
Modern machine learning far outperforms GLMs at predicting spikes

Ari S. Benjamin1, Hugo L. Fernandes2, Tucker Tomlinson3, Pavan Ramkumar2,4, Chris VerSteeg1, Lee

Miller1,2,3, Konrad Paul Kording1,2,3

1. Department of Biomedical Engineering, Northwestern University,, Evanston, IL, 60208, USA
2. Department of Physical Medicine and Rehabilitation, Northwestern University and Rehabilitation Institute of

Chicago, Chicago, IL, 60611, USA
3. Department of Physiology, Northwestern University, Chicago, IL, 60611, USA
4. Department of Neurobiology, Northwestern University, Evanston, IL, 60208, USA

Contact: Ari Benjamin, aribenjamin2014@u.northwestern.edu

Abstract

Neuroscience has long focused on finding encoding models that effectively ask “what predicts neural
spiking?” and generalized linear models (GLMs) are a typical approach. Modern machine learning
techniques have the potential to perform better. Here we directly compared GLMs to three leading methods:
feedforward neural networks, gradient boosted trees, and stacked ensembles that combine the predictions
of several methods. We predicted spike counts in macaque motor (M1) and somatosensory (S1) cortices
from reaching kinematics, and in rat hippocampal cells from open field location and orientation. In general,
the modern methods produced far better spike predictions and were less sensitive to the preprocessing of
features. XGBoost and the ensemble were the best-performing methods and worked well even on neural
data with very low spike rates. This overall performance suggests that tuning curves built with GLMs are
at times inaccurate and can be easily improved upon. Our publicly shared code uses standard packages and
can be quickly applied to other datasets. Encoding models built with machine learning techniques more
accurately predict spikes and can offer meaningful benchmarks for simpler models.

Introduction

A central tool of neuroscience is the tuning curve,
which maps stimulus to neural response. The tuning
curve asks what information in the external world a
neuron encodes in its spikes. For a tuning curve to be
meaningful it is important that it accurately predicts the
neural response. Often, however, methods are chosen
that sacrifice accuracy for simplicity. Predictive
methods for tuning curves should instead be evaluated
primarily by their ability to describe neural activity
accurately.

A common predictive model is the Generalized
Linear Model (GLM), occasionally referred to as a
linear-nonlinear Poisson (LNP) cascade (1-4). The
GLM performs a nonlinear operation upon a linear
combination of the input features, which are often called
external covariates. Typical covariates are stimulus
features, movement vectors, or the animal’s location.

The nonlinear operation on the weighted sum of
covariates is usually held fixed, though it can be learned
(5, 6), and the linear weights of the combined inputs are
chosen to maximize the agreement between the model
fit and the neural recordings. This optimization problem
of choosing weights is often convex and can be solved
with efficient algorithms (7). The assumption of Poisson
firing statistics can often be loosened (8) allowing the
modeling of a broad range of neural responses. Due to
its ease of use, perceived interpretability, and flexibility,
the GLM has become a popular model of neural spiking.

The GLM’s central assumption of linearity in feature
space may hold in certain cases (8, 9), but in general,
neural responses can be very nonlinear (5, 10). When a
neuron responds nonlinearly to stimulus features, it is
common practice to mathematically transform the
features to obtain a new set that meets the linearity
requirements of the GLM and yields better spike

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted February 24, 2017. ; https://doi.org/10.1101/111450doi: bioRxiv preprint

https://doi.org/10.1101/111450
http://creativecommons.org/licenses/by-nc-nd/4.0/

 2

predictions. The new features may be any function of
the original features and may include cross-interactions.
In keeping with the machine learning literature, we call
this step feature engineering. The precise form of
feature engineering is rarely rigorously determined and
often falls to the researcher’s intuition. Given the
infinite space of possible engineered features, it is
unlikely that any guess would yield a set that is truly
linear with respect to inputs. Incorrect guesses yield
suboptimal predictions, and it is therefore important that
GLMs be compared with nonlinear models that can
express more complex stimulus–response relationships.

Machine learning (ML) methods for regression have
improved dramatically since the invention of the GLM.
Many ML methods require little feature engineering and
do not need to assume linearity. Top performing
methods, (as judged by the frequency of winning
solutions on Kaggle, a ML competition website (11))
include neural networks (12), gradient boosted trees
(13), and ensemble techniques. Many neuroscientists
are unaware that these methods are now relatively easy
to implement in a few lines of code in a scripting
language such as Python. This ease of use is enabled by
machine learning packages that are supported by large
groups of scientists, such as scikit-learn (14), Keras (15),
Theano (16), and XGBoost (13). Applications of
modern ML to spike prediction remain rare, though
some inroads have been made with neural networks (17-
20). The greatly increased predictive power of modern
ML methods is now very accessible and could improve
the state of the art in encoding models across
neuroscience.

Here we applied the standard ML methods of
artificial neural networks, gradient boosted trees, and
ensemble methods to the task of spike prediction, and
evaluated their performance alongside a GLM. We
compared the methods on recordings from three
separate brain areas. These areas differed greatly in the
effect size of covariates and typical spike rates, and thus
served to evaluate the strengths of these methods across
different conditions. For neurons from each area we
found that the advanced ML methods could more
accurately predict spiking than the GLM. The stacked
ensemble and XGBoost were consistently the highest-
scoring of the methods tested. We provide our
implementing code in an accessible format so that all
neuroscientists may easily test and compare these
methods on other datasets.

Methods
Data

We tested our methods at predicting spikes for
neurons in the macaque primary motor cortex, the
macaque primary somatosensory cortex, and the rat
hippocampus.

The macaque motor cortex data consisted of
previously published electrophysiological recordings
from 82 neurons in the primary motor cortex (M1) (21).
The neurons were sorted from recordings made during a
two-dimensional center-out reaching task with eight
targets. In this task the monkey grasped the handle of a
planar manipulandum that controlled a cursor on a
computer screen and simultaneously measured the hand
location and velocity (Fig. 1). After training, an
electrode array was implanted in the arm area of area 4
on the precentral gyrus. Spikes were discriminated using
offline sorter (Plexon, Inc), counted and collected in 50-
ms bins. The neural recordings used here were taken in
a single session lasting around 13 minutes.

The macaque primary somatosensory cortex (S1)
data was recorded during a two-dimensional random-
pursuit reaching task and was previously unpublished.
In this task, the monkey gripped the handle of the same
manipulandum. The monkey was rewarded for bringing
the cursor to a series of randomly positioned targets
appearing on the screen. After training, an electrode
array was implanted in the arm area of area 2 on the
postcentral gyrus, which receives a mix of cutaneous
and proprioceptive afferents. Spikes were processed as
for M1. The data used for this publication derives from
a single recording session lasting 51 minutes.

As for M1 (described in results), we processed the hand
position, velocity, and acceleration accompanying the
S1 recordings in an attempt to obtain linearized features.
We extracted six features for the models: the hand speed,
the sine and cosine of velocity direction, the distance of
the hand from the center of the workspace, and the sine
and cosine of the angle of the hand position with respect
the workspace center. Cells in the arm area of S1 have
been shown to have approximately sinusoidal tuning
curves relating to movement direction (22), and the
features were chosen accordingly. The features
𝑥, 𝑦, 𝑥, 𝑦, 𝑥, 𝑦 were also tested but were not found to

improve the performance of the GLM.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted February 24, 2017. ; https://doi.org/10.1101/111450doi: bioRxiv preprint

https://doi.org/10.1101/111450
http://creativecommons.org/licenses/by-nc-nd/4.0/

 3

Figure 1: Encoding models aim to predict spikes, top, from
input data, bottom. The inputs displayed are the position and
velocity signals from the M1 dataset (21) but could represent
any set of external covariates. The GLM takes a linear
combination of the inputs, applies an exponential function f,
and produces a Poisson spike probability that can be used to
generate spikes (left). The feedforward neural network (center)
does the same when the number of hidden layers i = 0. With i
≥ 1 hidden layers, the process repeats; each of the j nodes in
layer i computes a nonlinear function g of a linear
combination of the previous layer. The vector of outputs from
all j nodes is then fed as input to the nodes in the next layer,
or to the final exponential f on the final iteration. Boosted trees
(right) return the sum of N functions of the original inputs.
Each of the fi is built to minimize the residual error of the sum
of the previous f 0:i-1.

The third dataset consists of recordings from 58 neurons
in the CA1 region of the rat dorsal hippocampus during
a single 93 minute free foraging experiment, previously
published and made available online (23, 24). Position
data from two head-mounted LEDs provided position
and heading direction inputs. Once again we binned
inputs and spikes in 50ms bins. Since many neurons in
the dorsal hippocampus are responsive to the location of
the rat, we processed the 2D position data into a list of
squared distances from a 5x5 grid of place fields that tile
the workspace. Each position feature thus has the form

𝑝%& =
1
2
𝑥(𝑡) − 𝜇%&

/
𝛴%&12 𝑥(𝑡) − 𝜇%& ,

where 𝜇%,& is the center of place field i, j≤5 and 𝛴%& is a
covariance matrix chosen for the uniformity of tiling.
An exponentiated linear combination of the 𝑝%& (as is
performed in the GLM) evaluates to a single Gaussian
centered anywhere between the place fields. The
inclusion of the 𝑝%& as features thus transforms the
standard representation of cell-specific place fields (25)
into the mathematical formulation of a GLM. The final
set of features included the 𝑝%& as well as the rat speed
and head orientation.

Generalized Linear Model

The Poisson generalized linear model is a multivariate
regression model that describes the instantaneous firing
rate as a nonlinear function of a linear combination of
input features (see e.g. (26, 27) for review, (28, 29) for
usage). Here, we took the form of the nonlinearity f to
be exponential, as has been found to be successful in
previous applications of GLMs to similar data (30).
After the nonlinearity, spiking is generated as a Poisson
process, in which the probability of firing in any instant
is independent of firing history. The general form of the
GLM is depicted Figure 1. We implemented the GLM
using elastic-net regularization, using the open-source
Python package pyglmnet (31). The regularization path
was optimized separately on a single neuron in each
dataset on a validation set not used for scoring.

Neural Network

Neural networks are well-known for their success at
supervised learning tasks. More comprehensive reviews
can be found elsewhere (12). Here, we implemented a
simple feedforward neural network. A model that takes
predicted spike history as input, such as a recurrent
neural network, would likely increase predictive power.
We omit such architectures to be able to establish the
methods’ relative power when trained on the same
information.

We point out that a neural network with no hidden layers
is equivalent in mathematical form to a GLM (Fig. 1).
For multilayer networks, one can write each hidden
layer of n nodes as simply n GLMs, each taking the
output of the previous layer as inputs (noting that the
weights of each are chosen to maximize only the final
objective function, and that the intermediate
nonlinearities need not be the same as the output

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted February 24, 2017. ; https://doi.org/10.1101/111450doi: bioRxiv preprint

https://doi.org/10.1101/111450
http://creativecommons.org/licenses/by-nc-nd/4.0/

 4

nonlinearity). A feedforward neural network is thus a
generalization, or repeated application of a GLM.

The networks were implemented with the open-source
neural network library Keras, running Theano as the
backend (15, 16). The network contained two hidden
layers (or one for S1), dense connections, rectified linear
activation, and a final exponentiation. To help avoid
overfitting, we allowed dropout on the first layer, and an
elastic-net or max-norm regularization upon the weights
(but not the bias term) of the network (32). The networks
were trained to maximize the Poisson likelihood of the
neural response. We optimized over four
hyperparameters: the number of nodes in the first and
second hidden layers (if present), the dropout, and the
regularization parameters. Optimization was performed
on only a subset of the data from a single neuron in each
dataset, using Bayesian optimization (33) in an open-
source Python implementation (34).

Gradient Boosted Trees

A popular method in many machine learning
competitions is that of gradient boosted trees. Here we
describe the general operation of XGBoost, an open-
source implementation that is efficient and highly
scalable, works on sparse data, and easy to implement
out-of-the-box (13).

XGBoost trains many sequential models to minimize the
residual error of the sum of previous model. Each model
is a decision tree, or more specifically a classification
and regression tree (CART) (35). Training a decision
tree amounts to determining a series of rule-based splits
on the input to classify output. The CART algorithm
generalizes this to regression by taking continuously-
valued weights on each of the leaves of the decision tree.

For any predictive model 𝑦(2) = 𝑓2(𝒙𝒊) and true
response 𝑦%, we can define a loss function 𝑙 𝑦(2), 𝑦%
between the prediction and the response. The objective
to be minimized during training is then simply the sum
of the loss over each training example i, plus some
regularizing function 𝛺 that biases towards simple
models.

𝐿 = 𝑙(𝑦%
(2), 𝑦%)

%

+ 𝛺(𝑓2)

After minimizing L for a single tree, XGBoost
constructs a second tree 𝑓:(𝒙𝒊) that approximates the
residual. The objective to be minimized is thus the total
loss L between the true response 𝑦% and the sum of the

predictions given by the first tree and the one to be
trained.

𝐿 = 𝑙(𝑦%
2 + 𝑓:(𝒙%), 𝑦%)

%

+ 𝛺(𝑓:)

This process is continued sequentially for a
predetermined number of trees, each trained to
approximate the residual of the sum of previous trees. In
this manner XGBoost is designed to progressively
decrease the total loss with each additional tree. At the
end of training, new predictions are given by the sum of
the outputs of all trees.

𝑦 = 𝑓;(𝒙)
<

;=2

In practice, it is simpler to choose the functions 𝑓; via
gradient boosting, which minimizes a second order
approximation of the loss function (36).

XGBoost offers several additional parameters to
optimize performance and prevent overfitting. Many of
these describe the training criteria for each tree. We
optimized some of these parameters for a single neuron
in each dataset using Bayesian optimization (again over
a validation set different from the final test set). These
parameters included the number of trees to train, the
maximum depth of each decision tree, and the minimum
weight allowed on each decision leaf, the data
subsampling ratio, and the minimum gain required to
create a new decision branch.

Random Forests

Random forests train multiple parallel decision trees on
the features-to-spikes regression problem (not
sequentially on the remaining residual, as in XGBoost)
and averages their outputs (37). The variance on each
decision tree is increased by training on a sample of the
data drawn with replacement (i.e., bootstrapped inputs)
and by choosing new splits using only a random subset
of the available features. Random forests are
implemented in Scikit-learn (14). We introduced this
method only to increase the power of the ensemble (see
below). Their performance alone is displayed in
Supplementary Figure 1. It should be noted that the
Scikit-learn implementation currently only minimizes
the mean-squared error of the output, which is not
properly applicable to Poisson processes and may cause
poor performance. Despite this drawback their presence
still improves the ensemble scores.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted February 24, 2017. ; https://doi.org/10.1101/111450doi: bioRxiv preprint

https://doi.org/10.1101/111450
http://creativecommons.org/licenses/by-nc-nd/4.0/

 5

Ensemble Method

It is common machine learning practice to create
ensembles of several trained models. Different
algorithms may learn different characteristics of the data,
make different types of errors, or generalize differently
to new examples. Ensemble methods allow for the
successes of different algorithms to be combined. Here
we implemented stacking, in which the output of several
models is taken as the input set of a new model (38).
After training the GLM, neural network, random forest,
and XGBoost on the features of each dataset, we trained
an additional instance of XGBoost using the spike
predictions of the previous methods as input. The
outputs of this ‘second stage’ XGBoost are the
predictions of the ensemble.

Scoring and Cross-Validation

Each of the three methods was scored with the pseudo-
R2 score, a scoring function applicable to Poisson
processes (39). Note that a standard R2 score assumes
Gaussian noise and cannot be applied here. The pseudo-
R2 was calculated as

𝑅?: = 1 −
log 𝐿 𝑦 − log 𝐿 𝑦
log 𝐿 𝑦 − log 𝐿 𝑦

= 	

log 𝐿 𝑦 − log 𝐿 𝑦
log 𝐿 𝑦 − log 𝐿 𝑦

Here 𝐿 𝑦 is the log likelihood of the true output, 𝐿 𝑦
is the log likelihood of the predicted output, and 𝐿 𝑦 is
the null log likelihood, which here is the log likelihood
of the data under the mean firing rate alone. The pseudo-
R2 can be interpreted as the fraction of the maximum
potential log-likelihood gain (relative to the null model)
achieved by the tested model (39). The score can also be
seen as related to the ratio of deviances of the tested
model and the null model. It takes a value of 0 when the
data is as likely under the tested model as the null model,
and a value of 1 when the tested model perfectly
describes the data. It is empirically a lower value than a
standard R2 when both are applicable (40). The null
model can also be taken to be a model other than the
mean firing rate (e.g. the GLM) to directly compare two
methods, in which case we refer to the score as the
‘comparative pseudo-R2’. The comparative pseudo-R2 is
referred to elsewhere as the ‘relative pseudo-R2’,
renamed here to avoid confusion with the difference of
two standard pseudo-R2 scores measured against the
mean (29).

As many methods are prone to overfitting the training
data, we used 8-fold cross-validation (CV) when

assigning a final score to the models. Briefly, the input
and spike data were randomly segmented,
discontinuously in time, into eight equal partitions. The
methods were trained on seven partitions and tested on
the eighth, and this was repeated until all segments
served as the test partition once. The mean and variance
of the eight scores are then recorded for the final score.

Cross-validation for ensemble methods requires extra
care to ensure that there is no leak of information from
the validation set into the training set. The training set
for the ensemble must contain predictions from methods
that were themselves not trained on the validation set.
This rules out using simple k-fold CV with all methods
trained on the same folds. Instead, we used the following
nested CV scheme to train and score the ensemble. The
data were split into p=8 folds, each of which contained
a training set and a test set for the ensemble. On each
fold standard k-fold CV is run on just the training set
with each first stage method (GLM, etc.) such that we
obtain predictions for all training data. The ensemble’s
test set is then obtained from the predictions of the first
stage methods trained on the entire training set. This
ensures that the ensemble’s test set was never used for
training any method. The process is repeated for each of
the p folds and the mean and variance of the p scores of
the ensemble’s predictions are recorded.

Results
We applied modern machine learning methods to
predict spike counts in three brain regions and compared
the quality of the predictions to those of a GLM. Our
primary analysis centered on neural recordings from the
macaque primary motor cortex (M1) during reaching
(Fig. 1). Analyses of data from macaque S1 and from rat
hippocampus indicate how these methods compare
beyond M1. On each of the three datasets we trained a
GLM and compared it to the performance of a
feedforward neural network, XGBoost (a gradient
boosted trees implementation), and an ensemble method.
The ensemble was inspired by ML competition
strategies and was an additional instance of XGBoost
trained on the predictions of all three methods plus a
random forest regressor. Together, these methods
allowed us to compare the performance of traditional
GLMs with modern methods. The resulting code
implementing these methods can be used by any
electrophysiology lab to compare these machine

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted February 24, 2017. ; https://doi.org/10.1101/111450doi: bioRxiv preprint

https://doi.org/10.1101/111450
http://creativecommons.org/licenses/by-nc-nd/4.0/

 6

learning methods with their own approaches for
encoding models.

To test that all methods work reasonably well in a trivial
case, we trained each to predict spiking from a simple

and well-understood feature. Some neurons in M1 have
been described as responding linearly to the
exponentiated cosine of movement direction relative to
a preferred angle (41). We therefore predicted the

Figure 2: Encoding models for M1 performed similarly when trained on the sine and cosine of hand velocity direction. (a) The
pseudo-R2 for an example neuron was similar for all four methods. On this figure and in Figures 3-5 the example neuron is the
same, and is not the neuron for which method hyperparameters were optimized. (b) The tuning curves of the neural net and
XGBoost were similar to that of the GLM. The black points are the recorded responses, to which we added y-axis jitter for
visualization. The tuning curve of the ensemble method was similar and is omitted here for clarity. (c) Plotting the pseudo-R2
of modern ML methods vs. that of the GLM indicates that the similarity of methods generalizes across neurons. The single
neuron plotted at left is marked with black arrows. The mean scores, inset, indicate the overall success of the methods; error
bars represent the 95% bootstrap confidence interval.

Figure 3: Modern ML models could learn the cosine nonlinearity when trained on only the direction of hand velocity, in radians. (a) For
the same example neuron as in Figure 3, the neural net and XGBoost maintained the same predictive power, while the GLM was unable
to extract a relationship between direction and spike rate. (b) XGBoost and neural nets displayed reasonable tuning curves, while the GLM
reduced to the average spiking rate (with a small slope, in this case). (c) Most neurons in the population were poorly fit by the GLM, while
the ML methods achieved the performance levels of Figure 2. The ensemble performed the best of the methods tested.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted February 24, 2017. ; https://doi.org/10.1101/111450doi: bioRxiv preprint

https://doi.org/10.1101/111450
http://creativecommons.org/licenses/by-nc-nd/4.0/

 7

spiking of M1 neurons from the cosine and sine of the
direction of hand movement in the reaching task. (The
linear combination of a sine and cosine curve is a phase-
shifted cosine, by identity, allowing the GLM to learn
the proper preferred direction). We observed that each
method identified a similar tuning curve (Fig. 2b),
constructed by plotting the predictions of spike rate on
the validation set against movement direction. The bulk
of the neurons in the dataset were just as well predicted
by each of the methods (Fig. 2a, c), though the ensemble
was slightly better than the GLM (mean comparative
pseudo-R2, defined in methods, of 0.06 [0.043 – 0.084],
95% bootstrapped confidence interval (CI)). The similar
performance suggested that an exponentiated cosine is a
nearly optimal approximating function of the neural
response to movement direction alone, as was
previously known (42). This classic example thus
illustrated that all methods can in principle estimate
tuning curves.

The exact form of the nonlinearity of the neural response
to a given feature is rarely known, but this lack of
knowledge need not impact our prediction ability. To
illustrate the ability of modern machine learning to find
the proper nonlinearity, we performed the same analysis
as above but omitted the initial cosine feature
engineering step. Trained on only the hand velocity
direction, in radians, which are likely to be

discontinuous at ±π, the modern ML methods very
nearly reproduced the predictive power they attained
using the engineered feature (Fig. 3a). As expected, the
GLM failed at generating a meaningful tuning curve
(Fig. 3b). Both trends were consistent across the
population of recorded neurons (Fig. 3c). The neural net,
XGBoost, and ensemble methods thus perform well
without feature engineering and the required prior
knowledge or assumptions.

Machine learning methods can also take advantage of
information contained in combinations of inputs, and
should perform better if given more inputs. We verified
that this was true for our dataset by training on the four-
dimensional set of hand position and velocity
𝑥, 𝑦, 𝑥, 𝑦 , which we call the set of original features. All

methods gained a significant amount of predictive
power with these new features, though the GLM did not
nearly match the other methods (Fig 4a, c). This set of
neurons thus seemed to encode strongly for position and
velocity in a potentially nonlinear fashion captured by
machine learning methods.

While some amount of feature engineering can improve
the performance of GLMs, it is not always simple to
guess the optimal set of processed features. We
demonstrated this by training all methods on features
that have previously been successful at explaining spike

Figure 4: Training on the set of original features (𝑥, 𝑦, 𝑥̇, 𝑦̇) increased the predictive power of all methods. Note the change in axes scales
from Figures 2-3. (a) For the same example neuron as in Figure 3, all methods gained a significant amount of predictive power, indicating a
strong encoding of position and speed or their correlates. The GLM showed less predictive power than the other methods on this feature set.
(b) The spike rate in black, with jitter on the y-axis, again overlaid with the predictions of the three methods as a function of velocity direction.
The neuron encodes for position and speed, as well, and the projection of the multidimensional tuning curve onto a 1D velocity direction
dependence leaves the projected curve diffuse. (c) The ensemble method, neural network, and XGBoost performed consistently better than
the GLM across the population. The mean pseudo-R2 scores show the hierarchy of success across methods.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted February 24, 2017. ; https://doi.org/10.1101/111450doi: bioRxiv preprint

https://doi.org/10.1101/111450
http://creativecommons.org/licenses/by-nc-nd/4.0/

 8

rate in a similar center-out reaching task (6). These extra
features included the sine and cosine of velocity
direction (as in Figure 2), the speed, the radial distance
of hand position, and the sine and cosine of position
direction. The training set was thus 10-dimensional,
though highly redundant, and was aimed at maximizing
the predictive power of the GLM. Feature engineering
improved the predictive power of all methods to
variable degrees, with the GLM improving to the level
of the neural network (Fig. 5). XGBoost and the
ensemble still predicted spikes better than the GLM (Fig.
5c), with the ensemble scoring on average 1.8 times
higher than the GLM (ratio of population means of 1.8
[1.4 – 2.2], 95% bootstrapped CI). The ensemble was
significantly better than XGBoost (mean comparative
pseudo-R2 of 0.08 [0.055 – 0.103], 95% bootstrapped CI)
and was thus consistently the best predictor. Though
standard feature engineering greatly improved the GLM,
the ensemble and XGBoost still captured the neural
response more accurately.

To ensure that these results are not specific to the motor
cortex, we extended the same analyses to primary
somatosensory cortex (S1) data. The ensemble was
consistently the best predictor across all neurons,
scoring almost twice as well as the GLM (ratio of 1.8
[1.2 – 2.2] of population means, 95% bootstrapped CI).
XGBoost predicted spikes better than the GLM only for

neurons with significant effect sizes for any of the four
methods (i.e., with cross-validated pseudo-R2 scores
two standard deviations above 0; mean comparative
pseudo-R2 was 0.002 [0.0006 – 0.0045], 95%
bootstrapped CI). Interestingly, the neural network
performed worse than all other methods. We speculated
that this could be related to the small covariate effect
size in the S1 dataset, as we observed similar scores for
the neural network on the M1 dataset for regimes of
similar effect sizes, as well as on simulated data with
GLM structure, small effect size, and similar firing rates
(Supp. Fig. 2). We also found that a much smaller
network performed better (a single hidden layer with 20
nodes) but that max-norm or elastic-net regularization
did not improve the results with the larger network.
Neural networks may thus be poor choices for Poisson
data with very small covariate effect sizes, though we
see no theoretical reason why this should be the case.
Overall, on this S1 dataset featuring generally low
predictability, the tested methods displayed a range of
performances, with the ensemble predicting the data
nearly twice as well as the GLM alone.

We asked if the same trends of performance would hold
for the rat hippocampus dataset, which was
characterized by very low mean firing rates but strong
effect sizes. All methods were trained on a list of
features representing the rat position and orientation, as

Figure 5: Encoding models for M1 trained on all the original features plus the engineered features show that modern ML methods can
outperform the GLM even with standard featuring engineering. (a) For this example neuron, inclusion of the computed features increased
the predictive power of the GLM to the level of the neural net. XGBoost and the ensemble method also increased in predictive power. (b)
The tuning curves for the example neuron are diffuse when projected onto the movement direction, indicating a high-dimensional
dependence. (c) Even with feature engineering, XGBoost and the ensemble consistently achieve pseudo-R2 scores higher than the GLM,
though the neural net does not. The selected neuron at left is marked with black arrows.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted February 24, 2017. ; https://doi.org/10.1101/111450doi: bioRxiv preprint

https://doi.org/10.1101/111450
http://creativecommons.org/licenses/by-nc-nd/4.0/

 9

described in methods. We found that many neurons
were described much better by XGBoost and the
ensemble method than by the GLM (Fig. 6b). On
average, the ensemble was almost ten times more
predictive than the GLM (ratio of population means of
9.8 [5.4 – 100.0], 95% bootstrapped CI), and many
neurons shifted from being completely unpredictable by
the GLM (pseudo-R2 near zero) to very predictable by
XGBoost and the ensemble (pseudo-R2 above 0.2). The
neural network performed poorly, here not due to effect
size as in S1 but likely due to the very low firing rates
of most hippocampal cells (Supp. Fig. 2). Out of the 58
neurons in the dataset, 54 had rates below 1 spikes/
second, and it was only on the four high-firing neurons
that the neural network achieved pseudo-R2 scores
comparable to the GLM. The relative success of
XGBoost was interesting given the failure of the neural
network, and supported the general observation that
XGBoost can work well with smaller and sparser
datasets than those neural networks generally require.
Thus for hippocampal cells, a method leveraging
decision trees such as XGBoost or the ensemble is able
to capture far more structure in the neural response than
the GLM or the neural network.

Discussion
We contrasted the performance of GLMs with recent

machine learning techniques at the task of predicting
spike rates in three brain regions. We found that the
tested ML methods predicted spike rates far more
accurately than the GLM. Typical feature engineering
only partially bridged the performance gap. The ML
methods performed comparably well with and without
feature engineering, indicating they could serve as
convenient performance benchmarks for improving
simpler encoding models. The consistently best method
was the ensemble, which was an instance of XGBoost
stacked on the predictions of the GLM, neural network,
XGBoost, and a random forest. The ensemble and
XGBoost could fit the data well even for very low spike
rates, as in the hippocampus dataset, and for very low
covariate effect sizes, as in the S1 dataset. These
findings indicate that GLMs are not the best choice as
neuroscience’s standard method of spike prediction.

The ML methods we have put forward here have
been implemented without substantial modification
from methods that are already in wide use. We hope that
this simple application might spur a wider adoption of
these methods in the neurosciences, thereby increasing
the power and efficiency of studies involving neural
prediction without requiring complicated, application-

Figure 6: XGBoost and the ensemble method predicted the activity of neurons in S1 and the hippocampus better than a GLM.
The diagonal dotted line in both plots is the line of equal predictive power with the GLM. (a) The ensemble predicted firing
almost twice as well, on average, as the GLM for all neurons in the S1 dataset. XGBoost was better for neurons with higher
effect sizes but poorly predicted neurons that were not predictable by any method. The neural network performed the worst
of all methods. (b) Many neurons in the rat hippocampus were described well by XGBoost and the ensemble but poorly by
the GLM and the neural network. The poor neural network performance in the hippocampus was due to the low rate of firing
of most neurons in the dataset (Supp. Fig. 2). Note the difference in axes; hippocampal cells are generally more predictable
than those in S1.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted February 24, 2017. ; https://doi.org/10.1101/111450doi: bioRxiv preprint

https://doi.org/10.1101/111450
http://creativecommons.org/licenses/by-nc-nd/4.0/

 10

specific methods development (e.g. (43)). Our methods
could also be further optimized by including additional
information, such as spike history, covariate history, or
the phase relative to the theta cycle (25, 44) in the
hippocampus. While such steps could be valuable in
future studies, they are not necessary for this
demonstration of the methods’ relative power when
operating on a common set of inputs. Further
improvements are possible, but researchers may still
gain descriptive power over GLMs with simple, out-of-
the-box implementations.

The success of a GLM depends on the form of the
input features, and as such it might be argued that the
GLM underperforms simply because we have selected
the wrong sets. This is true, in a technical sense; in
principle, one can always find a set of operations that
maps the features to a linear regime. (The output of
XGBoost, say, or its first several approximating
moments.) It is worth asking, however, not just whether
different features could improve a GLM but also
whether it is necessary or useful to use a GLM in the
first place. When determining if a neuron encodes a
certain set of features, like muscle forces or body
position, one can choose to ask if there is a neural
response that is linear with respect to those features, or
alternatively if there is any learnable response at all. We
posit that the brain is not a priori a linear computation
engine, and that framing computations in linear space
does not necessarily better represent the computations
that a neuron ‘actually’ performs. Choosing to observe
the widest possible space of responses may thus be the
more prudent decision. Furthermore, we gain little
understanding of the neural function by lifting the GLM
to the level of the ensemble with feature engineering if
there is no prior preference for linearity. It is far easier
to stay agnostic to the form of engineered features and
use modern ML methods to find an optimal predicting
function.

Advanced ML methods are not widely considered to
be interpretable, and some may worry that this
diminishes their scientific value as encoding models.
We can better discuss this issue with a more precise
definition of interpretability. Lipton makes the
distinction between a method’s post-hoc interpretability,
the ease of justifying its predictions, and transparency,
the degree to which its operation and internal parameters
are human-readable or easily understandable (45). A
GLM is certainly more transparent than many ML
methods due to its algorithmic simplicity. Post-hoc
explanations of predictions, on the other hand, are often
possible with modern ML methods. It is possible, for

example, to visualize the aspects of stimuli that most
elicit a predicted response, as has been implemented in
previous applications of neural networks to spike
prediction (17, 18). Post-hoc explanations also include
descriptive explanations and justifications by example
(“neuron y fired when the stimulus sounded like a
human voice”). Work is underway to add such post-hoc
explanations to the capabilities of neural networks (46,
47). These capabilities for post-hoc justifications could
be as scientifically valuable as method transparency if
successfully implemented.

Not all types of interpretability are necessary for a
given task, and many scientific questions can be
answered based on predictive ability alone. Questions of
the form, “does feature x contribute to neural activity?”,
for example, require no method transparency; one can
simply ask whether predictive power increases with
feature x’s inclusion. Advanced ML methods could thus
be readily applied to studies of feature importance
across the brain (e.g. (48-50)). Lack of transparency
should thus not generally preclude the use of advanced
ML methods in neuroscience.

Though GLMs are considered transparent, it is
important to note that a few issues complicate the
interpretation of their parameters. Regularization
imposes prior distributions on feature weights,
introducing a bias that is often left unconsidered.
Unaccounted nonlinearity may also cause issues with
interpretation. In the extreme case when the neural
response to some feature x does not correlate with exp(x),
the feature weights may incorrectly predict no
dependence on feature x whatsoever. Feature
engineering attempts to resolve this issue, though the
engineered features must be guessed if the nonlinearity
is unknown. This will leave some ambiguity as to how
much the new feature weights simply capture the scaling
of the engineering function as opposed to the relative
contribution of the feature. Finally, any feature
covariance must be acknowledged when examining
fitted weights. One may find, for example, that a neuron
fires in response to both x and x3 when the most linearly
related feature is sin(x), which is better approximated as
a combination of both terms than by either alone. It
would thus be a mistake to interpret the feature weights
on x and x3 as their ‘contribution’ to firing. These several
considerations serve to reduce the interpretability of the
parameters of GLMs, and should be remembered when
choosing a model for studies of feature importance.

The brain is nonlinear and complex. A systematic
description with linear models presents the danger of
obscuring its function with an illusion of a simpler form.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted February 24, 2017. ; https://doi.org/10.1101/111450doi: bioRxiv preprint

https://doi.org/10.1101/111450
http://creativecommons.org/licenses/by-nc-nd/4.0/

 11

The development of a conceptual framework that
acknowledges neural complexity could be greatly aided
by building tuning curves that capture arbitrary
nonlinearity and more accurately describe neural
activity.

The code used for this publication is available at
https://github.com/KordingLab/spykesML. We invite
researchers to adapt it freely for future problems of
neural prediction.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted February 24, 2017. ; https://doi.org/10.1101/111450doi: bioRxiv preprint

https://doi.org/10.1101/111450
http://creativecommons.org/licenses/by-nc-nd/4.0/

 12

References
1. E. P. Simoncelli, L. Paninski, J. Pillow, O. Schwartz, Characterization of neural responses with stochastic stimuli. The

cognitive neurosciences 3, 327-338 (2004).
2. M. C.-K. Wu, S. V. David, J. L. Gallant, Complete functional characterization of sensory neurons by system

identification. Annu. Rev. Neurosci. 29, 477-505 (2006).
3. S. Gerwinn, J. H. Macke, M. Bethge, Bayesian inference for generalized linear models for spiking neurons. Frontiers

in Computational Neuroscience 4, (2010).
4. J. A. Nelder, R. J. Baker, Generalized linear models. Encyclopedia of statistical sciences, (1972).
5. E. Chichilnisky, A simple white noise analysis of neuronal light responses. Network: Computation in Neural Systems

12, 199-213 (2001).
6. L. Paninski, M. R. Fellows, N. G. Hatsopoulos, J. P. Donoghue, Spatiotemporal tuning of motor cortical neurons for

hand position and velocity. Journal of neurophysiology 91, 515-532 (2004).
7. L. Paninski, Maximum likelihood estimation of cascade point-process neural encoding models. Network: Computation

in Neural Systems 15, 243-262 (2004).
8. J. W. Pillow, L. Paninski, V. J. Uzzell, E. P. Simoncelli, E. Chichilnisky, Prediction and decoding of retinal ganglion

cell responses with a probabilistic spiking model. The Journal of neuroscience 25, 11003-11013 (2005).
9. A. P. Georgopoulos, A. B. Schwartz, R. E. Kettner, Neuronal population coding of movement direction. Science 233,

1416-1419 (1986).
10. R. D. R. Van Steveninck, W. Bialek, Real-time performance of a movement-sensitive neuron in the blowfly visual

system: coding and information transfer in short spike sequences. Proceedings of the Royal Society of London B:
Biological Sciences 234, 379-414 (1988).

11. Kaggle Winner's Blog. (2016).
12. J. Schmidhuber, Deep learning in neural networks: An overview. Neural Networks 61, 85-117 (2015).
13. T. Chen, C. Guestrin, Xgboost: A scalable tree boosting system. arXiv preprint arXiv:1603.02754, (2016).
14. F. Pedregosa et al., Scikit-learn: Machine learning in Python. Journal of Machine Learning Research 12, 2825-2830

(2011).
15. F. Chollet, keras. GitHub repository, (2015).
16. T. T. D. Team et al., Theano: A Python framework for fast computation of mathematical expressions. arXiv preprint

arXiv:1605.02688, (2016).
17. B. Lau, G. B. Stanley, Y. Dan, Computational subunits of visual cortical neurons revealed by artificial neural networks.

Proceedings of the National Academy of Sciences 99, 8974-8979 (2002).
18. R. Prenger, M. C.-K. Wu, S. V. David, J. L. Gallant, Nonlinear V1 responses to natural scenes revealed by neural

network analysis. Neural Networks 17, 663-679 (2004).
19. S. R. Lehky, T. J. Sejnowski, R. Desimone, Predicting responses of nonlinear neurons in monkey striate cortex to

complex patterns. The Journal of neuroscience 12, 3568-3581 (1992).
20. L. McIntosh, N. Maheswaranathan, A. Nayebi, S. Ganguli, S. Baccus, in Advances in Neural Information Processing

Systems. (2016), pp. 1361-1369.
21. I. H. Stevenson et al., Statistical assessment of the stability of neural movement representations. Journal of

neurophysiology 106, 764-774 (2011).
22. M. Prud'homme, J. F. Kalaska, Proprioceptive activity in primate primary somatosensory cortex during active arm

reaching movements. Journal of neurophysiology 72, 2280-2301 (1994).
23. K. Mizuseki, A. Sirota, E. Pastalkova, G. Buzsáki, Multi-unit recordings from the rat hippocampus made during open

field foraging., (2009).
24. K. Mizuseki, A. Sirota, E. Pastalkova, G. Buzsáki, Theta oscillations provide temporal windows for local circuit

computation in the entorhinal-hippocampal loop. Neuron 64, 267-280 (2009).
25. E. N. Brown, L. M. Frank, D. Tang, M. C. Quirk, M. A. Wilson, A statistical paradigm for neural spike train decoding

applied to position prediction from ensemble firing patterns of rat hippocampal place cells. The Journal of
Neuroscience 18, 7411-7425 (1998).

26. J. Aljadeff, B. J. Lansdell, A. L. Fairhall, D. Kleinfeld, Analysis of neuronal spike trains, deconstructed. Neuron 91,
221-259 (2016).

27. O. Schwartz, J. W. Pillow, N. C. Rust, E. P. Simoncelli, Spike-triggered neural characterization. Journal of Vision 6,
13-13 (2006).

28. P. Ramkumar et al., Feature-based attention and spatial selection in frontal eye fields during natural scene search.
Journal of neurophysiology, jn. 01044.02015 (2016).

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted February 24, 2017. ; https://doi.org/10.1101/111450doi: bioRxiv preprint

https://doi.org/10.1101/111450
http://creativecommons.org/licenses/by-nc-nd/4.0/

 13

29. H. L. Fernandes, I. H. Stevenson, A. N. Phillips, M. A. Segraves, K. P. Kording, Saliency and saccade encoding in the
frontal eye field during natural scene search. Cerebral Cortex 24, 3232-3245 (2014).

30. M. Saleh, K. Takahashi, N. G. Hatsopoulos, Encoding of coordinated reach and grasp trajectories in primary motor
cortex. The Journal of Neuroscience 32, 1220-1232 (2012).

31. P. Ramkumar et al., Pyglmnet 1.0.1. (2017).
32. N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, Dropout: a simple way to prevent neural

networks from overfitting. Journal of Machine Learning Research 15, 1929-1958 (2014).
33. J. Snoek, H. Larochelle, R. P. Adams, in Advances in neural information processing systems. (2012), pp. 2951-2959.
34. BayesianOptimization. GitHub repository, (2016).
35. J. H. Friedman, Greedy function approximation: a gradient boosting machine. Annals of statistics, 1189-1232 (2001).
36. J. Friedman, T. Hastie, R. Tibshirani, Additive logistic regression: a statistical view of boosting (with discussion and

a rejoinder by the authors). The annals of statistics 28, 337-407 (2000).
37. T. K. Ho, The random subspace method for constructing decision forests. IEEE transactions on pattern analysis and

machine intelligence 20, 832-844 (1998).
38. D. H. Wolpert, Stacked generalization. Neural networks 5, 241-259 (1992).
39. A. C. Cameron, F. A. Windmeijer, An R-squared measure of goodness of fit for some common nonlinear regression

models. Journal of Econometrics 77, 329-342 (1997).
40. T. A. Domencich, D. McFadden, "Urban travel demand-a behavioral analysis," (1975).
41. B. Amirikian, A. P. Georgopulos, Directional tuning profiles of motor cortical cells. Neuroscience research 36, 73-79

(2000).
42. L. Paninski, S. Shoham, M. R. Fellows, N. G. Hatsopoulos, J. P. Donoghue, Superlinear population encoding of

dynamic hand trajectory in primary motor cortex. The Journal of neuroscience 24, 8551-8561 (2004).
43. E. A. Corbett, E. J. Perreault, K. P. Körding, Decoding with limited neural data: a mixture of time-warped trajectory

models for directional reaches. Journal of neural engineering 9, 036002 (2012).
44. B. McNaughton, C. A. Barnes, J. O'keefe, The contributions of position, direction, and velocity to single unit activity

in the hippocampus of freely-moving rats. Experimental Brain Research 52, 41-49 (1983).
45. Z. C. Lipton et al., The Mythos of Model Interpretability. IEEE Spectrum, (2016).
46. J. McAuley, J. Leskovec, in Proceedings of the 7th ACM conference on Recommender systems. (ACM, 2013), pp.

165-172.
47. K. Simonyan, A. Vedaldi, A. Zisserman, Deep inside convolutional networks: Visualising image classification models

and saliency maps. arXiv preprint arXiv:1312.6034, (2013).
48. J. Dushanova, J. Donoghue, Neurons in primary motor cortex engaged during action observation. European Journal

of Neuroscience 31, 386-398 (2010).
49. E. C. Smith, M. S. Lewicki, Efficient auditory coding. Nature 439, 978-982 (2006).
50. I. Winkler, S. L. Denham, I. Nelken, Modeling the auditory scene: predictive regularity representations and perceptual

objects. Trends in cognitive sciences 13, 532-540 (2009).

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted February 24, 2017. ; https://doi.org/10.1101/111450doi: bioRxiv preprint

https://doi.org/10.1101/111450
http://creativecommons.org/licenses/by-nc-nd/4.0/

