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A major obstacle to understanding neural coding and computation is the fact that experimental
recordings typically sample only a small fraction of the neurons in a circuit. Measured neural
properties are skewed by interactions between recorded neurons and the “hidden” portion of the
network. To properly interpret neural data, we thus need a better understanding of the relationships
between measured effective neural properties and the true underlying physiological properties. Here,
we focus on how the effective spatiotemporal dynamics of the synaptic interactions between neurons
are reshaped by coupling to unobserved neurons. We find that the effective interactions from a pre-
synaptic neuron r′ to a post-synaptic neuron r can be decomposed into a sum of the true interaction
from r′ to r plus corrections from every directed path from r′ to r through unobserved neurons.
Importantly, the resulting formula reveals when the hidden units have—or do not have—major
effects on reshaping the interactions among observed neurons. As a prominent example, we derive
a formula for strong impact of hidden units in random networks with connection weights that scale
with 1/

√
N , where N is the network size—precisely the scaling observed in recent experiments.

Establishing relationships between a network’s archi-
tecture and its function is a fundamental problem in neu-
roscience and network science in general. Not only is the
architecture of a neural circuit intimately related to its
function, but pathologies in wiring between neurons are
believed to underlie diseases conditions [1–15].

A major obstacle to uncovering structure-function re-
lationships is the fact most experiments can only directly
observe small fractions of an active network. The state-
of-the-art methods for determining connections between
neurons in living networks is to infer them by fitting sta-
tistical models to neural spiking data [16–24]. However,
the fact that we cannot observe all neurons in a network
means that the statistically inferred connections are at
best “effective” connections, representing some dynami-
cal relationship between the activity of nodes but not nec-
essarily a true physical connection [20, 25–30]. The exact
relationship between the effective and true connections
is in general unknown, making it difficult to extrapolate
from the statistics of effective connections back to the
statistics of the true connections. Establishing this rela-
tionship thus has immediate importance for interpreting
experimental measurements of synaptic interactions. It
also informs fundamental a question in network compu-
tation: how hidden units shape the dynamics of a subset
of nodes.

To provide a foundation upon which we can begin to
understand the relationship between true network con-
nectivity and the effective connections between neurons,
we analyze a probabilistic model of network activity in
which all properties are known, and derive a novel ap-
proximation to the effective model for the network of sub-
sampled observed neurons. This makes explicit how the
synaptic interactions between neurons are modified by

unobserved neurons in the network, and under what con-
ditions these modifications are, and are not, significant.
As an important example, we study a sparse, random
(Erdős-Réyni ) network with N cells and with synap-
tic weights that scale as 1/

√
N [31–34], as has been re-

cently observed experimentally [35], and show how unob-
served neurons significantly reshape the effective synap-
tic interactions away from the ground-truth interactions.
This is not the case with more “classical” 1/N scaling.
Hence, depending on the nature of the statistics of synap-
tic weights and how they scale with network size, hidden
paths can have a major impact on the observed interac-
tions between neurons, impacting both the local network
computation and interpretation of experimental data.

Model—We model the full network of N neurons as a
nonlinear Hawkes process [36]. This is commonly known
as a “Generalized linear (point process) model” in neu-
roscience, and is broadly used to fit neural activity data
[16–19, 21–24, 37]. Here we use it as a generative model
for network activity, as it is a can be directly linked to
common spiking models such as integrate and fire sys-
tems driven by noisy inputs [38, 39]. Similar studies of
the impact of hidden neurons have been performed for
the kinetic Ising model, another non-equilibrium model
that has been applied to neural activity [40–42]. How-
ever, the versions of the kinetic Ising model studied thus
far have a Markovian time-dependence, whereas the non-
linear Hawkes model we consider here may have arbi-
trary history dependence, important for correctly cap-
turing the statistics of network dynamics.

To derive an approximate model for an observed subset
of the network, we partition the network into two sets:
recorded neurons (labeled by indices r) and hidden neu-
rons (labeled by indices h). Each recorded neuron has an
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FIG. 1. The hidden unit problem: A: The functional connection between two neurons can be decomposed into contributions
from all paths from one neuron to the other through “hidden” intermediary neurons within the same circuit. In this schematic,
neurons 1 and 2 are observed, while 3 and 4 are hidden. The effective connection from 1 to 2 comprises a direct connection
plus contributions from paths signals can travel through neurons 3 and 4 before arriving at neuron 2. B: Leftmost, the effective
connection from neuron 1 to 2. Subsequent plots decompose this connection into contributions from each path in A. Only
directed connections from neuron 1 to 2 through hidden units contribute to the effective connection. For instance, although
neuron 2 makes a connection to neuron 3, this does not generate an effective connection from 2 to 1 because neither neurons 3
nor 4 make a connection back to neuron 1, and hence there is no path that neuron 2 can send a signal to neuron 1.

instantaneous firing rate λr(t) such that the probability
that the neuron fires within a small time window [t, t+dt]
is λr(t)dt. The instantaneous firing rate in our model is

λr(t) = λ0φ

(
µr +

∑
r′ Jr,r′ ∗ ṅr′(t)

+
∑
h Jr,h ∗ ṅh(t)

)
, (1)

where λ0 is a characteristic firing rate, φ(x) is a non-
negative, continuous function, µr is a tonic drive that sets
the baseline firing rate of the neuron, and Ji,j ∗ ṅj(t) ≡∫∞
−∞ dt′ Ji,j(t − t′)ṅj(t′) is the convolution of the spike

filter Ji,j(t) with spikes ṅj(t) from pre-synaptic neuron
j to post-synaptic neuron i. In this work we will take
the tonic drive to be constant in time, and focus on the
steady-state network activity in response to this drive.
We consider spike filters of the form Ji,j(t) ≡ Ji,jgj(t),
where the temporal waveforms gj(t) are normalized such
that

∫∞
0
dt gj(t) = 1 for all neurons j. Because of this

normalization, the weight Ji,j carries units of time. Self-
couplings Ji,i need not be interpreted as actual autapses,
but rather account for the influence of a neuron’s spiking
history on its own firing rate (e.g., Ji,i < 0 suppresses
firing, like a refractory period, while Ji,i > 0 promotes
bursting). The firing rates for the hidden neurons follow
the same expression with indices h and r interchanged.

We seek to describe the dynamics of the recorded neu-
rons entirely in terms of their own set of spiking histories,
eliminating the dependence on the activity of the hidden
neurons. This demands averaging out the activity of the
hidden neurons; in practice this is intractable to perform
exactly [43–45]. Here, we use a mean field approximation
and assume that the input from the hidden neurons can
be approximated by its mean conditioned on the activity
of the recorded neurons. This yields the following formula

for the instantaneous firing rates of the recorded neurons:

λr(t) ≈ λ0φ

(
µeff
r +

∑

r′

Jeff
r,r′ ∗ ṅr′(t)

)
.

Here, the effective baselines µeff
r = µr +

∑
h Jr,hνh are

simply modulated by the net input to the neuron, so we
do not focus on them here. The effective coupling filters
are given in the frequency domain by

Ĵeff
r,r′(ω) = Ĵr,r′(ω) +

∑

h,h′

Ĵr,h(ω)Γ̂h,h′(ω)Ĵh′,r′(ω). (2)

Here, the νh are the steady-state mean firing rates of
the hidden neurons and Γ̂h,h′(ω) is the linear response
function of the hidden network to perturbations in the
input [46]. Both νh and Γ̂h,h′(ω) are calculated in the
absence of the recorded neurons, using a mean field theory
approximation. The complete derivation is given in the
Supplementary Information (SI).

In deriving these results, we have neglected both fluc-
tuations around the mean input from the hidden neurons,
as well as higher order filtering of the recorded neuron
spikes. These results hold for any choice of network pa-
rameters for which the mean field steady state of the
hidden network exists. For details on the justification of
these approximations, see the SI.

The effective coupling filters are what we would—in
principle—measure experimentally if we observe only a
subset of a network. In practice, inferring these network
properties from data is an extremely nontrivial task [16–
24, 40, 41], and details of the fitting procedure could
potentially further skew the inferred coupling filters. We
will put aside these complications here, and assume we
have access to an inference procedure that allows us to
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measure Jeff
r,r′(t) without error, so that we may focus on

their properties and relationship to the ground-truth cou-
pling filters.

Structure of effective coupling filters—The ground-
truth coupling filters Ĵr,r′(ω) are modified by a correction

term
∑
h,h′ Ĵr,h(ω)Γ̂h,h′(ω)Ĵh′,r′(ω). The linear response

function Γ̂h,h′(ω) admits a series representation in terms
of paths through the network that neuron r′ can send a
signal to neuron r through hidden neurons only. This is
shown schematically in Fig. 1. The effect of self-coupling
from a neuron back to itself can be absorbed into the
contribution of each hidden node in a path.

We may write down a set of Feynmanesque rules for
explicitly calculating terms in this series. First, we define
the gain, γh ≡ λ0φ

′ (µh +
∑
h′ Jh,h′νh′). The contribu-

tion of each term can then be written down using the fol-
lowing rules: i) for the edge connecting recorded neuron
r′ to a hidden neuron hi, assign a factor Ĵhi,r′(ω); ii) for
each node corresponding to a hidden neuron hi, assign a
factor γhi/(1− γhi Ĵhi,hi(ω)); iii) for each edge connect-

ing hidden neurons hi 6= hj , assign a factor Ĵhj ,hi
(ω);

and iv) for the edge connecting hidden neuron hj to

recorded neuron r, assign a factor Ĵr,hj (ω). All factors
for each path are multiplied together, and all paths are
then summed over.

In practice, the linear response matrix Γ̂h,h′(ω) can
be calculated directly by numerical matrix inversion and
multiplied with Ĵr,h(ω) and Ĵh′,r′(ω) to form the cor-

rection to Ĵeff
r,r′(ω), then inverse Fourier transformed to

return to the time domain. However, the utility of the
path-length series is the intuitive understanding of the
origin of contributions to the effective coupling filters and
our ability to analytically analyze the strength of contri-
butions from each path [47]. This is reminiscent of recent
works expanding correlations functions of linear models
of network spiking in terms of network “motifs” [48–50].
One immediate insight the path decomposition offers is
that unconnected neurons only develop effective interac-
tion between one other if there is a path that one neuron
can send a signal to the other.

Strongly coupled networks—We can now investigate
under what conditions hidden paths significantly skew
measured neural interactions. The synaptic weights Ji,j
(for i 6= j) generally must scale with the size of the net-
work in order for network activity to be stable. The
more inputs a neuron receives, the weaker the incoming
synaptic connection weights must be so as to not drive
the neuron to constantly fire. While a glance at Eq. (1)
suggests we might expect that O(N) synaptic inputs to
a neuron demands Ji,j ∼ 1/N for the inputs to a neu-
ron to be O(1), this will in fact be too weak. A balance
of positive and negative independent couplings reduces
the typical magnitude, requiring only Ji,j ∼ O(1/

√
N)

for network stability. Hence, we term these two cases
“weak” coupling (Ji,j ∼ O(1/N)) and “strong” cou-

pling (Ji,j ∼ O(1/
√
N)). Previous work has studied the

hidden-neuron problem in the weak coupling limit [51–
54]; here we study the strong coupling limit. The 1/

√
N

scaling of the strong coupling limit has been theoretically
predicted to be important for network computations in
balanced networks [31–34]. Moreover, this scaling has
recently been observed experimentally in cultured neural
tissue [35], indicating that it may have intrinsic physio-
logical importance.

We consider the case, ubiquitous in neural modeling,
of an Erdős-Réyni (ER) network of N neurons, with con-
nection sparsity p (only 100p% of connections are non-
zero). The baselines of the neurons are taken to be equal
for all neurons, µi = µ0, for which there will exist a
time-independent steady state. We choose an exponen-
tial nonlinearity, φ(x) = ex. This is the “canonical”
choice of nonlinearity used in applications of this model
[16–18, 21, 55]. We will further assume exp(µ0) � 1,
so that we may use this as a small control parameter.
For i 6= j, the non-zero synaptic weights between neu-
rons Ji,j independently drawn from a normal distribu-
tion with zero mean and standard deviation J0/(pN)2a,
where J0 controls the overall strength of the weights and
a = 1 or 1/2, corresponding to “weak” and “strong”
coupling, respectively, for this choice of synaptic weight
statistics. For simplicity we take Ji,i = 0, for all neurons
i. To simplify the analytic analysis, we do not impose
Dale’s Principle, which requires a neuron’s outgoing con-
nections to all be the same sign. We have checked the
case of Dale’s Principle numerically, and find similar re-
sults to the ER network [55]. Numerical values of all
parameters are given in Table SI in the SI.

Consider an example case of a network of N = 1000
neurons and Nrec = 3 recorded neurons. The resulting
effective coupling filters (solid blue curves) for these three
neurons are plotted against their true ground-truth cou-
pling filters in. Although the true network architecture is
sparse, the resulting effective couplings are not sparse—a
major qualitative difference in the apparent network ar-
chitectures. While for many neuron pairs corrections to
true non-zero filters were slight, for others, the effective
coupling filters deviate significantly away from the true
ones, indicating that contributions from paths through
the hidden network are comparable to the direct connec-
tions.

This result demonstrates that the effective coupling
filters can deviate significantly from the direct coupling,
but what is the typical deviation? To assess this, we
study the statistics of the integrated coupling strengths
J eff
r,r′ ≡

∫∞
0
dt Jeff

r,r′(t). The expected value of J eff
r,r′ is zero,

so we compute the standard deviation of J eff
r,r′ −Jr,r′ , la-

beled σ[J eff
r,r′ − Jr,r′ ]. Because the self-coupling weights

are Jr,r = 0, we consider only the standard devia-
tions for r 6= r′ pairs. When the hidden network is
large, J eff

r,r′ − Jr,r′ becomes increasingly Gaussian, and
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FIG. 2. Effective coupling filters Jeff
r,r′(t) (solid blue) versus

true coupling filters (dashed red) for Nrec = 3 recorded neu-
rons in a network of N = 1000 total neurons. The simu-
lated network has an Erdős-Réyni connectivity with sparsity
p = 0.2 and normally distributed non-zero weights with zero
mean and standard deviation J0/

√
pN (strong coupling). All

self-couplings are set to zero (indicated by all true coupling
filters being zero in plots along grid diagonal).

σ[J eff
r,r′ − Jr,r′ ] represents the width of this distribution.

We first estimate these standard deviations by numeri-
cally computing J eff

r,r′ − Jr,r′ =
∑
h,h′ Jr,hΓ̂h,h′(0)Jh′,r′

as we scale up the synaptic amplitude J0 and observe
progressively smaller fractions of neurons f .

The numerical results are shown as solid curves in
Fig. (3), for both strong coupling and weak coupling.
There are two striking results. First, deviations are
nearly negligible (O(1/

√
pN)) for 1/N scaling of con-

nections. Thus, for large Erdős-Réyni networks with
synapses that scale with the system size, vast numbers
of hidden neurons combine to have negligible effect on
effective couplings. This is in marked contrast to the
case when coupling is strong (1/

√
N scaling), when hid-

den neurons have a pronounced impact (O(1)). This is
particularly the case when f � 1—as in almost every ex-
periment in neuroscience, where the hidden neurons out-
number observed ones by orders of magnitude—or when
J0 . 1.0, when typical deviations become half the mag-
nitude of the true couplings themselves (upper blue line).
For J0 & 1.0, the network activity is unstable for an ex-
ponential nonlinearity.

To gain insight into these numerical results, we use our
path series expansion to calculate the standard deviation
σ[J eff

r,r′−Jr,r′ ], normalized by σ[Jr,r′ ], up to contributions

from paths up to length-3. We find

σ[J eff
r,r′ − Jr,r′ ]
σ[Jr,r′ ]

≈ λ0J0e
µ0
√

1− f

×
(

1 +
3

4
(λ0J0e

µ0)2(1− f)

)
, (3)

corresponding to the black dashed curves in Fig. 3.
Eq. (3) is a truncation of a series in powers of
λ0J0e

µ0
√

1− f , where f = Nrec/N is the fraction of
recorded neurons. The most important feature of this
series is the fact that it only depends on the frac-
tion of recorded neurons f , not the absolute number,
N . Contributions from long paths remain finite, even
as N → ∞. Importantly, this is not the case for
weak 1/N coupling, in which the series is in powers of
λ0J0e

µ0
√

(1− f)/(pN), so that contributions from long
paths are negligible in large networks N � 1. (See [55]
for derivation and results for N = 100.) Deviations of
Eq. (3) from the numerical solutions in Fig. 3 indicate
that contributions from truncated terms are not negligi-
ble when f � 1. As these terms correspond to paths
of length-4 or more, this shows that long chains through
the network contribute significantly to shaping effective
interactions.

Discussion — We have derived a quantitative relation-
ship between “ground-truth” synaptic interactions and
the effective interactions that unobserved neurons gener-
ate between subsets of observed neurons. This provides
the tools to determine the conditions under which un-
observed neurons substantially reshape observed neural
dynamics. For the commonly assumed Erdős-Réyni case
with independent synaptic weights scaling with N−1/2

such hidden units yield qualitative changes to the mag-
nitude and dynamics neural interactions. Together with
theoretical and experimental evidence for this scaling in
cortex [31–35], this suggests that neural coupling filters
inferred from cortical activity data may differ markedly
from the true connectivity.

Our work offers a way to probe the architecture of the
unobserved network through measured Jeff

r,r′(t). While
inverting Eq. (2) to obtain a unique set of true cou-
plings is generally an ill-posed problem, future work could
use the path length expansion combined with physiolog-
ical constraints to make inferences about the patterns of
true connectivities consistent with the measured effective
ones. Intriguingly, this same approach may yield insight
into the set of circuits that can perform specific computa-
tions that are expressed in terms of effective interactions
among a subset of cells. This can be particularly useful
when the interactions required cor a computation violate
Dale’s principle or have architectures inconsistent with
anatomical measurements [56, 57]. If these regarded as
effective interactions, however, then we may be able to
use Eq. (2) to generate patterns of biologically plausible
“hidden” circuit architectures consistent with the effec-
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FIG. 3. Solid lines: Numerical estimates of the standard devi-
ation of the difference between effective coupling weights J eff

r,r′

and true coupling weights Jr,r′ between neurons r 6= r′, nor-
malized by the standard deviation of Jr,r′ . These estimates
account for all paths through hidden neurons. For weak 1/N

coupling (red), the ratio of standard deviations is O(1/
√
N).

For strong 1/
√
N coupling (blue) the ratio is O(1) and grows

in strength as the fraction of recorded neurons Nrec/N de-
creases or the typical synaptic strength J0 increases. Dashed
black lines show theoretical estimates of the relative stan-
dard deviations accounting only for hidden paths of length-3
connecting recorded neurons. Deviations from the length-3
prediction at small f and large J0 indicate that contributions
from circuit paths involving many hidden neurons are signifi-
cant in these regimes. Parameter values are given in Table SI
in the Supplementary Information.

tive interactions of the designed circuit.
Similar strategies may even be employed by the ner-

vous system itself. For instance, why do many prin-
cipal neurons—those which project from one circuit
to another—not make direct reciprocal connections to
one another, instead being linked by intermediary neu-
rons? One hypothesis is that direct synaptic interac-
tions Jr,r′(t) are limited by physiological constraints, and
“hidden” interneurons are necessary to reshape the spa-
tiotemporal dynamics of neural interactions into forms
that can perform required computations, such as by mix-
ing excitatory and inhibitory interactions to generate a
richer range of possible synaptic calculations (cf. Fig. 1).
The explicit link we draw between effective interactions
and their origins in biological circuitry is thus a new lens
for interpreting emerging data on neural connectivity.
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SUPPLEMENTARY INFORMATION

A. Model definition: nonlinear Hawkes model (Generalized linear point process model)

The firing rate of a neuron i in the full network is given by

λi(t) = λ0φ


µi +

∑

j

∫ ∞

−∞
dt′Jij(t− t′)ṅj(t′) + Ei(t)


 , (S.1)

where λ0 is a characteristic rate, φ(x) ≥ 0 is a nonlinear function, µi (potentially a function of some external stimulus
θ) is a time-independent tonic drive that sets the baseline firing rate of the neuron in the absence of input from other
neurons, Jij(t − t′) is a coupling filter that filters spikes ṅj(t

′) fired by presynaptic neuron j at time t′, incident on
post-synaptic neuron i, and Ei(t) is an external input current. We will take Ei(t) = 0 for simplicity in this work,
focusing on the spontaneous activity of the network. We need not attach a mechanistic interpretation to these filters,
but a convenient interpretation is that the GLM model is like a soft-threshold integrate-and-fire network model, such
that we can interpret the spike filtering as coming from some synaptic dynamics [1, 2]. As such, we take the actual
rate to be

λi(t) = λ0φ


µi +

∑

j

Jijsj(t)


 ,

where sj(t) is the synaptic activity of pre-synaptic neuron j at time t. In general,

sj(t) =

∫ t

−∞
dt′ gj(t− t′)ṅj(t′),

where gj(t) is the temporal waveform of the post-synaptic currents evoked by pre-synaptic neuron j, normalized to
integrate to 1.

This interpretation of the model is useful for simulating the network activity, and we use such a method for our
simulations verifying our analytic calculations (see “Simulations of network activity”). Otherwise, we will simply use
the form of the model as written in Eq. (S.1).

B. Model network architectures

Our main result, Eq. (2), is valid for general network architectures with arbitrary weighted synaptic connections, so
long as the hidden subset of the network has stable dynamics when the recorded neurons are removed. An example
for which our method must be modified would be a network in which all or the majority of the hidden neurons are
excitatory, as the hidden network is unlikely to be stable when the recorded neurons are disconnected. Similarly,
we find that synaptic weight distributions with undefined moments will generally cause the network activity to be
unstable. For example, Ji,j drawn from a Cauchy distribution generally yield unstable network dynamics unless the
weights are scaled inversely with a large power of the network size N .

To specify a concrete network architecture to study, we choose a directed Erdős-Réyni random network with sparsity
p—i.e., each directed connection between neurons is assigned independently with probability p that the weight is non-
zero. The weights of the non-zero connections are then drawn from a separate distribution chosen to have mean 0 and
variance J2

0/(pN)2a. The choice of exponent a determines whether the coupling is weak (a = 1) or strong (a = 1/2).
In most of our analytical results we only need the mean and variances of the weights, so we do not need to specify
the exact distribution. In simulations, we use a normal distribution, but have also checked (symmetrized) lognormal
distributions, which yield similar results (not shown). The reason for scaling the weights as 1/(pN)a, as opposed to
just 1/Na, is that the mean incoming degree of connections is p(N − 1) ≈ pN for large networks; this scaling thus
controls for the typical magnitude of incoming spikes.

For strongly coupled networks, the combined effect of sparsity and synaptic weight distribution yields an overall
standard deviation of

√
pJ0/

√
pN = J0/

√
N . Because the sparsity parameter p cancels out, it does not matter if we

consider p to be fixed or k0 = pN to be fixed—both cases are equivalent. However, this is not the case if we scale
Ji,j by 1/k0, as the overall standard deviation would then be

√
pJ0/k0, which only corresponds to the weak-coupling

limit if p is fixed. If k0 is fixed, the standard deviation would scale as 1/
√
N .
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It is worth noting that the determination of “weak” versus “strong” coupling depends not only on the power of N
with which synaptic weights scale, but also on the network architecture and correlation structure of the weights Ji,j .
For example, for an all-to-all connected matrix with symmetric rank-1 synaptic weights of the form Ji,j = ζiζj , where

the ζi are independently distributed normal random variates, the standard deviation of each ζ must scale as 1/
√
N

in order for hidden paths to generate O(1) contributions to effective interactions, such that Ji,j scales as 1/N but the
coupling is still strong.

Real neurons appear to split into two broad separate classes, “excitatory” and “inhibitory,” a dichotomy know as
Dale’s principle. Neurons in a network that obeys this principle will have coupling filters Ji,j(t) that are strictly
positive for excitatory neurons and strictly negative for inhibitory neurons. We do not impose this restriction on
the model used to generate the results presented in the main text, but have tested the consequence of imposing
Dale’s principle on the network. We find similar results, shown in Fig. (S1) below (compare to Fig. (3) in main
text). The trends are the same as in networks that do not obey Dale’s principle, with the resulting ratios being
slightly reduced. Because our analysis requires calculation of the mean field firing rates of the hidden network in
absence of the recorded neurons, random sampling of the network may, by chance, yield hidden networks with an
imbalance of excitatory neurons, for which the mean field firing rates of the hidden network may diverge for our choice
of exponential nonlinearity. This is the origin of the relatively larger error bars in Fig. (S1): less random samplings
for which the hidden network was stable were available to perform the computation. Choosing a nonlinearity that
saturates, such as φ(x) = c/(1+exp(−x)), prevents the mean-field firing rates from diverging, yielding stable network
activity.

Finally, Erdős-Réyni networks are relatively easy to analyze analytically, and are ubiquitous in many influential
computational and theoretical studies, real world networks typically have more structure. As preliminary tests of
our results in networks with more realistic features, we have also simulated networks with Watts-Strogatz network
architectures. A Watts-Strogatz network is generated by starting with a K-nearest neighbor network (such that
fraction of non-zero connections each neuron makes is p = K/(N − 1)) and rewiring a fraction β of those connections.
The limit β = 0 remains a K-nearest neighbor network, while β → 1 yields an Erdős-Réyni network. We have
simulated networks on Watts-Strogatz architectures, finding similar results as for the Erdős-Réyni network, as seen
in Fig. (S2). We generated the adjacency matrices of the Watts-Strogatz networks using code available in [3].
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FIG. S1. Same as Fig. (3) in main text, but for a Erdős-Réyni network architecture with Dale’s principle imposed; i.e., all
connections neuron j makes are positive if the neuron is excitatory (Ji,j > 0) or negative if the neuron is inhibitory (Ji,j < 0).
The fraction of excitatory to inhibitory neurons is chosen to be 50% on average. The resulting ratios are smaller than the
corresponding ratios for Erdős-Réyni networks in which we do not impose Dale’s principle, but the trends otherwise hold. The
greater uncertainties on estimates are because random sampling of the full network may generate hidden networks with an
unstable mean field theory (see main text for explanation). Theoretical estimates of the relative standard deviations were not
calculated. Parameter values are given in Table SI.

Parameter values used to generate our networks are given in Table SI.
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FIG. S2. Same as Fig. (3) in main text (Erdős-Réyni network, Dale’s principle not imposed), but for a Watts-Strogatz network
architecture. The resulting curves are only slightly smaller than for an Erdős-Réyni network. Theoretical estimates of the
relative standard deviations were not calculated. Parameter values are given in Table SI.

TABLE SI. Network connectivity parameter values.

Number of neurons N 1000

Number of hidden neurons Nhid See individual figure captions.

Number of recorded neurons Nrec N −Nhid

Baselines µi -1.0, ∀i
Sparsity p 0.2

Coupling weights Jij N (0, J2
0/(pN)2a)

Coupling regime a 1 (weak coupling) or 1/2 (strong coupling)

Rewiring probability β (Watts-Strogatz only) 0.3

Characteristic synaptic weight J0 0.25, 0.5, 0.75, 1.0

Firing frequency λ0 1.0

C. Choice of nonlinearity φ(x)

The nonlinear function φ(x) sets the instantaneous firing rate for the neurons in our model. The “canonical” choice
of nonlinearity for our network model is an exponential, φ(x) = exp(x) [4–7]. The exponential has particularly nice
theoretical properties, but is also convenient for fitting this model to data, as the log-likelihood function of the model
will be convex for the exponential (and some similar families of nonlinearity).

The fact that the exponential is unbounded is necessary to guarantee that a neuron spikes given enough input. A
bounded nonlinearity imposes a maximum instantaneous firing rate, such that it is possible that the instantaneous
rate saturates but does not guarantee the neuron will spike. The downside of an unbounded nonlinearity is that it
is possible for the average firing rates to diverge, and the network never reaches a steady state. For example, in
a purely excitatory network (all Ji,j ≥ 0) with an exponential nonlinearity, neural firing will run away without a
sufficiently strong self-refractory coupling to suppress the firing rate. This will not occur with a bounded nonlinearity,
as excitation can only drive neurons to fire at some maximum but finite rate.

This is a problem in simulations of networks obeying Dale’s principle. For the exponential nonlinearity, the mean
field theory for the hidden network occasionally does not exist due to an imbalance of excitatory and inhibitory
neurons caused by our random recorded of neurons. However, the Dale’s law network is stable if the nonlinearity is
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bounded. We demonstrate this below in Figs. S3 and S4, comparing simulations of Erdős-Réyni networks with and
without Dale’s principle for a sigmoidal nonlinearity φ(x) = 2/(1 + e−x).
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FIG. S3. Same as Fig. (3) in main text, but for a sigmoidal nonlinearity φ(x) = 2/(1 + e−x).
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FIG. S4. Same as Fig. (S1) above, but for a sigmoidal nonlinearity φ(x) = 2/(1 + e−x). Because the sigmoid is bounded the
mean field solution cannot diverge, yielding better results.

D. Derivation of effective baselines and coupling filters

To study how hidden neuron affects the inferred properties of recorded neurons, we partition the network into
“recorded” neurons, labeled by indices r (with sub- or superscripts to differentiate different recorded neurons, e.g., r
and r′ or r1 and r2) and “hidden” neurons labeled by indices h (with sub- or superscripts). The rates of these two
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groups are thus

λr(t) = λ0 exp

(
µr +

∑

r′

Jr,r′ ∗ ṅr′ +
∑

h

Jr,h ∗ ṅh
)
,

λh(t) = λ0 exp

(
µh +

∑

r

Jh,r ∗ ṅr +
∑

h′

Jh,h′ ∗ ṅh′
)
.

Because the set hidden neurons is generally much larger than the set of recorded neurons, we expect that we can
approximate the input to the recorded neurons with the mean input, conditioned on the activity of the recorded
neurons. That is, we can split the hidden input to the recorded neurons up into two terms, the mean plus fluctuations
around the mean:

∑

h

Jr,h ∗ ṅh(t) =
∑

h

Jr,h ∗ E [ṅh(t)| {ṅr}] + ξr(t),

where E [ṅh(t)| {ṅr}] denotes the mean activity of the hidden neurons conditioned on the activity of the recorded
units, and ξr(t) are fluctuations around this mean, i.e., ξr(t) ≡

∑
h Jr,h ∗ (ṅh−E [ṅh(t)| {ṅr}]). Note that ξr(t) is also

conditional on the activity of the recorded units.

We can calculate the cross-correlation of the fluctuations,

E [ξr(t)ξr′(t
′)] =

∫ ∞

−∞
dt1dt2

∑

h1,h2

Jr,h1
(t− t1)Jr′,h2

(t′ − t2)Ch1,h2
(t1, t2),

where Ch1,h2
(t1, t2) is the cross-correlation between hidden neurons h1 and h2. If the autocorrelation of the fluctuations

(r = r′) is small compared to the mean input to the recorded neurons (
∑
h Jr,h∗E [ṅh(t)| {ṅr}]), or if Jr,h is small, then

we may neglect these fluctuations and focus only on the effects that the mean input has on the recorded subnetwork.
At the level of the mean field theory approximation we make in this work, the spike-train correlations are zero.
One can calculate corrections to mean field theory (see below), but we leave investigation of the properties of these
fluctuations for the focus of future studies. This will not affect our overall analysis, as non-negligible noise will not
alter the form of the effective couplings between neurons, which are deterministic.

In order to calculate how hidden input shapes the activity of recorded neurons, we need to calculate the mean
E [ṅh| {ṅr}]. This mean input is difficult to calculate in general, especially when conditioned on the activity of the
recorded neurons. In principle, the mean can be calculated as

E [ṅh| {ṅr}] = E

[
λ0 exp

(
µh +

∑

r

Jh,r ∗ ṅr +
∑

h′

Jh,h′ ∗ ṅh′
)∣∣∣∣∣ {ṅr}

]
.

This is not a tractable calculation. Taylor series expanding the exponential reveals that the mean will depend on all
higher cumulants of the hidden unit spike trains, which cannot in general be calculated explicitly. Instead, we again
appeal to the fact that in a large, sufficiently connected network, we expect fluctuations to be small, as long as the
network is not near a critical point. In this case, we may make a mean field approximation, which amounts to solving
the self-consistent equation

E [ṅh| {ṅr}] = λ0 exp

(
µh +

∑

r

Jh,r ∗ ṅr +
∑

h′

Jh,h′ ∗ E [ṅh′ | {ṅr}]
)
. (S.2)

In general, this equation must be solved numerically. Unfortunately, the conditional dependence on the activity of the
recorded neurons presents a problem, as in principle we must solve this equation for all possible patterns of recorded
unit activity. Instead, we note that the mean hidden neuron firing rate is a functional of the filtered recorded input
Ih(t) ≡∑r Jh,r ∗ ṅr, so we can expand it as a functional Taylor series (sometimes known as a Volterra series) around
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some reference filtered activity I0
h(t) =

∑
r Jh,r ∗ ṅ0

r,

E [ṅh(t)| {Ih(t)}] = E
[
ṅh|
{
I0
h(t)

}]
+

∫
dt1
∑

h1

δE
[
ṅh(t)|

{
I0
h(t)

}]

δIh1(t1)
(Ih1(t1)− I0

h1
(t1))

+
1

2

∫
dt1dt2

∑

h1,h2

δ2E
[
ṅh(t)|

{
I0
h(t)

}]

δIh2(t2)δIh1(t1)
(Ih2

(t2)− I0
h2

(t2))(Ih1
(t1)− I0

h1
(t1)) + . . .

Within our mean field approximation, the Taylor coefficients are simply the response functions of the network — i.e.,
the zeroth order coefficient is the mean firing rate of the neurons in the reference state I0

h(t), the first order coefficient
is the linear response function of the network, the second order coefficient is a nonlinear response function, and so on.

There are two natural choices for the reference state I0
h(t). The first is simply the state of zero recorded unit

activity, while the second is the mean activity of the recorded neurons. The zero-activity case conforms to the choice
of GLM models used in practice, as one can view the linear filtering of spikes as the first order term in an expansion
of a more general nonlinear filter. Choosing the mean activity as the reference state may be more appropriate if the
recorded neurons have high firing rates, but requires adjusting the form of the GLM model so that firing rates are
modulated by filtering deviations of spikes from the mean firing rate, rather than filtering the spikes themselves. In
the main text, we focus on the zero-activity reference state. We present the formulation for the mean field reference
state at the end of the SI.

For the zero-activity reference state I0
h(t) = 0, the conditional mean is

E [ṅh(t)| {Ih(t)}] = E [ṅh|0] +

∫
dt1
∑

h1

δE [ṅh(t)|0]

δIh1(t1)
Ih1

(t1) +
1

2

∫
dt1dt2

∑

h1,h2

δ2E [ṅh(t)|0]

δIh2(t2)δIh1(t1)
Ih2

(t2)Ih1
(t1) + . . . .

The mean inputs E [ṅh|0] are the mean field approximations to the firing rates of the hidden neurons in the absence
of the recorded neurons. Defining νh ≡ E [ṅh|0], these firing rates are given by

νh = λ0 exp

(
µh +

∑

h′

Jh,h′νh′
)

;

in writing this equation we have used the fact that the steady-state mean field firing rates will be time-independent,
and hence the convolution Jh,h′ ∗νh′ = Jh,h′νh′ , where Jh,h′ =

∫∞
0
dt Jh,h′(t). The mean field equations for the νh are

a system of transcendental equations that in general cannot be solved exactly. In practice we will solve the equations
numerically, but we can develop a series expansion for the solutions (see below).

The next term in the series expansion is the linear response function of the hidden unit network, Γh,h′(t − t′) ≡
δE[ṅh(t)|0]
δIh′ (t′)

, given by

Γh,h′(t− t′) = γh

(
δh,h′δ(t− t′) +

∑

h′′

∫ ∞

0

dt′′Jh,h′′(t− t′′)Γh′′,h′(t′′ − t′)
)
.

The “gain” γh is defined by

γh ≡ λ0φ
′
(
µh +

∑

h′

Jh,h′νh′
)
,

where φ′(x) is the derivative of the nonlinearity with respect to its argument.

We may solve for Γh,h′(t− t′) by first converting to the frequency domain and performing a matrix inverse:

Γ̂h,h′(ω) =
[
I− V̂(ω)

]−1

h,h′
γh′ ,

where Vh,h′(ω) = γhJh,h′(ω) and
[
I− V̂(ω)

]−1

≡ ∆̂(ω) is the output-linear response function, computed by perform-

ing a matrix inverse.
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If ||V̂(ω)|| < 1 for some matrix norm || · ||, then the matrix [I−V(ω)]
−1

admits a convergent series expansion

[I−V(ω)]
−1

=
∑

`=0

V̂(ω)`,

where V̂(ω)` is a matrix product and V̂(ω)0 ≡ I. We can write an element of the matrix product out as

[
V̂(ω)`

]
h,h′

=
∑

h1,...,h`

V̂h,h1(ω)V̂h1,h2(ω) . . . V̂h`−1,h`
(ω)V̂h`,h′(ω);

inserting V̂hi,hj (ω) = γhi Ĵhi,hj (ω) yields

[
V̂(ω)`

]
h,h′

=
∑

h1,...,h`

γhĴh,h1(ω)γh1 Ĵh1,h2(ω) . . . γh`−1
Ĵh`−1,h`

(ω)γh`
Ĵh`,h′(ω).

It is this expression that we interpret in terms of summing over paths through network of hidden neurons that join
two observed neurons: the Ĵhi,hj

(ω) are contributed by edges from neuron hj to hi, and the γhi
are contributed by the

nodes. In this expansion, we allow edges from one neuron back to itself, meaning we include paths in which signals
loop back around to the same neuron arbitrarily many times before the signal is propagated further. Such loops can
be easily factored, contributing a factor

∑∞
m=0(γhĴh,h(ω))m = 1/(1 − γhĴh,h(ω)). We can thus remove the need to

consider self-loops in our rules for calculating effective coupling filters by assigning a factor γh/(1−γhJh,h(ω)) to each
node, rather than just γh.

This result can be derived directly. Let us decompose the matrix V̂(ω) in a diagonal and off-diagonal piece,

V̂(ω) = V̂diag(ω) + V̂off(ω). Then,

[
I− V̂(ω)

]−1

=
[
I− V̂diag(ω)− V̂off(ω)

]−1

=

[(
I− V̂diag(ω)

)(
I−

(
I− V̂diag(ω)

)−1

V̂off(ω)

)]−1

=

[
I−

(
I− V̂diag(ω)

)−1

V̂off(ω)

]−1 [
I− V̂diag(ω)

]−1

We assumed that I − V̂diag(ω) is invertible, which requires that there is no element for which 1 − γhĴh,h(ω) = 0 for
all ω. Assuming this is the case, the inverse of the matrix is trivial to calculate, as it is diagonal:

[
I− V̂diag(ω)

]−1

h,h′
=

1

1− γhJh,h(ω)
δh,h′ .

The matrix

[
I−

(
I− V̂diag(ω)

)−1

V̂off(ω)

]−1

can be expressed as a series, as before:

[
I−

(
I− V̂diag(ω)

)−1

V̂off(ω)

]−1

h,h′′
=
∑

`=0

[[(
I− V̂diag(ω)

)−1

V̂off(ω)

]`]

h,h′′

=
∑

`=0

∑

h1,...,h`

[(
I− V̂diag(ω)

)−1

V̂off(ω)

]

h,h1

. . .

[(
I− V̂diag(ω)

)−1

V̂off(ω)

]

h`,h′′

=
∑

`=0

∑

h1,...,h`;hi 6=hi+1

γh

1− γhĴh,h(ω)
Ĵh,h1

(ω) . . .
γh`

1− γh`
Ĵh`,h`

(ω)
Jh`,h′′(ω)

Hence, inserting the contribution from the factor
[
I− V̂diag(ω)

]−1

that we pulled out, and the factor νh′ that left-
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multiplies
[
I− V̂(ω)

]−1

to give Γ̂h,h′(ω), we have

Γ̂h,h′(ω) =
∑

`=0

∑

h1,...,h`;hi 6=hi+1

γh

1− γhĴh,h(ω)
Ĵh,h1

(ω) . . .
γh`

1− γh`
Ĵh`,h`

(ω)
Ĵh`,h′(ω)

γh′

1− γh′ Ĵh,h′(ω)

This is the same as our previous expression, with γh → γh/(1− γhĴh,h(ω)) and restricting the sum over hidden units
such that self-loops are removed (hi 6= hi+1), proving the result described in the main text. We note again that this

puts restrictions on the allowed size of self-interactions, as the zeros of 1− γhĴh,h(ω) must be in the upper-half plane
of the complex ω plane in order for the filters to be causal and physically meaningful.

The complete expression for the correction term
∑
h,h′ Ĵr,h(ω)Γ̂h,h′(ω)Ĵh′,r′(ω) is thus

∑

h,h′

Ĵr,h(ω)Γ̂h,h′(ω)Ĵh′,r′(ω) =

∑

`=0

∑

h,h1,...,h`,h′;hi 6=hi+1

Ĵr,h(ω)
γh

1− γhĴh,h(ω)
Ĵh,h1

(ω) . . .
γh`

1− γh`
Ĵh`,h`

(ω)
Ĵh`,h′(ω)

γh′

1− γh′ Ĵh,h′(ω)
Ĵh′,r′(ω).

This is the exact mathematical expression underlying the rules given in the main text.

We have now determined the zero and first order Taylor series coefficients in our expansion of E[ṅh(t)|{ṅr}]. If
these are the dominant terms, i.e., if we may neglect higher order terms in this expansion, we may approximate the
instantaneous firing rates of the recorded neurons by

λr(t) ≈ λ0 exp

(
µeff
r +

∑

r′

Jeff
r,r′ ∗ ṅr′(t)

)
,

where

µeff
r = µr +

∑

h

Jr,hνh

are the effective baselines of the recorded neurons and

Ĵeff
r,r′(ω) = Ĵr,r′(ω) +

∑

h,h′

Ĵr,h(ω)Γ̂h,h′(ω)Ĵh′,r′(ω)

are the effective coupling filters in the frequency domain, as given in the main text. In addition to neglecting the higher
order spike filtering terms here, we have also neglected fluctuations around the mean input from the hidden network.
These fluctuations are zero within our mean field approximation, but we could in principle calculate corrections to
the mean field predictions using the results of [8]. Below, we use these methods to calculate the tree-level corrections
to the correlation functions of the spikes and estimate the size of these fluctuations.

E. Specific choices of network properties used to generate Figures 2 and 3

To generate the results in Fig. 2 in the main text, we choose the coupling filters to be Ji,j(t) = Ji,jα2te−αt, which
has Fourier transform

Ĵi,j(ω) =
Ji,jα2

(α+ iω)2
,

using the Fourier convention

f̂(ω) =

∫ ∞

−∞
dt e−iωtf(t).

The weight matrix J is generated as described in “Model network architectures,” choosing J0 = 1.0. We partition
this network up into recorded and hidden subsets. For a network of N neurons, we choose neurons 1 to Nrec to be
recorded, and the remainder to be hidden, hence we define (using an index notation starting at 1; indices should be
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subtracted by 1 for 0-based index counting)

J RR = J [1 : Nrec, 1 : Nrec],

J RH = J [1 : Nrec, (Nrec + 1) : N ],

J HR = J [(Nrec + 1) : N, 1 : Nrec],

and

J HH = J [(Nrec + 1) : N, (Nrec + 1) : N ].

We numerically calculate the linear response matrix Γ̂(ω) by evaluating

Γ̂(ω) =
[
I− V̂HH(ω)

]−1

diag(~γ),

where V̂ HH
h,h′(ω) = γhJh,h′(ω) and diag(~γ) is an Nhid ×Nhid diagonal matrix with elements γh.

The effective coupling filter in the frequency domain can then be evaluated pointwise at a desired set of frequencies
ω by matrix multiplication,

Ĵeff(ω) =
α2

(α+ iω)2
J RR +

(
α2

(α+ iω)2

)2

J RHΓ̂(ω)J HR.

We then return to the time domain by inverse Fourier transforming the result, achieved by treating Ĵeff(ω) as an
Nrec × Nrec × Nfreq array (where Nfreq the number of frequencies at which we evaluate the effective coupling) and
multiplying along the frequency dimension by an Nfreq ×Ntime matrix E with elements Eω,t = exp(iωt)∆t/(2π), for
Ntime sufficiently small time bins of size δt = 0.1/α, for α = 10, as listed in Table SII.

To generate Fig. 3, we focus on the zero-frequency component of Ĵeff(ω), which is also equal to the time integral of

Jeff(t). As in the main text, we label this elements of this component J eff
r,r′ = Ĵeff

r,r′(ω = 0), which is equal to

J eff
r,r′ = Jr,r′ +

∑

h,h′

Jr,hΓ̂h,h′(0)Jh′,r′ .

We do not need to simulate the full network to study the statistics of J eff
r,r′ . We only need to generate samples of the

matrix J and evaluate Γ̂(0). This is where the choice of an Erdős-Réyni network that is not restricted to obey Dale’s
principle becomes convenient. Because the weights Ji,j are i.i.d. and the sign of the weight is random, population
averages will be equivalent to expected values. i.e., the sample mean

J̃mean =
1

(Nrec − 1)2

∑

r 6=r′
J eff
r,r′

and sample variance

J̃var =
1

(Nrec − 1)2 − 1

∑

r 6=r′

(
J eff
r,r′ − J̃mean

)2

will tend to the expected values E[J eff
r,r′ ] and var[J eff

r,r′ ] for large networks. We have explicitly removed the diagonal
elements from these averages because these elements will have slightly different statistics from the off-diagonal elements
due to the fact that all ground-truth self-couplings are set to zero, Jr,r = 0. This allows us to compare the population
variance, plotted in Fig. 3 (after normalization by the population variance of the true off-diagonal weights), to the
expected variance calculated analytically below.

The error bars in Fig. 3 are generated by first drawing a single sample of true weights J , and then taking 100
random subsets of Nrec = {10, 110, 210, 310, 410, 510, 610, 710, 810, 910, 999} recorded neurons. For this analysis,
random subsets were generated by permuting the indices of the full weight matrix J and taking the last Nrec neurons
to be recorded. For each random subset of the network we calculate the population statistics. The standard error
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of, for example, the population variance J̃var across subsets gives an estimate of the error. However, this estimate is
conditioned on the full network structure, for which we only have a single sample so far. To average over the effects of
global network architecture, we draw a total of 10 network architecture samples, and average a second time over these
samples to obtain our final estimates of the population variance of J eff

r,r′ . We note that for an Erdős-Réyni network,
this second stage of averaging is probabilistically unnecessary: for a large enough network random subsets of a single
large network are statistically identical to random subsets drawn from several samples of full Erdős-Réyni networks.
However, this will not be true for networks with more structure, such as Watts-Strogatz networks or networks that
obey Dale’s principle, and this second stage of averaging over the global network architecture is necessary in these
cases.

F. Derivation of a series approximation for the mean field firing rates (exponential nonlinearity)

The mean field firing rates for the hidden neurons are given by

νh = λ0 exp

(
µh +

∑

h′

Jh,h′νh′
)
,

where we focus specifically on the case of exponential nonlinearity φ(x) = exp(x). For this choice of nonlinearity,
γh = νh, so our series for the mean field firing rates is also automatically a series for the gains.

This system of transcendental equations generally cannot be solved analytically. However, for small exp(µh) � 1
we can derive, recursively, a series expansion for the firing rates. We first consider the case of µh = µ0 for all hidden
neurons h. Let ε = exp(µ0). We may then write

νh = λ0ε

∞∑

`=0

a
(`)
h (λ0ε)

`.

Plugging this into the mean field equation,

∞∑

`=0

a
(`)
h (λ0ε)

` = exp

(∑

h′

Jh,h′
∞∑

`=0

a
(`)
h′ (λ0ε)

`+1

)

=

∞∑

m=0

1

m!

(∑

h′

Jh,h′
∞∑

`=0

a
(`)
h′ (λ0ε)

`+1

)m

=
∞∑

m=0

1

m!

∑

`1,...,`m,h′1,...,h
′
m

Jh,h′1a
(`1)
h′1

. . .Jh,h′ma
(`m)
h′m

(λ0ε)
`1+···+`m+m

=
∞∑

`=0




∞∑

m=0

1

m!

∑

`1,...,`m,h′1,...,h
′
m

Jh,h′1a
(`1)
h′1

. . .Jh,h′ma
(`m)
h′m

δ`,`1+···+`m+m



 (λ0ε)

`.

Thus,

a
(`)
h =

∞∑

m=0

1

m!

∑

`1,...,`m,h′1,...,h
′
m

Jh,h′1a
(`1)
h′1

. . .Jh,h′ma
(`m)
h′m

δ`,`1+···+`m+m.

For ` = 0, it follows immediately that a
(0)
h = 1. Then, for ` = 1, the sum in m truncates at m = 1 (as δ`,`1+···+`m+m

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 3, 2017. ; https://doi.org/10.1101/105510doi: bioRxiv preprint 

https://doi.org/10.1101/105510
http://creativecommons.org/licenses/by/4.0/


11

is zero for m > `, as all indices are positive). Thus,

a
(1)
h =

∞∑

`1=0

∑

h′1

Jh,h′1a
(`1)
h′1

δ1,`1+1

=
∑

h′1

Jh,h′1a
(0)
h′1

=
∑

h′1

Jh,h′1 .

For ` = 2,

a
(2)
h =

∞∑

`1=0

∑

h′1

Jh,h′1a
(`1)
h′1

δ2,`1+1 +
1

2

∑

`1,`2

∑

h′1,h
′
2

Jh,h′1a
(`1)
h′1
Jh,h′2a

(`2)
h′2

δ2,`1+`2+2

=
∑

h′1

Jh,h′1a
(1)
h′1

+
1

2

∑

h′1,h
′
2

Jh,h′1a
(0)
h′1
Jh,h′2a

(0)
h′2

=
∑

h′1,h
′
2

Jh,h′1Jh′1,h′2 +
1

2

(∑

h′

Jh,h′
)2

=
∑

h′1,h
′
2

{
Jh,h′1Jh′1,h′2 +

1

2
Jh,h′1Jh,h′2

}
.

For ` = 3,

a
(3)
h =

∞∑

`1=0

∑

h′1

Jh,h′1a
(`1)
h′1

δ3,`1+1 +
1

2

∑

`1,`2

∑

h′1,h
′
2

Jh,h′1a
(`1)
h′1
Jh,h′2a

(`2)
h′2

δ3,`1+`2+2

+
1

3!

∑

`1,...,`3

∑

h′1,...,h
′
3

Jh,h′1a
(`1)
h′1

. . .Jh,h′3a
(`3)
h′3

δ3,`1+···+`3+3

=
∑

h′1

Jh,h′1a
(2)
h′1

+
1

2

∑

h′1,h
′
2

{
Jh,h′1a

(1)
h′1
Jh,h′2a

(0)
h′2

+ Jh,h′1a
(0)
h′1
Jh,h′2a

(1)
h′2

}

+
1

3!

∑

h′1,...,h
′
3

Jh,h′1a
(0)
h′1
. . .Jh,h′3a

(0)
h′3

=
∑

h′1

Jh,h′1




∑

h′2,h
′
3

Jh′1,h′2Jh′2,h′3 +
1

2

(∑

h′

Jh′1,h′
)2


+

1

2

∑

h′1,h
′
2,h
′
3

{
Jh,h′1Jh′1,h′3Jh,h′2 + Jh,h′1Jh,h′2Jh′2,h′3

}

+
1

3!

(∑

h′

Jh,h′
)3

=
∑

h′1

Jh,h′1




∑

h′2,h
′
3

Jh′1,h′2Jh′2,h′3 +
1

2

(∑

h′

Jh′1,h′
)2


+

∑

h′1,h
′
2,h
′
3

Jh,h′1Jh,h′2Jh′2,h′3 +
1

3!

(∑

h′

Jh,h′
)3

=
∑

h′1,h
′
2,h
′
3

{
Jh,h′1Jh′1,h′2Jh′2,h′3 +

1

2
Jh,h′1Jh′1,h′2Jh′1,h′3 + Jh,h′1Jh,h′2Jh′2,h′3 +

1

3!
Jh,h′1Jh,h′2Jh,h′3

}
.

With this we have calculated the firing rates to O(ε4).

The analysis can be straightforwardly extended to the case of heterogeneous µh, though it becomes more tedious
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to compute terms in the (now multivariate) series. Assuming εh ≡ exp(µh)� 1 for all h, to O(ε3) we find

νh = λ0εh


1 +

∑

h′

Jh,h′λ0εh′ +
∑

h′1,h
′
2

{
Jh,h′1Jh′1,h′2 +

1

2
Jh,h′1Jh,h′2

}
λ0εh′1λ0εh′2 + . . .


 .

G. Variance of the effective coupling to second order in Nrec/N & fourth order in λ0J0e
µ0 (exponential

nonlinearity)

To estimate the strength of the hidden paths, we would like to calculate the variance of the effective coupling J eff
r,r′ and

compare its strength to the variance of the direct couplings Jr,r′ , where J eff
r,r′ ≡

∫∞
0
dt Jeff

r,r′(t) and Jr,r′ ≡
∫∞

0
dt Jeff

r,r′(t),
as in the main text.

We assume that the synaptic weights Ji,j are independently and identically distributed with zero mean and variance

var(J ) = p
J2
0

(pN)2a for i 6= j, where a = 1 corresponds to weak coupling and a = 1/2 corresponds to strong coupling.

We assume no self-couplings, Ji,i = 0 for all neurons i. The overall factor of p in var[J ] comes from the sparsity of
the network. For example, for normally distributed non-zero weights with variance J2

0/N
2a, the total probability for

every connection in the network is

ρER×J(J ) = (1− p)δ(J ) + p
exp

(
−N2a

2
J 2

J2
0

)

√
2πJ2

0/N
2a

.

Because the Ji,j are i.i.d., the mean of J eff
r,r′ is zero:

J eff
r,r′ = Jr,r′ +

∑

h,h′

Jr,hΓh,h′Jh′,r′

= 0 +
∑

h,h′

Jr,h Γh,h′ Jh′,r′

= 0,

where we used the fact that Γh,h′ depends only on the hidden neuron couplings Jh,h′ , which are independent of the
couplings to the recorded neurons, Jr,h and Jh′,r′ .

The variance of J eff
r,r′ is thus equal to the mean of its square, for r 6= r′,

var
[
J eff
r,r′
]

=
(
J eff
r,r′

)2

= (Jr,r′)2
+


∑

h,h′

Jr,hΓh,h′Jh′,r′




2

= var(J ) +
∑

h1,h′1,h2,h′2

Jr,h1Γh1,h′1Jh′1,r′Jr,h2
Γh2,h′2Jh′2,r′

= var[Jr,r′ ] +
∑

h,h′

J 2
r,h Γ2

h,h′ J 2
h′,r′

= var[Jr,r′ ] + var(J )2
∑

h,h′

Γ2
h,h′

In this derivation, we used the fact that Jr,h1Jr,h2 = J 2
r,h1

δh1,h2 due to the fact that the synaptic weights are

uncorrelated. We now need to compute Γ2
h,h′ . This is intractable in general, so we will resort to calculating this in

a series expansion in powers of ε ≡ exp(µ0) for the exponential nonlinearity model. Our result will also turn out to
be an expansion in powers of J0 and 1 − f ≡ Nhid/N . Because we are explicitly using the exponential nonlinearity,
γh = νh, so we do not need to derive a series for γh in powers of ε in order to perform this calculation.
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The lowest order approximation is obtained by the approximation νh ≈ λ0ε and Γh,h′ ≈ νhδh,h′ , yielding

var
[
J eff
r,r′
]

var[Jr,r′ ]
= 1 + (λ0ε)

2Nhidvar[Jr,r′ ]

= 1 + (λ0J0ε)
2(1− f)

1

(pN)2a−1
. (S.3)

This result varies linearly with f , while numerical evaluation of the variance shows obvious curvature for f � 1 and
J0 . 1, so we need to go to higher order. This becomes tedious very quickly, so we will only work to O(ε4) (it turns
out O(ε3) corrections vanish).

We calculate Γ2
h,h′ using a recursive strategy, rather than the formal series solution. That is, we begin with the

expression

Γh,h′ = νhδh,h′ +
∑

h′′

νhJh,h′′Γh′′,h′

and plug it into itself until we obtain an expression to a desired order in ε. In doing so, we note that νh ∼ O(ε), so
we will first work to fourth order in νh, and then plug in the series for νh in powers of ε.

We begin with

Γ2
h,h′ = ν2

hδh,h′ + 2δh,h′
∑

h′′

ν2
hJh,h′′Γh′′,h′ +

(∑

h′′

νhJh,h′′Γh′′,h′
)2

= ν2
hδh,h′ + 2δh,h′

∑

h′′

ν2
hJh,h′′Γh′′,h′ +

∑

h1,h2

ν2
hJh,h1

Jh,h2
Γh1,h′Γh2,h′

≈ ν2
hδh,h′ + 2δh,h′

∑

h′′

ν2
hJh,h′′

{
νh′′δh′′,h′ +

∑

h2

νh′′Jh′′,h2
νh2

δh2,h′

}
+
∑

h1,h2

ν2
hν

2
h′Jh,h1

Jh,h2
δh1,h′δh2,h′

= ν2
hδh,h′ + 2δh,h′

{
ν2
hνh′Jh,h′ +

∑

h′′

ν2
hνh′′Jh′′,h′νh′

}
+ ν2

hν
2
h′J 2

h,h′

=

{
ν2
h + 2ν2

hνh′Jh,h′ + 2
∑

h′′

ν2
hνh′′Jh′′,h′νh′

}
δh,h′ + ν2

hν
2
h′J 2

h,h′

=

{
ν2
h + 2

∑

h′′

ν2
hνh′′Jh′′,h′νh′

}
δh,h′ + ν2

hν
2
h′J 2

h,h′

The third order term ν3
hJh,h′δh,h′ vanished because we assume no self-couplings. We have obtained Γ2

h,h′ to fourth
order in νh; now we need to plug in the series expression for νh to obtain the series in powers of λ0ε. We will do this
order by order in νh. The easiest terms are the fourth order terms, as

ν2
hν

2
h′ ≈ (λ0ε)

4 and ν2
hνh′′νh′ ≈ (λ0ε)

4.

The second order term is

ν2
h ≈ (λ0ε)

2


1 +

∑

h1

Jh,h1λ0ε+
∑

h1,h2

a
(2)
h,h1,h2

(λ0ε)
2




1 +

∑

h′1

Jh,h′1λ0ε+
∑

h′1,h
′
2

a
(2)
h,h′1,h

′
2
(λ0ε)

2




≈ (λ0ε)
2


1 + 2


∑

h1

Jh,h1
λ0ε+

∑

h1,h2

a
(2)
h,h1,h2

(λ0ε)
2


+

(∑

h1

Jh,h1
λ0ε

)2



= (λ0ε)
2


1 + 2

∑

h1

Jh,h1
λ0ε+

∑

h1,h2

{
a

(2)
h,h1,h2

+ Jh,h1
Jh,h2

}
(λ0ε)

2


 ,

where a
(2)
h,h1,h2

= Jh,h1Jh1,h2 + 1
2Jh,h1

Jh,h2
. We need the average ν2

h. The third-order term will vanish upon averaging,
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and a
(2)
h,h1,h2

+ Jh,h1Jh,h2 = 0 + 3
2var[Jr,r′ ]δh1,h2 ; the first term vanished because matching indices it requires h = h1

and h1 = h2, giving J 2
h,h = 0 because there are no self-couplings. We thus obtain

ν2
h = (λ0ε)

2 +
3

2
(λ0ε)

4Nhidvar(J ).

We thus arrive at

Γ2
h,h′ =

(
(λ0ε)

2 +
3

2
(λ0ε)

4Nhidvar[Jr,r′ ]
)
δh,h′ + (λ0ε)

4var[Jr,r′ ](1− δh,h′)

=

(
(λ0ε)

2 +
1

2
(λ0ε)

4Nhidvar[Jr,r′ ]
)
δh,h′ + (λ0ε)

4var[Jr,r′ ];

the factor 1− δh,h′ on the last term on the second line accounts for the fact that it does not contribute when h = h′,
as Jh,h = 0. Putting everything together,

var
[
J eff
r,r′
]

var[Jr,r′ ]
= 1 + var(J )

∑

h,h′

Γ2
h,h′

= 1 + var[Jr,r′ ]




∑

h

(
(λ0ε)

2 +
1

2
(λ0ε)

4Nhidvar[Jr,r′ ]
)

+
∑

h,h′

(λ0ε)
4var[Jr,r′ ]





= 1 + var[Jr,r′ ]
{
Nhid

(
(λ0ε)

2 +
1

2
(λ0ε)

4Nhidvar[Jr,r′ ]
)

+N2
hid(λ0ε)

4var[Jr,r′ ]
}

= 1 +Nhidvar[Jr,r′ ]
{

(λ0ε)
2 +

1

2
(λ0ε)

4Nhidvar[Jr,r′ ] +Nhid(λ0ε)
4var[Jr,r′ ]

}
.

For weak coupling, this tends to 1 in the N � 1 limit. For strong coupling, Nhidvar(J ) = (1− f)J2
0 , and hence

var
[
J eff
r,r′
]

var[Jr,r′ ]
= 1 + (λ0J0ε)

2(1− f) +
3

2
(λ0J0ε)

4(1− f)2 + o
(
(λ0J0ε)

4(1− f)2
)
, (S.4)

where we have used little-o notation to denote that there are higher order terms dominated by (λ0J0ε)
4(1−f)2. With

this expression, we have improved on our approximation of the relative variance of the effective coupling to the true
coupling; however, the neglected higher order terms still become significant as f → 0 and J0 → 1, indicating that
hidden paths have a significant impact when synaptic strengths are moderately strong and only a small fraction of
the neurons have been observed.

Because the synaptic weights Ji,j are independent, we may rewrite Eq. (S.4) as

var
[
J eff
r,r′ − Jr,r′

]

var[Jr,r′ ]
≈ (λ0J0ε)

2(1− f) +
3

2
(λ0J0ε)

4(1− f)2;

or, in terms of the ratio of standard deviations,

σ
[
J eff
r,r′ − Jr,r′

]

σ[J ]
≈ (λ0J0ε)

√
1− f

(
1 +

3

4
(λ0J0ε)

2(1− f)

)
,

where we used the approximation
√

1 + x ≈ 1 + x/2 for x small.

In the main text, we plotted results for N = 1000 total neurons (Fig. 3). For strongly coupled networks, the results
should only depend on the fraction of observed neurons, f = Nrec/N , while for weak coupling the results do depend
on the absolute number N . To demonstrate these, in Fig. S5 we remake Fig. 3 for N = 100 neurons. We see that the
strongly coupled results have not been altered, whereas the weakly coupled results yield stronger deviations (as the

deviations are O(1/
√
N)).
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FIG. S5. Same as Fig. 3, but for N = 100 neurons and Nrec = {1, 11, 21, 31, 41, 51, 61, 71, 81, 91, 99} recorded neurons. Because
we plot the relative deviations of the coupling strength against the fraction of observed neurons, the curves for the strongly
coupled case are the same as for N = 1000, as expected, while the weakly coupled case yields stronger deviations.

H. Estimating the error from neglecting higher order spike filtering (exponential nonlinearity)

In the main text we calculate corrections to the baseline and linear spike filters, neglecting higher-order spike filtering
and fluctuations around the mean input to the recorded neurons. We would like to know when these approximations
are valid. We will do so within mean field theory (meaning the noise fluctuations contribute zero error as they do not
contribute to the mean field approximation). Specifically, we will assume that the quadratic spike filtering term is
small, and calculate the corresponding correction to our mean field approximation of the firing rates when this term
is completely neglected. If we take as our approximation of the recorded neuron firing instantaneous firing rates

λr(t) ≈ λ0 exp

(
µeff
r +

∑

r1

∫
dt1J

eff
r,r′(t− t1)ṅr1(t1) + b

∑

r1,r2

∫
dt1dt2 Ar,r1,r2(t, t1, t2)ṅr1(t1)ṅr2(t2)

)
,

then the mean field approximation of the firing rates is

〈ṅr〉 ≈ λ0 exp

(
µeff
r +

∑

r1

J eff
r,r′〈ṅr1〉+ b

∑

r1,r2

Ar,r1,r2〈ṅr1〉〈ṅr2〉
)
,

where we have used the fact that the average firing rates are independent of time, and replaced Jeff
r,r′(t − t1) and

Ar,r1,r2(t, t1, t2) with their time integrals, denoted by J eff
r,r′ and Ar,r1,r2 . The parameter b is just a book-keeping

parameter.

To calculate the lowest order correction to the linear filtering approximation (b → 0), we write 〈ṅr〉 = νsub
r + bν̃r,

treating b formally as a small parameter. The linear firing rate νsub
r is given by

νsub
r = λ0 exp

(
µeff
r +

∑

r′

J eff
r,r′ν

sub
r′

)
.
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For the quadratically-modified firing rates, keeping terms only to linear order in b,

νsub
r + bν̃r ≈ λ0 exp

(
µeff
r +

∑

r1

J eff
r,r′ν

sub
r′ + b

∑

r′

J eff
r,r′ ν̃r′ + b

∑

r1,r2

Ar,r1,r2νsub
r1 νsub

r2

)

= νsub
r exp

(
b
∑

r′

J eff
r,r′ ν̃r′ + b

∑

r1,r2

Ar,r1,r2νsub
r1 νsub

r2

)

≈ νsub
r

{
1 + b

∑

r′

J eff
r,r′ ν̃r′ + b

∑

r1,r2

Ar,r1,r2νsub
r1 νsub

r2

}
.

Collecting on b and rearranging,

∑

r′

[
δr,r′ − νsub

r J eff
r,r′
]
ν̃r′ = νsub

r

∑

r1,r2

Ar,r1,r2νsub
r1 νsub

r2 .

Because νsub
r ∝ exp(µeff

r ) ∝ exp(µr) = εr, the expansion parameters we have been using, the lowest order approxima-
tion for ν̃r is

ν̃r ≈ νsub
r

∑

r1,r2

Ar,r1,r2νsub
r1 νsub

r2 .

The coefficient Ar,r1,r2 is the amplitude of the quadratic spike filter. The expression, which we calculate later in the
SI, is

Ar,r1,2(t, t1, t2) = (λ0ε)
∑

h

∫
dt′ Jr,h(t− t′)Jh,r1(t′ − t1)Jh,r2(t′ − t2),

and hence

Ar,r1,r2 ≡
∫
dt1dt2 Ar,r1,2(t, t1, t2) = (λ0ε)

∑

h

Jr,hJh,r1Jh,r2 .

To lowest order the error term ν̃r is

ν̃r = (λ0ε)
4
∑

h,r1,r2

Jr,hJh,r1Jh,r2 .

For Ji,j i.i.d., the population average should converge to the expected value, which is zero because the Ji,j have mean
zero. We can calculate the root-mean-squared-error by looking at the variance:

var(ν̃r) = var


 ∑

h,r1,r2

Jr,hJh,r1Jh,r2


 =


 ∑

h,r1,r2

Jr,hJh,r1Jh,r2




2

=
∑

h,r1,r2

J 2
r,h J 2

h,r1
J 2
h,r2

In principle, we should take care to separate out the r1 6= r2 and r1 = r2 terms from the sum, as the latter will

contribute a factor J 4
h,r1

, which we have not specified yet (though one could calculate for specific choices, such as the

normal distribution that we use in practice). However, for both J 2
h,r

2
and J 4

h,r1
will scale as (J2

0/(pN)2a)2, so we will
neglect constant factors and simply use this scaling to arrive at the result

var(ν̃r) ∼ (λ0ε)
8N2

recNhid
J6

0

(pN)6a
.
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If we take N →∞ with Nrec = fN and Nhid = (1− f)N for f fixed, the root mean squared error (RMSE) scales as

ν̃RMSE ∼ (λ0ε)
4f
√

1− f J3
0

(pN)3a−3/2
.

For a = 1 (weak coupling), the error falls off quite quickly as N3/2, while it is independent of N for a = 1/2 (strong
coupling). However, the error does still scale with the fraction of observed neurons, as f

√
1− f . This demonstrates

that the typical error that arises from neglecting the nonlinear filtering is small both when most neurons have been
observed (f . 1) and when very few neurons have been observed (f & 0). While it may at first seem surprising
that the error is small when very few neurons have been observed, the result does make intuitive sense: when a very
small fraction of the network is observed, we can treat the unobserved portion of the network as a “reservoir” or
“bath.” Feedback from the observed neurons into the reservoir has a comparatively small effect, so we can get away
with neglecting feedback between the observed and unobserved partitions of the network. However, when the number
of observed neurons is comparable to the number of unobserved neurons, neither can be treated as a reservoir, and
feedback between the two partitions is substantial. Neglecting the higher order spike filter terms may be inaccurate
in this case. We check this numerically below.

I. Validating the mean field approximation and linear conditional rate approximation via direct simulations
of network activity (exponential nonlinearity)

The results presented in the main text are based on analytical calculations or numerical analyses using ana-
lytically derived formulas. For example, the statistics of J eff

r,r′ are calculated based on our expression J eff
r,r′ =

Jr,r′ +
∑
h,h′ Jr,hΓ̂h,h′(0)Jh′,r′ , where Γ̂h,h′(0) can be calculated by solving the matrix equation

Γ̂h,h′(0) = δh,h′ +
∑

h′′

νhJh,h′′ Γ̂h′′,h′(0).

Generating these results does not require a simulating the full network, so we check here that our approximations
indeed agree with the results of full network simulations.

We check of validity of two main results: 1) that mean field theory is an accurate approximation for the parameters
we consider, and 2) that our truncation of the conditional hidden firing rates E[ṅh(t)|{ṅr}] at linear order in ṅr(t) is
valid.

We first discuss some basic details of the simulation. The simulation code we use is a modification of the code used
in [8], written by Gabe Ocker; refer to this paper for full details of the simulation.

The main changes we made are considering exponential nonlinearities and synaptic weights drawn from normal or
lognormal distributions.

As in [8], we choose the coupling filters to follow an alpha function

gj(t) = α2te−αtΘ(t), ∀j.

The Heaviside step function Θ(t) enforces causality of the filter, using the convention Θ(0) = 0. All neurons have the
same time constant 1/α.

To efficiently simulate this network the code computes the synaptic variable sj(t) =
∫
dt′g(t− t′)ṅj(t′) not by direct

convolution but by solving the inhomogeneous system of differential equations, setting x(t) = s(t) and y(t) = ṡ(t),

ẋj(t) = yj(t)

ẏj(t) = −2αjyj(t)− α2
jxj(t) + α2

j ṅj(t),

The instantaneous firing rates of the neurons can in this way be quickly computed in time steps of a specified size ∆t.
The number of spikes ni that neuron i fires in the tth time bin is drawn from a Poisson distribution with probability
(λi(t)∆t)

ni exp(−λi(t)∆t)/(ni)!. An initial transient period of spiking before the network achieves a steady state is
discarded.

The parameters we use in our simulations of the full network are given in Table SII.
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TABLE SII. Network activity simulation parameter values.

Network connectivity parameters See Table SI.

Alpha function decay time τ ≡ 1/α 10

Time bin width ∆t 0.01τ

Transient time window 5τ

Simulation stopping time 4000τ + transient

1. Verifying the mean field approximation

To confirm that the mean field approximation is valid, we seek to compare the empirically measured spike rates
measured from simulations of the network activity to the calculated mean field rates. The empirical rates are measured
as

〈ṅi〉emp =
number of spikes emitted by neuron i

length of spike train
,

calculated after discarding the initial transient period of firing, for any neuron i (recorded or hidden).
The steady-state mean field firing rates are the solutions of the transcendental equation

〈ṅi〉full MFT = λ0 exp


µi +

∑

j

Ji,j〈ṅj〉full MFT


 .

The only difference between this equation and the equation for νh is that the neuron indices are not restricted to
hidden units. i.e., the νh are the mean field rates for the hidden neurons only (recorded neurons removed entirely),
whereas the 〈ṅi〉full MFT are the mean field rates for the entire network. If the mean field approximation is valid, the
empirical rates should be approximately equal to the mean field rates, so a scatter plot of 〈ṅi〉MFT versus 〈ṅi〉emp

should roughly lie along the identity line. We test this for a network in the strong coupling limit (
√

var(J ) = J0/
√
N)

for four values of J0, J0 = 0.25, 0.5, 0.75, and 1.0. We expect J0 = 1.0 to be close to the stability threshold of the
model based on a linearized analysis [9, 10]; i.e., for J0 & 1.0 there may not be a steady state, so this may be where
we expect the mean field approximation to break down. As seen in Fig. S6, the mean field approximation appears to
hold well even up to J0 = 1.0, though there are some slight deviations for neurons with large rates.
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FIG. S6. Empirical estimates of average neuron firing rates from simulations plotted against mean firing rates predicted by
mean field theory. The fact that the data lies along the identity line demonstrates validity of MFT up to J0 = 1.0.

Verifying the linearized conditional mean approximation

Having verified that the mean field approximation is valid, we now seek to check our linearized approximation of
the firing rates of the hidden neurons conditioned on the activity of the recorded neurons, E [ṅh(t)| {ṅr(t)}]. That is,
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we calculated above that

E [ṅh(t)| {ṅr(t)}] ≈ νh +
∑

h′,r

[Γh,h′ ∗ Jh′,r ∗ ṅr](t) + . . . ;

the . . . correspond to higher order spike filtering terms that we have neglected in our analyses, assuming them to be
small. In an earlier calculation above, we estimated that the error incurred by neglecting higher order spike filtering
is of the order (λ0 exp(µ0))4f

√
1− fJ3

0 , but we would like to confirm the negligibility of the higher order coupling
through simulations.

To do so, we compare the empirical firing rates of the designated “hidden” neurons obtained from simulations of
the full network models with the approximation of the firing rates of the hidden neurons conditioned on the recorded
neurons using the linear expansion, averaged over recorded neuron activity to give

〈ṅh〉approx ≈ νh +
∑

h′,r

Γ̂h,h′(0)Jh′,r〈ṅr〉emp,

where as usual the zero-frequency component of the linear response function Γ̂h,h′(0) of the hidden neurons is calculated
in the absence of recorded neurons.

If we plot a scatter plot of this against the empirical estimates of the hidden neurons, 〈ṅh〉emp, the data points will
lie along the identity line if our approximation is valid. If the data deviates from the identity line, it indicates that
the neglected higher-order filtering terms contribute substantially to the firing rates of the neurons. It is possible that
the zeroth order rate approximation, νh, would be sufficient to describe the data, so we compare the empirical rates
to both νh and 〈ṅh〉approx.

As in the mean field approximation test, we focused on a strongly coupled network with J0 = 0.25, 0.5, 0.75, and
1.0. Because our analytical estimate of the error suggests small error for small fractions of recorded neurons and
larger error when Nrec ∼ Nhid, we check both Nrec = 100 neurons out of N = 1000 neurons (f = 0.1) in Fig. S7 and
Nrec = 500 neurons out of N = 1000 (f = 0.5) in Fig. S8.

For each value of J0, we present two plots: the empirical rates versus the mean field rates νh in the absence of
recorded neurons (the zeroth order approximation; Figs. S7 and S8, top row), and the empirical rates versus the linear
approximation 〈ṅh〉approx (the first order approximation; Figs. S7 and S8, bottom row). We find that in both cases
the data is centered around the identity line, but the spread of data grows with J0 for the zeroth order approximation,
while it is quite tight for the first order approximation up to J0 = 1.0, validating our neglect of the higher order
spike filtering terms. We also confirm that Nrec = 500 offers worse agreement than Nrec = 100, though the agreement
between 〈ṅh〉emp and 〈ṅh〉approx is still not too bad.

J. Second order nonlinear response function

Higher order terms in the series expansion represent nonlinear response functions. We do not focus on these terms
in this work, assuming instead that we can truncate this series expansion at linear order. We will, however, estimate
the error incurred by this truncation. To do so will we need the next order term, so we now go to second order.
Rather than differentiate our formal solution for the linear response, we differentiate the implicit form, yielding

Γ
(2)
h,h1,h2

(t, t1, t2) ≡ δ2E[ṅh| {Ih(t)}]
δIh2

(t2)δIh1
(t1)

∣∣∣∣
Ih=0

= γh

[
δh−h2

δ(t− t2) +
∑

h′

Jh,h′ ∗ Γh′,h2

][
δh−h1

δ(t− t1) +
∑

h′

Jh,h′ ∗ Γh′,h1

]

+ γh

[∑

h′

∫ ∞

−∞
dt′ Jh,h′(t− t′)Γ(2)

h,h1,h2
(t′, t1, t2)

]
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FIG. S7. Top row: scatter plot comparing νh, the mean field firing rates of the hidden neurons in the absence of recorded
neurons, to empirically estimated firing rates in simulations of the full network, for four different values of typical synaptic
strength, J0 = 0.25, 0.5, 0.75, and 1.0. The data lie along the identity line, demonstrating a strong correlation between νh and
the empirical data. However, the spread of data around the identity line indicates that deviations of the mean firing rates away
from νh, caused by coupling to the recorded neurons, is significant. Bottom row: Comparison of the first order approximation
of the firing rates of hidden neurons, which accounts for the effects of recorded neurons, to the empirical rates. The data lie
tightly along the identity with very little dispersion, demonstrating that higher order spike filtering is unnecessary even up to
J0 = 1.0, for Nrec = 100.

Rearranging,

∫
dt′
∑

h′

[
δh,h′δ(t− t′)− γhJh,h′(t− t′)

]
Γ

(2)
h′,h1,h2

(t′, t1, t2)

= γh

[
δh−h2

δ(t− t2) +
∑

h′

Jh,h′ ∗ Γh′,h2

][
δh−h1

δ(t− t1) +
∑

h′

Jh,h′ ∗ Γh′,h1

]
.

Inverting the operator on the left hand side yields the input linear response function (when combined with the factor
of γh on the right hand side), giving the solution

Γ
(2)
h,h1,h2

(t, t1, t2) =

∫ ∞

−∞
dt′
∑

h′

Γh,h′(t− t′)
[
δh′−h2δ(t

′ − t2) +
∑

h′′

∫ ∞

−∞
dt′′ Jh′,h′′(t

′ − t′′)Γh′′,h2(t′′ − t2)

]

×
[
δh′−h1δ(t

′ − t1) +
∑

h′′

∫ ∞

−∞
dt′′ Jh′,h′′(t

′ − t′′)Γh′′,h1(t′′ − t1)

]

Because Γh,h′(t− t′) is proportional to γh, the second order nonlinear response function is also proportional to γh.

The effective quadratic spike filtering that enters in the instantaneous rate of the recorded neurons is thus

∫
dt′dt1dt2dt

′
1dt
′
2

∑

h,h1,h2,r′1,r
′
2

Jr,h(t− t′)Γ(2)
h,h1,h2

(t′, t1, t2)Jh1,r′1(t1 − t′1)Jh2,r′2(t2 − t′2)ṅr′1(t′1)ṅr′2(t′2),
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FIG. S8. Same as Fig. S7 but for Nrec = 500 recorded neurons out of a total of N = 1000. Demonstrates validity of linear
approximation (neglecting higher order spike filtering) up to J0 = 1.0, for Nrec = 500. The zeroth order approximation
(top row) is quite poor, indicating the necessity of accounting for feedback from the recorded neurons. This first order
approximation (bottom row) lies tightly along the identity line, indicating that even when the recorded and hidden populations
are of comparable size, higher order spike filtering may not be significant. However, there appears to be some deviation for
J0 = 1.0, indicating that accounting for higher order spike filtering may be beneficial in this parameter regime.

where we define the quadratic spike filter to be

Ar,r′1,r′2(t, t′1, t
′
2) =

∫
dt′dt1dt2

∑

h,h1,h2

Jr,h(t− t′)Γ(2)
h,h1,h2

(t′, t1, t2)Jh1,r′1(t1 − t′1)Jh2,r′2(t2 − t′2) (S.5)

We would like to estimate the typical size of this term to leading order so that we may estimate the error we make

by neglecting it. For the exponential nonlinearity, γh = νh and to leading order in νh ∼ λ0ε, Γ
(2)
h,h1,h2

(t, t1, t2) ≈
λ0εδh,h1

δh,h2
δ(t− t1)δ(t− t2), and hence

Ar,r1,r2(t, t1, t2) ≈ λ0ε

∫
dt′
∑

h

Jr,h(t− t′)Jh,r′1(t1 − t′)Jh,r′2(t2 − t′).

This is the result we used in our earlier calculation estimating the error we make in the mean firing rates of the
recorded neurons by neglecting higher order spike filtering.

K. Tree-level calculation of the effective noise correlations

In our approximation of the model for the recorded neurons, we also neglected fluctuations from the mean input
around the hidden neuron input. We should therefore check how strong this noise is. At the level of a mean-field
approximation we may neglect it, so we will need to go to a tree-level approximation to calculate it.

The noise is defined by

ξr(t) =
∑

h

∫ ∞

−∞
dt′ Jr,h(t− t′)

(
ṅh(t′)− E[ṅh|{ṅr}]

)
.
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It has zero mean (by construction), conditioned on the activity of the recorded units — i.e., the “noise” receives
feedback from the recorded neurons. We can evaluate the cross-correlation function of this noise, conditioned on the
recorded unit activity. This is given by

E[ξr(t)ξr′(t
′)|{ṅr}]c =

∑

h1,h2

∫ ∞

−∞
dt1dt2 Jr,h1(t− t1)Jr′,h2(t′ − t2)E[ṅh1(t1)ṅh2(t2)|{ṅr}]c,

where E[ṅh1(t1)ṅh2(t2)|{ṅr}]c = E[ṅh1(t1)ṅh2(t2)|{ṅr}]−E[ṅh1(t1)|{ṅr}]E[ṅh2(t2)|{ṅr}] is the cross-correlation func-
tion of the spikes (the superscript c denotes ‘cumulant’ or ‘connected’ correlation function to distinguish it from the mo-
ments without the superscript). At the level of mean field theory E[ṅh1(t1)ṅh2(t2)|{ṅr}] ≈ E[ṅh1(t1)|{ṅr}]E[ṅh2(t2)|{ṅr}],
and thus the cross-correlation function is zero. We can go beyond mean field theory and calculate the tree-level con-
tribution to the correlation functions using the field theory diagrammatic techniques of [8]. We will do so for the
reference state of zero-recorded unit activity, {ṅr} = {0}, as we expect this to be the leading order contribution to the
correlation function. As we are interested primarily in the typical magnitude of the noise compared to the interaction
terms, we will work only to leading order in ε = exp(µ0) for the exponential nonlinearity network. We find

E[ṅh1(t1)ṅh2(t2)|0]ctree =

∫ ∞

−∞
dt′
∑

h′

∆h1,h′(t1 − t′)∆h2,h′(t2 − t′)νh′

≈ λ0εδh1,h2δ(t1 − t2),

where ∆h,h′(ω) ≈ δh,h′ +O(ε) is the linear response to perturbations to the output of a neuron’s rate. It is related to
Γh,h′(ω) by Γh,h′(ω) = ∆h,h′(ω)γh′ , where γh = νh for φ(x) = ex. The overall noise cross-correlation function is then
approximately

E[ξr(t)ξr′(t
′)|0]c = λ0ε

∑

h

∫ ∞

−∞
dt1 Jr,h(t− t1)Jr′,h(t′ − t1).

If r 6= r′, the expected noise cross-correlation, averaged over the synaptic weights Ji,j , is zero. If r = r′, the expected
value is non-zero. The expected noise auto-correlation function is then

E[ξr(t)ξr(t′)|0]c = λ0εNhidvar(J )

∫ ∞

−∞
dt1 g(t− t1)g(t′ − t1)

= λ0ε(1− f)J2
0

1

(pN)2a−1

∫ ∞

−∞
dt1 g(t− t1)g(t′ − t1).

For the specific case of g(t) = α2te−αtΘ(t), we have

E[ξr(t)ξr(t′)|0]c =
1

4
λ0ε(1− f)J2

0

1

(pN)2a−1
αe−α|t−t

′|
(

1 + α|t− t′|
)
.

For weak coupling (a = 1), the expected autocorrelation function falls off with network size as 1/N , while for strong
coupling (a = 1/2), it scales with the fraction of observed neurons f , but is independent of the absolute network size.
The overall λ0ε scaling puts the magnitude of the autocorrelation function on par with contributions from hidden
paths through a single hidden neuron that contributes a factor of λ0ε to the correction to the coupling filters. Based on
our results shown in Fig. 3, which suggest that contributions from long paths through hidden neurons are significant
when the fraction of neurons f is small and J0 . 1, we expect that network noise will also be significant in these
regimes. This will not modify the results presented in the main paper, however. It simply means that this noise
should be retained in the rate of our approximate model,

λr(t) ≈ λ0 exp

(
µeff
r +

∑

r′

Jeff
r,r′ ∗ ṅr′(t) + ξr(t)

)
.

Lastly, we note that here we only calculated the leading order contribution to the noise correlation functions around
the reference state of no recorded unit activity. Much as we expanded E[ṅh(t)|{ṅr}] in a functional Taylor series
around {ṅr} = 0, we could do so for the correlation functions as well to study how these effective noise correlations
depend on the activity of the recorded neurons. We leave such a calculation for future investigations.
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L. Full mean-field reference state

For most of our analyses, we have been expanding the conditional firing rates of the hidden neurons around a
reference state of zero activity of the recorded neurons. The quantities νh, γh, Γ̂h,h′(ω), and so on, are thus calculated
using a network in which the recorded neurons have been removed. We have demonstrated that this approximation is
valid for the networks considered in this paper. However, this approximation may break down in networks in which
the recorded spike at high rates. In this case, we may need another reference state to expand the conditional rates

around. A natural choice of reference state ṅ
(0)
r (t) in this case would be the mean firing rates of the neurons. We will

set up this expansion here.
The mean firing rates of the neurons are intractable to calculate exactly, so we will estimate them by the mean field

rates, an approximation that we expect to be accurate in the high-firing rate regime.
The mean field equations for the full network are

〈ṅi〉 = λ0φ


µi +

∑

j

Jij ∗ 〈ṅj〉


 .

We can then expand E [ṅh| {ṅr}] around ṅr = 〈ṅr〉, truncating at linear order to obtain

E [ṅh(t)| {ṅr}] ≈ 〈ṅh〉+
∑

h′,r

∫ ∞

−∞
dt′dt′′ Γfull

h,h′(t− t′)Jh′,r(t′ − t′′)(ṅr(t′′)− 〈ṅr〉),

where Γfull
h,h′(t− t′) is the input linear response of the full network, including the recorded neurons.

We can then approximate the instantaneous firing rates of the recorded neurons by

λr(t) ≈ λ0φ

({
µr +

∑

r′

Jr,r′ ∗ 〈ṅr〉
}

+
∑

r′

Jr,r′ ∗ (ṅr − 〈ṅr〉) +
∑

h

Jr,h ∗ E [ṅh(t)| {ṅr}]
)

≈ λ0φ



{
µr +

∑

r′

Jr,r′ ∗ 〈ṅr〉+
∑

h

Jr,h ∗ 〈ṅh〉
}

+
∑

r′



Jr,r′ +

∑

h,h′

Jr,h ∗ Γfull
h,h′ ∗ Jh′,r′



 ∗ (ṅr − 〈ṅr〉)


 ;

note that we introduced 0 =
∑
r′〈ṅr′〉 −

∑
r′〈ṅr′〉 so that we could write the instantaneous firing not as a function of

filtered spike trains but as a functioned of filtered deviations from the mean firing rate. Importantly, although it looks
like only the baseline is different from the zero-activity reference state case but the coupling is the same, the linear
response function Γfull

h,h′(τ) is not the same as the zero-reference state case, and hence the correction to the coupling
is slightly different. The solutions look similar, but the linear response functions now incorporate the effects of the
recorded units as well. In particular, Γfull

ij (t− t′) satisfies the equation

∫ ∞

−∞
dt′′
[
δik − γfull

i Jik(t− t′′)
]

Γfull
kj (t′′ − t′) = γfull

i δijδ(t− t′),

where γfull
i is the gain of neuron i accounting for the entire network,

γfull
i = λ0φ

′


µi +

∑

j

Jij ∗ 〈ṅj〉


 .

Thus, in Fourier space

Γ̂full
ij (ω) =

[
I− V̂full(ω)

]−1

ij
〈ṅj〉

=
∞∑

`=0

[
V̂full(ω))`

]
ij
〈ṅj〉,

where V̂ full
i,j (ω) = γfull

i Ĵi,j(ω) is an N × N matrix – i.e., it contains the couplings and firing rates of all neurons,
recorded and hidden. Hence, while this looks formally similar to the result we obtained in the zero activity state,
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the inclusion of recorded neurons modifies our rules for calculating contributions to the effective coupling filters. In
particular, Jeff

r,r′(ω)−Jr,r′(ω) involves contributions from paths through both hidden and recorded neurons, unlike the
zero-activity reference case, which involved contributions only from paths through hidden neurons. The reason for
this, of course, is that the reference state depends on the entire network, not just the hidden neurons. The difference
between the cases matters only matter at higher orders in our expansion — paths of length ` = 4 or greater. We can
see this by writing out the first few terms in the path length expansion of the effective coupling,

Ĵeff
r,r′(ω) = Jr,r′(ω) +

∑

h

Ĵr,h(ω)γfull
h Ĵh,r(ω) +

∑

h,h′

Ĵr,h(ω)γfull
h Ĵh,h′(ω)γfull

h′ Ĵh′,r′(ω)

+
∑

h,h′,j

Ĵr,h(ω)γfull
h Ĵh,j(ω)γfull

j Ĵj,h′(ω)γfull
h′ Ĵh′,r′(ω) + . . . ;

for conciseness, we have assumed zero-self coupling (Ĵi,i(ω) = 0), but this could be restored by setting γfull
i →

γfull
i /(1− γfull

i Ĵi,i(ω)).
We see that the first few terms of the expansion are the same as the zero-activity reference case, with the exception

that the γfull
h are the gains for the entire network, not just the hidden network absent the recorded neurons. It is only

the ` = 4 term at which contributions to the linear response functions involving paths through any neuron j, recorded
or hidden, start to appear. Because we typically expect the amplitude of these terms to be small, we anticipate
expanding around the mean field reference state will yield similar results to the expansion around the zero-activity
reference state presented in the main paper.
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