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Abstract

Pyramidal cells and interneurons expressing parvalbumin, somatostatin, or vasoactive intesti-
nal peptide show cell type-speci�c connectivity patterns leading to a canonical microcircuit across
cortex. Dissecting the dynamics of this microcircuit is essential to our understanding of the mam-
malian cortex. However, experiments recording from this circuit often report counterintuitive and
seemingly contradictory �ndings. For example, the response of a V1 neural population to top-down
behavioral modulation can reverse from positive to negative when the bottom-up thalamic input
changes. We developed a theoretical framework to explain such response reversal, and we showed
how this complex dynamics can emerge in circuits that possess two key features: the presence of
multiple interneuron populations and a non-linear dependence between the input and output of the
populations. Furthermore, we built a cortical circuit model and the comparison of our simulations
with real data shows that our model reproduces the complex dynamics observed experimentally in
mouse V1. Our explicit calculations allowed us to pinpoint the connections critical to response re-
versal, and to predict the existence of more types of complex dynamics that could be experimentally
tested and the conditions to observe them.

Introduction

Three major non-overlapping classes of interneurons expressing parvalbumin, somatostatin, or vasoac-
tive intestinal peptide (henceforth denoted PV, SST and VIP respectively) make more than 80% of
GABAergic cells of mouse cortex [28]. These neurons show cell type speci�c connectivity within them-
selves and with excitatory (E) neurons [9, 25] leading to a canonical microcircuit in cortex. There
has been a lot of interest on the function of interneurons [6, 11, 13�15, 17, 31, 32], however we still do
not fully understand the mechanisms that underlie the behavior of this microcircuit which are often
complex and counterintuitive.

One particular example of complex behavior is the modulation of responses to visual stimuli during
locomotion, when V1 activity signi�cantly increases with respect to immobility [22] even in complete
absence of visual input [10]. VIP interneurons are known to be involved in such modulation because
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arti�cially activating (damaging) them mimics (blocks) the e�ect of running on visual response [4].
Since VIP cells inhibit SST cells which in turn inhibit excitatory, PV and VIP cells, a natural expla-
nation for this phenomenon is disinhibition [16, 31]: upon activation of VIP cells the SST population
is inhibited and therefore neurons targeted by the SST population are disinhibited, raising the overall
rate of the excitatory neurons. However recent experiments show that the network behavior might be
more complex. In particular in the absence of visual stimulation, the activation of VIP cells results
in an average decrease of SST population activity [3, 4] whereas in the presence of visual stimulation
the response of SST cells is reversed and its rate increases during locomotion [3, 24] which appears to
challenge the disinhibition hypothesis. This observations suggests that the nature of the interaction
between VIP and SST could be stimulus dependent.

These experimental results raise two questions: First, the external activation of a population that
directly inhibits a second population can trigger a positive response of the latter. What is the mecha-
nism behind this apparently paradoxical behavior? Second, the same top-down modulation can trigger
both a positive or a negative response of certain populations of the circuit depending on the sensory
input. Under which conditions can we expect one response or the other?

In this study we model cortical activity and provide a comprehensive explanation to these two
questions. We show that these counterintuitive phenomena rely on two basic features of cortical
networks: (i) the presence of multiple populations of interneurons and (ii) nonlinear responses to
input. Our framework is general and we use it to predict complex behaviors that have not yet been
experimentally tested.

Results

We simulate microcircuit activity using a four population �ring rate model. The average rate of each
population is given by a nonlinear function of its input that we refer to as the f-I curve [1]. The f-I curve
is such that when the input is low (below threshold) cells are little responsive to changes in external
input. Instead for high input (above threshold) small changes in the input can drive substantial changes
in the response. This nonlinearity has been analyzed experimentally and theoretically [21, 26] and as
we will show later, it is a key feature of the model.

Populations are connected according to the microcircuit scheme in (�gure 1a) which contains the
connections reported in both [9] and [25]. We also consider three sources of input: (i) top-down
modulation that targets VIP cells (ii) local recurrent input and (iii) constant background input set so
that the populations have some �xed baseline activity (see methods for details).

Response to top-down modulation depends on baseline activity

To illustrate possible complex behaviors displayed by the network, we �rst focused on the circuit
responses to top-down modulation. The simulation results from our model allow us to identify two
qualitatively di�erent scenarios. On the one hand, when the baseline activity of the network (i.e.
activity before the onset of the top-down modulation) is low, the rate of the SST population decreases
with respect to the baseline while the rates of the other populations (E, PV and VIP) increase (see
�gure 1b). On the other hand, when the baseline activity is high, the rate of all populations increases
with top-down modulation (see �gure 1c).

The surprising behavior exhibited by the SST population can be explained heuristically by analyzing
the response of the di�erent populations to external excitatory input targeting VIP cells. When the
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Figure 1: Response to top-down modulation depends on baseline activity. (a) Microcircuit connectivity and
top-down modulatory input. (b, c) Transient dynamics upon the onset of the top-down modulatory current
for low baseline activity (b) and high baseline activity (c). Under the low baseline activity condition SST is
inhibited and E and PV are slightly disinhibited. The high baseline activity condition shows an example of
response reversal in SST activity: it initially goes below the baseline rate but due to signi�cant change in E
activity and to the recurrent excitation it eventually reverses to a rate higher than baseline.

top-down modulation starts, the rate of the VIP population increases. This e�ect initially results in
a reduction of SST activity and therefore a reduction of inhibition to VIP, PV and E cells. When
baseline activity is low the E population is below threshold and this change in net input has a small
e�ect in the output. In that situation all populations quickly reach a stationary state. However, when
the baseline activity is high the E population is above threshold and a small change in input from SST
cells has a big e�ect on the rate of the E population. If the recurrent excitation in the microcircuit is
strong enough it can reverse the initial response of the SST population making it increase its activity
to a higher rate than the baseline.

Circuit behavior explained by response matrix

In order to formally characterize the steady state response of a population to external input we in-
troduce the response matrix M . The intuition behind the response matrix is that if we change the
input to population j (where j = E,P, S, V for excitatory, PV, SST and VIP populations respectively)
by a small amount δIj , then the change in rate of the population i will be δri = δIjMij . If Mij is
positive (negative), an increase of the external excitation to j will result in an increase (decrease) of
the rate of population i (see methods and table 3 for details). In contrast to the connectivity matrix,
which takes into account only the direct path from population j to i, the response matrix contains
information about all the possible ways in which population j can a�ect population i, namely through
indirect connections j-h-i. Due to the complexity of these indirect pathways, for di�erent values of
the connectivity matrix (but preserving the excitatory/inhibitory structure) Mij can be positive or
negative irrespective of whether the connection from j to i is inhibitory or excitatory. Furthermore
due to the nonlinearities in the f-I curve, the response depends on the baseline rate of each of the
populations and, as shown before, it can reverse its sign.

As an example we analyze in detail the term

MSV = CwSV ((wEE − dE)(wPP + dP )− wEPwPE) ,

where wij are the absolute values of the connection weights and therefore are positive by de�nition and
for the system to be stable C has to be positive (see methods for details). The terms di are proportional
to the inverse of the �rst derivative of the f-I curves and are always positive. In particular dE becomes
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Figure 2: Response matrix and disinhibition vs. response reversal regime. (a-b) Tuning curves for
the di�erent populations and baseline activity in both scenarios (low and high). In the low baseline
activity scenario (a) all populations are below threshold (�at part of the fI curve), instead in the high
baseline activity scenario (b) all populations are above threshold, where small changes in input result
in large changes in rate. (c-d) Response matrices for the two scenarios. In (c) the response of SST to
external excitation of VIP is negative, while the responses of E and PV are positive. This corresponds
to the disinhibition regime. In (d) the responses of all populations to external excitation of VIP are
positive, in particular, the response of SST is reversed with respect to (c) corresponding to the response
reversal regime.

arbitrarily large when the input is very low and tends monotonically to a positive constant d∞E for
high input. Therefore, if wEE ≤ d∞E then MSV will always be negative. However, for wEE > d∞E the
behavior is much richer: if input is high then dE will be close to its minimum d∞E and wEE > dE
allowing for MSV to be positive (provided that the product wEPwPE is small enough). Instead if the
input is low, dE will become very large and MSV will be negative.

It is remarkable that this change in the interaction between VIP and SST populations depends on
the activation level of E: modifying the state of one population has a impact in the interactions between
other populations. The heuristic explanation is that if the recurrent excitation is strong enough and
the E population is already strongly excited (above threshold), a small decrease in the inhibition from
SST to the E population can boost its activity and therefore strongly drive the whole microcircuit. If
instead, the E population is in a low activation state the change in inhibition will have a weak e�ect
that will not be able to reverse the response of SST.

This observation provides an explanation to the reversal of the response of SST to VIP activation
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when the baseline activity is changed: as we show in �gure 2a and 2c for low baseline activity, MSV is
negative and the presence of an external excitatory current targeting VIP cells will result in a negative
response of SST cells and positive response of E, PV and VIP cells, conforming to the disinhibitory
hypothesis. On the other hand, for high baseline activity (panels 2b and 2d), the response of the SST
population to input to VIP cells becomes positive leading to the response reversal regime.

Random network model

Experimental recordings showed a great diversity across neural responses even when recording from the
same type of cells. Although this diversity can have many origins, such as di�erent cell subtypes, we
proposed that random connectivity alone is su�cient to explain it. To do so we develop an extension
of our model where each population is composed of multiple rate units and where the probability that
one connection exists from one unit to another depends on the populations of the presynaptic and
postsynaptic units according to data extracted from [9,25] (see methods for details).

For each unit we measure the rate modulation (rate during top-down modulation minus baseline
activity) for the di�erent baselines. If the rate modulation is positive it means that the neuron is
more active in the presence of the modulatory current and vice versa. In 3b we show scatter plots
of the rate modulation in under the low baseline condition versus the rate modulation under the
high baseline condition for each unit. These simulations reveal that due to the heterogeneity in the
connectivity, the behavior of individual neurons can be quite variable while the population average
still corresponds to the behavior of the population based model. This variability can result in cells
within the same population having responses with opposite sign, as has been observed to be the case
in mouse V1 [3, 24, 27] and A1 [12]. In addition variability might also have further implications for
gating of signals, since variability in inhibitory cells has been proposed to modulate the response gain
of neural circuits [19].
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Figure 3: Random network model. (a) Schematic of the model. Each population is compsed of
several rate units and the connectivity between units is random with probabilities extracted from
experimental data in the literature. (b) Rate modulation (rate after the onset of the modulatory
current minus baseline rate) for low and high baseline activities. Each colored point corresponds to
one unit. Unit responses are very variable and, in particular within the same population di�erent units
might have responses with di�erent sign. White points correspond to the population average. Despite
the variability of individual responses the population average corresponds to the population responses
in the single unit model in �gure 1.
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Simulation of V1 accounts for experimental measurements

Our framework allows us to easily understand the counterintuitive behavior of V1 during locomotion
[3, 4, 24]. Di�erent levels of visual stimulation result in di�erent baseline activities and in this case
top-down modulation is triggered by locomotion.

To model visual input we use external currents. In the case of size-varying gratings this input has
two sources: thalamic input that targets excitatory cells and cortical input that targets SST cells. In
order to reproduce the surround suppression e�ect [2, 23] excitatory cells have a small receptive �eld
and therefore receive center input and SST cells have a large receptive �eld and receive surround input
(see methods for details).

Figure 4b shows the response reversal phenomenon when a weak visual stimulus is presented. Before
the visual stimulation the SST has higher activity for immobility than for locomotion, by contrast,
when the visual stimulus is presented, the activity of the SST population is higher for locomotion. In
�gure 4c we show the experimental data from [24] for three di�erent experimental conditions (darkness,
gray screen and grating) and in �gure 4d our simulations of V1 under the same conditions. Similarly
�gure 4e shows the experimental data from [3] for gratings of di�erent sizes and 4f shows the behavior
of our model.

Our simulations of this V1 circuit model reproduce the phenomena described in the literature: in
darkness, the activities of excitatory, PV and VIP populations increase during locomotion whereas
the activity of the SST population decreases with respect to the activity during immobility [3, 4].
In the presence of visual stimulation the activities of all populations, including SST, increase during
locomotion [3, 24].

To show that our results do not rely on a �ne tuning of the connectivity parameters or even on
certain details of the microcircuit structure we have run the model with several connectivity matrices
and perturbations of them (�gure S1). We have also considered other microcircuit structures to account
for the di�erences between studies ( [25] reports projections from PV to VIP and [9] from PV to SST)
and we also consider thalamic input to PV (�gure S2). In all these cases, the results were consistent
with our original �ndings.

Discussion

We developed a model that reproduces two counterintuitive phenomena observed in mouse cortex.
First, in certain cases the activation of VIP cells results in an overall positive response of the SST
population [3,24]. Second, the sign of the SST population response to excitation of VIP cells depends
on the baseline activity of the circuit [3, 4]. Two features of the system lead to this behavior: the
presence of multiple interneuron populations and the nonlinearity of f-I curves.

We explained heuristically the response reversal by closely looking at transient dynamics of the
circuit. One experimentally-testable prediction of our analysis is that in the response reversal regime,
the overall SST population response to top-down modulation should initially decrease and later increase
until reaching a higher rate than the baseline.
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Figure 4: Model of mouse V1 behavior. (a) Schematic of the microcircuit. Visual input targets E
and SST cells. Behavior related top-down modulation targets VIP cells. (b) Response of E and SST
populations when a weak visual stimulus (6 deg) is presented for locomotion and immobility. The E
population always shows a higher response with locomotion. On the other hand, before the visual
stimulation the SST population has higher activity for immobility than for locomotion and when the
visual stimulus is presented, the activity of the SST population is higher for locomotion. (c) Relative
change in calcium �uorescence for three levels of visual stimulation (darkness, gray screen and grating)
and two behavioral states: immobility (empty bars) and locomotion (�lled bars) extracted from [Pakan
et al. 2016]. (d) Rates (in Hz) of the populations in the V1 simulation for the same conditions as
in (c). (e) Relative change in calcium �uorescence for gratings of diameters ranging from 10 deg to
60 deg for the two behavioral states: immobility (empty dots) and locomotion (�lled dots) extracted
from [Dipoppa et al. 2016]. (f) Rates (in Hz) of the populations in the V1 simulation for the same
conditions as in (e). Comparison of (c) with (d) and (e) with (f) shows that our simulations reproduce
qualitatively the activity of neural populations in mice V1. Namely the activity of all populations is
higher during locomotion than during immobility whenever there is visual stimulation and for E, PV
and VIP also in the absence of visual stimulation. Our model shows a decrease in activity of SST during
locomotion as reported in the experiments (the change in activity of the SST population in darkness in
(b) is not statistically signi�cant). Our model also exhibits surround suppression for all populations.
The quantitative di�erences might be related to the fact that changes in calcium �uorescence are not
proportional to changes in rate.
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Based on our model we introduced the response matrix M , which is a comprehensive framework
to understand counterintuitive steady state responses. It provides explicit information about the
contribution of each individual connection. For example by looking at the elements in MSV (see table
3), one can readily see that if the recurrent excitation between pyramidal cells is not large enough,
MSV can only be negative and therefore response reversal of SST would not happen. Another example
is that if both SST and VIP populations have high baseline activities and if the SST-VIP-SST loop
is strong enough, MEE can be negative, i.e. the excitatory population can have a negative response
to excitatory input (see table 3 for the explicit expression of MEE). If the connections between the
SST and the VIP populations are removed (or weakened) or if their baseline activities are su�ciently
lowered MEE will always be positive. This constitutes another interesting prediction that can be
experimentally tested.

Our calculations also revealed sign correlations between entries of M , for example MSV and MSS

have opposite signs for any connectivity matrix (given the microcircuit) and for any baseline activity.
This predicts that in the regime where SST activity has a positive response to excitatory input targeting
VIP, SST has to have a negative response to external input targeting SST. This prediction means that
increased grating size, which provides extra excitation to the SST population [2], should actually
decrease the SST activity, as observed in both data [3] and our model but not in previous experiments
[2].

The analysis of the response matrix shows that for the given microcircuit structure all terms of
the matrix can be positive or negative. This is not the case for a network with one excitatory (E)
population and only one inhibitory (I) population [23, 30]. In that case MEE and MIE are always
positive, MEI is always negative and only MII can have both signs. In this sense, having more than
one inhibitory population results in a much more versatile network.

Our approach constitutes a general conceptual framework in which previous work can be better
understood [18,23,30]. It provides a parsimonious yet powerful explanation to surprising observations
of interneuronal circuits in V1 [3,13,24] without assuming top-down excitatory inputs targeting SST or
PV neurons. Furthermore it could be extended to explain similar phenomena observed in A1 [12, 29].
In addition it is in line with experimental results that show that VIP interneurons play an important
role in cortical activity modulation [7, 8, 20].

We have shown that similarly to the now well-known paradoxical e�ect that the presence of a single
inhibitory neuron type can cause [23, 30], the presence of multiple types of interneurons has an even
stronger impact on the activity of neural circuits. We have also exposed the e�ect of nonlinearity of
the f-I curve. Our analysis suggests that in a circuit with multiple populations, the most interesting
circuit behavior is found when spontaneous baseline activity is close to threshold since in that regime
responses will change the most with small changes in population rates. These two features signi�cantly
broaden the richness of the dynamics of cortical circuits and enhance their usefulness for cognitive
and behavioral computations. We conclude that computational models and mathematical analysis
are critical to fully understand the dynamics of neural circuits underlying behavior, especially when
several types of interneurons are involved as intuition alone may be misleading and provide erroneous
predictions on such circuits.
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Methods

Firing rate based population model

The state of the system is characterized by the rates ri. To model the average rate of each population
we use a function of the input Vi as the one introduced in [1]

ri = f(Vi) =
Vi − Vth

τ(Vth − Vr)
1

1− e−(Vi−Vth)
(1)

where Vth = −50 mV and Vr = −60 mV are the threshold and reset potentials respectively and τ is
the membrane time constant. Vi is the average input to each of the populations and is given by

Vi = Vl +

∑
j

Wijrj + Ii

 /gil (2)

where Vl = −70mV is the reversal potential and gl is the membrane conductance. W is the connectivity
matrix and therefore

∑
jWijrj is the recurrent local input. Ii is the external input current. The rate

dynamics are given by

τr
dri
dt

= −ri + f(Vi) (3)

where τr = 2 ms [5]. Since the parameters of the f-I curve are population dependent (see table 2),
di�erent populations will have di�erent rates for the same input. The nonlinearity of the f-I curve has
very important consequences. Namely, for low input f(Vi) is almost �at, and therefore changes in the
input will have almost no e�ect on the rate. By contrast, for strong input f(Vi) tends asymptotically
to a straight line with slope 1

τi(Vth−Vr) and changes in the input will elicit a large change in the rate. As
we will show later, this feature is key to reproduce the response reversal observed in the experiments.

The connectivity matrix W is generated by rejection sampling, i.e. by generating random matrices
that have the microcircuit structure (inhibitory and excitatory connections) and selecting the ones that
produce the desired responses. The simulations of �gures 1 and 2 where done with the connectivity
matrix given in table 1.

from
E PV SST VIP

to

E 3.36 -1.84 -3.23 0
PV 1.96 -3.63 -2.93 0
SST 2.87 0 0 -1.04
VIP 1.9 0 -1.17 0

Table 1: Connectivity matrix.

Behavioral state is modelled with a constant top-down modulatory current of 10 pA that targets
VIP cells. We also include a constant background input so that in the absence of the top-down
modulatory current, the E, PV, SST and VIP populations will have spontaneous average rates of 1,
10, 3 and 2 Hz respectively for the low baseline activity scenario and 30, 50, 30 and 20 Hz for the high
baseline activity.
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E PV SST VIP

gl 6.25 nS 10 nS 5 nS 5 nS
τ 28 ms 8 ms 16 ms 16 ms

Table 2: Population dependent parameters.

Response matrix and response reversal

In order to characterize the response of a population to external excitatory input to the network we
calculate how its rate will change for a small change in external input. We focus on stationary states
ri = f(Vi). If we apply a small perturbation to the external input δIi, the network will reach a new
stationary state

ri + δri = f(Vi + δVi) = f(Vi) + f ′(Vi)δVi +O(δV 2
i ) (4)

where f ′(Vi) is the derivative of f with respect to V and

δVi =

∑
j

Wijδrj + δIi

 /gil . (5)

Since ri = f(Vi), when we linearize f around V and ignore terms of order δV 2 and higher we obtain
the following self-consistent equation

δri = f ′(Vi)

∑
j

Wijδrj + δIi

 /gil . (6)

We de�ne the entries of response matrix as the derivative Mij =
∂ri
∂Ij

, which can be obtained from the

limit δIj → 0 in the system of equations given by (6) and in matrix form can be written as

M = (D −W )−1 (7)

where D is a diagonal matrix with entries Dii = gl,i/f
′(Vi). As it was explained in the results section,

the nonlinear behavior of the terms Dii is essential to explain the response reversal regime. Dii becomes
arbitrarily large as Vi → −∞ and decreases monotonically to d∞i = τi(Vth − Vr)/gl when Vi →∞.

In table 3 we give the explicit formulas to all the entries of the response matrix in terms of the
entries of the connectivity matrix W and D (we denote w = |W |, di = Dii and C = det(D −W )−1).
Note that, because of the complex interactions in the network, the sign of Mij is never determined
exclusively by that of Wij .

Random network model

We consider a network with 800 E units, 100 PV units, 50 SST units and 50 VIP units. Each unit
within a population has the same f-I curve with the parameters in table 2. The probabilities pij of a
connection from each unit in population j to each unit in population i are estimated from data [9,25]
adnare given in table 4.

The strengths of the connections are rescaled so that the average input of a unit in population j
from all units in population i is Wij . Top-down modulatory current and background input is identical
to all units within the same population.
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MEE = C(wPP + dP )(dSdV − wSV wV S)
MPE = C(wPE(dSdV − wSV wV S)− wPS(wSEdV − wSV wV E))
MSE = C(wPP + dP )(wSEdV − wSV wV E)
MV E = C(wPP + dP )(wV EdS − wSEwV S)
MEP = −CwEP (dSdV − wSV wV S)
MPP = −C((wEE − dE)(dSdV − wSV wV S) + wES(wSEdV − wSV wV E))
MSP = −CwEP (wSEdV − wSV wV E)
MV P = −CwEP (wV EdS − wSEwV S)
MES = −CdV (wES(wPP + dP )− wEPwPS)
MPS = −CdV (wESwPE − (wEE − dE)wPS)
MSS = −CdV ((wEE − dE)(wPP + dP )− wEPwPE)
MV S = −C(wV E(wES(wPP + dP )− wEPwPS) + wV S((wEE − dE)(wPP + dP )− wEPwPE))
MEV = CwSV (wES(wPP + dP )− wEPwPS)
MPV = CwSV (wESwPE − (wEE − dE)wPS)
MSV = CwSV ((wEE − dE)(wPP + dP )− wEPwPE)
MV V = C(wES(wES(wPP + dP )− wEPwPS)− dS((wEE − dE)(wPP + dP )− wEPwPE))

Table 3: Entries of the respone matrix.

from
E PV SST VIP

to

E 0.02 1 1 0
PV 0.01 1 0.85 0
SST 0.01 0 0 -0.55
VIP 0.01 0 0.5 0

Table 4: Connection probabiliries for the random network model.

Mouse V1 model

In the simulations of V1 activity we use the connectivity matrix given in table 5.
We model thalamic input with an external excitatory current that targets E and SST cells. In

the experiments in [3, 24] the authors consider three levels of visual stimulation which are: darkness,
gray screen and grating. To model darkness condition we assume a total absence of visual stimulation
(therefore IE = 0 pA, IS = 0 pA). For gray screen we use a small input current to the excitatory
population (IE = 50 pA, IS = 0 pA). Finally to model di�erent grating diameters the value of the
input is a sigmoid function of the grating diameter θ:

Ii(θ) =
ai

1 + e−θ/bi+5
(8)

where bE = 2, bS = 6, aE = 100 pA, aS = 20 pA. With this parameters E cells receive center input
(input saturates for diameters ∼ 20 deg) and SST cells receive surround input (input to SST saturates
for diameters of ∼ 60 deg) [3].

To demonstrate that our results do hold for a wide range of connectivity matrix and do not have
to be �ne tuned, we simulate several di�erent connectivity matrices that produce the same qualitative
behavior. We also make perturbations of these matrices by multiplying each entry by a random variable

11

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 6, 2017. ; https://doi.org/10.1101/124669doi: bioRxiv preprint 

https://doi.org/10.1101/124669


from
E PV SST VIP

to

E 3.30 -3.48 -2.98 0
PV 1.73 -4.25 -1.07 0
SST 3.50 0 0 -4.51
VIP 0.53 0 -0.13 0

Table 5: Connectivity matrix for the mouse V1 model.

uniformly distributed in the interval [0.9, 1.1]. This amounts to randomly modifying each connection
within ±10% of its original value (see �gure S1).

In the alternative models of �gure S2 where visual stimulus input also targets PV cells, we use
IP = 0 pA for darkness, IP = 10 pA for gray screen and bP = 2, aP = 20 pA for gratings.
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Figure S1: Robustness of the behavior. Top: Example of three connectivity matrices that have the same
qualitative behavior. Bottom: rate modulation (rate during locomotion minus rate for immobility).
Each bar corresponds to the average rate modulation of 20 random perturbations of the matrices on
the top where each entry has been multiplied by a random variable uniformly distributed in [0.9, 1.1],
which corresponds to random changes of up to ±10%. Error bars correspond to the minimum and
maximum rate modulations of the 20 realizations. Despite quantitative variations, the qualitative
behavior is always the same: rate modulation of SST population in darkness is always negative; rate
modulation for all other cases is always positive.
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Figure S2: Two alternative microcircuits with visual input targeting E, SST and PV populations and
PV to VIP (a) and PV to SST (b) connections.
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