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Abstract

Neurons in the hippocampus and adjacent brain areas show a large diver-

sity in their tuning to location and head direction. The underlying circuit

mechanisms are not fully resolved. In particular, it is unclear why certain cell

types are selective to one spatial variable, but invariant to another. For ex-

ample, a place cell is highly selective to location, but typically invariant to

head direction. Here, we propose that all observed spatial tuning patterns –

in both their selectivity and their invariance – are a consequence of the same

mechanism: Excitatory and inhibitory synaptic plasticity that is driven by the

spatial tuning statistics of synaptic inputs. Using simulations and a mathe-

matical analysis, we show that combined excitatory and inhibitory plasticity

can lead to localized, grid-like or invariant activity. Combinations of different

input statistics along different spatial dimensions reproduce all major spatial

tuning patterns observed in rodents. The model is robust to changes in pa-

rameters, develops patterns on behavioral time scales and makes distinctive

experimental predictions. Our results suggest that the interaction of excita-

tory and inhibitory plasticity is a general principle for the formation of neural

representations.
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Neurons in the hippocampus and the adjacent regions exhibit a broad variety of

spatial activation patterns that are tuned to position, head direction or both. Com-

mon observations in these spatial dimensions are localized, bell shaped tuning curves

[1, 2], periodically repeating activity [3, 4] and invariances [5, 6], as well as combina-

tions of these along different spatial dimensions [7, 8]. For example, head direction

cells are often invariant to location [6], and place cells are commonly invariant to

head direction [5].

The cellular and network mechanisms that give rise to each of these firing patterns are

subject to extensive experimental and theoretical research. Several computational

models have been suggested to explain the emergence of grid cells [9–21], place cells

[11, 22–27] and head direction cells [11, 28–30].

Most of these models are designed to explain the spatial selectivity of one particular

cell type and do not consider invariances along other dimensions, although the for-

mation of invariant representations is a non-trivial problem [31].

In view of the variety of spatial tuning patterns, the question arises if the differences

in tuning of different cells in different areas reflect differences in microcircuit con-

nectivity, single cell properties or plasticity rules, or if there is a unifying principle.

In this paper we suggest that both the observed spatial selectivities and invariances

can be explained by a common mechanism – interacting excitatory and inhibitory

synaptic plasticity – and that the observed differences in the response profiles of

grid, place and head direction cells result from differences in the spatial tuning of

excitatory and inhibitory synaptic afferents. Here, we explore this hypothesis in a

computational model of a feedforward network of rate-based neurons. Simulations as

well as a mathematical analysis indicate that the model reproduces the large variety

of response patterns of neurons in the hippocampal formation and adjacent areas
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and make predictions for the input statistics of each cell type.

The suggested mechanism ports the robust pattern formation of attractor models

[9, 10, 12] from the neural to the spatial domain and increases the speed of self-

organization of plasticity-based mechanisms [15, 17–19] to time scales on which the

spatial tuning of neurons is typically measured.

Results

We study the development of spatial representations in a network of rate-based neu-

rons with interacting excitatory and inhibitory plasticity. A single model neuron that

represents a cell in the hippocampal formation or adjacent areas receives feedforward

input from excitatory and inhibitory synaptic afferents. As a simulated rat moves

through an environment, these synaptic afferents are weakly modulated by spatial

location and in later sections also by head direction. This modulation is irregular

and non-localized with multiple maxima (Fig. 1a, Methods) [32]. Importantly, dif-

ferent inputs show different modulation profiles. We also show results for localized,

i.e., place cell-like, input [33–35]. The output rate is given by a weighted sum of the

excitatory and inhibitory inputs.

In our model, both excitatory and inhibitory synaptic weights are subject to

plasticity. The excitatory weights change according to a Hebbian plasticity rule [36]

that potentiates the weights in response to simultaneous pre- and postsynaptic activ-

ity. The inhibitory synapses evolve according to a plasticity rule that changes their

weights in proportion to presynaptic activity and the difference between postsynap-

tic activity and a target rate (1 Hz in all simulations). This rule has previously been

shown to balance excitation and inhibition such that the firing rate of the output
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neuron approaches the target rate [37]. We assume the inhibitory plasticity to act

fast enough to track changes of excitatory weights, so that excitation and inhibition

are approximately balanced at all times.

The relative spatial smoothness of the excitatory and inhibitory

input determines the firing pattern of the output neuron

We first simulate a rat that explores a linear track (Fig. 1). The spatial tuning of

each input neuron is random but depends smoothly on the location of the animal

(e.g., Fig. 1a). As a measure of smoothness, we use the spatial autocorrelation length

of the inputs. In the following, this is the central parameter of the input statistics,

which is chosen separately for excitation and inhibition.

At the beginning of each simulation, all synaptic weights are random. As the

animal explores the track, the excitatory and inhibitory weights change in response

to pre- and postsynaptic activity, and the output cell gradually develops a spatial

activity pattern. We find that this pattern is primarily determined by whether the

excitatory or inhibitory inputs are smoother in space. If the inhibitory tuning is

smoother than the excitatory tuning (Fig. 1b), the output neuron develops equidis-

tant firing fields, reminiscent of grid cells on a linear track [38]. If instead the

excitatory tuning is smoother, the output neuron fires close to the target rate of

1 Hz everywhere (Fig. 1c); it develops a spatial invariance. For spatially untuned

inhibitory afferents, the output neuron develops a single firing field, reminiscent of a

one-dimensional place cell (Fig. 1d, compare [39]).

The emergence of these firing patterns can be best explained in the simplified

scenario of place field-like input tuning (Fig. 1e,f). The spatial smoothness is then

given by the size of the place fields. Let us assume that the output neuron fires at
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the target rate everywhere (Supplementary Online Material, SOM). From this ho-

mogeneous state, a small potentiation of one excitatory weight leads to an increased

firing rate of the output neuron at the location of the associated place field (high-

lighted red curve in Fig. 1e). To bring the output neuron back to the target rate, the

inhibitory learning rule increases the synaptic weight of inhibitory inputs that are

tuned to the same location (highlighted blue curve in Fig. 1e). If these inhibitory

inputs have smaller place fields than the excitatory inputs (Fig. 1c), this restores the

target rate everywhere [37]. Hence, inhibitory plasticity can stabilize spatial invari-

ance if the inhibitory inputs are sufficiently precise (i.e., not too smooth) in space.

In contrast, if the spatial tuning of the inhibitory inputs is smoother than that of the

excitatory inputs, the target firing rate cannot be restored everywhere. Instead, a

compensatory potentiation of inhibitory weights increases the inhibition in a spatial

region that has at least the size of the inhibitory place fields. This leads to a corona

of inhibition, in which the output neuron cannot fire (Fig. 1e, blue region). Outside

of this inhibitory surround the output neuron can fire again and the next firing field

develops. Iterated, this results in a periodic arrangement of firing fields (Fig. 1f).

Spatially untuned inhibition corresponds to an infinitely large inhibitory corona that

exceeds the length of the linear track, so that only a single place field remains.

The argument of the preceding paragraph can be extended to the scenario where

input is only weakly modulated by space. For non-localized input tuning (Fig. 1b,c,d),

any weight change that increases synaptic input in one location will also increase it

in a surround that is given by the smoothness of the input tuning (see SOM for a

mathematical analysis). In the simulations, the randomness manifests itself in occa-

sional defects in the emerging firing pattern (Fig. 1h, bottom). The above reasoning

suggests that the width of individual firing fields is determined by the smoothness
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of the excitatory input tuning, while the distance between grid fields, i.e., the grid

spacing, is set by the smoothness of the inhibitory input tuning. Indeed, both sim-

ulations and a mathematical analysis (SOM) confirm that the grid spacing scales

linearly with the inhibitory smoothness in a large range, both for localized (Fig. 1g)

and non-localized input tuning (Fig. 1h). In summary, the interaction of excitatory

and inhibitory plasticity can lead to spatial invariance, spatially periodic activity

patterns or single place fields depending on the spatial statistics of the excitatory

and inhibitory input.

Emergence of hexagonal firing patterns

When a rat navigates in a two-dimensional arena, the spatial firing maps of grid

cells in the medial entorhinal cortex (mEC) show a pronounced hexagonal symmetry

[3, 4] with different grid spacings and spatial phases. To study whether a hexagonal

firing pattern can emerge from interacting excitatory and inhibitory plasticity, we

simulate a rat in a quadratic box. The rat explores the arena for 10 hours, following

trajectories extracted from behavioral data [40] (SOM). To investigate the role of the

input statistics, we consider three different classes of input tuning: i) place cell-like

input (Fig. 2a), ii) sparse non-localized input, in which the tuning of each input

neuron is given by the sum of 100 randomly located place fields (Fig. 2b) and iii)

dense non-localized input, in which the tuning of each input is a random function

with fixed spatial smoothness (Fig. 2c). For all input classes, the spatial tuning of

the inhibitory inputs is smoother than that of the excitatory inputs.

Initially, all synaptic weights are random and the activity of the output neuron

shows no spatial symmetry. While the rat forages through the environment, the

output cell develops a periodic firing pattern for all three input classes, reminiscent
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of grid cells in the mEC [3, 4] and typically with the same hexagonal symmetry. This

hexagonal arrangement is again due to the smoother inhibitory input tuning, which

generates a spherical inhibitory corona around each firing field (compare Fig. 1e).

These center-surround fields arrange in a hexagonal pattern – the closest packing of

spheres in two dimensions; compare [41]. We find that the spacing of this pattern is

determined by the inhibitory smoothness, whereas the orientation and the phase of

the grid depend in decreasing order on the random initialization of the input tuning,

the trajectories and the initial synaptic weights (SOM, Fig. S9).

For the linear track, the randomness of the non-localized inputs leads to defects

in the periodicity of the grid pattern. In two dimensions, we find that the random-

ness leads to distortions of the hexagonal grid. To quantify this effect, we simulated

500 random trials for each of the three input scenarios and plotted the grid score

histogram (SOM) before and after 10 hours of spatial exploration (Fig. 2d,e,f). Dif-

ferent trials have different trajectories, different initial synaptic weights and different

random locations of the input place fields (for sparse input) or different random input

functions (for dense input). For place cell-like input, most of the output cells develop

a positive grid score during 10 hours of spatial exploration (26% before to 80% after

learning, Fig. 2d). Even for low grid scores, the firing rate maps look grid-like after

learning but exhibit a distorted symmetry (Fig. 2d). For sparse non-localized input,

the fraction of output cells with a positive grid score increases from 28% to 73% and

for dense non-localized input from 20% to 42% within 10 hours of spatial exploration.

In summary, the interaction of excitatory and inhibitory plasticity leads to grid-

like firing patterns in the output neuron for all three input scenarios. The grids are

typically less distorted for sparser input (Fig. 2g).
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Rapid appearance of grid cells

In unfamiliar environments, neurons in the mEC exhibit grid-like firing patterns

within minutes [4]. Moreover, grid cells react quickly to changes in the environment

[42–44]. These observations challenge models for grid cells that require gradual

synaptic changes during spatial exploration. In principle, the time scale of plasticity-

based models can be augmented arbitrarily by increasing the synaptic learning rates.

For stable patterns to emerge, however, significant weight changes must occur only

after the animal has visited most of the environment. To explore the edge of this

trade-off between speed and stability, we increased the learning rates to a point where

the grids are still stable but where further increase would reduce the stability (SOM,

Fig. S8). For place cell-like input, periodic patterns can be discerned within 10

minutes of spatial exploration, starting with random initial weights (Fig. 3a,b). The

pattern further emphasizes over time and remains stable for many hours (Fig. 3c).

To investigate the robustness of this phenomenon we ran 500 realizations with

different trajectories, initial synaptic weights and locations of input place fields. In all

simulations, a periodic pattern emerged within the first 30 minutes, and a majority

of patterns exhibited hexagonal symmetry after three hours (increasing from 26% to

72%, Fig. 3c,d). For non-localized input, the emergence of the final grids typically

takes longer, but the first grid fields are also observed within minutes and are still

present in the final grid, as observed in experiments [4] (SOM, Fig. S6).

In summary, periodic patterns emerge rapidly in our model and the associated time

scale is limited primarily by how quickly the animal visits its surroundings, i.e., by

the same time scale that limits the experimental recognition of the grids.
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Place cells, band cells and stretched grids

In addition to grids, the mEC and adjacent brain areas exhibit a plethora of other

spatial activity patterns including spatially invariant [6], band-like [8] (periodic along

one direction and invariant along the other), and spatially periodic but non-hexagonal

patterns [8]. Moreover, place cells in the hippocampus proper are typically only tuned

to a single or few locations in a given environment [33, 45, 46]. If the animal traversed

the environment along a straight line, all of these cells would be classified as periodic,

localized or invariant (Fig. 1), although the classification could vary depending on

the direction of the line. Based on this observation, we hypothesized that all of these

patterns could be the result of an input autocorrelation structure that differs along

different spatial directions.

We first verified that also in a two-dimensional arena, place cells emerge from a

very smooth inhibitory input tuning (Fig. 4a) and spatial invariance results when

excitation is broader than inhibition (Fig. 4b). We then varied the smoothness of

the inhibitory inputs independently along two spatial directions. If the spatial tun-

ing of inhibitory inputs is smoother than the tuning of the excitatory inputs along

one dimension but less smooth along the other, the output neuron develops band

cell-like firing patterns (Fig. 4c). If inhibitory input is smoother than excitatory

input, but not isotropic, the output cell develops stretched grids with different spac-

ing along two axes (Fig. 4d). For these anisotropic cases, stretched hexagonal grids

and rectangular arrangements of firing fields appear similarly favorable (compare

Fig. 4d, second row and column). A hexagonal arrangement could be favored by a

dense packing of inhibitory coronas, whereas a rectangular arrangement would max-

imize the proximity of the excitatory centers, given the inhibitory corona (SOM,
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Fig. S10). In summary, the relative spatial smoothness of inhibitory and excitatory

input determines the symmetry of the spatial firing pattern of the output neuron.

The requirements for the input tuning that support invariance, periodicity and lo-

calization apply individually to each spatial dimension, opening up a combinatorial

variety of spatial tuning patterns.

Spatially tuned input combined with head direction selectivity

leads to grid, conjunctive and head direction cells

Many cells in and around the hippocampus are tuned to the head direction of the

animal [2, 47, 48]. These head direction cells are typically tuned to a single head

direction, just like place cells are typically tuned to a single location. Moreover, head

direction cells are often invariant to location [6], just like place cells are commonly

invariant to head direction [5]. There are also cell types with conjoined spatial and

head direction tuning. Conjunctive cells in the mEC fire like grid cells in space, but

only in a particular head direction [7], and many place cells in the hippocampus of

crawling bats also exhibit a head direction tuning [49].

To investigate whether these tuning properties could also result in our model, we

simulated a rat that moves in a square box, whose head direction is constrained by

the direction of motion (SOM). Each input neuron is tuned to both space and head

direction (e.g., Fig. 5a).

In line with the previous observations, we find that the spatial tuning of the

output neuron is determined by the relative spatial smoothness of the excitatory and

inhibitory inputs and the head direction tuning of the output neuron is determined

by the relative smoothness of the head direction tuning of the inputs from the two

populations. If the head direction tuning of excitatory input neurons is smoother
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than that of inhibitory input neurons, the output neuron becomes invariant to head

direction (Fig. 5a). If instead only the excitatory input is tuned to head direction,

the output neuron develops a single activity bump at a particular head direction

(Fig. 5b,c). The concurrent spatial tuning of the inhibitory input neurons determines

the spatial tuning of the output neuron. For spatially smooth inhibitory input, the

output neuron develops a hexagonal firing pattern (Fig. 5a,b) and for less smooth

inhibitory input the firing of the output neuron is invariant to the location of the

animal (Fig. 5c). In summary, the relative smoothness of inhibitory and excitatory

input neurons in space and in head direction determines whether the output cell fires

like a pure grid cell, a conjunctive cell or a pure head direction cell (Fig. 5d).

We find that the overall head direction tuning of conjunctive cells is broader

than that of individual grid fields (Fig. 5e). This results from variations in the

preferred head direction of different grid fields. Typically, however, these variations

remain small enough to preserve an overall head direction tuning of the cell, because

individual grid fields tend to align their head direction tuning (SOM, Fig. S10).

Whether a narrower head direction of individual grid fields is present also in rodents

is not resolved.

Discussion

We presented a self-organization model that reproduces the experimentally observed

spatial and head direction tuning patterns in the hippocampus and adjacent brain

regions. Its core mechanism is an interaction of Hebbian plasticity in excitatory

synapses and homeostatic Hebbian plasticity in inhibitory synapses [37, 50]. The

main prediction of the model is that the spatial autocorrelation structure of excita-
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tory and inhibitory inputs determines – and should thus be predictable from – the

output pattern of the cell. Investigations of the tuning of individual cells [51] or even

synapses [52] that project to spatially tuned cells would thus be a litmus test for the

proposed mechanism.

The origin of synaptic input to spatially tuned cells is not fully resolved [53]. Our

model is consistent with input from sensory areas, given that the mechanism is robust

to the precise properties of the input and essentially only requires temporally stable

tuning in a given spatial environment. The input could also stem from within the

hippocampal formation, where spatial tuning has been observed in both excitatory [1]

and inhibitory [34, 35] neurons. For example, the notion that mEC neurons receive

input from hippocampal place cells is supported by several studies: Place cells in the

hippocampus emerge earlier during development than grid cells in the mEC [54, 55],

grid cells lose their tuning pattern when the hippocampus is deactivated [56] and,

finally, both the firing fields of place cells and the spacing and field size of grid cells

increase along the dorso-ventral axis [57–59].

Inhibition is usually thought to arise from local interneurons (but see [60]), sug-

gesting that spatially tuned inhibitory input to mEC neurons originates from the

entorhinal cortex itself. Interneurons in mEC display a spatial tuning [32] that could

be inherited from hippocampal place cells or other grid cells [13]. The broader spatial

tuning required for the emergence of spatial selectivity could be established, e.g., by

pooling over cells with similar tuning or through a non-linear input-output transfor-

mation in the inhibitory circuitry. If inhibitory input is indeed local, the increase in

grid spacing along the dorso-ventral axis [58] suggests that the tuning of inhibitory

interneurons gets smoother along this axis. For smoother tuning functions, less neu-

rons are needed to cover the whole environment, in accordance with the decrease in

12

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 24, 2017. ; https://doi.org/10.1101/102525doi: bioRxiv preprint 

https://doi.org/10.1101/102525
http://creativecommons.org/licenses/by-nd/4.0/


interneuron density along the dorso-ventral axis [61].

The observed spatial tuning patterns have also been explained by other models.

In continuous attractor networks (CAN), each cell type could emerge from a specific

connectivity pattern, combined with a mechanism that translates the motion of the

animal into shifts of neural activity on an attractor. How the required connectivity

patterns could emerge is subject to debate [62]. A measurable distinction of our

model from CAN models is its response to a global reduction of inhibition. While a

modification of inhibition typically changes the grid spacing in CAN models of grid

cells [13, 63], the grid field locations generally remain untouched in our model. The

grid fields merely change in size, until inhibition is recovered by inhibitory plasticity

(Fig. 6a). This can be understood by the colocalization of the grid fields and peaks

in the excitatory membrane current (Fig. 6b,c). A reduction of inhibition leads to an

increased protrusion of these excitatory peaks and thus to wider firing fields. The ob-

served temporal stability of mEC grid patterns in spite of dopaminergic modulations

of GABAergic transmission would be in line with our model [64]. Moreover, we found

that for localized input tuning, the inhibitory membrane current typically also peaks

at the locations of the grid fields. This co-tuning breaks down for non-localized input

(Fig. 6b). In contrast, CAN models predict that the inhibitory membrane current

has the same periodicity as the grid, but possibly phase shifted [65].

The grid patterns of topologically nearby grid cells in the mEC typically have the

same orientation and spacing but different phases [4]. This property is immanent to

CAN models. In contrast, single cell models [14, 15, 17–19] require additional mech-

anisms, such as recurrent connections [66], to develop a coordination of neighboring

grid cells.

Models that learn grid cells from spatially tuned input do not have to assume
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a preexisting connectivity pattern or specific mechanisms for path integration [14],

but are challenged by the fast emergence of hexagonal firing patterns in unfamiliar

environments [4]. Most plasticity-based models require slow learning, such that the

animal explores the whole arena before significant synaptic changes occur. Therefore,

grid patterns typically emerge slower than experimentally observed [18, 62]. This

delay is particularly pronounced in models that require an extensive exploration of

both space and movement direction [15]. For the mechanism we suggested, the self-

organization was very robust and allowed a rapid pattern formation on short time

scales, similar to those observed in rodents (Fig. 3). This speed could be further

increased by accelerated reactivation of previous experiences during periods of rest

[67]. By this means, the exploration time and the time it takes to activate all input

patterns could be decoupled, leading to a much faster emergence of grid cells in all

trajectory-independent models with associative learning. Other models that explain

the emergence of grid patterns from place cell input through synaptic depression

and potentiation also develop grid cells in realistic times [17, 19]. How these models

generalize to potentially non-localized input is yet to be shown.

Experiments show that the pattern and the orientation of grid cells is influenced

by the geometry of the environment. In a quadratic box, the orientation of grid cells

tends to align – with a small offset – to one of the box axes [68]. In trapezoidal arenas,

the hexagonality of grids is distorted [69]. We considered quadratic and circular

(SOM, Fig. S11) arenas with rat trajectories from behavioral experiments and found

that the boundaries distort the grid pattern also in our simulations, particularly for

localized inputs (SOM, Fig. S11). In trapezoidal geometries, we expect this to lead

to non-hexagonal grids. However, we did not observe a pronounced alignment to

quadratic boundaries, if the input place fields are randomly located (SOM, Fig. S11).
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We found that interacting excitatory and inhibitory plasticity serves as a simple

and robust mechanism for rapid self-organization of stable and symmetric patterns

from spatially modulated feedforward input. The suggested mechanism ports the ro-

bust pattern formation of attractor models [9, 10, 12] from the neural to the spatial

domain and increases the speed of self-organization of plasticity-based mechanisms

[15, 17–19] to time scales on which the spatial tuning of neurons is typically mea-

sured. It will be interesting to explore how recurrent connections between output

cells can help to understand the role of local inhibitory connections [13] and the

presence or absence of topographic arrangements of spatially tuned cells [59, 70, 71].

We illustrated the properties and requirements of the model in the realm of spatial

representations. Since invariance and selectivity are ubiquitous properties of recep-

tive fields in the brain, the interaction of excitatory and inhibitory synaptic plasticity

might be essential to form stable representations from sensory input also in other

brain areas [39, 72].

Online Methods

Network architecture and neuron model

We study a feedforward network where a single output neuron receives synaptic

input from NE excitatory and NI inhibitory neurons (Fig. 1a) with synaptic weight

vectors wE, wI and spatially tuned rates rE(x), rI(x), respectively. Here x denotes

the location and later also the head direction of the animal. For simplicity and to

allow a mathematical analysis we use a rate-based description for all neurons. The

firing rate of the output neuron is given by the rectified sum of weighted excitatory
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and inhibitory inputs:

rout(x(t)) =

[
NE∑
i=1

wE
i (t)rEi (x(t)) −

NI∑
j=1

wI
j(t)r

I
j(x(t))

]
+

, (1)

where [·]+ denotes a rectification that sets negative firing rates to zero. To comply

with the notion of excitation and inhibition, all weights are constrained to be positive.

In most simulations we use four times as many excitatory as inhibitory input neurons

(Tables 1 to 3 in the SOM list values for all simulation parameters used in each

figure).

Excitatory and inhibitory plasticity

In each unit time step (∆t = 1), the excitatory weights are updated according to a

Hebbian rule:

∆wE = ηEr
E(x)rout(x) (and normalization) . (2)

The excitatory learning rate ηE is a constant that we chose individually for each

simulation. To avoid unbounded weight growth, we use a quadratic multiplicative

normalization, i.e., we keep the sum of the squared weights of the excitatory pop-

ulation
∑NE

i=1(w
E
i )2 constant at its initial value, by rescaling the weights after each

unit time step. We model inhibitory synaptic plasticity using a previously suggested

learning rule [37]:

∆wI = ηIr
I(x)(rout(x) − ρ0) , (3)
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with inhibitory learning rate ηI and target rate ρ0. We always use ηI > ηE and

ρ0 = 1 Hz. Negative inhibitory weights are set to zero.

Rat trajectory

In the linear track model (one dimension, Figs. 1 and 6), we create artificial run-

and-tumble trajectories x(t) constrained on a line of length L with constant velocity

v = 1 cm per unit time step and persistence length L/2 (SOM).

In the open arena model (two dimensions, Figs. 2 to 4 and 6), we use trajectories

x(t) from behavioral data [40] of a rat that moved in a 1 m×1 m quadratic enclosure

(SOM).

In the model for neurons with head direction tuning (three dimensions, Fig. 5),

we use the same behavioral trajectories as in two dimensions and model the head

direction as noisily aligned to the direction of motion (SOM).

Spatially tuned inputs

The firing rates of excitatory and inhibitory synaptic inputs rEi , rIj are tuned to the

location x of the animal. In the following, we use x and y for the first and second

spatial dimension and z for the head direction.

For place field-like input, we use Gaussian tuning functions with standard devi-

ation σE, σI for the excitatory and inhibitory population, respectively. In Fig. 4 the

standard deviation is chosen independently along the x and y direction. The centers

of the Gaussians are drawn randomly from a distorted lattice (SOM). This way we

ensure random but spatially dense tuning. The lattice contains locations outside the

box to reduce boundary effects.

For sparse non-localized input with N f
P fields per neuron of population P, we
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first create N f
P distorted lattices, each with NP locations. We then assign N f

P of the

resulting N f
PNP locations at random and without replacement to each input neuron

(SOM).

For dense non-localized input, we convolve Gaussians with white noise and in-

crease the resulting signal to noise ratio by setting the minimum to zero and the

mean to 0.5 (SOM). The Gaussian convolution kernels have different standard devi-

ations for different populations. For each input neuron we use a different realization

of white noise. This results in arbitrary tuning functions of the same autocorrelation

length as the – potentially asymmetric – Gaussian convolution kernel.

For combined spatially and head direction tuned input, we use the Gaussian

tuning curves described above for the spatial tuning and von Mises distributions

along the head direction dimension.

Initial synaptic weights and global reduction of inhibition

We specify a mean for the initial excitatory and inhibitory weights, respectively,

and randomly draw each synaptic weight from the corresponding mean ±5%. The

excitatory mean is chosen such that the output neuron would fire above the target

rate everywhere in the absence of inhibition; we typically take this mean to be

1 (Table 1, SOM). The mean inhibitory weight is then determined such that the

output neuron would fire close to the target rate, if all the weights were at their

mean value (Table 2, SOM).

We modeled a global reduction of inhibition by scaling all inhibitory weights by a

constant factor, after the grid has been learned.
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Figure 1: Emergence of periodic, invariant and single field firing patterns. a) Net-
work model for a linear track. A threshold-linear output neuron (gray) receives input
from excitatory (red) and inhibitory (blue) cells, which are spatially tuned (curves
on top and bottom). b) Spatially tuned input with smoother inhibition than ex-
citation. The fluctuating curves (top) show two exemplary spatial tunings (one is
highlighted) of excitatory and inhibitory input neurons. Interacting excitatory and
inhibitory synaptic plasticity gradually changes an initially random response of the
output neuron (firing rate rout) into a periodic, grid cell-like activity pattern. c) If
the spatial tuning of inhibitory input neurons is less smooth than that of excitatory
input neurons the interacting excitatory and inhibitory plasticity leads to a spatially
invariant firing pattern. The output neuron fires close to the target rate of 1 Hz
everywhere. d) For very smooth or spatially untuned inhibitory inputs, the output
neuron develops a single firing field, reminiscent of a place cell. e) The mechanism,
illustrated for place cell-like input. When a single excitatory weight is increased
relative to the others, the balancing inhibitory plasticity rule leads to an immediate
increase of inhibition at the associated location. If inhibitory inputs are smoother
than excitatory inputs, the resulting approximate balance creates a center surround
field: a local overshoot of excitation (firing field) surrounded by an inhibitory corona.
The next firing field emerges at a distance where the inhibition has faded out. Iter-
ated, this results in a spatially periodic arrangement of firing fields. f) Inputs with
place field-like tuning. Gaussian curves (top) show the spatial tuning of excitatory
and inhibitory input neurons (one neuron of each kind is highlighted, 20 percent of
all inputs are displayed). A grid cell firing pattern emerges from an initially random
weight configuration. g) Grid spacing ` scales with inhibitory tuning width σI. Sim-
ulation results (dots) agree with a mathematical bifurcation analysis (solid). Output
firing rate examples at the two indicated locations are shown at the bottom. h)
Inhibitory smoothness σI,corr controls grid spacing; arrangement as in d.
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Figure 2: Emergence of two dimensional grid cells. Columns from left to right:
Spatial tuning of excitatory and inhibitory input neurons (two examples each); spa-
tial firing rate map of the output neuron and corresponding autocorrelogram before
and after spatial exploration of 10 hours. The number on the correlogram shows
the associated grid score. Different rows correspond to different spatial tuning char-
acteristics of the excitatory and inhibitory input. For all figures the spatial tuning
of inhibitory input neurons is smoother than that of excitatory input neurons. a)
Each input neuron is a place cell with random location. b) The tuning of each input
neuron is given as the sum of 100 randomly located place fields. c) The tuning of
each input neuron is a random smooth function of the location. This corresponds to
the sum of infinitely many randomly located place fields. Before learning the spatial
tuning of the output neuron shows no symmetry. After 10 hours of spatial explo-
ration the output neuron developed a hexagonal pattern. d) Grid score histogram
for 500 output cells with place cell-like input. Before learning (light blue) 26% of
the output cells have a positive grid score. After 10 hours of spatial exploration
this value increases to 80%. Two example rate maps are shown. The arrows point
to the grid score of the associated rate map. Even for low grid scores the learned
firing pattern looks grid-like. e,f) Grid score histograms for input tuning as in b,c,
arranged as in d. g) Fraction of neurons with positive grid score before (light blue)
and after learning (dark blue) as a function of the number of fields per input neuron.
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Figure 3: Grid patterns form rapidly during exploration and remain stable for many
hours. a,b) Rat trajectories with color-coded firing rate. Bright colors indicate higher
firing rates. Initially all synaptic weights are set to random values. Part a and b
show two different realizations with a good (red star) and a bad (orange triangle)
grid score development. After few minutes a periodic structure becomes visible and
enhances over time. c) Time course of the grid score in the simulations shown in
a (red) and b (orange). While the periodic patterns emerge within minutes, the
manifestation of the final hexagonal pattern typically takes a couple of hours. Once
the pattern is established it remains stable for many hours. The gray scale shows
the cumulative histogram of the grid scores of 500 realizations (black=0, white=1).
The solid white and black lines indicate the 20% and 80% percentile, respectively.
d) Histogram of grid scores of the 500 simulations shown in c. Initial histogram in
light blue, histogram after 1 hour and after 3 hours in dark blue. Numbers show the
fraction of cells with positive grid score at the given time. Rat trajectories taken
from [40].

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 24, 2017. ; https://doi.org/10.1101/102525doi: bioRxiv preprint 

https://doi.org/10.1101/102525
http://creativecommons.org/licenses/by-nd/4.0/


33

Figure 4: Emergence of spatially tuned cells of diverse symmetries. a) Place cells
emerge if the inhibitory autocorrelation length exceeds the box length or if the in-
hibitory neurons are spatially untuned. b) The output neuron develops an invariance,
if the spatial tuning of inhibitory input neurons is less smooth than the tuning of ex-
citatory input neurons. c) Band cells emerge if the spatial tuning of inhibitory input
is asymmetric, such that the autocorrelation length is larger than that of excitatory
input along one direction (here the y-direction) and smaller along the other (here the
x-direction). d) Overview of how the shape of the inhibitory input tuning determines
the firing pattern of the output neuron. Each element depicts the firing rate map
of the output neuron after 10 hours. White ellipses of width 2σI,x and 2σI,y in x−
and y−direction indicate the direction-dependent standard deviation of the spatial
tuning of the inhibitory input neurons. The width of the excitatory tuning fields, σE,
is the same in all simulations. The red circle at the axis origin is of diameter 2σE.
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Figure 5: Combined spatial and head direction tuning. a,b,c) Columns from left
to right: Spatial tuning and head direction tuning (polar plot) of excitatory and
inhibitory input neurons (one example each); spatial firing rate map of the output
neuron before learning and after spatial exploration of 10 hours with corresponding
autocorrelogram; head direction tuning of the output neuron after learning. The
numbers in the polar plots indicate the peak firing rate at the preferred head direction
after averaging over space. a) Wider spatial tuning of inhibitory input neurons
than of excitatory input neurons combined with narrower head direction tuning of
inhibitory input neurons leads to a grid cell-like firing pattern in space with invariance
to head direction, i.e. the output neuron fires like a pure grid cell. b) The same spatial
input characteristics as in a combined with head direction-invariant inhibitory input
neurons leads to grid cell-like activity in space and a preferred head direction, i.e.
the output neuron fires like a conjunctive cell. c) If the spatial tuning of inhibitory
input neurons is less smooth than that of excitatory neurons and the concurrent head
direction tuning is wider for inhibitory than for excitatory neurons, the output neuron
is not tuned to space but to a single head direction, i.e. the output neuron fires like
a pure head direction cell. d) Head direction tuning and grid score of 10 simulations
of the three cell types. Each symbol represents one realization with random input
tuning. The markers correspond to the tuning properties of the input neurons as
depicted in a, b, c: grid cell (triangles), conjunctive cell (squares), head direction
cell (circles). The values that correspond to the output cells in a, b, c are shown as
filled symbols. e) In our model, the head direction tuning of individual grid fields is
sharper than the overall head direction tuning of the conjunctive cell. Depicted is
a rate map of a conjunctive cell (left) and the corresponding head direction tuning
(right, dashed). For three individual grid fields, indicated with colored squares, the
head direction tuning is shown in the same polar plot. The overall tuning of the grid
cell (dashed) is a superposition of the tuning of all grid fields. Numbers indicate the
peak firing rate (in Hz) averaged individually within each of the four rectangles in
the rate map.
We obtained similar results for non-localized spatial and head direction input (SOM,
Fig. S7).
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Figure 6: The effect of reduced inhibition on grid cell properties. a) Reducing the
strength of inhibitory synapses to a fraction of its initial value (from left to right: 1,
1/2, 1/4) leads to larger grid fields but an unchanged grid spacing in our model. In
continuous attractor network models, the same reduction of inhibition would affect
not only the field size but also the grid spacing. b) Excitatory (red) and inhibitory
(blue) membrane current to a cell with grid like firing pattern (gray) on a linear
track. The currents are normalized to a maximum value of 1. Different rows cor-
respond to different spatial tuning characteristics of the input neurons. From top
to bottom: Place cell-like tuning, sparse non-localized tuning (sum of 100 randomly
located place fields), dense non-localized tuning (Gaussian random fields). Peaks in
excitatory membrane current are colocalized with grid fields (shaded area) for all
input statistics. In contrast, the inhibitory membrane current is not necessarily cor-
related with the grid fields for non-localized input. Moreover, the dynamic range of
the membrane currents is reduced for non-localized input. A reduction of inhibition
as shown in a corresponds to a lowering of the blue curve. c) Excitatory and in-
hibitory membrane current to a grid cell receiving sparse non-localized input (sum of
100 randomly located place fields) in two dimensions. Top: Tuning of output firing
rate, normalized excitatory and inhibitory membrane current. Bottom: autocorrel-
ograms thereof. The grid pattern is strongly apparent in the spatial tuning of the
excitatory membrane current but less in the inhibitory membrane current.
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