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Abstract 1 

The capacity for flexible sensory-action association in animals has been related to context-dependent 2 

attractor dynamics outside the sensory cortices. Here we report a line of evidence that flexibly 3 

modulated attractor dynamics during task switching are already present in the higher visual cortex in 4 

macaque monkeys. With a nonlinear decoding approach, we can extract the particular aspect of the 5 

neural population response that reflects the task-induced emergence of bistable attractor dynamics in a 6 

neural population, which could be obscured by standard unsupervised dimensionality reductions such 7 

as PCA. The dynamical modulation selectively increases the information relevant to task demands, 8 

indicating that such modulation is beneficial for perceptual decisions. A computational model that 9 

features nonlinear recurrent interaction among neurons with a task-dependent background input 10 

replicates the key properties observed in the experimental data. These results suggest that the context-11 

dependent attractor dynamics involving the sensory cortex can underlie flexible perceptual abilities.12 
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Introduction 13 

Animals are able to adapt their behavior flexibly depending on task contexts, even when the physical 14 

stimuli presented to them are identical. The physiological mechanisms underlying this flexible 15 

translation of sensory information into behaviorally relevant signals are largely unknown. Recent 16 

studies indicate that context-dependent behavior is accounted for by adaptive attractor-like dynamics 17 

in the prefrontal areas (Mante et al., 2013; Stokes et al., 2013), which associate sensory representation 18 

with behavioral responses depending on task contexts (Freedman et al., 2001, 2002, 2003; Wallis et 19 

al., 2001; Wallis and Miller, 2003; Meyers et al., 2012). In contrast to the prefrontal cortex, the visual 20 

areas have been suggested to show no or only modest task-related modulations (Sasaki and Uka, 21 

2009; McKee et al., 2014). This supports the view that sensory information is processed sequentially 22 

across the cortical hierarchy; that is, the physical properties of stimuli are encoded by the sensory 23 

cortex, and read out by the higher areas such as the prefrontal cortex. 24 

An alternative to this sequential processing model is a view that the sensory cortex is dynamically 25 

involved in the neural mechanisms for the flexible sensory-action association. Unlike the former 26 

model, the latter does not assume a strong differentiation between sensory and higher areas, which is 27 

described in the “encoding-vs.-readout” framework, but allows the decision process to arise from 28 

mutual interaction among them. In particular, assuming the involvement of sensory areas in the task-29 

dependent behavior predicts that the neural representations in those areas are modulated by task 30 

contexts. Indeed, some studies report that neurons in the sensory areas can change their activities 31 

depending on task demands (Koida and Komatsu, 2007; Mirabella et al., 2007; Brouwer and Heeger, 32 

2013). For example, it is reported that performing a color categorization task modulates the neural 33 

responses to color stimuli in the ventral visual pathway, including macaque inferior temporal (IT) 34 

cortex (Koida and Komatsu, 2007) and human V4 and VO1 (Brouwer and Heeger, 2013). 35 

However, no clear consensus has been reached on the functional interpretations of those sensory 36 

modulations. Some researchers suggest that the task-dependent modulation of neural activities could 37 

reflect multiple confounding factors (Sasaki and Uka, 2009). For example, although the task demands 38 

can modulate the neuronal response amplitudes in the IT cortex (Koida and Komatsu, 2007), the 39 

response amplitudes in individual neurons could be affected by the changes in arousal levels 40 

(Greenberg et al., 2008), visual awareness (Lamme et al., 1998; Lamme and Zipser, 2002), task 41 

difficulty (Chen et al., 2008) and feature-based attention (Treue and Martínez Trujillo, 1999; Kastner 42 

and Ungerleider, 2000; Reynolds and Heeger, 2009).  43 

To understand the functions and mechanisms of the task-dependent modulations in the sensory 44 

neurons, we need to elucidate the structures of collective dynamics in the neural population—in 45 
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particular, the dynamical structures reflecting the perceptual functions to accomplish the tasks. To this 46 

end, in the present study we analyze the spatiotemporal structures of collective neural activity 47 

recorded from the macaque IT cortex during context-dependent behavior. To focus on functional 48 

aspects of the collective dynamics, we first characterize the evolution of neuronal states within a 49 

perceptual space that is reconstructed from the neural population activities. The analysis reveals a 50 

task-dependent dynamics of sensory representation in the IT neurons, demonstrating the emergence of 51 

discrete attractors during categorical perceptions. Moreover, those attractor dynamics are found to 52 

reflect adaptive information processing and explain behavioral variabilities. Finally, through a data 53 

analysis and a computational modeling, we suggest a potential mechanism in which the task-54 

dependent attractor structures emerge from a bifurcation in recurrent network dynamics among the 55 

sensory and downstream areas. 56 

Results 57 

We analyzed the responses of color-selective neurons recorded in the macaque IT cortex, which 58 

change their activities depending on the task demands (Koida and Komatsu, 2007). In the 59 

experiments, the monkeys made saccadic responses based on either of two different rules 60 

(Categorization or Discrimination) that associate the stimulus with different behavior. In both tasks, 61 

the monkeys were presented a sample color stimulus for 500 ms. In the Categorization task, the 62 

monkeys then classified the sample color into one of two color categories, “Red” or “Green” (Figure 63 

1a). In the Discrimination task, the monkeys discriminated precise color differences by reporting 64 

which of two choice stimuli was the same color as the sample stimulus (Figure 1b). We then 65 

analyzed the neural responses to the sample colors in the two tasks—where the visual stimuli were 66 

physically identical between those tasks. 67 

A previous study reported that about 64% of recorded IT cells changed their response magnitudes 68 

significantly depending on the task demands (Figure 1c) (Koida and Komatsu, 2007). Although the 69 

earlier reports have demonstrated that the modulations in individual sensory neurons could be 70 

correlated to the hypothetical models that encode categorical information (Koida and Komatsu, 2007; 71 

Tajima et al., 2016), the mechanisms and functional impacts of the neural population-response 72 

modulation remain to be understood. To elucidate the functional impacts of neural activity 73 

modulations, the present study directly investigates the dynamical structure of the collective responses 74 

of large numbers of neurons from a decoding perspective. 75 
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Reconstructing population activity dynamics from a decoding perspective 76 

To reconstruct the stimulus representation by the neural population, we projected the population 77 

activity to stimulus space by extending the idea of likelihood-based decoding (Jazayeri and Movshon, 78 

2006; Ma et al., 2006; Brouwer and Heeger, 2009; Graf et al., 2011; Fetsch et al., 2012) such that it 79 

captures cross-conditional differences and time-varying properties in neural population 80 

representations (Materials and Methods). To obtain the joint distribution of neural activities, we 81 

generated “pseudo-population” activities from the collection of single neuron firing-rate distributions 82 

by randomly resampling the trials (Fetsch et al., 2012).We assumed no noise correlation in our main 83 

analyses although we also confirmed by additional analyses that adding noise correlation did not 84 

affect the conclusion of this study (see Discussion). The basic procedures are as follows (Figure 1d): 85 

to reconstruct the subjects’ percepts, we first built a maximum-likelihood decoder of stimulus based 86 

on the spike-count statistics of the correct trials in the Discrimination task, in which the subjects 87 

reported precise color identity during stimulus presentation; next, the same decoder was used to 88 

analyze the data from the Categorization task. Note that the decoded values are matched to both the 89 

presented and the perceived stimuli in the Discrimination task because we used only the correct trials 90 

from that task and the monkeys’ correct rates were overall high (80-90%). Including the incorrect 91 

trials did not affect our conclusion based on the subsequent analyses. On the other hand, in the 92 

Categorization task the perceived stimuli could differ from the presented stimuli. Although in the 93 

Categorization task we had no access to the precise percepts of the stimulus identities but the 94 

categorical reports, we could reconstruct the putative percepts in the decoded stimulus space. The 95 

relationship between the decoder outputs and subjective percepts was also supported by follow-up 96 

analyses on the choice variability. 97 

The decoding-based approach has two major advantages for interpreting the neural population state. 98 

First, the decoding provides a way to reduce the dimensionality of neural representation effectively by 99 

mapping the high-dimensional population state to a low-dimensional space of the perceived stimuli 100 

(which is, in the present case, one-dimensional space of color varying from red to green), which 101 

enhances visualization and analysis of the dynamical structures. Second, the decoding-based method 102 

enables clear functional interpretation of neural representation because the decoded stimuli are 103 

directly related to the subject’s judgment of stimulus identity (note that it is often difficult to interpret 104 

global distance in a reduced space in nonlinear dimensionality-reduction methods; e.g., (Roweis and 105 

Saul, 2000; Tenenbaum et al., 2000; van der Maaten and Hinton, 2008)). In particular, the decoded 106 

stimulus identity was what the subject had to respond to in the Discrimination task, and thus we can 107 

compare the decoder output and the subjects’ behavior (see also Materials and Methods). If the 108 

decoding is successful, it means that the neural population responses to different stimuli are 109 

effectively differentiated within the space of the decoder output. Indeed, cross validation of the 110 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 26, 2017. ; https://doi.org/10.1101/120725doi: bioRxiv preprint 

https://doi.org/10.1101/120725
http://creativecommons.org/licenses/by/4.0/


 

 

6 

decoder performance (by dividing the data from the Discrimination task into two non-overlapping sets 111 

of trials) showed a high correct rate (> 75% on average across stimuli), which was comparable to the 112 

actual subject performance in the Discrimination task. We will also compare the results to those of 113 

other dimensionality reduction techniques in a later subsection. 114 

Task context modulates the attractor dynamics of the sensory neural population 115 

To characterize the dynamical properties of the decoder output changes for the individual stimuli, we 116 

reconstructed the time evolution of the neural states within the space of decoder-output vs. mean 117 

firing rate (Figure 2a). The population state trajectories during the Discrimination task were 118 

accurately matched the presented stimuli, confirming the successful mapping from neural 119 

representations to stimuli (Figure 2a, bottom). Remember that here we used the trials in which the 120 

subjects correctly identified the sample stimuli in the subsequent fine discrimination in the 121 

Discrimination task (Figure 1b), thus the decoded stimulus identity should also correspond to the 122 

stimuli perceived by the subjects. In contrast to the Discrimination task, we found that the same 123 

analysis for the Categorization task yielded strikingly different state trajectories (Figure 2a, top), 124 

which suggests that the neural representation was altered between the two tasks. In particular, the 125 

population state trajectories in the Categorization task showed attractor-like dynamics in which the 126 

state relaxes toward either of two stable points respectively corresponding to the “Red” and “Green” 127 

categories along the “line” structure (in the horizontal direction in the figure) connecting those two 128 

stable points (Figure 2a, top). The relationship between the mean firing rate and the decoded stimulus 129 

identity was also kept in the Discrimination task and showed a similar “line” structure with little 130 

bistability (Figure 2a, bottom). Interestingly, green stimuli tended to evoke larger neural responses 131 

than the red stimuli, consistently in both Discrimination and Categorization tasks, although the reason 132 

for this is not clear. Finally, these properties of the dynamics were robust to various changes in the 133 

decoder construction and neural noise-correlation structures in the data, indicating that the present 134 

results do not rely on the specific designs of the decoder (see Discussion). We observed that the 135 

results in the eye-fixation task were similar to those of the Categorization task (data not shown), 136 

replicating the previous report that the neural tunings in the eye-fixation task shared properties with 137 

the Categorization task (Koida and Komatsu, 2007). 138 

Remarkably, the attraction toward stable points continued throughout the stimulus presentation 139 

period, even after the population average firing rate had stabilized (as demonstrated by the horizontal 140 

shifts in Figure 2a, top). This also confirms that the dynamics in decoded stimuli are not merely 141 

reflecting the changes in the overall firing rate in the population (which could be potentially 142 

concerned to affect the decoding analysis through the changes in signal-to-noise ratio in the data). The 143 
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polarity of the modulation depended strongly on the presented stimulus identity (Figure 2b). The 144 

modulation was not large at the beginning of the stimulus presentation (light plot along diagonal in 145 

Figure 2b), but was magnified in the late period (dark plots in “S” shape, Figure 2b). The evolution 146 

of the modulation continued across the entire period of stimulus presentation, and was not directly 147 

associated with the dynamics of the mean firing rate, which became stable about 250 ms after the 148 

stimulus onset (Figure 2c). 149 

The recurrent model explains the stimulus-dependent dynamics 150 

Standard models of a recurrent dynamical system in which the system’s energy function relaxes as the 151 

state evolves toward either stable point, naturally accounted for the dynamics converging to stable 152 

point attractors in the Categorization task. In addition, the dependency on presented stimulus identity 153 

indicates that the modulation was dynamically driven by the visual input, rather than by pre-readout 154 

(i.e., stimulus-invariant) modulation of neural response gains, such as conventional feature-based 155 

attention (Treue and Martínez Trujillo, 1999). These facts are more consistent with the recurrent 156 

model than conventional gain-modulation models as an explanation of the population dynamics 157 

reported here. To verify this, we next examined how gain-modulation and recurrent models could 158 

account for the quantitative aspects of modulation dynamics. 159 

To analyze the dynamics of neural modulation quantitatively, we considered three gain-modulation 160 

models (in which neural response gains could depend on the task and either of time and stimulus; 161 

Figure 2d) and a recurrent model (response modulation via self-feedback through mutual connections 162 

to two hidden units, whose weights depended on the task but neither on time nor on the stimulus 163 

identity; Figure 2d). Note that we did not assume explicit stimulus-dependency of model parameters 164 

in any of the three models. We derived the model parameters based on the recorded neural responses, 165 

such that the modulated neural responses in the Discrimination task fit the responses in the 166 

Categorization task (full details of the modeling are provided in the Materials and Methods). Using 167 

these four models, we determined to what extent the gain modulations and recurrent modulation 168 

predict the temporal evolution of decoder output changes in the Categorization task. The model-fitting 169 

performances were assessed using cross-validation based on two separate sets of trials: the first set 170 

was used to train models, and the second was used to test each model’s fitting performance. We 171 

computed the cross-validation errors, 𝐸CV, directly based on the difference between the predicted and 172 

actual neural population activities, thus the measure is independent of the assumptions about the 173 

decoder (Materials and Methods).   174 

We found that the recurrent model showed the smallest cross-validation error among the four models 175 

(𝑬𝐂𝐕 = 2.78, 2.86, 3.77, and 2.08 in the gain-modulation models 1–3 and the recurrent model, 176 
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respectively; the recurrent model’s error was significantly below each of the gain-modulation models, 177 

p<0.001, permutation test). Indeed, neither gain-modulation model could account for the large 178 

increase in decoder output change in the late period (about >150 ms) after the stimulus onset (Figure 179 

2d, the green and blue curves). The time- or stimulus-dependency of the gain parameters did not make 180 

a major difference in the prediction performance among the three gain-modulation models, suggesting 181 

that the modulation depends both on stimulus and time. On the other hand, the recurrent model 182 

explained the large continuous increase in decoder output change (Figure 2d, the magenta curve). It 183 

should be noted that the parameters in the recurrent model were constant across time, in contrast to 184 

the time-variant gain-modulation model. This means that the time-invariant recurrent model is 185 

superior even to the time-variant gain-modulation model at explaining the task-dependent modulation 186 

of neural population dynamics. The reason for this is that the effective modulation signals in the 187 

recurrent model could vary across different stimuli because the recurrent architecture allowed the 188 

modulation to depend on the neurons’ past activities evoked by stimulus, leading to an “implicit” 189 

dependency on stimulus and time. It is remarkable that the recurrent model is capable of describing 190 

the dynamic activity modulations without assuming any explicit parameter change across stimuli and 191 

time, even better than the time- and stimulus-dependent gain modulation, which had much more 192 

parameters than the recurrent model. The results were similar when we assumed full-connected 193 

pairwise interactions instead of the restricted connection via the hidden units. All the results were 194 

cross-validated, making it unlikely that the difference in model performance was caused by 195 

overfitting. In addition, the superiority of the recurrent model was robustly observed with changes in 196 

the decoder construction and neural noise correlations (Discussion). These results support the idea 197 

that the task-dependency of neural dynamics originates from a recurrent mechanism, although we do 198 

not exclude the possibility of more complex gain-modulation mechanisms (that depend on both the 199 

stimulus and time) as substrates of the context-dependent dynamics observed here (see also 200 

Discussion). Note that the analysis here compares the data-fitting performance of gain-modulation 201 

and recurrent models in the decoded stimulus domain, but does not aim to model the mechanisms of 202 

the emergent bistable attractor structure in the Categorical task. A possible mechanism underlying the 203 

organization and task-dependent modulation of attractor dynamics is discussed later. 204 

Reconstructed collective dynamics explains choice variability 205 

We also found that the neural state represented in the space of the decoded stimulus was closely 206 

related to the subjects’ subsequent behavior. First, the locus of the behavioral classification boundary 207 

in the Categorization task, which moderately prefers the “Green” category, was replicated by the 208 

stimulus classification based on decoder output (Figure 3a, b). This suggests the decoded-stimulus 209 

space used here was closely related to the behavioral response dimension. Second, the modulation of 210 
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the dynamics reflected the subjects’ trial-to-trial response variability. The subject’s choices between 211 

the “Red” and “Green” categories were variable across trials, particularly for the stimuli around the 212 

classification boundary (stimuli #4–6), even when the task condition and the presented stimulus were 213 

the same. To investigate the mechanism underlying this behavioral variability, we reanalyzed the 214 

neural responses during the Categorization task using the same decoding protocol used in the previous 215 

sections, but now separated the trials into two groups according to the subsequent choice behavior. 216 

We found that the behavioral fluctuation was clearly reflected in the preceding population dynamics 217 

in the decoded-stimulus space (Figure 3c). The neural state was shifted toward the “Red” extreme 218 

before the subject classified the stimulus into the “Red” category, whereas the state was shifted 219 

toward “Green” before classifying it into the “Green” category. The difference was small in the 220 

beginning of the response, but gradually increased as time elapsed (Figure 3d, e). Gradual 221 

amplification of small differences in the initial state is a general property of a recurrent dynamical 222 

system having two distinct stable attractors, which further supports the recurrent model. Note that the 223 

current decoding analysis shares some concept with conventional choice-probability analysis in single 224 

neurons, but the current decoder analysis focuses more on the collective representation by neural 225 

population. In addition, the decoding analysis allows us to specify not only choice polarities but also 226 

the estimated perceptual contents (color identities) at each moment. 227 

Dynamical modulation enhances task-relevant information 228 

The evidence so far indicates that the neural population in the IT cortex flexibly modulates its 229 

recurrent dynamics depending on the task context. What is this modulation for? We hypothesized that 230 

the modulation is a consequence of stimulus information processing adapted to the changing task 231 

demands. To test this possibility, we computed the mutual information between the neural population 232 

firing and the stimulus identity (hue) or stimulus category. The mutual information provides an upper 233 

limit for the information extracted from the neural state trajectories, which indicates how the 234 

dynamical modulations could contribute to the task-relevant information processing. We found that 235 

the modulatory effect was accompanied by selective increases in the task-relevant stimulus 236 

information conveyed by the neural population (Figure 4). Namely, category information increased in 237 

the categorization task compared with the discrimination task, whereas hue information increased in 238 

the discrimination task. The fact that the modulation of the neural dynamics increases the task-239 

relevant information indicates that the modulation benefits the subjects switching the tasks depending 240 

on the context.  241 
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Comparison to other methods of dimensionality reduction 242 

We have shown that the decoding approach captures the task-dependent attractor-like dynamics in the 243 

neural population. To examine how the other dimensionality reduction methods capture the task-244 

dependent natures of the collective neural dynamics, we first applied the principal component analysis 245 

(PCA) to the neural responses during the stimulus presentation. Figure 5a shows the reconstructed 246 

trajectories of the neural population states in the space spanned by PCs 1‒3. The trajectories for 247 

categorization and discrimination tasks largely overlapped, and the task-dependent attractor-like 248 

structure is not obvious in this space despite that these top three PCs together explained more than 249 

60% of the total variance (Figure 5b). This indicates that the task-dependent components of the 250 

dynamics are hidden in the other dimensions. Similarly, it was not straightforward to demonstrate the 251 

emergence of two discrete attractors in the Categorization task with other unsupervised 252 

dimensionality reduction methods, including PCA based on the differential responses between the 253 

tasks (Figure 5c) and nonlinear methods such as t-stochastic neighbor embedding (tSNE) (van der 254 

Maaten and Hinton, 2008) (Figure 5d). These results implicate that the task-dependent components 255 

could be obscured when visualized naively with some of those conventional methods.   256 

Bifurcation of attractor dynamics in a recurrent model 257 

The analyses in the previous sections have indicated the flexible recurrent interactions that modulate 258 

the structures of attractors depending on the task context. What mechanism could explain such a 259 

dynamic changes in neural dynamics? Here we show a simple potential mechanism that accounts for 260 

the flexible changes in attractor structures in the collective neural dynamics. 261 

We extended a model of prefrontal attractor dynamics that was proposed in the context of two-interval 262 

discrimination (Machens et al., 2005) by introducing a recurrent interaction that involves a population 263 

of hue-selective neurons. Figure 6a illustrates a potential mechanism for the context-dependent 264 

change in attractor structure. We assume that the hue-selective neurons (hereafter referred to as “hue-265 

neurons”) in the IT cortex have mutual interaction with category-selective neurons (hereafter, 266 

“category-neurons”) in the frontal or other cortical area. The hue neurons receive sensory input from 267 

earlier visual areas. The connectivity weights between hue- and category-neurons are modeled using 268 

the functions of the preferred hues in hue-neurons such that a “red” category-neuron exhibits 269 

excitatory interactions with hue-neurons preferring reddish hues and inhibitory interactions with 270 

neurons preferring greenish hues (similar for “green” category-neuron). We assume that the category 271 

neurons also receive a common background input, and respond based on an activation function with 272 

response threshold and saturating nonlinearity, which characterizes the categorical response in cortical 273 

neurons (Freedman et al., 2001) (see Materials and Methods). 274 
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This system has different numbers of stable attractors depending on the strength of common 275 

inhibitory background input (parameter 𝐵), with the connectivity among neurons unaffected (Figure 276 

6b–d). The neural state converges to a single stable equilibrium point under a strong background 277 

inhibition (Figure 6b) whereas two distinct stable equilibrium points emerges under a weak or no 278 

background input, yielding bistability that depends on the initial state (Figure 6c). 279 

We confirmed that the model replicated multiple aspects of the collective neural dynamics observed 280 

in IT cortex.  First, the representation of modeled hue neurons (hypothetical IT neurons) showed the 281 

gradually evolving biases toward either of two extreme stimuli (“red” or “green”; (Figure 6e) as well 282 

as the moderately higher mean activity in the Categorization task (Figure 6h). Second, the recurrent 283 

dynamics replicated the gradual development of the choice-related neural variability (Figure 6f, g). 284 

Third, the circuit enhanced the task relevant information (Figure 6i). Finally, the task-dependent 285 

components of dynamics could be obscured when visualized with PCA (Figure 6j), which is also 286 

consistent with the results in IT neurons (Figure 5a). 287 

Discussion 288 

We demonstrated that the task context modulates the structures of collective neural dynamics in the 289 

macaque IT cortex. The neural population in the IT cortex exhibited the dynamics with two discrete 290 

attractors that respectively corresponded to the two task-relevant color categories in the 291 

Categorization task. The trial-to-trial variability in the dynamics confirmed that those two stable 292 

attractors co-existed under a single stimulus, thus the observed bistability reflects an inherent property 293 

of neural circuit. Remarkably, we found that the patterns of the neural state evolution was explained 294 

by a recurrent mechanism, but not fully accounted for by conventional gain-modulation models such 295 

as the ones assumed for top-down attention (Treue and Martínez Trujillo, 1999; Reynolds and Heeger, 296 

2009). The present hierarchical recurrent model rather shares some features with other recent models 297 

including the recurrent interactions between top-down and bottom-up signals (Wimmer et al., 2015; 298 

Haefner et al., 2016). A unique point in the present model is that it explains the context-dependent 299 

structure of collective neural dynamics in terms of the bifurcation of attractors caused by a simple 300 

change in the background input to the categorical neurons. Lastly, although the present results suggest 301 

a profound contribution by a recurrent mechanism to the context-dependent modulation of sensory 302 

cortex dynamics, which has not been emphasized in previous studies, we do not exclude the potential 303 

contributions of a gain-modulation mechanism; rather, it is quite possible that the brain uses a 304 

combination of both the recurrent and feedforward mechanisms. 305 
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Recent studies emphasize a variety of stimulus-dependent contextual modulations, particularly in the 306 

early visual cortex (Toth et al., 1996; Sceniak et al., 1999, 2002; Sadakane et al., 2006; Tajima et al., 307 

2010; Solomon and Kohn, 2014; Coen-Cagli et al., 2015). However, it is yet to be elucidated whether 308 

the same mechanisms also apply to the context-dependent categorical processing in IT cortex as 309 

studied here, and how such a modulation could be implemented in biological systems without any 310 

recurrent mechanisms. Note that, in principle, a stimulus-dependent gain modulation requires a form 311 

of self-referencing process (which is naturally implemented by recurrent mechanisms) because it 312 

implies the stimulus encoding being modulated by the encoded stimulus itself, whether the source of 313 

modulation is the fluctuations in choice-related activity (Nienborg and Cumming, 2009) or attention 314 

(Ecker et al., 2016). Nonetheless, the mathematically equivalent effects could be achieved by a 315 

feedforward mechanism in physiological circuits that feature an information duplication (e.g., two 316 

parallel feedforward pathways converging at IT cortex, in which one has longer latency than others). 317 

We do not exclude this possibility. Our current results demonstrate that the task-dependent neural 318 

dynamics were at least not fully accounted for by conventional forms of stimulus-invariant gain 319 

modulations such as assumed in a previous study. 320 

As a key methodology, we took a decoding approach to reconstruct the perceptual space form neural 321 

population activity. One may concern a possibility that the results rely on the selection of decoder. To 322 

examine this point, we replicated the same analyses with different decoders, and confirmed that the 323 

results reported in this paper were robust to various changes in the decoder construction, such as 324 

introducing noise correlations in neural responses, removing the half of cells to use, assuming non-325 

Gaussian models, and ignoring the time dependence (as summarized in Figure 7). This suggests that 326 

the present results do not require fine tunings of the decoder constructions or assuming the 327 

independent noises across neurons. On the other hand, the task dependence of attractor structures 328 

could be unclear when visualized with-conventional unsupervised dimensionality reduction methods, 329 

despite that PCA could extract cluster structures in a previous human neuroimaging with a color 330 

naming task (Brouwer and Heeger, 2013). The effectiveness of the decoding approach shares some 331 

aspects with other recent labeled dimensionality-reduction approaches applied to neural population 332 

data (Brendel and Machens, 2011; Mante et al., 2013; Okazawa et al., 2015; Kobak et al., 2016). 333 

Although it is beyond the scope of the current study to compare all the possible dimensionality 334 

reduction methods, we suggest that analyzing neural-population state-space from a decoding 335 

perspective could be useful to extract the hidden dynamical properties that are relevant to the 336 

functions of collective neural responses. 337 

Previous studies have proposed that context-dependent decision making is achieved through flexible 338 

modulations of recurrent attractor dynamics within the prefrontal cortex (Mante et al., 2013; Stokes et 339 
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al., 2013). The present results imply that the dynamical mechanisms of context-dependent 340 

computation can include not only the prefrontal areas but also the sensory cortex, potentially 341 

organizing the distinct representational layers such as hypothesized in the present model (Figure 6). 342 

Although an earlier study reported attractor-like dynamics in the IT cortex during object 343 

categorization (Akrami et al., 2009), the flexible modulation of a dynamical structure depending on 344 

task context has not been demonstrated. It should be noted that the present task design differs from 345 

those of many other task-switching studies: in contrast to the previous studies, in which the subjects 346 

switched behavioral rules between two different categorization tasks (e.g., categorizing motion or 347 

color/depth) (Sasaki and Uka, 2009; Mante et al., 2013; Siegel et al., 2015), the present study is based 348 

on switching between Categorization and Discrimination. This difference in task design may underlie 349 

the apparent discrepancy between the present and the previous studies regarding the involvement of 350 

sensory cortex in task switching.  351 

The way of neural modulation such that the population response becomes more sensitive to color 352 

around the categorical boundary in the Categorization task is consistent with previous human 353 

psychophysics showing that the stimulus discriminability is higher around category boundaries 354 

(Uchikawa and Sugiyama, 1993; Uchikawa and Shinoda, 1996). Moreover, the present results add a 355 

dynamical viewpoint in neural population representations, which predicts that the perceptual illusion 356 

depends on time as well as task demands. Beyond color perception, this modulation of dynamics in 357 

sensory representation implies a potential physiological substrates of task-dependent perceptual 358 

illusion. For instance, perceived motion direction is biased away from the classification boundary 359 

during a motion categorization task (Jazayeri and Movshon, 2007). Theoretically, this illusion could 360 

be explained both by considering direct modulation of sensory representation (Jazayeri and Movshon, 361 

2007), and by assuming a readout mechanism without direct modulation of the sensory neural 362 

representation itself (Stocker and Simoncelli, 2008). The first model would be preferred if the motion 363 

perception is based on a population coding mechanism similar to the one demonstrated in this study 364 

which suggests the neural population representation is indeed modulated at the level of the sensory 365 

cortex. 366 

The involvement of the sensory cortex in decision-related neural dynamics is consistent with the idea 367 

that responses within the sensory cortex are not only read out by the higher areas in a feedforward 368 

manner but also affected by decision-related signals through feedback connections from areas outside 369 

the sensory cortex (Nienborg and Cumming, 2009; Siegel et al., 2015; Wimmer et al., 2015). 370 

Unfortunately, we cannot fully conclude from the present data whether the observed choice-related 371 

attractor-dynamics are the cause or the effect of decision-making (Nienborg and Cumming, 2009). 372 

Nonetheless, the fact that modulation of the neural dynamics enhances the task-relevant information 373 
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in sensory neurons may hint at the potential contribution of this modulation to the task performances. 374 

In addition, our data suggest that the choice-related difference in the dynamics had already begun 375 

during the early period (< 250 ms;  Figure 2), which is thought to affect the decision (Nienborg and 376 

Cumming, 2009). Therefore, it is likely that the task-dependent modulation of neural dynamics (at 377 

least during the early period after the stimulus onset) contributed to improving the behavioral 378 

performance rather than merely reflected the decision signal. More generally, theoretical studies have 379 

proposed that a common recurrent neural circuit can serve as the basis for multiple functions, such as 380 

sensory information encoding, categorization and decision (Wang, 2002, 2008; Machens et al., 2005; 381 

Furman and Wang, 2008), enabling a flexible use of the neural dynamics depending on context. The 382 

present findings suggest involvement of sensory cortex in the context-dependent behavior, leading to 383 

a new view that the sensory neurons could contribute to context-dependent behavior by flexibly 384 

modulating their collective attractor dynamics. 385 

Materials and Methods 386 

Subjects, stimuli and behavioral task 387 

To study the neural basis of context-dependent behavior, we analyzed neural responses from the 388 

anterior inferior temporal (IT) cortices in two female monkeys (Macaca fuscata) performing visual 389 

tasks. Details of the experimental procedures have been previously published (Koida and Komatsu, 390 

2007). All procedures for animal care and experimentation were in accordance with the National 391 

Institutes of Health Guide for the Care and Use of Laboratory Animals and were approved by 392 

Institutional Animal Experimentation Committee. The monkeys were trained in Categorization and 393 

Discrimination tasks. In both tasks, the same 11 sample colors were used as visual stimuli. The 11 394 

sample colors ranged from red [color 1, (x = 0.631, y = 0.343 in the CIE 1931 xy chromaticity 395 

diagram)] to green [color 11, (x = 0.286, y = 0.603)] and were spaced at equal intervals on the CIE 396 

1931 xy chromaticity diagram. The colors all had the same luminance (30 cd/m2). Tasks were 397 

alternated in blocks in a fixed sequence that included Categorization and Discrimination tasks, as well 398 

as an eye-fixation task in which the monkey passively viewed the same color stimuli. There was no 399 

explicit cue to indicate the ongoing task. Each block consisted of 88 correct trials—eight repetitions 400 

of the 11 sample color stimuli. The 11 sample colors were presented in a pseudorandom order. If a 401 

monkey made an incorrect response to a given color, the trial using that color was repeated after some 402 

intervening trials. These repeated trials and other incomplete trials, such as those with fixation errors, 403 

were excluded from the subsequent data analyses. The stimulus was usually a disk with a diameter 404 

spanning 2.0° of visual angle, but for cells with shape selectivity, an optimal shape was chosen from 405 

among seven geometrical shapes (Komatsu and Ideura, 1993; Koida and Komatsu, 2007). The 406 
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background was uniform 10 cd/m2 gray (x = 0.3127, y = 0.3290). Stimuli were calibrated using a 407 

spectrophotometer (Photo Research PR-650). Personal computers controlled the task, presented the 408 

visual stimuli and recorded neural signals and eye positions. Eye movements were recorded using the 409 

scleral search coil method (Judge et al., 1980). The monkeys were required to maintain fixation within 410 

a 2.8° window throughout the trial, except for the saccade response. At the beginning of each trial, a 411 

small fixation spot was presented at the center of screen. When the monkeys had gazed at the fixation 412 

spot for 500 ms, it turned off, and a sample color stimulus was presented at the center of the display 413 

for 500 ms in both Categorization and Discrimination tasks.  414 

In the Categorization task, after the sample stimulus was turned off, two small spots of light appeared, 415 

one at the center of the visual field, the other 5° to the right (Figure 1a). If the sample color belonged 416 

to the “reddish” category (sample colors 1-4), the monkeys were rewarded for maintaining fixation on 417 

the center spot for another 700 ms (“no-go” response). If the sample color belonged to the “greenish” 418 

category (sample colors 8-11), the monkeys were rewarded for making a saccade to the spot on the 419 

right (“go” response). For the intermediate colors (sample colors 5-7), the monkeys were rewarded 420 

randomly regardless of its behavioral response. In an early phase of the recordings from one monkey 421 

(15 neurons), there were no intermediate colors; the “no-go” response was assigned to colors 1-5, the 422 

“go” response to colors 6-11. 423 

In the Discrimination task, after the sample stimulus was turned off, two choice stimuli appeared 3° 424 

above and below the fixation position (Figure 1b). The choice stimuli were the same shape and size 425 

as the sample stimulus; one was the same color as the sample stimulus, the other a slightly different 426 

color. The monkeys were required to make a saccade to the choice stimulus that was the same color as 427 

the sample. The two choice colors were three steps apart along the 11 sample colors – that is, the eight 428 

choice color pairs included colors #1-4 , #2–5, #3-6, #4-7, #5-8, #6-9, #7-10 and #8-11. This color 429 

interval was chosen so as to yield a relatively high discriminability (about 80-90% correct). 430 

Throughout the present paper, the term “Discrimination” is used for consistency with our previous 431 

study (Koida and Komatsu, 2007). Note that the task is also known as “matching to sample.” 432 

Electrophysiological recording 433 

Neuronal activity was recorded with single unit recording from the anterior part of the IT cortex in the 434 

monkeys. We could record from 125 neurons in total. The recording region was slightly lateral to the 435 

posterior end of the anterior middle temporal sulcus (anterior 9-14 mm in the stereotaxic coordinates, 436 

area TE), which is a region where color-selective neurons are concentrated (Komatsu et al., 1992; 437 

Matsumora et al., 2008). The activities of single neurons were first isolated with online monitoring 438 
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during recordings, then subject to offline spike sorting using a template matching algorithm, which 439 

confirmed that all of the data reported in this paper were single neuron activities. 440 

All data analyses were based on neural responses to the sample colors and the fact that the monkeys 441 

saw the same visual stimuli in the Categorization and Discrimination tasks. For this purpose, we 442 

analyzed neural spikes recorded up to 550 ms after the sample onset, taking into account the neural 443 

response delay to the visual stimuli. 444 

Our main results are based on a collection of single unit recordings (not a simultaneous recording of 445 

multiple neurons). In the population decoding analyses, we generated “pseudo-population” activities 446 

from those single neuron data by randomly resampling the trials, following a procedure reported in a 447 

previous study (Fetsch et al., 2012). A caveat of the analysis based on “pseudo-population” is that it 448 

omits the noise correlation (i.e., the correlation in trial-to-trial fluctuations) across neurons. As widely 449 

recognized, the noise correlation can have profound influences on the information coding by neural 450 

population, affecting particularly the resolution of sensory representation. From the decoding 451 

perspective, in many cases the noise correlation is generally considered to affect the accuracy of 452 

decoding (e.g., error bars added when plotting the decoder outputs) although how noise correlation 453 

actually limits the stimulus information is a subject of ongoing debate (Moreno-Bote et al., 2014). In 454 

this study, we do not primarily focus on the resolution of neural coding (reflected in the lengths of 455 

error bars) but on the “biases” induced by the change in the mean activity in each neuron, which is 456 

captured by the present single-unit recording. In addition, a control analysis confirmed by that 457 

artificially inducing noise correlations in the studied pseudo-population did not affect the overall 458 

results (Figure 7a). 459 

Likelihood-based decoding 460 

To visualize and characterize high-dimensional representation by neural populations, we mapped the 461 

neural population activity in the stimulus space by decoding the neural activity. From Bayes’ rule, the 462 

posterior probability on stimulus 𝑠 under a given neural population activity 𝒓(𝑡) is 𝑃(𝑠|𝒓(𝑡)) ∝463 

𝑃(𝒓(𝑡)|𝑠)𝑃(𝑠). In a full-normative framework, the prior distribution over the stimulus could be 464 

further modeled by assuming the hierarchical model with categorical prior on stimulus, 𝑃(𝑠|𝑐); that 465 

is, 𝑃(𝑠) = ∫ d𝑐𝑃(𝑠|𝑐)𝑃(𝑐), where 𝑐 denotes the category information (Tajima et al., 2016). In the 466 

present experiments, however, the stimulus was sampled from a uniform distribution, thus the 467 

problem reduces to maximizing the likelihood 𝑃(𝒓(𝑡)|𝑠). In our analysis, a maximum-likelihood 468 

decoder (Földiák, 1991; Sanger, 1996; Jazayeri and Movshon, 2006; Ma et al., 2006; Graf et al., 2011; 469 

Fetsch et al., 2012) of the stimulus was constructed based on the neural responses in the 470 
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Discrimination task and then applied to the data for Categorization task to reconstruct the neural 471 

population states in the perceptual stimulus space (Figure 1d; see also the later descriptions for the 472 

rationale behind this procedure).  473 

The decoder was constructed based on a standard likelihood-based population decoding approach as 474 

follows (Graf et al., 2011; Fetsch et al., 2012). Let 𝑟𝑖(𝑡) be the spike counts for the cell 𝑖 response at 475 

time bin t in a trial. The spike count was derived from a 50-ms boxcar window whose starting point 476 

moved with 10-ms step from 0 to 500 ms after the onset of a sample-color stimulus. We first 477 

estimated a probability distribution, 𝑃Dis(𝑟𝑖(𝑡)|𝑠), of responses evoked by stimulus s for each cell and 478 

each time bin, based on the data obtained during the discrimination task. This is approximated by a 479 

Gaussian distribution with a mean 𝜇𝑖(𝑡; 𝑠) and variance 𝜎𝑖(𝑡; 𝑠)2, which were respectively estimated 480 

from the mean and variance in the neural spike count data. The mean responses 𝜇𝑖(𝑡; 𝑠) to 11 sample 481 

stimuli were converted to smooth functions of the stimulus (a real number varying from 1 to 11) 482 

through cubic interpolation over the stimulus space, to obtain smooth likelihood functions in the later 483 

analysis. The variance estimate was denoised by fitting a linear function, 𝜎𝑖(𝑡; 𝑠)2 = 𝛼𝑖 × 𝜇𝑖(𝑡; 𝑠)2 +484 

𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙, with a stimulus- and time-invariant scalar variable (Fano factor), 𝛼𝑖, for each cell, in order 485 

to capture the potential variability in the Fano factor across neurons. To ensure that the decoder output 486 

matches the subject’s perception about color identity, we used the trials in which the subjects 487 

answered correctly in the task. The Gaussian model naively implies the potential for negative neural 488 

activity, the biological meaning of which is unclear. However, this does not cause a problem in the 489 

practical data analysis because the analyzed neural responses are always positive, and we can safely 490 

equate the analysis with the one based on a rectified Gaussian model that satisfies the non-negativity 491 

of the neural responses. In addition, we also tested a Poisson distribution as a generative model of 492 

spike count, and confirmed that the results were not qualitatively affected (Results). 493 

Combining these models of spike-count distributions derived from individual neurons and time bins 494 

yielded the likelihood of a population response.  495 

𝐿(𝑠; 𝐫(𝑡)) = −(𝒓(𝑡) − 𝝁(𝑡; 𝑠))
⊤

𝚺(𝑡; 𝑠)−1(𝒓(𝑡) − 𝝁(𝑡; 𝑠)) −
1

2
log|𝚺(𝑡; 𝑠)| −

𝑁

2
log 2𝜋, (1) 

where 𝝁 and 𝚺 are the mean and covariance of neural population response, respectively. In the main 496 

analysis, for simplicity, we assumed independent trial-to-trial variability in the neural firing (Sanger, 497 

1996; Dayan and Abbott, 2001; Jazayeri and Movshon, 2006; Ma et al., 2006; Brouwer and Heeger, 498 

2009; Fetsch et al., 2012)—we also observed that our main results were not affected by the decoder 499 

that takes into account the correlated variability among neurons (Figure 7). The joint log-likelihood 𝐿 500 

of a population response of N neurons, 𝒓(𝑡): = (𝑟1(𝑡), . . . , 𝑟𝑁(𝑡))⊤, given stimulus 𝑠 is 501 
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𝐿(𝑠; 𝒓(𝑡)): = log 𝑃Dis(𝒓(𝑡)|𝑠)

= − ∑(𝑟𝑖(𝑡) − 𝜇𝑖(𝑡; 𝑠))2/2𝜎𝑖(𝑡; 𝑠)2

𝑁

𝑖=1

− ∑ log 𝜎𝑖(𝑡; 𝑠)

𝑁

𝑖=1

−
𝑁

2
log 2𝜋 

  (2) 

Here, column vector 𝒓(𝑡): = (𝑟1(𝑡), … , 𝑟𝑁(𝑡))⊤ represents the population activity of all 𝑁 neurons at 502 

time 𝑡 (𝑁 = 125 in the present data). . Based on this population activity, the decoder output (stimulus 503 

estimate), 𝑠∗, is given by maximizing the aforementioned likelihood function, 𝐿(𝑠; 𝒓(𝑡)): 504 

𝑠∗(𝒓(𝑡)): = argmax𝑠 𝐿(𝑠; 𝒓(𝑡)). (3) 

This equation represents a mapping from the N-dimensional population state 𝒓(𝑡) to a one-505 

dimensional value, 𝑠∗, in the stimulus space. We iterated this decoding procedure for each time t. We 506 

used different decoders for individual time bins, by constructing a generative model of the spike 507 

counts for each time bin. The main results were unaffected when we used a single time-invariant 508 

decoder (constructed based on the average spike count statistics across 200–550 ms after stimulus 509 

onset) for all time bins (Results). 510 

To analyze the neural responses in the Categorization task, we used the same function, 𝑠∗(𝐫(𝑡)) [i.e., 511 

the same mean and variance parameters, (𝜇𝑖(𝑡; 𝑠), 𝜎𝑖(𝑡; 𝑠)2), for each neuron] as the decoder that was 512 

constructed based on neural activity in the Discrimination task. The decoder constructed based on the 513 

Discrimination task data does not necessarily provide an unbiased estimate of the stimulus for the 514 

Categorization task. We made use of this potential decoding bias to characterize the difference in 515 

neural population responses between the two tasks. If there were any systematic bias, it would suggest 516 

that the neural population changes the stimulus representation depending on task context. It is 517 

reasonable to construct the stimulus decoder based on neural responses in the Discrimination task 518 

because the perceived stimulus identity to be decoded could be confirmed with what the subjects 519 

reported in the Discrimination task. By comparing the decoder output to the subjects’ behavior, we 520 

were able to map the neural population response to the subjects’ perception of the stimulus identity.  521 

The rationale behind those procedures is as follows: in the Discrimination task, the subject was 522 

presented a sample color (e.g., light green), then later identified it by selecting from a pair of similar 523 

colors (e.g., the same light green vs. a slightly deeper green). When the subjects correctly identified 524 

the presented sample color, by construction, the presented color matched the chosen color, which 525 

suggests that they correctly perceived the sample color such that it could be discriminated from other 526 

similar colors in the perceptual space. Although such a correspondence between choice and 527 

perception is not always guaranteed if the subject’s choice is nearly random, it was not the case in this 528 

study because the subject showed high correct rate (about 80-90%) in the Discrimination task. 529 
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Nonetheless, there were a few error trials in which the presented colors differed from the chosen 530 

colors. In those error trials, it is not straightforward to tell what color was perceived by the subjects; it 531 

could be the chosen color, but alternatively, they might have actually perceived the presented color 532 

but made a mistake in the response, or they might have simply unattended to the task. Thus, we 533 

excluded those error trials from the present analysis, and focused on the correct trials in which the 534 

presented and chosen colors were identical. We also confirmed that the overall results were 535 

qualitatively maintained when we replicated the same analysis using half the recorded neural 536 

population without extremely high or low activity (by eliminating the neurons showing average firing 537 

rates outside the 25th-75th percentile of the whole population; Results), which excluded the 538 

possibility that a small subset of strongly-responding neurons determined the results of decoding. 539 

Fitting the task-dependent components in neural dynamics 540 

To investigate what form of neural response modulation explains the difference between the decoded 541 

stimulus dynamics in Discrimination and Categorization, we fitted the population responses in the 542 

Categorization task (𝒓(𝑡)|𝑠,Cat) by modulating those in the Discrimination task (𝒓(𝑡)|𝑠,Dis), based on 543 

four different models: three feedforward gain-modulation models and a recurrent model. 544 

Gain modulation model 1 (time-invariant, stimulus-independent gains): In the time-invariant gain-545 

modulation model, the neural response data in the Discrimination task were modulated so that they 546 

simulate the Categorization-task responses. The simulated Categorization-task response of neuron 𝑖, 547 

𝑟̂𝑖(𝑡)|𝑠,Cat, was provided as 548 

𝑟̂𝑖(𝑡)|𝑠,Cat: = 𝑔̅𝑖 𝑟𝑖(𝑡)|𝑠,Dis, (4) 

where 𝑔̅𝑖 denotes a constant gain-modulation for each cell i. The gain 𝑔̅𝑖 was estimated as follows: 549 

𝑔̅𝑖: =
1

|𝑆|
∑ (𝑟̅𝑖|𝑠,Cat

/𝑟̅𝑖|𝑠,Dis
)

𝑠∈𝑆

, (5) 

where 𝑆 = {#1, #2, … , #11}, and |𝑆| = 11.  𝑟̅𝑖 |𝑠,Cat
= 〈𝑟𝑖(𝑡)|𝑠,Cat〉𝑡 and 𝑟̅𝑖 |𝑠,Dis

= 〈𝑟𝑖(𝑡)|𝑠,Dis〉𝑡 are the 550 

time-averaged responses of neuron i to stimulus s in the Categorization and Discrimination tasks, 551 

respectively, where 𝑟𝑖(𝑡)|𝑠,Cat and 𝑟𝑖(𝑡)|𝑠,Dis are the respective responses of neuron i to stimulus s at 552 

time t during the Categorization and Discrimination tasks. The numbers of parameters were 125 553 

(corresponding to the number of recorded neurons 𝑁) in the time-invariant model. We analyzed the 554 

simulated population activity in the same procedure used for the actual response during the 555 

Categorization task. 556 
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Gain modulation model 2 (time-variant, stimulus-independent gains): Similarly, in the time-variant 557 

gain modulation model, the predicted Categorization-task response, 𝑟̂𝑖(𝑡)|𝑠,Cat, was given by  558 

𝑟̂𝑖(𝑡)|𝑠,Cat: = 𝑔𝑖(𝑡) 𝑟𝑖(𝑡)|𝑠,Dis. (6) 

The gain term 𝑔𝑖(𝑡) for each neuron 𝑖 was estimated as follows: 559 

𝑔𝑖(𝑡): =
1

|𝑆|
∑(𝑟𝑖(𝑡)|𝑠,Cat/𝑟𝑖(𝑡)|𝑠,Dis)

𝑠∈𝑆

. (7) 

In our main analysis, the number of neurons was 𝑁=125, thus the numbers of parameters were 125 × 560 

51=6375 (corresponding to the number of recorded neurons × the number of time bins) in this model. 561 

Gain modulation model 3 (time-invariant, stimulus-dependent gains): we also considered a gain 562 

modulation depending on the presented stimulus as a control (see Discussion for its biological 563 

interpretation). Note that the modulation component for each neuron can be trivially fitted by the gain 564 

modulation depending on both stimulus and time, since they are the only variables (except for the task 565 

demands) in the present experiment. Thus, here we tried to fit the data with a gain-modulation model 566 

in which the neuronal gains depend on the stimulus but not on time. In this model, the predicted 567 

Categorization-task response, 𝑟̂𝑖(𝑡)|𝑠,Cat, was given by  568 

𝑟̂𝑖(𝑡)|𝑠,Cat: = 𝑔𝑖(𝑠) 𝑟𝑖(𝑡)|𝑠,Dis. (8) 

The gain term 𝑔𝑖(𝑡) for each neuron 𝑖 was estimated as follows: 569 

𝑔𝑖(𝑠): = 𝑟̅𝑖|𝑠,Cat
/𝑟̅𝑖|𝑠,Dis

, (9) 

The numbers of model parameters were 125 × 11=1375 (corresponding to the number of recorded 570 

neurons × the number of sample colors). 571 

 572 

Recurrent model: Lastly, we also fitted the neural dynamics with a model that features a recurrent 573 

feedback. In the recurrent model, a self-feedback term was added to the responses in the 574 

Discrimination task so that the resulting modulated activities fit those recorded in the Categorization 575 

task. We assumed a restricted recurrent circuit with a single hidden layer consisting of two nonlinear 576 

hidden units. In this model, we assumed mutual connections between the recoded IT neurons and the 577 

two hidden units (which could be interpreted as the neural activity outside IT cortex, e.g., the frontal 578 

cortex, as modeled in further details later). There was no direct connection between the hidden units, 579 
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resembling two-layer restricted Boltzmann machines (Smolensky, 1986; Hinton, 2002). The model is 580 

a simplified version of the circuit model (Fig. 6a) that we used  to demonstrate the task-dependent 581 

change in attractor structures (see the later section); here we use this simplified version in purpose of 582 

the quantitative fitting. 583 

Based on this model, the hypothetical neural activity in the Categorization task, 𝒓̂(𝑡)|𝑠,Cat: =584 

(𝑟̂1(𝑡)|𝑠,Cat, … , 𝑟̂𝑁(𝑡)|𝑠,Cat)
⊤

, was provided as 585 

𝒓̂(𝑡)|𝑠,Cat ≔ 𝒓(𝑡)|𝑠,Dis + 𝑾𝒉(𝑡), 

𝒉(𝑡) ≔ 𝑓(𝑾⊤𝒓(𝑡 − 1)|𝑠,Cat + 𝒃), 
(10) 

where the 𝑁 × 2 matrix 𝑾 denotes the connectivity weights between the neurons to the two hidden 586 

units; the weights are symmetric between the bottom-up and top-down connections (from the neurons 587 

to the hidden units, and from the hidden units to the neurons, respectively). 𝒉(𝑡) = (ℎ𝟏(𝑡), ℎ𝟐(𝑡))⊤  is 588 

the activities of hidden units at time 𝑡. The function 𝑓(⋅) ≔ tanh (⋅) is the activation function for the 589 

hidden units. 𝒃 = (𝑏1, 𝑏𝟐)⊤ is the bias inputs to the hidden units. 𝑾 and 𝒃 were learned from the data, 590 

but kept constant across time and different stimuli. To optimize those parameters, we minimized the 591 

sum of squared error between the actual and predicted neural activities in the Categorization task, 592 

‖𝒓(𝑡)|𝑠,Cat − 𝒓̂(𝑡)|𝑠,Cat‖
2
, with a standard gradient descent method on 𝑾 and 𝒃. The number of 593 

parameters was 2𝑁 + 2 = 252, corresponding to the total number of connections and the bias inputs. 594 

Note that it is not necessarily straightforward to relate those two hidden units directly to the “red” and 595 

“green” category neurons modeled because such categorical information is represented in a mixed 596 

way in the circuit learned from the real data. Nonetheless, the goodness of fitting with this model 597 

demonstrates that the recurrent network with the restricted architecture is capable of describing the 598 

neural data quantitatively. It should be also noted that we do not consider that the task switching 599 

requires changes in all the connectivity weights among the neurons. Instead, we could assume a more 600 

parsimonious mechanism that features the attractor structure in the circuit is modulated through the 601 

change in a background input to the circuit (see the later subsection). 602 

Assessment of model-fitting performances: We assessed the model-fitting performances based on the 603 

cross-validation procedure as follows: we randomly divided the data into two non-overlapping sets of 604 

trials (“trial set 1” and “trial set 2”), the first of which was used to train models, and the second of 605 

which was used to test each model’s fitting performances. This procedure ensured that a difference in 606 

fitting performance did not reflect overfitting or a difference in the number of parameters. The model-607 

fitting errors, 𝐸CV, were quantified by the root mean square errors between the predicted and actual 608 

neural population activities, normalized by the “baseline” variability across trials: 609 
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𝐸CV =
〈(𝑟𝑖(𝑡)|𝑠,Cat,,trial set 2 − 𝑟̂𝑖(𝑡)|𝑠,Cat,,trial set 2)

2
〉

𝑖,𝑡,𝑠

 
1
2

 

〈(𝑟𝑖(𝑡)|𝑠,Cat,,trial set 2 − 𝑟𝑖(𝑡)|𝑠,Cat,,trial set 1)
2

〉
𝑖,𝑡,𝑠

1
2

, (11) 

where 〈⋅〉𝑖,𝑡,𝑠 is the average over the cells, time bins, and stimuli. The numerator corresponds to the 610 

error in the model prediction, whereas the denominator represents the “baseline” variability within the 611 

condition due to the trial-to-trial fluctuations in neural firing. Note that this measure itself is 612 

independent of the assumptions about decoders because it is computed directly from the neural 613 

population activities. 614 

Mutual information analysis 615 

The amount of information about a stimulus carried by the neural population response was also 616 

evaluated using mutual information, which does not require any specific assumptions about the 617 

decoder or the models of dynamical modulations. The mutual information between the stimulus hue 618 

and the neural responses within each time bin 𝑡 during the Categorization task was given by 619 

𝐼Cat(hue; 𝑡) = 𝐼(𝑠, 𝐫(𝑡)) = ∑ 𝑃Cat(𝑟𝑖(𝑡)|𝑠)𝑃(𝑠){log 𝑃Cat(𝑟𝑖(𝑡)|𝑠) − log 𝑃Cat(𝑟𝑖(𝑡))}

𝑠,𝑖

. (12) 

where 𝑃Cat(𝑟𝑖(𝑡)|𝑠) is the probability distribution of the 𝑖th neuron’s response (spike counts) evoked 620 

by stimulus 𝑠 during the Categorization task. The “hue” in the parenthesis indicates that this is the 621 

mutual information about the stimulus hue. Similarly, the mutual information between the stimulus 622 

category 𝑐 ∈ {Red, Green} and the neural responses within each time bin t was given by 623 

𝐼Cat(cat; 𝑡) = 𝐼(𝑐, 𝐫(𝑡)) = ∑ 𝑃Cat(𝑟𝑖(𝑡)|𝑐)𝑃(𝑐){log 𝑃Cat(𝑟𝑖(𝑡)|𝑐) − log 𝑃Cat(𝑟𝑖(𝑡))}

𝑐,𝑖

, (13) 

where 𝑃Cat(𝑟𝑖(𝑡)|𝑐) = ∑ 𝑃Cat(𝑟𝑖(𝑡)|𝑠)𝑠∈𝑆𝑐
 , and 𝑐 ∈ {Red, Green} denotes the stimulus category;  624 

𝑆Red = {#1, #2, #3, #4} and 𝑆Green = {#8, #9, #10, #11} are the sets of stimuli belonging to the 625 

“Red” and “Green” categories, respectively. The “cat” in the parenthesis indicates that this is the 626 

mutual information about the stimulus category. The mutual information values for the Discrimination 627 

task, 𝐼Dis(hue) and 𝐼Dis(cat), were provided by substituting 𝑃Cat(𝑟𝑖(𝑡)|𝑠) in the above equations with 628 

the corresponding spike count distributions, 𝑃Dis(𝑟𝑖(𝑡)|𝑠), obtained during the Discrimination task. 629 

The differential mutual information for hue and category were defined by Δ𝐼(hue; 𝑡) = 𝐼Cat(hue; 𝑡) −630 

𝐼Dis(hue; 𝑡) and Δ𝐼(cat; 𝑡) = 𝐼Cat(cat; 𝑡) − 𝐼Dis(cat; 𝑡), respectively. 631 
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We evaluated the cumulative values of mutual information over time (e.g., ∑ 𝐼Dis(hue; 𝑡′)𝑡
𝑡′=0  for the 632 

cumulative hue information in the Discrimination task). This cumulative mutual information reflects 633 

the amount of information obtained by observing the sequence of neural population responses. For 634 

this purpose, we used non-overlapping consecutive time bins (each with a duration of 20 ms). Note 635 

that the variability in neural responses can be temporally correlated even if we use the non-636 

overlapping time bins, although the magnitude of the autocorrelation generally decreases 637 

exponentially over time (Murray et al., 2014). Therefore, this cumulative mutual information should 638 

be interpreted as an upper bound of the total information obtained by observing the sequence of the 639 

neural population response. 640 

Unsupervised dimensionality reduction analyses 641 

We also conducted several unsupervised dimensionality reduction analyses to compare their results 642 

with that of the likelihood-based decoding. First, the standard principal component analysis (PCA) 643 

was applied to the set of trial-averaged data points (i.e., population response vectors 644 

{𝒓(𝑡)|𝑠,Cat, 𝒓(𝑡)|𝑠,Dis}|𝑠∈{#1,…,#11},   0 ms ≤ 𝑡 ≤ 550 ms) that varied over time 𝑡. Second, we performed 645 

PCA based on the differential responses between Categorization and Discrimination tasks (i.e., 646 

{𝒓(𝑡)|𝑠,Cat − 𝒓(𝑡)|𝑠,Dis}|𝑠∈{#1,…,#11},   0 ms ≤ 𝑡 ≤ 550 ms). Lastly, we conducted t-stochastic neighbor 647 

embedding (t-SNE) (van der Maaten and Hinton, 2008) on the trial averaged data 648 

({𝒓(𝑡)|𝑠,Cat, 𝒓(𝑡)|𝑠,Dis}|𝑠∈{#1,…,#11},   0 ms ≤ 𝑡 ≤ 550 ms) to examine the effects of nonlinearity in the 649 

unsupervised dimensionality reduction. 650 

A model of context-dependent attractor dynamics 651 

We introduced a simple recurrent model that provides a parsimonious explanation for the observed 652 

context-dependent change in attractor dynamics (see Figure 6a, Results). The model assumed 653 

bidirectional interactions between n hue-selective neurons (hereafter, hue neurons) in IT cortex and 654 

two groups of category-selective neurons (category neurons) outside IT cortex; for example, such 655 

neurons that encode category have been found in the prefrontal cortex (Freedman et al., 2001; McKee 656 

et al., 2014). This circuit share the basic architecture with our previous model that was proposed for 657 

general categorical inference (Tajima et al., 2016); here we extend this model to explain the context 658 

dependent bifurcation of attractor dynamics. Note that the category- and hue-neurons in this model 659 

should not be confused with the terms ‘Categorization-’ and ‘Discrimination-task preferred cells’ used 660 

in the previous study (Koida and Komatsu, 2007), which were the labels on the IT neurons introduced 661 

to describe the polarity of task-dependent modulation for each cell, and not relevant to the current 662 

model. 663 
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The dynamics of category neurons were described by differential equations as follows: 664 

𝑇𝐶𝐶̇1 = −𝐶1 + 𝑓(𝑾1
BU ⋅ 𝑯 + 𝐵), (14) 

𝑇𝐶𝐶̇2 = −𝐶2 + 𝑓(𝑾2
BU ⋅ 𝑯 + 𝐵), (15) 

𝑯 = 𝑾1
TD𝐶1 + 𝑾2

TD𝐶2 + 𝑰(𝑠, 𝑡), (16) 

where the dots between variables denote inner products of vectors. 𝑇𝐶  is the time constant for the 665 

dynamics of category neurons, which was set as 𝑇𝐶 = 100 ms in the simulation, roughly matched to 666 

the order of time constants in cortical neurons (Murray et al., 2014). 𝐶1 and 𝐶2 are scalar values 667 

representing mean activity of red- and green-preferring category neurons, respectively. The time 668 

constant for hue-neurons was neglected for the sake of the tractability in nullclines analysis. The 669 

faster dynamics in sensory neurons compared to those in higher-area is consistent with a previous 670 

report (Murray et al., 2014). We also confirmed that assuming non-zero time constant in hue neurons 671 

did not change the qualitative behavior of the model. The activation function in the simulation was 672 

given by a sigmoid function, 𝑓(𝑥) = exp(𝑘𝑥) /(1 + exp(𝑘𝑥)), where 𝑘 = 0.2, though the precise 673 

form of the activation function was not critical for the emergence of bistability as long as the neural 674 

activity was described by a monotonic saturating function. 𝑯 ≔ (𝐻1, … , 𝐻𝑛)⊤  is a vector 675 

representing the population activity of hue-neurons with different preferred stimuli (varying from red 676 

to green), which receive sensory input, 𝑰(𝑠, 𝑡) ≔ (𝐼1, … , 𝐼𝑛)⊤, from the earlier visual cortex. The hue 677 

neurons interact with category-neuron groups 𝐶1 and 𝐶2 through bottom-up and top-down connections 678 

with weights (𝑾1
BU, 𝑾2

BU) and (𝑾1
TD, 𝑾2

TD), respectively, where the connectivity weights were 679 

expressed as vectors (e.g., 𝑾1
BU ≔ (𝑊11

BU, … , 𝑊1𝑛
BU)

⊤
). The category neurons also receive a common 680 

background input, 𝐵. We assume that this background input is the only component that depend on 681 

task demand in this circuit. 682 

In the simulation, the numbers of hue-neurons were set to 𝑛 = 300, although the size of neural 683 

population did not have major effect on the results of simulation. Sensory input to hue-neuron 𝑖 was 684 

modeled using a von Mises function, 𝐼𝑖(𝑠, 𝑡) = 𝑔(𝑡) exp (𝜅 cos(𝑠 − 𝑠𝑖
pref

)), where the sharpness 685 

parameter 𝜅 = 2; 𝑠 ∈ [−π/2, π/2] is the stimulus hue, which varied from red to green, and 𝑠𝑖
pref

 is 686 

the preferred hue of neuron 𝑖; 𝑔(𝑡) = 0.5𝑒(𝑡−50)/100 + 0.5 for 𝑡 > 50, 𝑔(𝑡) = 0 for 𝑡 ≤ 0. The 687 

preferred hues were distributed uniformly across the entire hue circle, [−π, π]. Each category-neuron 688 

group contained 150 cells, which were uniform within each group. The connectivity weight between 689 

hue neuron 𝑖 and category-neuron group 𝑗 was modeled by 𝑊𝑗𝑖
BU = 𝑊𝑗𝑖

TD = 𝑎 cos(𝑠𝑗
Cat − 𝑠𝑖

pref
), 690 

where 𝑎 =  10/𝑛, 𝑠𝑗
Cat = (−1)𝑗 is the preferred hue of 𝐶𝑗. For simplicity, the bottom-up and top-691 
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down weights were assumed to be symmetric. We assumed that all the model parameters except for 692 

the background input 𝐵 were the same between different task conditions. The differential equations 693 

were solved with the Euler method with a unit step size of 0.25 ms. 694 
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Figures 

 

 

Figure 1. Color selectivity of IT neurons and the decoding-based stimulus reconstruction. 

(a) In the Categorization task, subjects classified sample colors into either a “reddish” or “greenish” 
group.  

(b) In the Discrimination task, they selected the physically identical colors.  

(c) Color tuning curves of four representative neurons in the Categorization and Discrimination tasks. 
The color selectivity and task effect are variable across neurons. The average firing rates during the 
period spanning 100–500 ms after stimulus onset are shown. The error bars indicate the s.e.m across 
trials. 

(d) The likelihood-based decoding for reconstructing the stimulus representation by the neural 
population.  
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Figure 2. Population dynamics in the perceptual domain. 

(a) State-space trajectories during the Categorization and Discrimination tasks. Small markers show 
the population states 100-550 ms after stimulus onset in 10-ms steps. Large markers indicate the 
endpoint (550 ms). The colors of the trajectories and numbers around them refer to the presented 
stimulus. 

(b) During the Categorization task, the decoded stimulus was shifted toward either the “reddish” or 
“greenish” extreme during the late responses but not during the early responses. The thickness of the 
curve represents the 25th–75th percentile on resampling. The yellow arrow on the horizontal axis 
indicates the sample color corresponding to the categorical boundary estimated from the behavior 
(subject’s 50% response threshold) in the Categorization task. 

(c) Evolution of the task-dependent difference in the decoded stimulus (the curve with a shade), as 
compared to the population average firing rate (the black solid and dashed curves). The difference in 
the decoded stimulus was larger in the late period (450–550 ms after the stimulus onset) than the 
early period (100–200 ms) (P=0.002, bootstrap test). The figure shows data averaged across all 
stimuli. The black curve and shaded area represent the median ± 25th percentile on resampling.  

(d) The time-evolution of the gain modulation models applied to the Discrimination-task data (the 
recurrent model and the three different gain-modulation models) compared to the actual evolution in 
the Categorization task (black curve, the same as in Fig. 3c). The curve and shaded areas represent 
the median ± 25th percentile on resampling.  
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Figure 3. Choice-related dynamics. 

(a) Actual monkey behavior. Note that the monkeys’ subjective category borders were consistent with 
the decoder output. The error bar is standard error of mean. The yellow arrow on the horizontal axis 
indicates the sample color corresponding to the putative categorical boundary based on the behavior. 

(b) Fraction of selecting Green category predicted by the likelihood-based decoding. The shaded area 
indicates the 25th–75th percentile on resampling.  

(c) The same analysis as Figure 2a (top) but with trial sets segregated based on whether the 
monkeys selected the “Red” or “Green” category. The results for stimuli #4–6 are shown. 

(d) The same analysis as Figure 2b, except that the trials were segregated based on the behavioral 
outcome. For stimuli #1–3 (#7–11), only the “Red” (“Green”) selecting trials were analyzed because 
the subjects rarely selected the other option for those stimuli. 

(e) Evolution of difference in the decoded color. Data were averaged across stimuli 4-6. The 
difference in the decoded stimulus was larger during the late period (450-550 ms) than the early 
period (50–150 ms) (P=0.002, permutation test). 
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Figure 4. Modulation increases task-relevant information.  

The figure shows the evolution of the cumulative mutual information difference after the stimulus 
onset. The dots indicate the statistical significance (P<0.05, permutation test; top black dots: the 
category information; bottom gray dots: the hue information). 

−10

0

10

20

Time [ms]

ΔI (category)

ΔI (hue)

0 100 200 300 400 500

M
u

tu
a

l 
in

fo
rm

a
ti
o

n
 d

if
fe

re
n

c
e

 [
b

it
s
]

(C
a

te
g

o
ri

z
a

ti
o
n

 -
 D

is
c
ri
m

in
a

ti
o

n
)

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 26, 2017. ; https://doi.org/10.1101/120725doi: bioRxiv preprint 

https://doi.org/10.1101/120725
http://creativecommons.org/licenses/by/4.0/


 

 

34 

 

Figure 5. Comparison to other dimensionality reduction methods. 

(a) Reconstructed neural population dynamics in 0–550 ms after stimulus onset are shown as 
trajectories in the space spanned by the three principal components. The numbers correspond to the 
stimulus index.  

(b) The fraction of data variance explained by each eigenvector. 

(c) PCA based on the differential activities between Categorization and Discrimination tasks. 

(d) The result of dimensionality reduction with t-stochastic neighbor embedding (tSNE). 
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Figure 6. Bifurcation of attractor dynamics in a simple neural circuit model. 

(a) Schematic of the model circuit architecture. IT hue-selective neurons (hereafter, hue-neurons), 𝑯, 

with different preferred stimuli (varying from red to green) receive sensory input, 𝑰(𝑠), from the earlier 
visual cortex. The hue neurons interact with category neuron groups 𝐶1 and 𝐶2 through bottom-up and 

top-down connections with weights (𝑾1
BU, 𝑾2

BU) and (𝑾1
TD, 𝑾2

TD), respectively. The category neurons 

also receive a common background input, 𝐵, whose magnitude depends on task context. Note that 

the modeled hue-neurons covered entire hue circle, [−π, π], although the figure shows only the half of 
them, corresponding to the stimulus range from red to green. 

(b) Activity evolution represented in the space of category-neurons in the Discrimination task (where 
the background input 𝐵 = −8). The red (dashed) and green (solid) curves represent nullclines for 
category-neurons 1 and 2, respectively. The black line shows a dynamical trajectory, starting from (0, 
0) and ending at a filled circle. The gray arrows schematically illustrate the vector field. 
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(c) The same analysis as in panel c but in the Categorization task (where 𝐵 = −1). The black and 
blue lines show two different dynamical trajectories, starting from (-0.01, 0.01) and (-0.01, 0.01), 
respectively (indicated as numbers “1” and “2” in the figure), and separately ending at filled circles. 

(d) The number of stable fixed points is controlled by the parameter B. Here, the parameter B was 
continuously varied as the bifurcation parameter while the other parameters were kept constant. The 

vertical axis shows the difference of category neuron activities, 𝐶2 − 𝐶1, corresponding to the fixed 
points. The solid black and blue curves show the stable fixed points; the dashed line indicates the 
unstable fixed point. The stimulus value was s = 0.  

(e–k) The model replicates recorded neural population dynamics. 

(e) Presented and decoded stimuli. The same analysis as in Figure 2b was applied to the dynamics 
of the modeled hue-neurons. 

(f) The same as panel e, except that the trials were segregated based on the choices (i.e., to which 
fixed point the neural states were attracted). The plot corresponds to Figure 3d. 

(g) Evolution of difference in the decoded color, corresponding to Figure 3e. 

(h) Mean activity of the entire neural population, corresponding to Figure 2c, inset. 

(i) Differences in mutual information about category and hue between the Categorization and 
Discrimination tasks, corresponding to Figure 4.  

(j) The activity trajectories of the modeled hue-neurons population in PCA space, corresponding to 
Figure 5a. 

Note that the scaling of the stimulus coordinate (ranging from – π/2 to π/2) used in the model is not 
necessarily identical to that of experimental stimuli (index by colors #1 – #11), and point of this 
modeling is to replicate the qualitative aspects of the data. 
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Figure 7. Robustness of the results to changes in the decoder. 

We replicated the main results of the paper using four different decoders. Both the stimulus-
dependent clustering effect and the temporal evolution were replicated with those decoders. (Left) 
State-space trajectories during the Categorization task (corresponding to Figure 2a, top). (Right) 
Time-evolution of the gain modulation models applied to the Discrimination-task data (corresponding 
to Figure 2d). 

(a) Results obtained by simulating noise correlation among neurons. Here we assumed that the 

covariance 𝜎𝑖𝑗
2  between two different neurons, i and j, is proportional to the correlation between their 

mean spike counts: 𝜎𝑖𝑗
2 = 𝑘√𝛼𝑖𝛼𝑗𝜇𝑖𝜇𝑗, where k is a constant shared across all neuron pairs (here, 𝑘 =

1), and 𝛼𝑖 is the Fano factor for neuron 𝑖.  

(b) Results based on a subset of the recorded cell population; excluded are cells showing extremely 
high or low activity, as compared to the typical firing rate of the population. We only used cells whose 
average firing rates (the average across all stimuli and time bins) were within the 25th-75th percentile 
of the whole population.  

(c) Results with a decoder based on Poisson spike variability. The generative model of neuron i’s 

spike count in response to stimulus s at time t was given by 𝑃(𝑟𝑖(𝑡)|𝑠) = 𝜇𝑖(𝑡; 𝑠)𝑟𝑖(𝑡) exp(−𝜇𝑖(𝑡; 𝑠)) /

𝑟𝑖(𝑡)! (i.e., the log likelihood was provided by 𝐿(𝑠; 𝐫(𝑡)): = log 𝑃(𝐫(𝑡)|𝑠) = ∑ 𝑟𝑖(𝑡) log 𝜇𝑖(𝑡; 𝑠)𝑁
𝑖=1 −

∑ 𝜇𝑖(𝑡; 𝑠)𝑁
𝑖=1 + 𝑐𝑜𝑛𝑠𝑡.) 

(d) Results with a time-invariant decoder. The mean and variance of each neuron’s spike count were 
computed by pooling all the time bins during the period spanning 200–550 ms after stimulus onset. 
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