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Abstract

We introduce the feature-weighted receptive field (fwRF), an encoding model designed to
balance expressiveness, interpretability and scalability. The fwRF is organized around the
notion of a feature map—a transformation of visual stimuli into visual features that preserves
the topology of visual space (but not necessarily the native resolution of the stimulus). The
key assumption of the fwRF model is that activity in each voxel encodes variation in a
spatially localized region across multiple feature maps. This region is fixed for all feature
maps; however, the contribution of each feature map to voxel activity is weighted. Thus,
the model has two separable sets of parameters: “where” parameters that characterize the
location and extent of pooling over visual features, and “what” parameters that characterize
tuning to visual features. The “where” parameters are analogous to classical receptive fields,
while “what” parameters are analogous to classical tuning functions. By treating these as
separable parameters, the fwRF model complexity is independent of the resolution of the
underlying feature maps. This makes it possible to estimate models with thousands of high-
resolution feature maps from relatively small amounts of data. Once a fwRF model has been
estimated from data, spatial pooling and feature tuning can be read-off directly with no (or
very little) additional post-processing or in-silico experimentation.

We describe an optimization algorithm for estimating fwRF models from data acquired
during standard visual neuroimaging experiments. We then demonstrate the model’s appli-
cation to two distinct sets of features: Gabor wavelets and features supplied by a deep convo-
lutional neural network. We show that when Gabor feature maps are used, the fwRF model
recovers receptive fields and spatial frequency tuning functions consistent with known orga-
nizational principles of the visual cortex. We also show that a fwRF model can be used to
regress entire deep convolutional networks against brain activity. The ability to use whole
networks in a single encoding model yields state-of-the-art prediction accuracy. Our results
suggest a wide variety of uses for the feature-weighted receptive field model, from retinotopic
mapping with natural scenes, to regressing the activities of whole deep neural networks onto
measured brain activity.

Keywords: Feature-weighted receptive field, Voxel-wise encoding model, Deep neural
network, Visual cortex, fMRI
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1. Introduction1

This paper describes and demonstrates the feature-weighted receptive field (fwRF) model,2

a new approach to building encoding models for visual brain areas. We initially developed3

the fwRF as a method for linking the visual features learned by deep artificial neural net-4

works (DNNs) to activity in the human brain (measured, in our case, with fMRI). In recent5

years DNNs have been trained to perform visual processing tasks (e.g., human-level object6

recognition, natural image captioning, etc.) that previously could only be performed by7

biological visual systems [1]. They have also been shown to provide excellent models of8

processing in visual cortex [2, 3, 4]. For this reason, the internal representations used by9

DNNs provide a natural and compelling set of hypotheses about the visual features encoded10

by activity in real brains.11

In previous work [5], we have argued that an excellent method for testing if a set of visual12

features (such as those learned by DNNs) is encoded by activity in the brain is to embed13

those features in an encoding model. An encoding model specifies a mapping from a set of14

visual features to a prediction of brain activity. The visual features in the model can be15

regarded as hypotheses about the visual features that might be encoded in brain activity.16

In encoding models, distinct visual features are each assigned a weight that indicates the17

importance of the visual feature for explaining measured brain activity. Important features18

will typically have large weights while unimportant features will have small weights. The19

weights for visual features are learned from a set of training data using an appropriate20

optimization algorithm—typically some form of regularized regression. Once the model21

weights have been learned, the model can be validated and compared to other models by22

testing its ability to predict brain activity in response to stimuli or task conditions that were23

not part of the training set.24

The typical DNN is a gargantuan construct consisting of hundreds of thousands of nodes.25

The scale of these networks makes it challenging to fit them into the encoding model frame-26

work. In developing the fwRF we considered four specific challenges that together make up27

the performance goals of the fwRF model:28

� Expressiveness : One way to fit DNNs into the encoding model framework is to regress29

each layer of a DNN onto brain activity independently. Although this approach has30

proven highly effective [2, 4], this method for reducing model scale comes at a cost of31

model expressiveness. We expect the costs to be severe in densely connected networks32

that do not admit an obvious decomposition in relatively small stacks of feature maps.33

Thus, an explicit performance goal of the fwRF modeling approach is to be able to34

construct voxelwise encoding models that simultaneously regress all feature maps in a35

DNN onto brain activity.36

� Interpretability : Models with many thousands (or millions) of feature weights pose an37

obvious interpretive challenge. One aspect of this challenge is to extract simple visual38
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cortical functional descriptors such as receptive field sizes and centers and tuning39

functions for the visual features in the model. Thus we sought a modeling approach40

that would yield explicit receptive field-like locations and pooling size descriptors,41

as well as explicit feature tuning functions that could be easily read-off from model42

parameters.43

� Scalability : The regularized regression techniques we have used in the past [6, 7, 8] are44

likely to incur prohibitive memory or compute-time costs when scaled up to encoding45

models that use entire DNNs. Thus we sought to impose a set of reasonable constraints46

on our encoding model that would limit the growth of model parameters with model47

expressiveness without compromising the accuracy of model predictions.48

� Compatibility : Any approach to building encoding models for visual areas should be49

able to use visual features from any source including, but not limited to, DNNs. Thus,50

while achieving the three goals mentioned above, we wanted a modeling approach that51

could also be used to construct encoding models that have already been proven to be52

effective, such as the Gabor wavelet pyramid model [6], the population receptive field53

model [9], the motion energy model [8], and models that use abstract features derived54

from other machine learning approaches [10].55

To meet these performance goals we based the fwRF modeling approach on three key56

design principles:57

� Visual features of the model organized into feature maps : In a fwRF model, visual58

features must be configured as pixels in a stack of feature maps. A feature map is a59

transformation of visual stimuli into abstract visual features. Each visual feature is a60

pixel in an image that preserves the topology of visual space (but not necessarily the61

native resolution of the stimulus). Note that this is a very general requirement, since62

features that consist of a single value (e.g., the nodes in a full connected layer of a63

DNN) can be treated as feature maps with a single pixel.64

� Explicit receptive field-like model : Within visual areas, population activity at each65

point in the cortical sheet encodes visual features within a limited and contiguous66

region of the visual field. For this reason, the fwRF model contains an explicit receptive67

field-like model which we call the feature pooling field because it pools over pixels in68

feature maps (as opposed to pixels in the stimulus). The feature pooling field has69

an explicit center that indicates the location of a feature map that makes the largest70

contribution to the activity measured in the voxel, and a feature pooling radius that71

measures how quickly the contribution decays with distance from the center.72

� Space-feature separability : In a fwRF model the location and radius of the feature73

pooling field are independent of the content of feature maps. The model thus assumes74

that activity measured in a single voxel will not encode distinct features at distinct75

locations, but rather a weighted combination of features at a single location. This76
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space-feature separability makes the fwRF model scalable by keeping the complexity77

of the model independent of the resolution of the feature maps.78

Here we show that the fwRF model can recover the location and radius of feature pooling79

fields and feature tuning functions that are consistent with known principles of cortical80

organization with minimal post-training analysis (interpretability), using either a small set81

of Gabor maps (compatibility) or a massive set of feature maps from a deep neural network82

(expressiveness), while achieving state-of-the art prediction accuracy within a reasonable83

(i.e., a few hours) training time (scalability).84

2. Methods and materials85

2.1. Data86

The data used in this study are described in detail in Ref. [11]. Briefly, functional87

BOLD activity was measured in the occipital lobe with 4T INOVA MR scanner (Var-88

ian, Inc.) at a spatial resolution of 2mm × 2mm × 2.5mm and a temporal resolution89

of 1 Hz. During the acquisition, subjects viewed sequences of 20o × 20o greyscale nat-90

ural photographs while fixating on a central white square. Photographs were presented91

for 1s with a delay of 3s between successive photographs. The data, available online at92

https://crcns.org/data-sets/vc/vim-1, is partitioned into distinct training and vali-93

dation sets. The training set consists of estimated voxel activation in response to 1,75094

photographs while the validation set consists of estimated voxel activation in response to95

120 photographs. Figures in this study refer to data from subject 1 of the vim-1 dataset96

(similar results were obtained for subject 2).97

2.2. Feature-weighted receptive field model98

In this section we describe the general form of the feature-weighted receptive field (fwRF)99

model, the algorithm for optimizing the model to predict activity in individual voxels, two100

specific variants of the fwRF model and an alternative to the fwRF model.101

2.2.1. General form and motivation of the model102

The fwRF model for a single voxel has three main components: a stack of feature maps,103

a vector of feature weights, and a feature pooling field.104

Feature maps are maps of visual features over visual space (see Fig. 1A and B for exam-105

ples). A feature map can be thought of as an image in which the pixels do not necessarily106

indicate the amount of light or color at a particular location, but may instead indicate the107

degree to which a potentially abstract visual feature is present or absent. A visual feature108

can be any sort of visual description of an image. Gabor wavelets are examples of visual109

features. Convolving an image with a vertically oriented Gabor filter, for example, produces110

a map of vertically oriented edge features. Objects can also be considered visual features.111

For example, we could obtain a “car” feature map by simply setting to 1 the value of image112

pixels occupied by a car and setting to 0 the value of all other pixels. Features can be113

much simpler than edges and/or objects. In the case of the population receptive field (pRF)114
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Figure 1: The fwRF model. (A) A schematic illustration of a fwRF for a single voxel (grey box on brain, top
right). The fwRF predicts the brain activity measured in the voxel, r, in response to any visual stimulus,
S (bottom left). The stimulus is transformed into one or more feature maps (three feature maps, Φk, Φl,
and Φm, are shown in blue with pink borders). The choice of feature maps is entirely up to the user,
and reflects her hypotheses about the visual features that are relevant to brain regions of interest. The
resolution of the feature maps (∆, indicated by pink grids) can vary, although each feature map spans
the same degree of visual angle as the stimulus S. Each feature map is filtered by a 2D Gaussian feature
pooling field, g, that is sampled from a grid of candidate feature pooling fields (grey box at top left;
candidate feature pooling field centers (µx, µy) are illustrated by the grid of black points, while candidate
feature pooling field radii (σg) are illustrated by dashed circles). The feature pooling field radius and location
are the same for each feature map. The output of the feature pooling field filtering operation (illustrated as
black dots in the center of the dashed feature pooling fields on each feature map) for each feature map is
then weighted by a feature weight (black curves labeled wk, wl, wm). These weighted outputs are summed
to produce a prediction of the activity r. In the text we describe an algorithm for selecting the optimal
feature pooling field and feature weights for each voxel. (B) Gabor wavelet feature maps are constructed
by convolving the input images with complex Gabor wavelets followed by a compressive nonlinearity (see
text for details). (C) Deepnet feature maps were extracted the layers (labeled Ki) of a deep convolutional
network pre-trained to label images according to object category.

model [9], the feature map is simply a binary map of the pixels occupied by a high-contrast115

stimulus (e.g., a wedge, ring, or bar).116

Formally, a feature map is a matrix function. Given an image St, the feature map Φk(St)117

outputs a matrix where elements φkij(St) are feature map pixels. A fwRF model may include118

multiple (typically between 1 and 104) feature maps, so we index each feature map by k,119

and let Φ = {Φk(S)} denote the full set of K feature maps in a fwRF model.120
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Why should a fwRF model include more than one feature map? In many cases, we will not121

know what features will best explain activity in the brain regions of interest (ROIs). Thus,122

Φ will ideally include enough feature maps to capture the breadth of reasonable hypotheses123

about what is encoded in the activity of ROIs. We then use training samples (activity/image124

pairs) to infer which of the features are most important for explaining the activity of each125

voxel. We do this by assigning to each feature map in a fwRF model an associated feature126

weight, wk, that indicates how important the kth feature map is for predicting how activity127

will vary across images. These feature weights are the “what” parameters of the model since128

they indicate the visual features that are important for explaining activity in the voxel.129

Note that when constructing multiple voxelwise encoding models, the feature maps Φ are130

the same for each voxel, but the feature weights vary across voxels.131

A final and critical assumption of the fwRF model is that activity measured in individual132

voxels is driven most strongly by feature map pixels that are close to the center of the voxel’s133

feature pooling field. The farther the feature map pixels are from this center, the weaker134

the contribution they will make to measured brain activity. We assume that both the center135

and radius (in units of deg.) of the feature pooling field is the same across all feature maps.136

The feature pooling field can thus be thought of as a window on the feature maps that does137

not change from one map to the next. This is a reasonable assumption when the number138

of pixels in a feature map times the pooling size of the individual pixels is roughly constant139

across all feature maps. In such a case, the feature pooling field covers less and less pixels140

in a feature map as the resolution decreases, but each feature unit in turns inherently pools141

over a larger visual area.142

In this treatment, we model the feature pooling field as an isotropic 2D Gaussian blob
(although they could be more complicated functions)

g(x, y;µx, µy, σg) =
1√

2πσg
exp

[
−(x− µx)2 + (y − µy)2

2σ2
g

]
,

where the mean parameter µ = (µx, µy) is the feature pooling field center and the vari-143

ance parameter σg is the feature pooling field radius. To predict the response of the neuron or144

voxel to an image St, the feature maps for that image are formed, the feature pooling field is145

applied to each feature map, and the feature weights are applied to these outputs. Formally:146

r̂t =
K∑
k

wk

∫ D/2

−D/2

∫ D/2

−D/2
g(x, y;µx, µy, σg)φ

k
i(x)j(y)(St)dxdy (1)

where r̂t is the predicted activity in response to image St and D is the total visual angle147

sustained by the image St. The discretization depends on the resolution of the feature map148

under consideration such that i(x) = b(2x + D)/2∆c (likewise for j(y)) where ∆ = D/nk149

is the visual angle sustained by one pixel of a feature map with resolution nk × nk. This150

definition reduces to a discrete weighted sum when the resolution of a feature map is very151

high relative to the size of the feature pooling field (i.e. when ∆� σg) and reduces to a single152

feature map spatial unit being exclusively selected when the size of the feature pooling field is153

smaller the resolution of the feature map. In practice, there is often an additional voxel-wise154
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bias parameter b, which we omit for simplicity since it does not play a role in the validation155

accuracy.156

When optimizing the model for a particular voxel, the goal is to infer values for the157

feature pooling field parameters σg and µ, and feature weights w = (w1, . . . , wK) that result158

in accurate predictions of the unit’s response to any image.159

2.2.2. Optimization algorithm for the fwRF model160

The optimal fwRF model parameters were estimated by minimizing a least-squares cost161

for each voxel. Let us write the parameters concisely as Θ = (w,µ, σg), then the cost for a162

single voxel is163

L (Θ) =
∑
t

(rt − r̂t (Θ))2 , (2)

where rt is measured activity in response to image St, and r̂t (Θ) is the prediction of the164

fwRF model (as defined above) expressed as an explicit function of the model parameters165

Θ.166

For fixed feature pooling field parameters, the fwRF model is linear in the feature weights167

w and one can optimize the feature weights via regularized regression. However, the model168

has a nonlinear dependence on the feature pooling field parameters µ and σg. Therefore, we169

construct a grid of candidate feature pooling field locations and sizes. For each of these G170

candidate feature pooling fields, we perform stochastic gradient descent (with early stopping)171

on the feature weights. Under this procedure, for each candidate feature pooling field, the172

gradient of L (Θ) with respect to w is computed using 80% of the data samples in the training173

set. Gradient descent is performed for all candidate feature pooling fields for a fixed number174

of iterations, resulting in G candidate models for the voxel. The model that minimizes cost175

on the remaining 20% of the training data is considered the optimal model for the voxel and176

retained for further analysis. See the supplementary materials for a pseudocode detailing177

the optimization procedure.178

2.2.3. Software implementation179

The fwRF models described here were implemented using Theano, a Python toolkit for180

machine learning [12]. A more detailed description of the main procedures is given in the181

supplementary materials (Algorithm A.1) as well as an estimate of the model scaling under182

various conditions (Figure A.1). Furthermore, executable IPython notebooks that illustrate183

the construction and training of the fwRF models described here are available online at184

https://github.com/styvesg/fwrf.185

2.3. Details of the models186

In the following, we will consider three different models: A fwRF model based on Gabor187

wavelets (Fig 1B), a fwRF model based on feature maps from a DNN (Fig 1C), and a deep188

network layerwise regression based on the same network (Fig 2).189
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Figure 2: Deepnet layerwise ridge regression method. In the layerwise model feature maps (bottom) are
supplied by the same DNN used in the Deepnet-fwRF model. In contrast to the fwRF method, the
layerwise ridge regression has one feature weight (curved black lines labeled wk

ij) per feature map pixel
(illustrated by pink grid overlaid onto feature maps). Feature weights are fit independently for each layer,
resulting in L (where L is the number of layers in the DNN) distinct encoding models for each voxel. For
each voxel (small box labeled r in the brain diagrams), the model with the best prediction accuracy (ρ) on
a held-out model selection set is selected and retained for further analysis. In this illustration the model
associated with the second layer of the DNN is selected (green box and checkmark) while the models for the
first and third layers are discarded (red X ’s).

2.3.1. fwRF model with Gabor wavelet feature maps (Gabor-fwRF)190

For the Gabor-fwRF model, each of the K feature maps is associated with a single191

2D complex-valued Gabor wavelet. We’ll denote the gabor wavelet h (ωk, θk), where ωk192

and θk are the spatial frequency (cycles/degree) and orientation (radians) of the wavelet,193

respectively. Then for the Gabor-fwRF, Φk(S) = log
(

1 +
√
|S ∗ h (ωk, θk) |

)
. In this study,194

we used K = 96 gabors at 12 log-spaced spatial frequencies between 0.25 cyc./deg. and 6.0195

cyc./deg. For each frequency we sampled 8 evenly-spaced orientations between 0 and 7π/8.196

The grid of candidate feature pooling fields included 16 radii between σg = 0.25 and σg = 8.197

Candidate feature pooling field centers were spaced 0.61 degrees apart (regardless of radius)198

for a total of G = 16, 384 candidate feature pooling fields. The model for each voxel was199

run for 20 epochs of stochastic gradient descent with batch size of 200 and step size of 10−3
200

starting from an initial state of w = 0. Increasing the maximum number of epochs seemed201

to confer no further significant improvement.202

2.3.2. fwRF model with Deep Convolutional Neural Network feature maps (Deepnet-fwRF)203

Each of the K feature maps in the Deepnet-fwRF model is associated with a feature204

map in one layer of a deep convolutional neural network. The network contains one input205

layer, 5 convolutional layers (interleaved with max-pool layers) and 3 fully-connected layers.206

The depth (number of feature maps) and resolution (square root of the number of pixels in207
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each feature map) for each convolutional layer was (96, 55), (256, 27), (384, 13), (384, 13),208

(256, 13) respectively. The fully-connected layers contained 4, 096, 4, 096 and 1, 000 units209

respectively. The network was trained to classify images in the ImageNet database (http:210

//image-net.org) according to 1, 000 distinct class labels. For a complete description of211

the network architecture and training, see [13]. The exact structure and trained network212

weights can be downloaded as part of the Caffe package [14] and is referred therein as the213

bvlc reference caffenet network (details can be found at http://caffe.berkeleyvision.214

org/model_zoo.html).215

All feature maps from all convolutional layers, as well as up to 1024 units from the216

fully-connected layers (when the number of feature maps in a layer exceeded this amount,217

we used the first 1024 feature maps which exhibited the most variance to the training set),218

were used for the Deepnet-fwRF model resulting in a model with 4, 424 feature weights.219

The grid of candidate receptive fields included 10 receptive field sizes between σg = 0.7 and220

σg = 8.0. Candidate feature pooling field centers were spaced 1.25 degrees apart (regardless221

of size) for a total of G = 2250 candidate feature pooling fields. The model for each voxel222

was run for 20 epochs of stochastic gradient descent with batch size of 200 and step size of223

10−4 starting from an initial state of w = 0.224

2.3.3. Layerwise Deepnet regression model (Deepnet-lReg)225

In addition to the fwRF models described above we constructed a layerwise deepnet226

regression model for each voxel, as shown in Figure 2, following the work of Ref. [2]. For227

each voxel, 9 independent models (corresponding to the 5 convolutional layers, three fully-228

connected, and the final label probability layer of the DNN, respectively) were estimated229

and evaluated on a held-out subset (a randomly selected 10% of the samples) of the training230

data. Suppose that the model based upon layer l has the lowest loss on the held-out subset231

of the training data. If we denote pixel (i, j) of the kth feature map of layer l as φlkij , then232

the Deepnet-lReg model is specified as follows:233

r̂t =
∑
i,j,k

φlkij (St)w
lk
ij (3)

Note that this layerwise regression model assigns an independent weight to each pixel234

in each feature map, resulting in a total of Kl × Nl parameters, where Kl and Nl are the235

depth and number of units, respectively, of layer l. Weight optimization was performed via236

ridge-regression. The ridge hyperparameter was estimated using a brute force search over237

14 log-spaced values between 10−6 and 108. The layer/hyperparameter pair that minimized238

cost on the held-out subset was considered optimal and retained for further analysis (Fig.239

2).240

2.4. Intepretation of the feature pooling field radius241

The feature pooling field specifies the center and radius (i.e., standard deviation) of242

a 2D isotropic Gaussian function, g, that is applied to each feature map in the encoding243

model. It is important to emphasize that the pooling radius σg models pooling over feature244

map pixels, not pixels in the stimulus. The pixels in any feature map will have their own245
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intrinsic pooling radius, σf, that specifies the region of the visual stimulus over which pixels246

are pooled to compute the feature transform (Fig 3). For some models the pooling radius247

of the feature map pixels is known explicitly. For example, in the population receptive field248

(pRF) model of Ref. [9], the pooling radius of each feature map pixel is determined solely249

by the downsampling applied (if any) to the visual stimulus as a pre-processing stage before250

model fitting. In the case of the Gabor-fwRF, the pooling radius of the feature map pixels251

is determined by the Gaussian envelope of the Gabor wavelet, which is known explicitly.252

However, note that the situation is slightly more complicated for the Gabor-fwRF model253

because the feature maps span multiple scales, so that pixels in feature maps associated254

with high-frequency wavelets have a smaller pooling radius than pixels in feature maps255

associated with low-frequency wavelets. The situation is even more complicated for the256

Deepnet-fwRF model. Not only do the feature maps of Deepnet-fwRF model scan multiple257

scales, but the exact pooling radius of the pixel in any feature map is only implicitly specified258

by the convolutional filters learned when the DNN was trained to label objects. Thus,259

although it is safe to assume that feature map pixels in the top layers of the DNN have a260

larger pooling radii than pixels in lower layers, the exact radii can be difficult to estimate.261

Given these considerations, the pooling radius in most fwRF models must be treated as a262

lower bound on the pooling radius that would be obtained if a pRF analysis were applied to263

data from a dedicated retinotopic mapping experiment. In what follows, we treat σf as the264

pooling radius of pixels in the feature map that makes the largest contribution to predicting265

voxel activity, and make use of the following approximation:266

σ2
pRF = σ2

g + σ2
f (4)

where σpRF is the standard deviation of the Gaussian pooling function used in a pRF267

analysis. For the Gabor-fwRF model (where σf is known) we apply this relation and report268

the pRF radius σpRF. For the Deepnet-fwRF model, we will report only the feature pool-269

ing field radius σg.270

2.5. Model evaluation comparison271

For each voxel, the prediction accuracy of each of the three models was evaluated and272

compared. Model evaluation was performed by correlating a model’s predicted responses273

r̂ with measured responses r across all 120 samples in the validation set. This resulted274

in a measure of prediction accuracy ρ ∈ [−1, 1] for each voxel. To compare models, we275

constructed accuracy/advantage plots (Fig. 7). To construct these plots, we first created a276

scatter plot in which each dot corresponds to a single voxel. The position of each dot along277

the vertical axis indicates the average prediction accuracy of the two models being compared,278

while the offset to the left or right of the vertical line at 0 indicates the difference in prediction279

accuracy between the two models. Thus, position along the horizontal axis indicates the280

advantage in prediction accuracy of one model relative to the other. Second, the individual281

voxels were binned to create an estimate of voxel density in the accuracy/advantage plane.282
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2.6. Feature map contribution to the prediction accuracy283

For both the Gabor-fwRF and the Deepnet-fwRF, the feature maps all contribute linearly284

to the final prediction according to Eq. 1. While it may be common to look at the weights of285

this linear combination to determine the relative importance of each contribution, the value286

of the weights themselves are dependent upon the typical values of each feature map, such287

that it makes any comparison across feature maps difficult. For this reason, and due to the288

linearity of the model, we chose to look instead at ρl = cov(r̂l, r)t/
√

var(r̂)tvar(r)t where289

r̂l is the same as Eq. 1 but where the index k over feature maps only runs over k ∈ Kl, a290

subset of feature maps sharing certain properties. For a list of disjoint subset Kl that cover291

all K feature maps, it follows that
∑

l ρl = ρ where ρ is the Pearson correlation coefficient292

between the actual and predicted activity for that voxel. We therefore call these ρl’s the293

contributions to the total prediction accuracy.294

Figure 3: Interpretation of the feature pooling field radius. The feature pooling field in the fwRF model
specifies the pooling radius (σg) over feature map pixels (feature map illustrated as blue plane; pixels
indicated by pink grid; feature pooling field illustrated as black dashed circle). The pixels in a feature map
(two pixels are labeled by black dots) have their own intrinsic scale that is specified by a pooling radius
(σf, solid gray circles in white plane) over pixels in the stimulus (white plane). Assuming that both the
feature pooling field and the pooling field of the feature map pixels are Gaussian, an estimate of the square
of the population receptive field radius (σpRF, large solid black circle in the white plane) can be obtained by
summing the square of the feature pooling field radius with the square of the pooling radius of the feature
map pixels.

3. Results295

We fit and then evaluated fwRF models using a previously published and publicly avail-296

able dataset [6, 7]. The dataset contains estimates of functional BOLD activity in response297

to greyscale natural photographs from voxels in visual brain areas V1, V2, V3, V4, V3A,298

V3B, and LO. Voxels in visually responsive cortex anterior to LO, labeled “anterior occipital299

cortex” in a previous publication [7] are also included.300
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Figure 4: Feature pooling fields and spatial frequency tuning for the Gabor-fwRF model. (A) Panels show
data from distinct ROIs (labeled in upper left corner). Each circle shows the feature pooling field of a
single voxel (only voxels with ρ > 0.2 are included in these plots). The radius of each circle is the pRF
radius (σpRF) estimated from the feature pooling field radius (σf) using the relation of Eq. 4. Circles are
color-coded according to radius for ease of interpretation. In early visual areas, receptive fields estimated by
the Gabor-fwRF tend to be relatively small and scattered across the visual field; in higher visual areas, they
are relatively large and concentrated at the fovea. (B) The average estimated pRF (σpRF) is plotted against
feature pooling field eccentricity. Color indicates brain ROI. Lines show the best linear fits. Radius increases
linearly with eccentricity in all ROIs. (C) The feature pooling field radii also exhibit linear scaling with
eccentricity, although they underestimates the pRF radii in all ROIs. (D) Spatial frequency tuning. Curves
show the average contribution to the total prediction accuracy of each spatial frequency. As expected, the
average preferred spatial frequency shifts downward from perifoveal (left) to peripheral eccentricities (right),
and from lower to higher visual brain areas.

3.1. fwRF models recover feature pooling fields and tuning functions for both simple and301

complex features302

An established encoding model for early visual areas is the Gabor Wavelet Pyramid303

(GWP) model [6, 7]. To ensure that the fwRF modeling approach is compatible with this304

established model we first designed a fwRF version of the GWP, referred to here as the305

Gabor-fwRF model. To construct feature maps for the Gabor-fwRF model each photograph306

in the experimental stimulus set was convolved with each of 96 complex Gabor wavelets307

(12 spatial frequencies, 8 orientations) and then passed through an elementwise nonlinearity308

(see Methods for complete details). This procedure produced 96 distinct feature maps309

that were used for the Gabor-fwRF model. For each voxel in the dataset we estimated310

the optimal feature weights and feature pooling field by performing gradient descent on the311

feature weights and brute-force grid search on the feature pooling field radii and centers. The312

Gabor-fwRF feature pooling fields conformed to well-known patterns of visual receptive field313
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organization (Fig. 4A-C). In lower visual areas, feature pooling fields are relatively small314

and uniformly tile the visual field (e.g., Fig. 4A, V1 panel) while in higher visual areas,315

receptive fields are relatively large and concentrated at the fovea (e.g., Fig. 4A, LO panel).316

In all areas, the Gabor-fwRF uncovers a positive linear relationship between pooling size and317

eccentricity (Fig. 4B). The slope of the lines relating the feature pooling field eccentricity318

to the estimated pRF radii σpRF in each ROI are comparable to those presented in previous319

studies [9]. As expected, feature pooling field radii (σg) bound the pRF radii from below320

(Fig. 4C), and, like the pRF, exhibit an attenuated size/eccentricity relationship in early321

visual areas.322

The spatial frequency tuning functions of the Gabor-fwRF model (Fig. 4D) also con-323

form to well-known properties of visual cortical organization. Voxels with feature pool-324

ing field centers that are relatively close to the fovea prefer (on average) relatively high325

spatial frequencies. Lower visual areas prefer larger spatial frequencies more than higher326

visual areas. Voxels with receptive fields relatively far from the fovea prefer relatively small327

spatial frequencies, with lower visual areas again having a higher spatial frequency preference328

than higher visual areas.329

A known failing of encoding models that rely on Gabor-like visual features is that their330

prediction accuracy becomes increasingly poor when applied to intermediate and higher331

cortical visual areas. However, recent work [2, 4] has shown that feature maps sourced by332

DNNs that have been trained to classify objects can be used to significantly improve the333

prediction of encoding models for intermediate and high-level visual areas. We therefore334

used the fwRF modeling approach to design a Deepnet-fwRF in which the feature maps335

are taken from the internal representations of a deep convolutional neural network. The336

Deepnet-fwRF model included all feature maps from 5 distinct convolutional layers, as well337

as up to 1, 024 feature maps per layer from 3 fully-connected layers. This resulted in a338

fwRF model with 4, 424 feature weights.339

The Deepnet-fwRF model reveals retinotopic organization consistent with that revealed340

by the Gabor-fwRF model. The feature pooling field radius recovered from the models341

exhibit a positive linear dependence upon eccentricity, and increase monotonically across the342

hierarchy of visual ROIs. Voxelwise estimates of feature pooling field center were consistent343

with estimates obtained from the Gabor-fwRF model Figure 5C. The distance between344

centers provided by the two models decreased with the quality of their predictions (up345

to a limit due to the finite grid of feature pooling field centers used by the optimization346

algorithm). These results suggests that the ability of the fwRF modeling approach to uncover347

the retinotopic organization of visual areas is relatively insensitive to the feature maps used348

in the encoding model, so long as those feature maps confer accurate model prediction349

accuracy.350

As expected, the Deepnet-fwRF also uncovered feature tuning functions that align the351

increasing complexity of the network’s feature maps with the increasing complexity of visual352

representations in the brain (Fig. 5D). The average contribution of feature maps in each layer353

of the network to each ROI depended on the position of the ROI within the visual hierarchy.354

Deepnet-fwRF models for V1 and V2 assigned little contribution to network layers 5 and355

higher while the contributions assigned to layers 5 and higher increased dramatically for later356
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visual areas V3, V4, and LO. However, note that even ROIs that received a relatively strong357

contribution from a single layer (e.g., V1 and DNN layer “conv1”) nevertheless received a358

non-negligible contribution from other DNN layers as well (Fig. 6). This is especially true359

for voxels with peripheral feature pooling field centers Fig. 5D, right panel). For these voxels360

the Deepnet-fwRF model distributes contributions across DNN layers much more uniformly.361

This suggests that the Deepnet-fwRF’s ability to linearly combine feature maps across layers362

is a potentially important attribute of the model.363

Figure 5: Feature receptive field and layer tuning for the Deepnet-fwRF. (A) Panels show data from distinct
ROIs (labeled in upper left corner). Each circle shows the feature pooling field of a single voxel (only voxels
with ρ > 0.2 are shown here). The radius of each circle is the feature pooling field radius (σg). As in
the Gabor-fwRF model, the feature pooling fields are relatively small and scattered for early visual areas,
and relatively large and foveated for higher visual areas. (B) The Deepnet-fwRF uncovers a positive linear
relationship between feature pooling field radius and center eccentricity. (C) Cumulative distribution of
the distance between feature pooling field centers under the Deepnet-fwRF and Gabor-fwRF models. Each
colored curve shows the cumulative distribution conditioned upon the prediction accuracy threshold given
in the legend. Agreement between the models is generally high and increases with increasing predication
accuracy threshold. (D) The average contribution to the total prediction accuracy of models in each brain
area are plotted for each layer of the DNN for voxels with peri-foveal (left panel) and peripheral (right panel)
feature pooling field centers. Models in all brain areas receive significant contributions from multiple DNN
layers. The contribution of the early DNN layers is attenuated for higher visual cortical areas, while the
reverse trend occurs for deep layers of the DNN hierarchy.

3.2. The Deepnet-fwRF model predicts activity more accurately than less expressive models364

Our analysis of the Deepnet-fwRF feature weights demonstrate that feature maps from365

across the DNN hierarchy contribute to prediction accuracy in all brain ROIs (Figure 6).366

The capacity for cross-layer blending of feature maps makes the Deepnet-fwRF model highly367
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Figure 6: Contributions of the DNN layers to dorsal and ventral stream predictions. Each column shows the
distribution of the DNN layer contributions to the prediction accuracy for a single ROI. Colored bars within
each column indicate the contribution to the prediction accuracy averaged over all voxels in that ROI. The
contribution of the lowest (conv1) and highest (fc8) layers exhibit a clear counter-gradient organization.
Contributions of intermediate DNN layers are also graded, but are much more uniformly distributed across
ROIs.

expressive, which may in turn allow it to make more accurate predictions than models that368

are less expressive. To test this hypothesis, we compared the prediction accuracy of the369

Deepnet-fwRF to the Gabor-fwRF model and to an encoding model that runs a layerwise370

regression of DNN feature maps (Deepnet-lReg). Under the Deepnet-lReg model, weights371

are assigned to every pixel in every feature map of a single DNN layer that is selected via372

a brute-force optimization procedure. Thus the Deepnet-lReg model effectively imposes a373

hard layerwise sparseness constraint. This can be contrasted to fwRF models, which impose374

a hard spatial constraint in the form of space-feature separability, but do not impose any375

constraint on the combination of DNN layers that contribute to each model.376

We found that, for the current dataset, the Deepnet-fwRF model has a significant advan-377

tage in prediction accuracy over both the Gabor-fwRF and Deepnet-lReg models (Fig. 7).378

For visual areas V1, V2, and V3 the advantage over the Gabor-fwRF model is subtle in379

general and is in fact non-existent for voxels with feature pooling field centers near the fovea380

(Fig. 8). The advantage of the Deepnet-fwRF model over the Deepnet-lReg model in these381

areas is more pronounced. The Deepnet-fwRF model more accurately predicts activity for382

87% of these voxels, including voxels for which the Deepnet-lReg model fails completely.383

For visual areas V4, V3A/B, and AOC the Deepnet-fwRF model also enjoys an advantage384

in prediction accuracy, out-predicting the Gabor-fwRF and Deepnet-lReg models for an385

average of 74% of the voxels.386
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Figure 7: Comparison of the Gabor-fwRF, Deepnet-fwRF, and layerwise deepnet regression models. Each
of the four accuracy/advantage plots displays a comparison of prediction accuracies for two models. The
position along the vertical axis indicates the average prediction accuracy for the models under comparison;
shifts to the right or left along the horizontal axis indicated a relative improvement in prediction accuracy
for one of the models (model 1 is presented to the left of model 2). The color of each hexagonal bin indicates
the number of voxels in a local region of the plot (log scaled). The histogram at the top of each plot
represent the distribution of relative improvements for all voxels whose prediction accuracy is above 0.2 for
at least one of the two models, which correspond graphically to all voxels above the red dashed line. The
number on each side represents the fraction of voxels that are improved under that model. In the plots
on the left, a shift in the data towards the left indicates an advantage for Gabor-fwRF model. In plots
on the right, a shift of the data towards the right indicates an advantage for the Deepnet-lReg model. In
all plots, a shift of the data toward the midline indicates an advantage for the Deepnet-fwRF. The upper
plots display data for voxels in intermediate and higher visual areas (V4, V3A, V3B, LO, and “other”); the
lower plots display data for voxels in the early visual cortex (V1, V2, V3). For intermediate brain areas, the
Deepnet-fwRF outperforms both the layerwise regression and Gabor-fwRF models. For early visual areas,
the Deepnet-fwRF strongly outperforms the layerwise regression model, but only weakly outperforms the
Gabor-fwRF. The Deepnet-fwRF thus seems to have the strongest overall advantage for brain areas that
require complex feature spaces. The “banana” shape of the distribution in the lower right suggests that
the fwRF model provides strong and appropriate regularization, since voxels with low prediction accuracy
under the more complex layerwise regression model are effectively “rescued” by the Deepnet-fwRF.
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Figure 8: Model advantage as a function of eccentricity. The blue curves indicate the fraction of voxels (left
vertical axis) for which the Gabor-fwRF model has higher prediction accuracy than the Deepnet-fwRF model
as a function of eccentricity (average feature pooling field center eccentricity from Gabor-fwRF and Deepnet-
fwRF models; horizontal axis). The green curves indicate the number of voxels (right vertical axis) available
for analysis at each eccentricity, with a bin width of 1 degree. The Gabor-fwRF model performs better than
the Deepnet-fwRF model for foveal voxels that prefer high spatial frequency. The advantage of the Gabor-
fwRF for very foveal voxels disappears when the analysis is restricted to voxels with low spatial frequency
preference (ω < 2 cycles/deg.; dashed curves).
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4. Discussion387

We have introduced the feature-weighted receptive field (fwRF), a new approach to build-388

ing voxelwise encoding models for visual brain areas. The results of this study suggest that389

the fwRF modeling approach can be used to achieve the performance goals of expressiveness,390

scalability, interpretability and compatibility laid out above. The key design principle of the391

fwRF modeling approach is space-feature separability, which endows the model with an392

explicit receptive field-like component that facilitates interpretation, and makes it possible393

to scale the number of feature maps in the model without incurring a per-pixel increase in394

model parameters. We find that when this approach is applied to a deep neural network395

with thousands of feature maps, the resulting encoding model achieves better prediction396

accuracy than comparable encoding models for most voxels in the visual system.397

4.1. Relationship to previous work398

Several important voxelwise modeling approaches have preceded the fwRF modeling ap-399

proach. One very popular and important class of models are those designed specifically for400

retinotopic modeling. This includes the inverse retinotopy method [15] and the population401

receptive field method [9]. These methods permit estimation and detailed analysis of the402

locations and sizes of voxelwise receptive fields. However, they do not include an explicit403

feature map. As a consequence, they do not reveal any information about tuning to vi-404

sual features (e.g., spatial frequency, orientation) and must be estimated with dedicated405

retinotopic mapping experiments that utilize stimuli optimized for the purpose.406

The fwRF model is a special case of the linearized, regularized regression approach407

described in [16]. This more general approach also depends upon the construction of a408

set of nonlinear features. Unlike the fwRF, these nonlinear features are not required to409

be arranged in a feature map. Like the fwRF, they represent hypotheses about the visual410

features encoded in brain activity. The fwRF model overcomes two limitations of this more411

general approach. First, in the more general approach the number of model parameters412

scales with the number of feature map pixels. This pixelwise scaling necessarily imposes a413

trade-off between the resolution and the number of feature maps used in the model. Second,414

under the general regression approach deriving an explicit receptive field and feature tuning415

function from models weights often requires in-silico experiments on the models. This can in416

fact be a very powerful tool for model interpretation, but ideally it should not be necessary417

for recovering basic receptive fields and feature tuning properties.418

4.2. Using the fwRF to measure receptive field size419

The fwRF model yields a receptive field-like size measure that we have referred to as the420

“feature pooling field radius”. We took pains to emphasize that this measure, σg, is impor-421

tantly different from the more familiar population receptive field (pRF) size, σpRF, which422

is in turn importantly different from the classical receptive field sizes of single neurons [9].423

The differences between these measures underscore the fact that receptive field size depends424

entirely upon the features being pooled over. Thus whenever possible pooling sizes should425

be interpreted in light of the pooling required to compute the features being represented.426
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This “feature pooling”, as we have called it, is not always easy to estimate. However, we427

have shown that even when these estimates are not available, the feature pooling field radius428

σg can provide a lower bound on pRF size that exhibits the positive relationship between429

size and eccentricity that is a hallmark of visual cortical organization.430

4.3. Using the Deepnet-fwRF to map changes in representational complexity across visual431

areas432

Our Deepnet-fwRF model results are consistent with those reported in Ref. [2], which433

show that changes in representational complexity across visual brain areas and layers of the434

DNN are well-aligned. Nonetheless, analysis of the Deepnet-fwRF model weights (Figures 5D435

and 6) shows that the contributions to the predictions for any ROI are widely distributed436

across DNN layers, particularly for voxels with peripheral feature pooling field centers. This437

may reflect the fact that activation in different DNN layers can make redundant contributions438

to the Deepnet-fwRF model predictions. For example, “conv1” alone may be able to explain439

90% of the explainable variance of a voxel in V1 while, at the same time, “conv2” alone440

would be able to explain 85% of it, with a large overlap between the two predictions. As a441

result, the variance explained by the Deepnet-fwRF model is distributed across layers when442

several layers are used in conjunction. However, some explained variance remains unique to443

specific layers which account for the clear gradient of complexity observed.444

Our analysis also shows that idiosyncrasies of the underlying DNN can violate the reg-445

ularity of the alignment of ROIs and DNN layers, with some layers contributing only very446

little in all ROIs. For example, the highest convolutional layer “conv5” made the smallest447

contribution to all ROIs, which occurs near the inflection point in the layer tuning functions448

for all brain areas (Fig. 5D). This could be related to the fact that “conv5” is itself a special449

point in the network architecture where the network switches from a convolutional to a450

fully-connected architecture after “conv5”.451

4.4. Prediction accuracy advantage of the Deepnet-fwRF452

The general advantage in prediction accuracy of the Deepnet-fwRF model over the453

Gabor-fwRF and Deepnet-lReg models is a strong endorsement for the fwRF modeling454

approach. Our results suggest that the Deepnet-fwRF out-predicts the Gabor-fwRF model455

because the Deepnet-fwRF contains feature maps that are more appropriate for explaining456

intermediate visual areas. While effective models for early visual areas based on Gabor-like457

features, and higher visual areas based on semantic features [7, 10, 17], have been available458

for some time, intermediate visual areas have been most resistant to modeling. The delivery459

of an encoding model that makes predictions for intermediate areas that are as accurate as460

those of the aforementioned models for early and object-specific visual cortex would seem to461

be one of the most salient findings. Exactly what contribution the intermediate visual areas462

make to visual processing is still unknown, since the function of the DNN layers that most463

strongly contribute to these areas in the Deepnet-fwRF model is unknown. However, these464

prediction results effectively quarantine the problem, replacing the challenge of interrogating465

the brain in vivo with the challenge of interrogating a DNN network in silico.466
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There are three possible reasons for why the Deepnet-fwRF model out-predicts the467

Deepnet-lReg model, none of which are exclusive. One possible reason is the increased468

expressiveness of Deepnet-fwRF model. Analysis of Deepnet-fwRF model weights suggest469

that the model takes advantage of this expressiveness by distributing weights across layers.470

A second, related possibility is that the space-feature separability imposed by the Deepnet-471

fwRF model is a more appropriate form of regularization than the layerwise sparseness (and472

within-layer smoothness) imposed by the Deepnet-lReg model. Supporting this possibility473

is the fact that the Deepnet-fwRF model seems to be able to accurately predict activity474

in voxels that are predicted very poorly by the Deepnet-lReg model, suggesting that the475

Deepnet-fwRF model more effectively rescues voxels with poor signal-to-noise characteris-476

tics. Finally, it is well-known that a model’s prediction accuracy depends heavily upon an477

accumulation of many idiosyncratic choices. An alternate set of equally reasonable choices478

might have produced a less stark contrast between the prediction accuracy of the Deepnet-479

fwRF and Deepnet-lReg models. We therefore interpret these results as a suggestion that480

the increased expressiveness made possible by the Deepnet-fwRF model is a worthwhile481

attribute that merits future application and further experimentation.482

4.5. Dynamic fwRF models483

The fwRF models in this study are static in the sense that predictions of activity at time484

t depend only on concurrently presented stimuli, and not on the past history of stimulus485

presentation. This choice was appropriate because the temporal dynamics of the voxel activ-486

ities had already been modeled out of the data (see Ref. [6]). However, the fwRF approach487

can easily accommodate dynamic datasets by including time-shifted copies of each feature488

map, such that489

r̂t =
K∑
k

T∑
τ

wτk

∫ D/2

−D/2

∫ D/2

−D/2
g(x, y;µx, µy, σ)φki(x)j(y)(St−τ )dxdy (5)

where τ ∈ [0, T ] indexes time shifts. Under this approach, each feature map would have490

an associated temporal kernel wk = (w0k, . . . , wTk) instead of a single static weight wk.491

These temporal kernels would be estimated via gradient descent.492

Alternatively, we might enforce space-time-feature separability by including an explicit493

temporal kernel function494

r̂t =
K∑
k

wk

T∑
τ

h(τ)

∫ D/2

−D/2

∫ D/2

−D/2
g(x, y;µx, µy, σ)φki(x)j(y)(St−τ )dxdy (6)

where h(·) is the explicit temporal kernel function. Ideally, this function would have a495

small number of shape parameters that would be estimated–like the receptive field parameters–496

via brute-force search.497

4.6. The Gaussian pooling field498

The fwRF models presented here used a 2D Gaussian feature pooling field whose radius499

was fixed for all feature maps. While keeping the radius constant has the advantage of500
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reducing the number of parameters of the model, it also reduces its expressiveness. Allowing501

the feature pooling field radii to vary across the feature map would allow the model to502

capture, among other things, receptive fields with a “Mexican hat” profile that enforce a503

suppressive band around an excitatory center. Furthermore, any receptive field function504

with a small number of shape parameters could be trained using the gradient-descent with505

grid-search optimization algorithm presented here. There may very well be a more optimal506

choice of feature pooling field structure, but we will need future studies to confirm this.507

5. Conclusions508

We have introduced the feature-weighted receptive field (fwRF), a new approach to build-509

ing voxelwise encoding models for visual brain areas. The results of this study suggest that510

the fwRF modeling approach has satisfied its four stated performance goals of expressive-511

ness, scalability, interpretability and compatibility. The key design principle of the fwRF512

modeling approach is space-feature separability which makes it possible to consider large513

number of feature maps without incurring a per-pixel increase in model parameters. Fi-514

nally, when applied to a deep neural network with thousands of feature maps, the resulting515

encoding model achieved state-of-the-art prediction accuracy for voxels in the visual system.516
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Appendix A

Hardware

All instances of the fwRF model presented in this paper and the model throughput
benchmark have been run on a system equipped with a Intel 6 cores i7-5930K processor, 128
Gb of RAM, and a dedicated NVIDIA Titan X (Maxwell) video card (12 Gb of VRAM).

Description of the fwRF algorithm

The fwRF algorithm is divided into two main procedures: First, we calculate a model-
space tensor, which is the most memory intensive part of the algorithm. Second, we learn the
model weights through (stochastic) gradient descent and infer the best parameters for the
pooling function through brute force search. The main stokes of the algorithm are described
in Algorithm A.1.

Scaling of the current fwRF implementation

A short inspection of Algorithm A.1 would convince someone that the current fwRF im-
plementation scales linearly in the number of voxels, number of candidate pooling function
model and number of samples in the time series. The scaling with respect to the feature map
size and the dependence on the number of feature maps is more difficult to assert. Since
the feature map size only appears within the model space tensor evaluation due to our as-
sumption of space-feature separability, and that this operation was usually much faster than
the model weight estimation (it remained on the order of a few minutes even with feature
maps sizes of a few hundred pixels), the only factor relevant to the model performance is the
number of feature maps. Figure A.1 shows the typical model throughput as a function of
the number of feature maps (assuming adequate choices of batch size across voxel, candidate
models and samples). The batch sizes were selected to reach optimal utilization of the GPU
resources.
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Algorithm A.1 Feature weighted receptive field method. In the following, tensors are
boldfaced and the dimensions of a tensor are always displayed in square bracket after its
name. A change in the order of the dimension implies a transpose of the tensor and an
arrow in the dimensions indicates broadcasting to a certain size.

1: procedure Generate modelspace tensor(F ,G):
2: for (Fl,gl) ∈ (F ,G) do
3: Ml ← TensorDot(Fl[n,Kl, xl, yl],gl[G, xl, yl], axis = [[2, 3], [1, 2]])

4: M← Concatenate((Ml[n,Kl, G], ∀l ∈ L), axis = 1)
5: M← Z-Score(M, axis = 0)
6: return M[n,K,G]

7:

8: procedure Generate voxel predictions(M,w):
9: R̂← Batched-TensorDot(M[G, n,K],w[G, V,K], axis = [[2], [2]])

10: return R̂[n, V,G]

11:

12: procedure Loss(M,R,w):
13: R̂← Generate voxel predictions(M,w)
14: return L2-norm(R̂[n, V,G]−R[n, V, 1→ G])[V,G]

15:

16: procedure Optimize FWRF model parameters(M,R,winit):
17: mbest ← zeros[V ] # best models
18: wbest ← zeros[V,K] # best weights
19: sbest ← inf [V ] # best scores
20: for Vb ∈ Batch(V ) do
21: for Gb ∈ Batch(G) do
22: wb ← winit[1→ Gb, Vb, K]
23: sb ← zeros[Vb, Gb]
24: for e ∈ 1..epochs do
25: for nb ∈ Batch(ntrain) do
26: wb ← wb − λdLossdw

(M[nb, K,Gb],R[nb, Vb],wb[Gb, Vb, K])

27: for nb ∈ Batch(nholdout) do
28: sb ← sb + Loss(M[nb, K,Gb],R[nb, Vb],wb[Gb, Vb, K])

29:

30: for v ∈ Element(Vb) do
31: g ← argmin(sb[v,Gb])
32: if sb[v, g] < sbest[v] then
33: mbest[v]← g
34: wbest[v,K]← wb[g, v,K]
35: sbest[v]← sb[v, g]

36: return mbest, wbest, sbest
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Figure A.1: Scaling of the fwRF throughput. The throughput is expressed in voxel-model-epoch (vme)
per seconds. The main factor determining the throughput is the number of feature maps, as shown here,
which has almost optimal inverse scaling in a regime of full utilization. The batch size across voxels, model
candidates and samples also affect the throughput, and the values displayed are for a fixed voxel batch size
of 300 and a candidate batch size of 225. Overall computation time scales linearly with the sample size,
number of voxels and number of candidates. For example, a case with 22K voxels and 20K candidate models
optimized over 20 epochs results in 8.8 × 109 vme. For 96 feature maps at throughput of roughly 5 × 105

vme/s results in an estimated computation time of 4.9 hours. This does not account for the time required
to prepare the model-space tensor, which is however usually much shorter than that.

25

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 11, 2017. ; https://doi.org/10.1101/126318doi: bioRxiv preprint 

https://doi.org/10.1101/126318
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Methods and materials
	Data
	Feature-weighted receptive field model
	General form and motivation of the model
	Optimization algorithm for the fwRF model
	Software implementation

	Details of the models
	fwRF model with Gabor wavelet feature maps (Gabor-fwRF)
	fwRF model with Deep Convolutional Neural Network feature maps (Deepnet-fwRF)
	Layerwise Deepnet regression model (Deepnet-lReg)

	Intepretation of the feature pooling field radius
	Model evaluation comparison
	Feature map contribution to the prediction accuracy

	Results
	fwRF models recover feature pooling fields and tuning functions for both simple and complex features 
	The Deepnet-fwRF model predicts activity more accurately than less expressive models

	Discussion
	Relationship to previous work
	Using the fwRF to measure receptive field size
	Using the Deepnet-fwRF to map changes in representational complexity across visual areas
	Prediction accuracy advantage of the Deepnet-fwRF
	Dynamic fwRF models
	The Gaussian pooling field

	Conclusions

