cumming, 2016), and found changes in the157

correlation structure consistent with our predictions (discussed in (Haefner et al., 2016)). A related158

approach is to compare the amount of correlated variability in the current task’s direction with159

other ‘hypothetical’ tasks, which is possible having measured the neurons’ tuning curves in those160

other contexts (Figure 5c-e). A third strategy is to statistically isolate the top-down component of161

neural variability within a single task using a sufficiently powerful regression model. A recent study162

(Rabinowitz et al., 2015) used this type of approach to infer the primary top-down ‘modulators’ of163

V4 responses in a change-detection task (Cohen and Newsome, 2009), and found that the dominant164

modulator had projections to each neuron proportional to the neuron’s d1, implying correlated165

variability in the population proportional to d1id
1
j (their data replotted in Figure 5f).166

In addition to making empirically testable predictions for the influence of top-down signals on167

neural responses, the probabilistic inference framework provides a normative explanation for their168

existence. While in the classic feedforward framework decision-related signals contaminate the169

sensory evidence and decrease behavioral performance (Wimmer et al., 2015), here they serve the170

function of communicating to a sensory neuron knowledge derived from stimuli at earlier points in171

time, or any other relevant information from the brain’s complex internal model. Consider the case172

of a dynamic stimulus in which the noise obscuring the fixed signal is dynamically redrawn over the173

course of the trial. Given the knowledge that the underlying signal has not changed, the brain’s174

posterior belief about the signal should integrate information over all stimulus frames presented up175

to that moment. At any point in time, this belief over the previous stimulus frames acts as a prior176

that is to be combined with the likelihood representing the next stimulus frame. Communicating177

that prior to sensory neurons allows them to take the information provided by previous stimulus178

frames into account and not just rely on the current inputs (Figure 5f). Interestingly, the d1d1-179

correlations induced through top-down signals here have the same shape as the information-limiting180

correlations previously described (Moreno-Bote et al., 2014). However, unlike in the feedforward181

case where these correlations limit information (Moreno-Bote et al., 2014), here they are induced182

through feedback signals that reflect prior beliefs about the stimulus, e.g. from earlier frames in the183

trial (Figure 5g), or due to the subject’s internal beliefs going into the trial. In general, differential184

correlations reduce information only when they are induced by variability unrelated to the stimulus185

(i.e. actual noise), and not if they are induced by prior knowledge about the stimulus.186

We next ask what the implications of learning the task-specific sensory prior are for decision-187

related signals in sensory neurons (Parker and Newsome, 1998; Nienborg et al., 2012). Under the188

assumption that the behavioral decision of the subject is based on the posterior belief represented189

by the neurons under consideration, the average posterior preceding choice 1 will have more mass190

favoring choice 1, and the average posterior preceding choice 2 will have more mass favoring choice191

2, even if the average posterior across all trials is symmetric with respect to the decision boundary.192

Since the difference in the corresponding mean responses is proportional to the tuning curve slope193

vector f 1, it follows that CTAi 9 f 1i p0q where CTAi is the ‘choice triggered average,’ or difference194

between neuron i’s mean response preceding choice 1 and its mean response preceding choice 2. This195

prediction relates the dependence of a neuron’s response on the external stimulus at the category196

boundary to the dependence of its response on the choice given a fixed stimulus. In fact, when197

dividing both sides of this proportionality by the standard deviation of the neuron’s response, σi, one198

obtains a prediction for the relationship between a neuron’s choice probability (CP) and its neural199

sensitivity: CPi´
1
2 9 d1i (Figure 5a). Many empirical studies have found such a relationship between200
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Figure 5: Predictions of the probabilistic inference framework. C denotes covariation, and c denotes
correlation. (a) First prediction, in agreement with classical feedforward encoding-decoding models
with optimal linear readout: neurons’ choice probabilities should be proportional to their sensitivity
to the stimulus d1. (b) Second prediction, requiring top-down signals: the difference in covariance
structure between comparable tasks should be proportional to the difference in the product of
tuning curve derivatives for each task. By subtracting out intrinsic covariability, this is a less
noise-prone prediction than (c-e). (c) Correlations induced by the prior should be proportional
to d1d1. The strength of the prior should modulate the slope rprior of this relationship. (d) The
relationship in (c) should not hold for neural sensitivities d1 measured with respect to other tasks’
d1 vectors. (e) Summary of (c) and (d): rprior should fall off with the ‘mismatch’ between the
task direction d1 and the regressor direction. (f) Rabinowitz et al. (Rabinowitz et al., 2015)
results replotted, where it was found that the strength of top-down ‘modulator’ connections is
linearly related to d1. (g) Emergence of differential correlations (Moreno-Bote et al., 2014) over
the course of a trial. Here, arrows show information flow. The signal s is embedded in a sequence
of noisy stimulus frames presented throughout the trial (Nienborg and Cumming, 2014; Bondy
and Cumming, 2016). The developing posterior belief about the correct choice acts as a prior on
subsequent responses within the same trial, inducing differential correlations. As a result, neural
responses at any point throughout the trial will contain information not just about the current
sensory input, but also stimuli presented earlier during the trial.

a neuron’s CP and its neurometric sensitivity (Nienborg et al., 2012). Interestingly, the classic201

feedforward-only framework makes the same prediction as the probabilistic inference framework202

when the decoding weights are linear optimal (Haefner et al., 2013). Therefore, this prediction203

alone cannot distinguish between the classic feedforward framework and the probabilistic inference204

framework.205

Reverse-engineering the internal model206

We have shown that internal beliefs about the stimulus induce corresponding structure in the207

correlated variability of sensory neurons’ responses. Conversely, this means that the statistical208

structure in sensory responses can be used to infer properties of these beliefs.209

The task structure of a simple discrimination task as discussed above determines the only210

task-relevant belief (which of two target stimuli is the better explanation for the external inputs).211

However, more complicated tasks may involve inference over more than one variable, and therefore212
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Figure 6: Inferring internal beliefs. (a) Trial-to-trial fluctuations in the posterior beliefs about x
imply trial-to-trial variability in the mean responses representing that posterior. Each such ‘belief’
yields increased correlations in a different direction in r. The model in b-d has uncertainty in each
trial about whether the current task is vertical-horizontal orientation discrimination (task 1, blue)
or oblique discrimination (task 2, yellow). (b) Correlation structure of simulated sensory responses
during discrimination task. Neurons are sorted by their preferred orientation (based on (Haefner
et al., 2016)). (c) Eigenvectors of correlation matrix (principal components) plotted as a function of
neurons’ preferred orientation. The blue vector corresponds to fluctuations in the belief that either
a vertical or horizontal grating is present (task 1), and the yellow corresponds to fluctuations in
the belief that an obliquely-oriented grating is present (task 2). See Methods for other colours. (d)
Eigenspectrum of the correlation matrix showing five dominant subspace dimensions in responses
corresponding to the five plotted eigenvectors in (c).

more than one task-relevant belief. For instance, a task in which the categories to be discriminated213

can vary from trial to trial involves inference both over the correct task and over the correct214

choice. Even if a pre-trial cue indicates the correct task, the cue may not be completely reliable,215

or the subject may not be completely certain about the cue (Cohen and Newsome, 2008; Sasaki216

and Uka, 2009). This uncertainty may be about the task parameters (e.g. the specific target217

orientation, or spatial frequency), or due to confusion with a previously learnt task. If those task-218

related uncertainties are sufficiently large, trial-to-trial variability in the associated beliefs will lead219

to measurable changes in the statistical structure of sensory responses (Figure 6a), as well as a220

decrease in behavioral performance.221

Importantly, the probabilistic inference framework also suggests an intuitive method for in-222

terpreting top-down sources of covariability. As described above, tuning curves have a general223

probabilistic interpretation in terms of the statistical dependence between s and the variable(s) x224

represented by a population. As responses are assumed to encode the posterior over x, it follows225

that variability in x – whether due top-down or bottom-up sources – may be understood in terms of226

the same stimulus parameters (i.e. s or E) to which the neurons are tuned. For example, top-down227

modulators of neurons that are tuned to visual orientation may themselves be understood, in part,228

as varying prior beliefs about orientation.229

In order to demonstrate the usefulness of this approach, we used it to infer the structure230

of an existing neural-sampling-based probabilistic inference model for which the ground truth is231

known (Haefner et al., 2016). In the simulated task, subjects had to perform a coarse orientation232

discrimination task either between a vertical and a horizontal grating (cardinal context), or between233

a ´45deg and `45deg grating (oblique context). The model was cued to the correct context234

before each trial, but had remaining uncertainty about the correct task context corresponding235

to an 80% ´ 20% prior. The model simulates the responses of a population of primary visual236

cortex neurons with oriented receptive fields. Since the relevant stimulus dimension for this task is237

orientation, we sorted the neurons by preferred orientation. The resulting noise correlation matrix238
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– computed for zero-signal trials – has a characteristic structure in qualitative agreement with239

empirical observations (Figure 6b) (Bondy and Cumming, 2016). The correlation matrix has five240

significant eigenvalues (Figure 6d) corresponding to five eigenvectors (Figure 6c). Each of these241

eigenvectors (equivalent to the principal components of the population activity) represents one242

direction in which the trial-by-trial variability in the neural responses is larger than expected.243

Knowing the stimulus selectivity of each neuron, i.e. how the response of each neuron depends on244

variables in the external world, allows us to interpret the eigenvectors in terms of variables in the245

external world. For instance, the elements of the eigenvector associated with the largest eigenvalue246

(blue in Figure 6c) are largest for neurons with vertically oriented receptive fields, and negative for247

those neurons with preferred horizontal orientation. Finding such an eigenvector in empirical data248

therefore indicates that there is trial-to-trial variability in the subject’s internal belief (represented249

by the rest of the brain and communicated as a prior on the sensory responses) about whether “there250

is a vertical grating and not a horizontal grating” – or vice versa – in the stimulus. Recall that251

the external stimulus was fixed, i.e. that this variability is due to variability in the internal beliefs,252

not the external stimulus. Knowing the stimulus-dependence of the neurons’ responses allows us253

to interpret the abstract statistical structure in neural covariability in terms of the stimulus space254

defined by the experimenter. Equally, one can interpret the eigenvector corresponding to the third-255

biggest eigenvalue (yellow in Figure 6c-d) as corresponding to the belief that a `45-degree grating256

is being presented, but not a ´45-deg grating, or vice versa. This is the correct axis for the wrong257

(oblique) context, indicating that the subject maintained some uncertainty about which is the258

correct task context across trials. (see Methods for interpretation of other eigenvectors shown in259

Figure 6c).260

Maintaining this uncertainty is the optimal strategy from the subject’s perspective given their261

imperfect knowledge of the world. However, when compared to certain (perfect knowledge), it262

decreases behavioral performance on the actual task defined by the experimenter. In the proba-263

bilistic inference framework, behavioral performance is optimal when the internal model learnt by264

the subject exactly corresponds to the experimenter-defined one. An empirical prediction, there-265

fore, is that eigenvalues corresponding to the correct task-defined stimulus dimension will increase266

with learning, while eigenvalues representing other dimensions should decrease. While no study267

has analyzed data in this framework, we know that the first and third eigenvalue must initially be268

increasing during task learning simply because task-dependent correlations can by definition only269

emerge over the course of learning. At the same time, the third eigenvalue should decrease again270

at some point since it represents uncertainty over the correct task context, which is presumably271

decreasing with learning. A previous study reported a decrease in average noise correlations due to272

learning (Gu et al., 2011). In our analysis, this would correspond to a decrease in the 2nd eigenvalue273

(average noise correlations are captured by the red eigenvector since it is approximately constant).274

Much research has gone into inferring latent variables that contribute to the responses of neural275

responses (Cunningham and Yu, 2014; Archer et al., 2014; Kobak et al., 2016). Our predictions276

in the context of the probabilistic inference framework suggest that at least some of these latent277

variables can usefully be characterized as internal beliefs. Importantly, our framework suggests that278

the coefficients with which each latent variable influences each of the recorded sensory neurons can279

be interpreted in the stimulus space using knowledge of the stimulus-dependence of each neuron’s280

tuning function (Figure 6c).281
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Discussion282

We have derived task-specific, neurophysiologically testable, predictions within the mathematical283

framework of probabilistic inference (Ma and Jazayeri, 2014; Pouget et al., 2013; Fiser et al., 2010;284

Knill and Pouget, 2004; Kersten et al., 2004). Our assumption that sensory neurons represent285

posterior beliefs, not likelihoods, means that sensory responses do not just represent information286

about the external stimulus but also include information about the brain’s expectations about287

this stimulus (Lee and Mumford, 2003). By treating task-training as an experimenter-controlled288

perturbation of the brain’s expectations (part of the internal model), we have derived predictions289

for how neural responses should change as a result of this perturbation. Our derivation makes290

only minimal assumptions about the relationship between neural responses and posterior beliefs,291

making it applicable to a wide range of proposed neural implementations of probabilistic inference292

(Lee and Mumford, 2003; Tajima et al., 2016; Hoyer and Hyvärinen, 2003; Haefner et al., 2016;293

Buesing et al., 2012; Pecevski, 2011; Savin and Denève, 2014). Our approach has allowed us to294

sidestep two major challenges: that the brain’s internal model is currently unknown, and that295

there is no consensus on how neurons represent probabilities (Pouget et al., 2013; Fiser et al.,296

2010). While the presented theoretical predictions are novel, they are in agreement with a range297

of prior (Cohen and Newsome, 2008; Law and Gold, 2008; Gu et al., 2011; Rabinowitz et al., 2015)298

and new (Bondy and Cumming, 2016) empirical findings. Finally, we have used this framework299

to show how aspects of the low-dimensional structure in the observed covariability can be used to300

reverse engineer the structure of the internal beliefs that vary on a trial-to-trial basis.301

The nature of our predictions directly addresses several debates in the field. First, they pro-302

vide a rationale for the apparent ‘contamination’ of sensory responses by top-down decision signals303

(Nienborg and Cumming, 2009; Wimmer et al., 2015; Ecker et al., 2016; Rabinowitz et al., 2015).304

In the context of our framework, top-down signals allow sensory responses to incorporate stimulus305

information from earlier in the trial, not reflecting the decision per se but integrating informa-306

tion about the outside world (Nienborg and Roelfsema, 2015). Second, this dynamic feedback of307

feedforward stimulus information from earlier in the trial induces choice probabilities that are the308

result of both feedforward and feedback components (Nienborg and Cumming, 2009, 2014; Haefner309

et al., 2016). Third, the same process introduces correlated sensory variability that appears to be310

information-limiting (Moreno-Bote et al., 2014) but is not. Whether f 1f 1´covariability increases or311

decreases information depends on its source: if the latent variable driving it contains information312

about the stimulus, it adds information; if it is due to noise (Kanitscheider et al., 2015), then it313

reduces it.314

Furthermore, the assumption that sensory responses represent posterior beliefs formalizes previ-315

ous ideas and agrees with empirical findings about the top-down influence of experience and beliefs316

on sensory responses (von der Heydt et al., 1984; Lee and Mumford, 2003; Nienborg and Cumming,317

2014). It also relates to a large literature on association learning and visual imagery (reviewed318

in (Albright, 2012)). In particular, the idea of ‘perceptual equivalence’ (Finke, 1989) reflects our319

starting point that the very same posterior belief (and hence the same percept) can be the result320

of different combinations of sensory inputs and prior expectations. In a discrimination task, for321

instance, there are three distinct associations inducing correlations. First, showing the same input322

many times induces positive correlations between sensory neurons responding to the same input.323

Second, presenting only one of two possible inputs induces negative correlations between neurons324

responding to different inputs. Third, keeping the input constant within a trial induces positive325

auto-correlations.326

It seems plausible that only a subset of sensory neurons actually represent the output of the327

hypothesized probabilistic computations (posterior), while others represent information about nec-328
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essary ‘ingredients’ (likelihood, prior), or carry out other auxiliary functions (Pecevski, 2011). Since329

our work also shows how to generate task-dependent predictions for those ingredients, it can serve330

as a tool for a hypothesis-driven exploration of the functional and anatomical diversity of sensory331

neurons.332

In deriving the predictions for changes in the task-specific correlations we have implicitly as-333

sumed that the feedforward encoding of sensory information, i.e. the likelihood P pE|xq, remains334

unchanged between the compared conditions. This is well-justified for lower sensory areas in adult335

subjects (Hensch, 2005), or when task contexts are switched on a trial-by-trial basis (Cohen and336

Newsome, 2008). However, it is not necessarily true for higher cortices (Li and DiCarlo, 2008),337

especially when conditions are compared separated by long periods of task (re)training. In those338

cases, changing sensory statistics may lead to changes in the feedforward encoding, and hence the339

nature of the represented variable x (Ganguli and Simoncelli, 2014; Wei and Stocker, 2015).340

Previous work has demonstrated the possibility of using behavioral judgements to infer the shape341

of a subject’s prior (Houlsby et al., 2013). Our results are complementary to behavioral methods,342

but have the advantage that the amount of information that can be collected in neurophysiology343

experiments far exceeds that in psychophysical studies.344

The detail with which the internal beliefs can be recovered from the statistical structure in neu-345

rophysiological recordings is primarily limited by experimental techniques. Much current research346

is aimed developing those techniques and at extracting the latent structure in the resulting record-347

ings. For illustration, we used principal component analysis in Figure 6, implicitly assuming linear348

effects of varying beliefs on the sensory population (Methods) and orthogonality of their directions.349

With nonlinear effects of the prior and in order to infer non-orthogonal causes, more sophisticated350

tools will be required to infer latent structure in sensory responses (Cunningham and Yu, 2014).351

Importantly, our work suggests a way to interpret this structure, and makes predictions about how352

it should change with learning and attention.353

Methods354

Definition of tuning curves355

Most generally, one can think of the process of encoding the posterior as a functional R that maps356

from a distribution over x to a distribution of neural responses: P prq “ R rP pxqs (Figure 1). We357

require that R̄ is smooth as x̄ changes (where ȳ denotes the mean of y across trials), which allows358

us to use linear approximations of tuning functions. We define the tuning function of neuron i as359

the neuron’s mean response across trials within a specific task context as E is changed with s:360

fipsq ” R̄irP px|sqs (2)

where P px|sq ”
ş

P px|E, IqP pE|sqP pIq dE dI.361

Prediction for the difference between comparable tasks362

The magnitude of task-dependent response variability depends on the magnitude of the trial-to-trial
changes in beliefs about s, and on strength and shape of the learned prior along x̄psq. Two arbitrary
tasks will in general differ in these aspects as well as in the intrinsic covariance of responses to the
zero-signal stimulus. We call two tasks ‘comparable’ when they agree in both the magnitude of
the prior and the intrinsic response covariance, as can reasonably be expected, for instance, in
rotationally symmetric situations where all that changes between the tasks is the angle (Bondy and
Cumming, 2016) or direction (Cohen and Newsome, 2008) of the discrimination boundary while
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the zero-signal stimulus stays the same. In that case the strength of the respective f 1f 1´component
can be assumed to be the same and hence, the intrinsic covariability can be subtract out:

C
p1q
ij ´ C

p2q
ij 9 f

p1q1
i f

p1q1
j ´ f

p2q1
i f

p2q1
j

where superscripts denote the task. That is, f
p1q1
i denotes the slope of neuron i’s tuning curve with363

respect to the discrimination axis in task 1 measured at s “ 0. Note that two fine discrimination364

tasks (e.g. orientation discrimination around the vertical and the horizontal axes, respectively) are365

not necessarily ‘comparable’ since the two tasks differ in their zero-signal stimulus (a vertical and366

a horizontal grating, respectively), which may yield different intrinsic covariability.367

Inferring internal model368

Complex tasks (e.g. those switching between different contexts), or incomplete learning (e.g. uncer-369

tainty about fixed task parameters), will often induce variability in multiple internal beliefs about370

the stimulus. Assuming that this variability is independent between the beliefs, we can write the371

observed covariance between two neurons as covpri, rjq “ C0
ij `

řn
k“1 λ

pkqb
pkq
i b

pkq
j . Here, each vector372

bpkq “ pb
pkq
1 , b

pkq
2 , ..q corresponds to the change in the population response corresponding to a change373

in internal belief k. The coefficients λpkq correspond to the variance of the trial-to-trial variability374

in belief k, and C0
ij represents the intrinsic covariance.375

The model in our proof-of-concept simulations has been described previously (Haefner et al.,376

2016). In brief, it performs inference by neural sampling in a linear sparse-coding model of primary377

visual cortex (Olshausen and Field, 1996; Hoyer and Hyvärinen, 2003; Fiser et al., 2010). The prior378

is derived from an orientation discrimination task with 2 contexts – oblique orientations, and cardi-379

nal orientations – that is modeled on an analog direction discrimination task (Cohen and Newsome,380

2008). We simulated the responses of 1024 V1 neurons whose receptive fields uniformly tiled the381

orientation space. Each neuron’s response corresponds to a sample from the posterior distribution382

over the intensity of its receptive field in the input image. We simulated zero-signal trials by pre-383

senting white noise images to the model. The elements of the eigenvector corresponding to the 2nd384

largest eigenvalue are all approximately the same indicating that variability corresponding to the385

associated latent variable adds response variability that does not depend on the neurons’ orienta-386

tions. Since the recovered eigenvectors are orthogonal to each other, the eigenvalue corresponding387

to a constant eigenvector determines the average correlations in the population. The eigenvectors388

not described in the main text correspond to stimulus-driven covariability, plotted in Figure S3 for389

comparison.390
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Supplemental Figures522

Bimodal Prior Likelihoods Resulting Posteriors
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Figure S1: 2D simulation of the effect of a prior that is elongated/bimodal along x̄psq on the mean
of the posterior. a: A bimodal prior, modeling the subject’s expectations about the stimulus (in
x) during a coarse-discrimination task. b: On ‘zero signal’ trials, the stimulus is drawn from
a distribution around xps “ 0q, yielding likelihood functions that are shifted uniformly around
x “ 0, shown here for two example trials. c: The resulting posteriors for each of these likelihoods
are themselves bimodal. d: The means of these posteriors (triangles in c, dots here) tend to lie
along the higher-probability region between the prior modes, despite an isotropic distribution of
likelihood means. e: Displacement of the mean of the likelihood to the mean of the posterior under
the prior in a. Thus, even in the absence of serial dependencies, ‘uniform’ trial-to-trial variability
in the stimulus yields variability in the posterior means primarily along the axis with the most
mass in the prior. f-j Same as a-e but for a unimodal but elongated prior, as might be expected in
a fine discrimination task.
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Figure S2: Equivalence of posterior for coarse and fine discrimination models. Fine discrimination
(a-b) is modeled with a unimodal prior at the s “ 0 boundary and a unimodal likelihood that
shifts along x̄psq. 2AFC coarse discrimination (i.e. categorical decisions) (c-d) is modeled as a
bimodal prior symmetric around s “ 0 with bimodal likelihoods, where both prior expectations
and evidence are modeled as a sharpening of one of the category modes. In each of these models,
changes to the stimulus along x̄psq yields identical changes to the posterior as arise from changes
in the prior. (a) Feedforward (informative likelihood) case for fine discrimination. (b) Feedback
(informative prior) case for fine discrimination. Note equivalence of posterior with (a). (c) Feed-
forward (informative likelihood) case for coarse discrimination. (d) Feedback (informative prior)
case for coarse discrimination. Note equivalence of posterior with (c).
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Figure S3: Principal components of model neurons due to only stimulus-driven correlations. Note
that the sinusoidal eigenvectors at the same frequency have indistinguishable eigenvalues and hence
form quadrature pairs, implying circular symmetry with respect to neurons’ tuning. There is no
more variance along the vertical-horizontal preferred orientation axis than then oblique axis.
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