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Brain computations depend on how neurons transform inputs to spike outputs.  Because 
sensory stimuli change activity in many interconnected brain areas, it has been challenging 
to control neuronal inputs to measure input-output transformations in vivo.  To overcome 
that difficulty, here we paired optogenetic stimuli with a constant sensory stimulus and 
measured spiking of visual cortical neurons in awake mice.  We found that neurons’ average 
responses were surprisingly linear.  We then used a recurrent cortical network model to 
determine if these data and past observations of sublinearity could be described by a 
common circuit architecture.  The model showed the input-output transformation could be 
changed from linear to sublinear with moderate (~20%) strengthening of connections 
between inhibitory neurons, but this change depends on the presence of feedforward 
inhibition.  Thus, feedforward inhibition, a common feature of cortical circuitry, enables 
networks to flexibly change their spiking responses via changes in recurrent connectivity. 
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Introduction 
Neurons in the cerebral cortex receive thousands of synaptic inputs and transform those 
inputs into spike outputs.  Input-output transformations can be characterized in single cells 
(measuring firing rate while injecting current, producing a f-I curve, (Connors et al., 1982; 
Destexhe and Paré, 1999; Koike et al., 1970)), but network effects can dramatically alter 
input-output transformations in vivo.  For example, ongoing network activity can create 
supralinearities in neurons’ input-output functions (Priebe and Ferster, 2008), strong 
network connectivity can create entirely linear input-output functions (Brunel, 2000; van 
Vreeswijk and Sompolinsky, 1996), and recurrent connections can amplify inhibition to 
produce sublinearity (Ahmadian et al., 2013). 

In this work, we examine input-output transformations in vivo by first measuring spiking 
responses to combinations of visual and optogenetic input in the mouse visual cortex (V1).  
Then, to shed light on the network and circuit mechanisms of input-output transformations, 
we use a spiking recurrent network model.  The experimental data shows a strikingly linear 
input-output transformation in mouse V1, which stands in contrast to sublinearity seen in 
monkey V1 (Nassi et al., 2015).  The model shows that the cortical network can achieve 
both kinds of transformations with only moderate changes in local recurrent synaptic 
strengths.  The model makes a further prediction that feedforward inhibition – input that 
synapses not just on excitatory but also on inhibitory neurons – allows the cortex to support 
both kinds of transformations. 

It is difficult to fully characterize input-output transformations using sensory stimuli alone, 
because sensory stimuli are processed by many brain regions each of which may provide 
input to a cortical area under study.  Combinations of sensory stimuli have, however, found 
that a wide range of transformations are possible, often finding evidence for normalization, 
a form of sublinear summation (Carandini and Heeger, 2012).  A few recent studies have 
used direct optogenetic input to study input-output transformations, and studies in different 
species have observed both normalization (Nassi et al., 2015; Sato et al., 2014) and more 
linear summation (Huang et al., 2014). 

Models and theoretical approaches complement experimental studies of input-output 
transformations, because is difficult to control connectivity in an in vivo cortical network 
experimentally. Rate-based models (Ahmadian et al., 2013; Rubin et al., 2015) have 
characterized the range of behaviors cortical networks can support.  But not all of the effects 
seen in rate-based models may occur in biological networks, as spiking neurons have 
biophysical properties that can impact input-output transformations such as refractory 
periods and nonlinearities due to spike threshold.  Analysis of networks of spiking neurons 
is most advanced for models that approximate neuronal inputs as currents and not 
conductances (e.g. Brunel, 2000), but input-output relationships can be modified by the 
changes in effective synaptic strength and Vm variability (Richardson, 2004, 2007) that 
occur in realistic conductance-based neurons.  Therefore, we use numerical simulations of 
models of conductance-based spiking neurons to determine which connectivity properties 
might create the input-output transformations seen in our data and in past data. 
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Below, we first describe the experimental results from mouse visual cortex (Fig. 1), showing 
near-linear responses across a wide range of firing rates and visual contrast.  We then 
describe results from the model, showing that feedforward inhibition can produce 
sublinearity (Fig. 2), and that with feedforward inhibition, local connectivity can allow 
networks to be either linear or sublinear (Figs. 3-4).  Finally, we construct a model network 
to fit our optogenetic-visual stimulation data (Fig. 5), which predicts that a canonical 
cortical circuit, with feedforward inhibition and varying only local connectivity, can resolve 
the differences in input-output transformations seen in V1 of different species. 

  

 

 

 

 

Results 
 
Experimental measurements in mouse V1 show linear summation 
We combined visual and optogenetic input (Fig. 1A-B) by expressing ChR2 in V1 excitatory 
neurons using a transgenic mouse line and a Cre-dependent virus, and we used blue light 
pulses several seconds in duration (4-6 sec) to shift network firing rates to a new baseline.  
We delivered the same visual stimulus repeatedly, with and without ChR2 stimulation.  We 
kept animals alert by giving them drops of fluid approximately once a minute, and we 
measured neurons’ spiking via extracellular recording with multi-site probes. 

When we presented the same visual stimulus with and without optogenetic stimulation, we 
found that V1 neurons’ responses scaled nearly linearly (Fig. 1C) – that is, the same size 
response was produced even as the optogenetic stimulus changed the baseline firing rate.  
Even for relatively large optogenetic baseline shifts (~10 spk/s, roughly the same magnitude 
as the average visual response), the visual response was similar with and without ChR2 
stimulation.  We saw this linear response across a range of intensities of the visual stimulus 
(contrast range: 8%-90%, Fig. 1D), and we saw linear responses both when averaging single 
units (N=50) and multi-units (N=239).   Responses became slightly sublinear in cells with 
the largest baseline shifts (Fig. 1E), but responses were on average within a few percent of 
linear (for maximum contrast, as in Fig. 1D: response change for single units -4.8%, for 
multi-units -4.1%). 

While average neuronal responses were nearly linear, individual recorded units were often 
either supra- or sub-linear.  For example, in Fig. 1E, many points lie above and below the 
horizontal line that shows a perfectly linear response.  (Several example units that produce 
either sub- or supralinear responses are shown in Supp. Fig. 1.)  With the 90% contrast 
visual stimulus, 34% of single units are significantly non-linear (17/50, p<0.01, KS test; 
Supp. Fig. 1C), and 28% of multi-units are significantly non-linear (67/239, p<0.01, KS 
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test).  Such heterogeneity in responses could arise because each neuron has slightly different 
local connectivity.  Heterogeneity due to local recurrent connections would suggest the 
population average linear response is a network effect, arising from connections between 
excitatory and inhibitory neurons that cause them to dynamically respond to each others’ 
activity (van Vreeswijk and Sompolinsky, 1996).  Below, we test how connectivity might 
lead to the observed responses, using a spiking network model. 

Other experimental work finds sublinear summation in macaque visual cortex  
In contrast to this average linear scaling in mouse primary visual cortex, recent work in the 
monkey primary visual cortex (Nassi et al., 2015) found neural responses that were at times 
highly sublinear, and sublinear on average.  The experimental approach used by Nassi et al. 
does not seem to differ in important ways from our approach -- they expressed ChR2 
primarily in excitatory neurons using the CaMKII-alpha promoter, stimulated an area of the 
cortex a few hundred microns in diameter, and they paired ChR2 and visual stimulation.  
Because the different results may stem from differences in cortical architecture across 
species, rather than differences in experimental methods, we sought to determine whether 
there were features of local cortical circuits that could change response scaling from linear to 
sublinear.   

Model network simulations identify circuit properties controlling input summation 
Since it is difficult to manipulate neural connectivity in vivo, we used numerical simulations 
of conductance-based model neurons to understand how network connectivity might change 
response scaling.  We constructed networks of 10,000 conductance-based leaky integrate-
and-fire neurons, 8,000 excitatory (E) and 2,000 inhibitory (I).  We chose realistic 
parameters for the model neurons, including sparse connectivity (initially 2%), and chose 
moderate synaptic strengths such that a few tens of EPSPs were required to push a neuron 
over threshold.  (We explore a range of values of sparsity and synaptic strength below.) 
These sparse, randomly connected networks produce irregular and asynchronous 
spontaneous activity (Fig. 2A) similar to that observed experimentally (Destexhe et al., 
2003; Steriade et al., 2001) and show stable responses to external inputs (Vogels and Abbott, 
2005).  For all simulations, we set the spontaneous average rate of the network to 5 spk/s.  
There are a variety of single-cell properties that could set neurons’ spontaneous rate, but we 
changed the spontaneous rate by supplying a small, constant amount of excitatory input 
(that does not vary with network activity or input) to either excitatory or inhibitory neurons 
(see Methods).  

To determine how different sorts of feedforward inputs affect neurons’ responses, we 
simulated external inputs to E and I cells by two input groups of Poisson spike trains whose 
rates could be varied independently.  As expected, when we varied the external input rates, 
increasing input to E cells (x-axis) monotonically increased the average network response 
(Fig. 2B, contour lines; average of all excitatory cells in the network, a measure similar to 
that obtained by multi-electrode recordings) and increasing input to I cells (y-axis) 
monotonically decreased the average network response.  However, we could hold the 
average response constant by adjusting the two feedforward inputs.  When the average 
response was constant (along contour lines in Fig. 2B), we still observed changes in response 
scaling, and those changes depended on the amount of I input.  

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 20, 2017. ; https://doi.org/10.1101/109736doi: bioRxiv preprint 

https://doi.org/10.1101/109736
http://creativecommons.org/licenses/by-nc/4.0/


 5  

To assess response scaling, we began with a combination of E and I input that produced a 
15 spk/s response (chosen because experimentally, we measured an average response that 
peaked near 15 spk/s, Fig. 1C,D).  Then, we multiplied both input rates by a single constant 
and measured the size of the response to the scaled input.  We found that when feedforward 
I input is small, responses are near-linear (Fig. 2C).  This is not surprising, as previous 
theoretical work using strong local synaptic coupling in models with binary (van Vreeswijk 
and Sompolinsky, 1996) or current-based neurons (Brunel, 2000) showed that networks can 
produce linear responses even though individual neurons in cortical networks are nonlinear 
(Priebe and Ferster, 2008).  However, these models did not characterize the effects of 
varying feedforward E and I input separately, and so we varied feedforward I input in the 
conductance-based model.  Indeed, when feedforward I input was varied, we observed 
deviations from linearity.  Even though the spontaneous spike rate and the spike rate 
response to a single stimulus alone were both held constant with and without feedforward 
inhibition, increasing stimulus strength showed more sublinear response scaling when 
feedforward inhibition was present.  

Local connectivity changes summation only in the presence of feedforward inhibition 
While adding feedforward inhibition induced some sublinearity, we wished to know if more 
dramatic nonlinearities were possible.  Therefore, we next changed local recurrent 
connectivity between and amongst E and I populations, and measured how those 
connectivity changes affected responses scaling (Fig. 3).  In Fig. 3, we show the effects of 
varying two local connections (first, strength of synapses from E to I, and second, strength 
of synapses from I to I) to illustrate the range of effects we observed.  (Supp. Fig. 2 shows 
the effects of varying all pairwise combinations of E to I connectivity, as well as feedforward 
E and I input strength.)  To implement varying connectivity in the model, we added 
additional connections between two neuronal populations (e.g, E to I, or I to I) with the 
same sparsity as the network. We then varied the strength of those additional connections 
and measured effects on response scaling.   

With only feedforward input to E cells (Fig. 3A,C,E), we found that changing network 
connections did not dramatically affect response scaling.  Changing the connectivity could 
change the gain of the network (the size of the response to a constant input, Fig. 3A, 
contour lines), but response scaling was nearly linear (Fig. 3A, plot is yellow throughout; 
Fig. 3C-D: black lines lie close to horizontal dotted line).  At high firing rates, we 
consistently saw moderate increases in sublinearity, which seems likely to be due to effects 
of the absolute refractory period (3 ms) and thus, rates above 50 spk/s are indicated by light 
gray lines (Fig. 3CD).  But the linear scaling we had observed in the model when delivering 
input to E cells only was robust to changes in local connectivity.  In sum, without 
feedforward inhibition, scaling was approximately linear, and local connectivity changes 
had little effect. 

Even though near-linear scaling was consistently seen when feedforward input arrived to E 
cells, when feedforward input arrived to both E and I cells, responses could be either linear 
or dramatically sublinear.  When we increased local I to I connection strength (Fig 3B, y-
axis), sublinearity was observed (Fig. 3D; plot parameters correspond to pink asterisk in Fig. 
3B, in blue region of plot).  But increased E to I connection strength (Fig. 3B, x-axis) led to 
more-linear scaling (Fig. 3E; plot parameters correspond to pink ‘|’ symbol in Fig. 3B).  The 
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sublinear scaling produced by stronger I to I connectivity was dramatic.  As with all the 
timecourse plots (Fig. 3C-F), we chose input strength so the first firing rate response was 15 
spk/s, but when I to I connectivity was increased, subsequent firing rate responses fell as 
low as 1 spk/s (Fig. 3D).  The mechanism by which increased I to I coupling produces 
increased sublinearity is not yet understood.  Such unintuitive changes can arise from 
network-level effects, similar to the way E-I tracking may cause inhibitory neurons to 
actually decrease their activity when inhibitory neurons are excited by stimulation 
(Ahmadian et al., 2013), or may arise from cell-autonomous changes in conductance that 
leads to shunting in individual cells (Chance et al., 2002; Richardson, 2004).  Further 
theoretical work will be required to understand why increased I-I coupling leads to 
increased sublinearity in spiking networks.  However, it is likely that cortical inhibitory 
neurons in vivo do have the capacity to adjust their local connectivity, as inhibitory cells 
modify their dendritic structure over time (Chen et al., 2011).  In sum, the numerical 
simulations show that local connectivity changes can dramatically affect response scaling, 
but only in the presence of feedforward I input.  

Connectivity effects on summation do not depend on connection sparsity or strength  
We next examined whether synaptic strength and connection sparsity can change the role of 
feedforward inhibition in response scaling.  We expected that varying the total recurrent 
input that neurons receive would change non-linearity of responses, as predicted by theory 
(Ahmadian et al.; van Vreeswijk and Sompolinsky, 1996), as long as the network remained 
stable.  Therefore, we varied total input in two ways, by varying connection sparsity and by 
varying synaptic strength (Fig. 4).  Experimental estimates of local connection sparsity can 
range as high as 10-20% (i.e. each neuron connects to 10-20% of nearby neurons, 
Braitenberg and Schüz, 2001; Lefort et al., 2009).  But the effective sparsity of connections 
might be lower, as connection probability in cortical networks is known to fall off with 
distance, so averaging connection probabilities across the network can give lower values 
than measured for nearby pairs.  To examine the effects of changing connection probability, 
we varied sparsity between 2-20% and found that in all cases, adding feedforward inhibitory 
drive allowed more sublinear responses (Fig. 4; green lines always lie below blue lines in Fig 
4A). We observed more linear scaling when we increased the strength of all synapses 
together (Fig. 3), and a bigger range of possible scaling (from supralinear to sublinear) when 
we decreased synaptic strength.  These results show that, in networks that use a range of 
connection strength and sparsity, feedforward inhibition enables local E and I connectivity 
to have similar effects on response scaling, though the networks become more linear as 
connectivity strength increases. 

Next, we asked whether a model fit to our ChR2 experiment shows similar scaling 
dependence on feedforward inhibition.  Up to this point, we have examined the behavior of 
simulated networks only by scaling a feedforward input (Figs. 2-4).  We have implemented 
this feedforward input to simulate the way input spikes change conductance in neurons, by 
modulating the firing rate of a (Poisson) stochastic point process.  Using these input spike 
trains, the sum of feedforward synaptic inputs in a given network neuron has substantial 
fluctuations about its mean.  In contrast, experimental ChR2 stimulation activates many 
channels, and produces conductance changes with much smaller fluctuation about the 
mean.  Thus, it might be possible that the scaling behavior we studied experimentally, with 
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ChR2 combined with visual stimuli, would differ from the combinations of feedforward 
input we simulated in Figs. 2-4.  To determine if there was a difference, we simulated ChR2 
input by changing conductance and combined this with feedforward input (Fig. 5), and 
found that combinations of ChR2 and visual inputs produced qualitatively similar effects to 
the effects we had previously seen.  Combinations of simulated ChR2 and visual input (Fig. 
5A) showed slightly increased sublinearity when compared to a single scaled visual input 
(Figs. 2-4).  (We also saw some slight sublinearity in our measurements of responses to 
combined ChR2 and visual input in mouse V1, Fig. 2.)  However, as with simulated visual 
input (Figs. 2-4), we found that with paired conductance (ChR2) and spiking (visual) inputs, 
more sublinearity is possible when the feedforward input combines inhibitory and excitatory 
targets than when feedforward input targets only excitatory neurons (Fig. 5B-C).  And, in 
the presence of feedforward inhibition, moderate changes in network connectivity can 
modify scaling behavior (Fig. 5D).  In sum, in the models that use simulated visual (spiking) 
inputs of varying rate (Figs. 2-4), and the models that use combined visual and ChR2 
(conductance) inputs (Fig. 5), the role of feedforward inhibition and I-I connectivity in 
response scaling is similar. 

Summation in our data and past data can be explained by a model with feedforward 
inhibition  
Finally, we constructed a model with combined visual (spiking) and ChR2 (conductance) 
inputs, and fit evoked rates to our data.  We then asked what combinations of connectivity 
and feedforward input could describe both our data and past measurements.  Our data (Fig. 
5E) was well-matched by the simulations that showed small sublinearity (Fig. 5A-D).  The 
data was similar to two different sets of network simulation parameters.  Networks with 
only feedforward excitation showed responses that paralleled the data, but we also saw 
effects that paralleled the data in networks with both feedforward excitation and inhibition, 
for particular values of local connectivity.  Since feedforward inhibition is a common feature 
of cortical networks in many species (Douglas and Martin, 2004), a model using 
feedforward inhibition seems a good choice to describe experimentally measured response 
scaling.  With feedforward inhibition, changes in local (e.g. I-I) connectivity can change 
response scaling from linear to sublinear.  While other network architectures might also give 
sublinear scaling, these simulations show that a wide regime of cortical scaling behavior, 
from linear (as seen here in mouse V1 and also in the tree shrew (Huang et al., 2014)), to 
strongly sublinear (as seen in primate V1, Nassi et al., 2015), can be achieved by a model 
with feedforward inhibition.  In sum, the simulations show that model with fixed input 
connectivity, with feedforward inhibition, can describe both our data (Fig. 5E) and past 
observations.   

 

 

Discussion 
We have experimentally measured the average firing rate of a group of cortical neurons 
while presenting the same visual stimulus repeatedly.  We found that average response 
summation in mouse V1 is close to linear, even though individual cells can be nonlinear.  
Linear summation holds even for substantial shifts in firing rate (ChR2-induced firing rate 
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changes of 10-15 spk/s, approximately the same size as the maximum visual response, Fig. 
1).  Using a numerical model of conductance-based spiking neurons, we find that response 
scaling is affected dramatically by synaptic connectivity.  Moderate changes in synaptic 
coupling (~20%) between inhibitory cells can change response scaling from linear to 
sublinear (Figs. 3-5).  Further, the change in inhibitory-to-inhibitory connectivity that leads 
to sublinear summation only yields such sublinear summation in the presence of 
feedforward inhibition.   

Several types of input-output transformations have been characterized in brain circuits. 
Neuronal responses to multiple sensory stimuli can often be governed by normalization, 
where adding an additional stimulus yields divisive reduction of the responses to a single 
stimulus.  This form of sublinear summation has been observed in different visual cortical 
areas of several species (Carandini and Heeger, 2012). Linear summation, on the other 
hand, is also commonly seen at various stages of sensory systems (Carandini and Heeger, 
2012) and both linear and sublinear responses may be useful at different levels.  Linear 
summation may be more desirable when responses at different locations should receive 
equal weight, as when an organism must sensitively detect a distant predator, or when 
spikes that occur at different times should produce the same downstream effect.  In fact, 
some high-performance computer vision systems use both linear and normalization steps in 
distinct layers or networks (Carandini and Heeger, 2012; Yamins and DiCarlo, 2016).  
Experimentally, normalization is usually measured in the context of sensory stimuli, not 
with direct cortical input, and thus normalization might partially depend on subcortical (e.g. 
thalamic gain control, Bonin et al., 2006) or feedback effects.  Advances in optical 
stimulation promise to allow fuller characterization of input-output transformations in 
brains in vivo.    

Many neurons in the cortex change their firing rate in response to even small sensory stimuli 
(Bonin et al., 2011; Van Essen et al., 1984).   Anatomically, sensory input that arrives to 
multiple cells is common, as in the case of divergent feedforward thalamic input to the 
cortex (Reid, 2001).  Single axons from the thalamus often ramify across several hundred 
microns of the cortex (Braitenberg and Schüz, 2001; Garraghty and Sur, 1990), and 
thalamic axons projecting to the visual cortex can make synapses on dozens of excitatory 
cortical cells (Freund et al., 1989).  Therefore, we delivered optogenetic input to multiple 
neurons simultaneously (using a blue light spot a few hundred µm in diameter, comparable 
to the region of mouse V1 activated by the small Gabor visual stimulus we used).   

Optogenetic stimuli may lead to firing rate changes in other parts of the brain besides the 
area stimulated.  But perhaps because the majority of synapses made by cortical neurons are 
within the same cortical area, local intracortical effects for optogenetic stimuli like these 
have been observed to be larger than remote effects on the visual thalamus (Li et al., 2013; 
Olsen et al., 2012).  This is true even though the visual thalamus (dorsal lateral geniculate) 
receives a large proportion of all projections out of V1 (Reid, 2001).  Thus, the neurons best 
suited to act as the recurrent population in the model may be other V1 neurons, and perhaps 
even neurons within a few hundred microns of the neurons receiving input, where the 
probability of recurrent connectivity is highest (Lefort et al., 2009).  However, we do not 
rule out the possibility that other neurons in the brain contribute to the recurrent population. 
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Our results show that network mechanisms can contribute to response summation.  The 
model neurons are leaky integrate-and-fire neurons, so individual neurons sum their 
subthreshold inputs entirely linearly, and the nonlinear spiking responses we characterize 
likely arise from how E and I neurons interact.  We chose this model architecture because 
we judged it the simplest model that could capture both excitatory-inhibitory interactions 
and also single-cell nonlinearities due to refractory period, Vm fluctuations, spike threshold, 
and conductance changes (Chance et al., 2002; Richardson, 2004).  There are, however, 
other single-cell mechanisms, such as short-term synaptic plasticity or dendritic nonlinearity 
(Häusser et al., 2000; Silver, 2010) that might additionally contribute to even more 
nonlinear summation, both below threshold and in spike responses.  On the other hand, 
dendritic nonlinearities might also have roles that do not affect scaling, as for example 
nonlinearities can be used to amplify distant input synapses so that different synapses 
produce equal responses at the soma (Katz et al., 2009).  These additional mechanisms 
could amplify or otherwise modify the network effects we have observed, and if those 
mechanisms are used they could also vary across species.  

We adjusted synaptic coupling between (E and/or I) populations by changing the strength 
of a set of fixed connections between the desired populations.  Because in sparse networks 
like this, neurons share only a small fraction of their input, we expected increases in 
synaptic strength to achieve the same qualitative result as adding new synapses, even if the 
two types of changes may not have exactly proportional effects on the behavior of the 
network.  Fig. 4 shows that feedforward inhibition allows more sublinearity across changes 
in both synaptic strength and synapse number.  

The linear responses we observed in mouse primary visual cortex are similar to those seen in 
tree shrew visual cortex (Huang et al., 2014), but are different than the sublinear responses 
seen in macaque visual cortex (Nassi et al., 2015).  Our simulations show that a broadly 
similar cortical architecture can support both kinds of scaling of feedforward input, subject 
to moderate adjustments in local connectivity.  The linear responses we saw in the mouse 
differ from those of Sato et al. (Sato et al., 2014), who also delivered combinations of 
optogenetic and visual input to mouse V1 neurons and found sublinearity under certain 
conditions.  However, Sato et al. used an experimental approach different than the other 
three studies (macaque, tree shrew and our study in mouse), in which they optogenetically 
elicited antidromic input spikes by stimulating the contralateral hemisphere from which they 
were recording.  Comparing these two types of input may shed additional light on how 
cortical circuits transform inputs to outputs. 

Feedforward inhibition is included in the canonical cortical microcircuit framework 
(Douglas and Martin, 2004) because it is a stereotypical feature of many cortical areas.  In 
sensory cortical areas, including the visual cortex, it has been observed that input thalamic 
neurons make synapses both onto excitatory principal cells and onto inhibitory basket cells.  
Such feedforward inhibitory connectivity has been observed both with anatomical and 
physiological methods (Isaacson and Scanziani, 2011). Since inhibitory basket cells project 
strongly back to excitatory cells, inhibitory changes due to thalamic input arrive to principal 
cells a few milliseconds after the first excitatory changes.  This delay of a few milliseconds 
between the arrival of excitation and inhibition can be used to align spike outputs of cortical 
neurons (Cruikshank et al., 2007; Gabernet et al., 2005; Swadlow, 2003; Tiesinga et al., 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 20, 2017. ; https://doi.org/10.1101/109736doi: bioRxiv preprint 

https://doi.org/10.1101/109736
http://creativecommons.org/licenses/by-nc/4.0/


 10  

2008).  Beyond shaping the timing of spike responses, however, it has been previously noted 
that feedforward inhibition might also be used to control the magnitude of spiking responses 
to thalamic input.  Douglas et al. (Douglas et al., 1995) proposed that spike responses can be 
shaped by preferential amplication of either excitation or inhibition in cortical recurrent 
networks, where amplification might arise by connections within populations of excitatory 
or inhibitory neurons.  Ahmadian and Miller (2013) later showed that rate-based networks 
with an excitatory and inhibitory term that are stable (so that the network does not e.g. 
diverge and become epileptic) have regimes of both linearity and sublinearity, although it is 
not yet clear which of these regimes spiking networks operate in, and which cellular or 
synaptic parameters affect summation.  In Ahmadian and Miller’s model, individual cells 
can be supralinear (Priebe and Ferster, 2008), but when external drive arrives to multiple 
cells, supralinearity is seen only when recurrent connections are weak and thus excitation 
and inhibition are not strongly coupled.  This may explain why we saw supralinear 
responses only in the model network with the weakest synaptic connectivity (Fig. 4).   

Substantial recurrent intracortical responses are elicited by sensory input, with 
approximately 2/3rd of synaptic input after a sensory stimulus arising from recurrent 
synapses (Li et al., 2013; Lien and Scanziani, 2013).  With strong recurrent connectivity, 
previous modeling results (Renart et al., 2010; van Vreeswijk and Sompolinsky, 1996) 
predict that excitatory and inhibitory populations are forced by the strong coupling to track 
each others’ activity closely, resulting in linear responses.  In accord with this prediction 
about strongly-coupled networks, we observed increasing linearity when we increased 
synaptic strength (Fig. 4) as long as the network remained stable.  However, for very strong 
recurrent connectivity, feedforward connectivity must also be very strong to drive any 
response (Ahmadian et al., 2013)(see also our Fig. 4), which appears non-physiological (Li 
et al., 2013; Lien and Scanziani, 2013).  Most of our simulations (Figs. 2,3,5 and parts of 
Fig. 4) use synapses of moderate size (order 1mV, see Methods), requiring tens of PSPs to 
combine to produce a spike, as seen in cortical neurons (Barral and Reyes, 2016).  Taken 
together, these observations imply the differences in scaling we observed occur in a range of 
moderate synaptic strengths: low enough to avoid obligate linearity, and high enough to 
allow recurrent connections to contribute substantially to network input-output functions. 

We found that a network model can link local connectivity to network physiological 
responses in ways that might be difficult to predict without the model.  It has been difficult 
to measure many of the synapses in a brain volume, but connectomic methods such as those 
using large-scale electron microscopy (Briggman et al., 2011; Lee et al., 2016) promise to 
make such comprehensive synaptic mapping possible even in column-sized volumes of the 
cortex.  Combining approaches for controlling input with methods to measure connectivity 
will be useful to shed light on an important part of brain computation – the input-output 
transformations of populations of connected cells. 
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Methods 

Neurophysiology 
All experimental animal procedures were conducted in accordance with NIH standards and were 
approved by the IACUC at Harvard Medical School.   Animal breeding and surgery were 
performed according to the methods described previously (Glickfeld et al., 2013; Histed and 
Maunsell, 2013).  
Neurophysiological data from Emx1-Cre animals (N=4) were collected using the methods used 
in Glickfeld et al. (2013) for extracellular recordings. Briefly, animals kept on a monitored water 
schedule were given small drops of water (~1 µL) every 60-120 s during recording to keep them 
awake and alert.  The visual stimulus was presented for 200 ms with a blank period of 800 ms 
between presentations.  Gabor patches had spatial frequency of 0.1 cycles/deg and sigma of 12.5 
deg.  Optogenetic light pulses were delivered on alternating sets of 10 stimulus presentations 
(light onset 500 ms before first stimulus, offset 500ms after end of last stimulus; total light pulse 
duration 10.2s).  A 1 s delay was added after each set of 10 stimulus presentations.  Extracellular 
probes were 32-site silicon electrodes (Neuronexus, Inc., probe model A4x8).  Recording 
surfaces were treated with PEDOT to lower impedance and improve recording quality.  On each 
recording day, electrodes were introduced through the dura and left stationary for approximately 
1 hour before recording to give more stable recordings.  As in (Histed and Maunsell, 2013) ChR2 
was expressed in excitatory neurons using viral injections into the Emx1-Cre (Gorski et al., 
2002), (Stock #5628, Jackson Laboratory, Bar Harbor, ME USA) line.  Virus (0.25-1.0 µL) was 
injected into a cortical site whose retinotopic location was identified by imaging 
autofluorescence responses to small visual stimuli.  Light powers used for optogenetic 
stimulation were 500 µW/mm2 on the first recording session; in later sessions dural thickening 
was visible and changes in firing rate were smaller, so power was increased (maximum 3 
mW/mm2) to give mean spontaneous rate increases of approximately ~5 spikes/s in that 
recording session.  Optogenetic light spot diameter was 400-700µm (FWHM) as measured by 
imaging the delivered light on the cortical surface.  Spike waveforms were sorted after the 
experiment using OfflineSorter (Plexon, Inc.).  Single units were identified as waveform clusters 
that showed clear and stable separation from noise and other clusters, unimodal width 
distributions, and inter-spike interval histograms consistent with cortical neuron absolute and 
relative refractory periods.  Multiunits were clusters that were distinct from noise but did not 
meet one or more of those criteria, and thus these multiunits likely group together a small 
number of single neuron waveforms.   

Data analysis 
Spike histograms were smoothed using piecewise splines (LOWESS smoothing).  To compute 
the visual response for each neuron in Fig. 1D, we counted spikes over a 175 ms period 
beginning 25 ms after stimulus onset, with a matched baseline period 175 ms long ending at 
stimulus onset.  The dataset includes data from 100 shank penetrations (~25 recording sessions 
with a 4-shank electrode).  Because the inter-shank spacing was 200-400 µm, our stimuli in fixed 
retinotopic locations could not activate neurons on all shanks.  Therefore, we included only 
shanks in which an average visual response > 0.2 spikes/s was measured (38/100 shanks).  This 
gave 417 single and multi-units.  We examined only units that showed a visual stimulus response 
(N=289; mean stimulus response-mean spontaneous > 0.2) in the absence of ChR2 stimulation.  
Because ChR2 expression was highest at the site of viral injection and fell off with distance, we 
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took advantage of this variation to sort units into three groups based on the strength of local 
ChR2 activation (Fig. 1C).  We found the average change in spontaneous rate induced by ChR2 
stimulation for all units on a shank and rank-ordered the shanks.  Dividing shanks into three 
groups based on small, medium, or large ChR2 effects yielded three nearly-equal sized groups of 
units receiving small, medium or large ChR2 activation.  The group sizes differ by a few units 
because we sorted by shank, not by individual unit.   

Conductance-based spiking network model 
The cortical model is a recurrent network of conductance-based leaky integrate-and-fire neurons.    
Example Python code and a Jupyter notebook (http://jupyter.org) are provided at 
https://github.com/histedlab/code-feedforward-inhibition-condLIF that run the network 
simulation with all its inputs, replicating spike counts shown in Fig. 5C, bottom row.  To recover 
the rest of the simulations in Fig. 2-5, this code can be run in parallel on a larger cluster.   

Each model neuron is connected randomly to each other neuron with fixed probability (sparsity).  
For example, for a 10% sparsity network, each cell receives input from 10% of the excitatory 
cells and thus gets 0.1*8000 = 800 E inputs.  Similarly, at 10% sparsity, each cell receives 
0.1*2000 = 200 I inputs.  As seen in the cortex, we chose the inhibitory synaptic strength to be 
larger than the excitatory synaptic strength to achieve rough balance, but we also varied both 
synaptic strengths and found that our conclusions are not affected by changes in E/I synaptic 
strength ratio.  (Supp. Fig. 2; see also Fig. 4 for effects of changing together E and I recurrent 
synaptic weights by an order of magnitude).  We refer to this baseline set of random, sparse 
connections as the balancing connections.  For convenience, to change local connectivity, we 
change the strength of a second added set of connections with the same sparsity while keeping 
the strength of the balancing connections constant.  For example, when I->I connectivity is 
varied in the 2% sparsity network (e.g. Fig. 3), each I cell receives an extra 40 synapses from 
other I cells, and the y-axis in Fig. 3AB shows the effects of varying the weight of those 40 
synapses from zero to ~20% of the weight of the standard recurrent I->I synapses.   

Each simulated neuron’s membrane potential evolves according to the following equation: 

 

 

When the membrane potential 𝑉" crosses a threshold (-50 mV), a spike is recorded and 𝑉" is 
reset to  𝐸$%&' (-60 mV) for the absolute refractory period (3 ms).   

Beyond the recurrent inputs from other neurons in the network (described in the model 
architecture above), model neurons can receive two kinds of external inputs: external 
feedforward inputs simulating e.g. sensory input from thalamus, and external ChR2 inputs. 
Feedforward (sensory) inputs are simulated as Poisson spike trains whose rates are changed by 
stepping to a new value, with values chosen to approximate visually-evoked changes seen in the 

dVm

dt
= � 1

⌧m

h
gleak(Vm � Erest) + gChR2(Vm � Ee)

+ ge(Vm � Ee) + gi(Vm � Ei)
i
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data.  ChR2 input is simulated by linearly ramping 𝑔)*+, to a new value over 2 ms, a timescale 
consistent with ChR2 𝑡./ (Nikolic et al., 2009), and 𝑔)*+, amplitude is varied to reproduce 
experimental changes in firing rate (see below).  Synaptic conductances 𝑔% and 𝑔0 are 
incremented instantaneously by a constant excitatory or inhibitory synaptic weight when a spike 
is fired by a recurrent or feedforward input. The conductances decay with time constants 𝜏2% =
5	𝑚𝑠 and 𝜏20 = 10	𝑚𝑠, described by: 

 

Other constants are: excitatory reversal 𝐸% = 0 mV, inhibitory reversal 𝐸0 = -80 mV, membrane 
time constant 𝜏" = 20 ms. Post-synaptic potential (PSP) amplitudes can vary with network 
activity and synaptic weight because the model neurons are conductance-based.  As we varied 
sparsity in the network, the excitatory PSP amplitude (Fig. 3) varied over an approximately 
tenfold range (0.3-3.0 mV for sparsity 20% - 2%, if calculated assuming that the mean 
membrane potential of network neurons is -65mV.)   

Network spontaneous firing rate 
The sparse recurrent connections yield spontaneous activity in the network in the absence of 
external input (van Vreeswijk and Sompolinsky, 1998; Vogels and Abbott, 2005).  To equate the 
spontaneous firing state of the network across different sparsity and synaptic strength, we adjust 
network spontaneous rate.  We use an additional external Poisson excitatory input to either 
excitatory or inhibitory neurons to respectively raise or lower the spontaneous rate.  The rate of 
this Poisson input is chosen via stepwise optimization to give a mean spontaneous rate across 
excitatory neurons of 5 spk/s.  (In the 2% sparsity network, these added excitatory synapses 
account for only approximately 2% of the total mean conductance).  For many networks, a local 
minimum of the parameter can be found repeatably, but for extreme values of sparsity and 
synaptic strength, the network is unstable and spontaneous rates are either sensitive to small 
perturbations or diverge.  In these cases network response is not shown (e.g. gray regions, Fig. 
4B-C). 

Simulations were performed with the Brian simulator (Brette et al., 2007) on a multi-CPU cluster 
(the NIH HPC Biowulf cluster, http://hpc.nih.gov, or Orchestra, http://rc.hms.harvard.edu) with 
an integration time step of 50 µs. 

 

 

dge
dt

= � ge
⌧ge

dgi
dt

= � gi
⌧gi
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Figure 1: Near-linear scaling observed with optogenetic stimulation in mouse V1.  A. 
Schematic of experimental stimulus protocol.  If scaling is linear, the same input pulse 
produces the same response when baseline (spontaneous) rate is changed.  B.  We raise 
baseline rates using ChR2 in excitatory (E) neurons (Cre-dependent virus in Emx1-Cre 
mouse line.)  Visual stimulus is held constant.  C, Population histograms showing responses 
to combined ChR2 and visual (90% contrast) stimuli.  Top row: columns show three groups 
of neurons divided based on size of ChR2 baseline firing rate changes, left: smallest ChR2 
effects (N=94; 36 single, 58 multi-units), middle: intermediate ChR2 effects (N=101; 31 
single-, 70 multi-units), right: largest ChR2 effects (N=94; 28 single-, 66 multi-units), Brown: 
responses to visual stimulus with no optogenetic stimulus.  Cyan: responses to visual 
stimulus when baseline rates are changed by sustained optogenetic stimulus.   Bottom row: 
Same data as top row, with spontaneous firing rates subtracted.  Visual responses differ 
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somewhat between columns because each column is a different group of neurons, but within 
each group there is little response change as spontaneous rate varies.  D, Linear scaling is 
seen across a wide contrast range.  Top row: responses without baseline subtraction.  
Bottom row: baseline subtracted.  Errorbars: SEM of pooled unit responses.  E, Linear 
scaling is seen on average, across neurons with a variety of ChR2-induced baseline rate 
changes, with some weak sublinearity at the highest rate changes and highest contrasts.  Y 
axes: difference in visual responses (relative to baseline) with and without ChR2 
stimulation; dashed line at zero shows a perfectly linear response.  Red: lowess regression, 
shaded region is a bootstrapped 95% confidence interval.  Two outlier points in 90% 
contrast plot are omitted for visual clarity although they are included in the regression; the 
two outliers are shown in Supp Fig. 1C.   
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Figure 2: Spiking model shows 
sublinear scaling with 
feedforward inhibition.  
A, Cartoon of network 
architecture.  Blue: E cells, 
green: I cells.  The conductance-
based spiking model produces 
stochastic Vm and spikes as seen 
in vivo, and an example 
membrane potential (Vm) trace 
from one excitatory cell is 
shown.  B, Response scaling as 
feedforward (FF) input to E and 
I cells is varied.  To measure 
response scaling, inputs to E 
and/or I cells with specified rate 
(given by X,Y axes) are 
delivered, and average response 
over all E cells is measured.  
Then, the E and I input rates are 
multiplied by a constant (here, 
2) and the size of the second 
response is compared to the first.  
Percent change shown by color, 
yellow: second response is 
similar (linear), blue: second 
response is smaller (sublinear).  
Contour lines show first 
response (spk/s).  Response 
rates below 5 spk/s and above 
20 spk/s are masked (gray). 
Average spontaneous rate is 
adjusted to 5 spk/s (Methods), 
and 33% of network neurons 
receive external input, to 
approximate the sparse set of 
cortical neurons that typically 
respond to sensory inputs (Fig. 
1).  Pink points show E and I 
rate combinations used in C,D.  
C, Near-linear responses to a 
range of input sizes when 
feedforward input is provided to E cells only.  Parameters here are indicated by pink dot in 
B, and first two responses here are the same two responses used to compute percent change 
shown in color there.  Left panel: average rates, right panel: same data replotted showing 
change (spk/s) in response (y-axis) as a function of prior response (x-axis).  For these plots, 
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a linear response is a horizontal line (dashed gray line).  Heavy lines: prior rates less than 50 
spk/s, highlighting for visual clarity rates far from saturation caused by absolute refractory 
period (3 ms).  D, Sublinear responses to a range of input sizes when input provided to both 
E and I cells.  Same conventions as C.  In this case, heavy green line in right panel lies 
farther below horizontal than heavy blue line in C, showing more sublinear scaling.       
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Figure 3: With feedforward inhibition, network model can produce linear or sublinear 
responses.   A, Simulations with feedforward input to E cells only, while local network 
connectivity is varied.  X-axis: E to I connection strength, y-axis, I to I connection strength.  
Axes give percent change in total synaptic input that a single cell receives from one (E or I) 
population (see Methods), where zero is a balanced network (e.g. Fig. 2) with equal 
probability of synapses onto E and I cells.  Other conventions as in Fig. 2B (contour lines 
show evoked response to first stimulus, color shows percent difference in response to 
doubled external stimulus).  Spontaneous rate and external stimulus rates are constant for 
entire panel.  B, Simulations with feedforward input to E and I cells while local connectivity 
is varied.  Pink symbols show parameter regions where scaling is sublinear (stronger I->I 
connectivity) or linear (stronger E->I connectivity).  C, Scaling plot (response size as a 
function of previous rate) for parameters shown by pink dot in A: no extra local 
connections, feedforward E only, same parameters as Fig. 2C.  Inset: timecourse of 
responses to the step stimulus; subtracting each rate from rate at the previous step gives y-
axis in main panel.  D-F, same plots, using parameters shown by corresponding pink dots in 
A-B.  Comparing D and E shows that large sublinearity can be produced by extra I->I 
connections only with feedforward inhibition.  Comparing D and F shows that linearity can 
also be achieved with feedforward inhibition if E->I connectivity is strengthened.
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Figure 4: Feedforward inhibition leads to sublinearity in networks with a range of 
recurrent synaptic sparsities and synaptic strengths.  Top row: Simulations in the 
conductance-based network with 10% connectivity, with strong synapses (each cell receives 
10x more E and I input than in the networks of Fig. 2-3).  Other rows show networks with 
different sparsity and synaptic strength.  The network of Figs. 2-3 is the fourth row (2% 
sparsity, 1x strength).  A, Scaling plots showing network response as a function of prior rate 
before stimulus.  Blue: feedforward E input only but extra I-I input to maximum potential 
sublinearity, using parameters shown in column B.  Green: feedforward E and I input, with 
extra I-I connections; corresponding parameters are shown in column C.  In all rows, 
feedforward inhibition (green) allows more sublinearity than feedforward excitation alone 
(blue).  Dashed line, top row: network instability (rates diverge).  B, Average network 
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response as I->I synaptic strength (x-axis) and feedforward E input (y-axis) are varied.  No 
feedforward inhibition. Black dot shows parameters used to plot blue line in A.  Gray 
regions mask areas where evoked rates are less than 5 spk/s or greater than 20 spk/s, or 
where network was unstable (rates diverged to maximum rate given by refractory period).  
Other conventions as in Fig. 2B, 3AB.  Feedforward inhibition rate is zero for all rows.  C, 
network response as a function of I->I and feedforward E input, in the presence of 
feedforward inhibition. Individual gray squares seen in fifth row (20% sparsity) column B, 
inside the 5-20 spk/s contours indicate strongly irregular (non-monotonic) response scaling: 
strong sublinearity for at least one stimulus step, when both previous and later responses 
were linear or supralinear. Feedforward inhibition arrival rate to stimulated cells for each 
row, from top: 14k, 14k, 19k, 11k, 17k spk/s, chosen to give a 15 spk/s response for 3x the 
feedforward excitatory rate that alone produces a 15 spk/s response (see Fig. 2B).  Fourth 
row (2% sparsity, same network as Fig. 2-3) uses 40% extra I->E connections to show linear 
responses are robust to many forms of connectivity variation (see also Supp Fig. 1). 

 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 20, 2017. ; https://doi.org/10.1101/109736doi: bioRxiv preprint 

https://doi.org/10.1101/109736
http://creativecommons.org/licenses/by-nc/4.0/


 23  

 

 

Figure 5: Experimental linear scaling can be replicated in networks receiving 
feedforward inhibition.  A, Simulation where conductance steps (modeling ChR2 input) 
and feedforward Poisson trains (modeling visual input) are combined.  Strength of 
feedforward E input (x-axis) and feedforward I input (y-axis) are varied while spontaneous 
rate is set to 5 spk/s.  Connection sparsity is 2%.  Other conventions as in Fig. 2B. (+) 
symbols show values of E,I input used in panels B-D.  B, network responses when 
feedforward input is supplied to E cells only.  Top row: network responses (mean of E cell 
rates).  Brown: feedforward Poisson (visual) input only.  Cyan: conductance (ChR2) input 
combined with visual input.  Conductance increase lasts for the full duration of the cyan 
trace.  Visual input duration is shown by black bar (bottom of plot).  Dotted line indicates 
rates return to previous baseline when feedforward input ends.  Second row: same data as 
top row, with baseline rate subtracted.   Third row: response (y-axis) as a function of rate 
before feedforward input begins (x-axis).  C, same network simulations with feedforward 
input to both E and I cells (parameters marked by C in panel A).  D, network receiving 
feedforward input to both E and I cells, but with stronger local connections from E to I cells 
(cf. Fig. 3,  similar effect for two feedforward Poisson inputs, instead of feedforward input 
paired with conductance step as shown here).  E, data from Fig. 1C plotted to show how 
responses scale as baseline is changed.  Three lines (brown: no ChR2, cyan: with ChR2) are 
the three groups of recorded neurons shown in Fig. 1C.   
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Supplementary Figure 1: Individual unit responses show both supra- and sub-linear 
responses, though mean response is nearly linear.  A, Pairs of plots in each row show data 
from individual well-isolated example units (single units), all from Emx1-ChR2 stimulation 
of excitatory neurons.  Left panels: average response to a visual stimulus without ChR2 
stimulation (shaded areas, ±SEM, across ~100 stimulus repetitions).   Right panels: average 
response to visual stimulus with ChR2 stimulation.  B, same as A, showing example multi-
units (waveforms not well isolated from other cells; Methods).  C, Population of recorded 
units, showing that many individual units are significantly supra- or sub-linear.  Visual 
stimulus has 90% contrast.   X-axis: average firing rate change with ChR2 stimulus, Y-axis: 
change in visual responses (each visual response measured from baseline) with and without 
optogenetic stimulus.  Errorbars: SEM.  Points that are at least 1 SEM away from 
horizontal line at zero (linear response) are colored blue (SU) or black (MU).  Points within 
1 SEM of linear are colored gray.  Data are as in Fig. 1E for 90% contrast, here with std. err. 
for each point and adding on the negative Y-axis the few units that are suppressed by 
stimulation.  34% of single units are significantly non-linear (17/50, p<0.01, KS test), and 
28% of multi-units are significantly non-linear (67/239, p<0.01, KS test).  
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Supplementary Figure 2: Near-linear scaling is seen even when connectivity is varied, 
unless feedforward inhibition is present.  A, no feedforward inhibition.  The network is the 
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2% sparsity network shown in Fig. 2B-D, Fig. 3, Fig. 4D.  Each panel is a pairwise 
combination of synaptic strength parameters.  The six strength parameters are: extra 
connections between E and I populations (E->E, E->I, I->I, I->I), plus the standard sparse 
connections from both populations to all other cells in the network (labeled E->All, I->All).  
As in pairwise color plots in Figs. 3AB, 4BC, x-axis and y-axis represent strength of all the 
synapses in that set of connections (one of the six groups of synapses listed above).  
Conventions as in Fig. 3AB: Axes show variation in synapse strength, contour lines show 
evoked response to fixed-size external input step, colors show deviation from linear scaling 
when response to an external input step is compared to response to an input step scaled by 
2x.  Spontaneous rate throughout is set at 5 spk/s (Methods).  Feedforward external input 
strength is same as marked by open circle (O) in Fig. 2B. (+) symbol in all panels of this 
figure shows parameters used for Fig. 2B-D where all extra parameters are zero.  B, Both 
feedforward excitation and feedforward inhibition.  Same conventions as A.  Feedforward 
external input strength is same as marked by (X) symbol in Fig. 2. (+) symbol in this figure 
shows parameters used for Fig. 2B-D (i.e. with all extra connection strength parameters 
zero).  Several regions in the parameter space show sublinear scaling (blue). 
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