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Abstract

In a constantly changing environment the brain has to make sense of dynamic patterns
of sensory input. These patterns can refer to stimuli with a complex and hierarchical
structure which has to be inferred from the neural activity of sensory areas in the brain.
Such areas were found to be locally recurrently structured as well as hierarchically
organized within a given sensory domain. While there is a great body of work
identifying neural representations of various sensory stimuli at different hierarchical
levels, less is known about the nature of these representations. In this work, we propose
a model that describes a way to encode and decode sensory stimuli based on the activity
patterns of multiple, recurrently connected neural populations with different receptive
fields. We demonstrate the ability of our model to learn and recognize complex,
dynamic stimuli using birdsongs as exemplary data. These birdsongs can be described
by a 2-level hierarchical structure, i.e. as sequences of syllables. Our model matches this
hierarchy by learning single syllables on a first level and sequences of these syllables on
a top level. Model performance on recognition tasks is investigated for an increasing
number of syllables or songs to recognize and compared to state-of-the-art machine
learning approaches. Finally, we discuss the implications of our model for the
understanding of sensory pattern processing in the brain. We conclude that the
employed encoding and decoding mechanisms might capture general computational
principles of how the brain extracts relevant information from the activity of recurrently
connected neural populations.

1 Introduction 1

How is the brain able to learn about its environment from the sensory input it receives? 2

This fundamental question has been driving neuroscientific research since its beginnings 3

and has been addressed in various domains [19] [32] [42] [18] [28]. Experimental 4

evidence from neuroimaging studies revealed that parts of the brain encode specific 5

sensory stimuli, showing enhanced activity upon presentation of the respective 6

stimulus [21] [34] [13]. Furthermore, similar activation patterns have been observed 7

when subjects had to perform mental tasks involving such stimuli, without the stimuli 8
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actually being presented [39] [14]. While this suggests that the brain does form 9

representations of its environment to perform tasks such as recognition, it does not 10

explain how these representations are formed or what information they are based 11

on [37]. Some information on their nature arose from studies showing them to be 12

hierarchically organized in different sensory domains, ranging from simple sensory to 13

more complex and abstract representations [43] [34] [42] [18]. Given such a hierarchical 14

structure, it seems likely that the representations at a given level are based on the 15

activity of neural populations at the preceding level. As it is a known feature of the 16

cortex to be locally recurrently organized [41] [17], the question arises how such 17

representations can be formed based on the activity of recurrently connected neural 18

populations. This question is of particular interest for the case of dynamic sensory 19

input, i.e. signals changing over time. To encode and decode dynamic sensory signals it 20

is necessary to keep some memory of past input, since the input at a given point in time 21

might not be uniquely assignable to a certain signal. While this condition can be 22

satisfied by the membrane potential at the level of single neurons, it can be satisfied by 23

recurrent connections at the level of neural populations. We were particularly interested 24

in the question, whether it is possible to encode and decode multiple dynamic sensory 25

signals with a strongly simplified model of a recurrently connected neural circuit. More 26

specifically, we wanted to investigate whether dynamic signals, as they occur naturally, 27

can be learned by a recurrent neural network (RNN) with very simple neuron models. 28

The crucial task the model has to perform for this purpose, is to extract information 29

about the input to the RNN from its continuously changing activation patterns. This 30

involves observing the state dynamics of the network and detecting patterns in those 31

dynamics that are specific to a certain input signal. Once learned, we wanted to use 32

these representations for recognition of the respective sensory signals. A possible 33

mechanism for the recognition task is proposed by predictive coding theory [12]. It 34

states that internal representations are compared to current sensory input, resulting in a 35

difference signal [3]. This signal in turn is thought to be used to update internal beliefs 36

about which pattern the sensory input might belong to. Therefore, our model needs to 37

be able to both learn representations based on the activity patterns of an RNN and 38

compare already learned representations with the current state of the RNN. 39

Current advances in the field of reservoir computing provide the tools to build such 40

models. A reservoir is a randomly connected RNN that can be driven with some kind of 41

input pattern and trained to approximate and reproduce that pattern [22]. Each of its 42

neurons has a different, randomly initiated receptive field and a non-linear activation 43

function. In such a network, stimuli are encoded by the state of the whole network, or 44

by a series of states in the case of dynamic input patterns. Unfortunately, reservoirs 45

suffer from so called catastrophic forgetting, which refers to the inability of a single 46

reservoir to learn multiple patterns. However, a recent development by Herbert Jaeger 47

called conceptor can solve that problem [24]. Conceptors rely on the idea that a 48

randomly connected RNN visits only a sub-part of all the possible states it can visit, 49

given an input pattern of limited length. Different inputs should therefore push the 50

network into different parts of its state space, as long as the state space is sufficiently 51

large. A conceptor exploits this behavior by capturing the parts of the state space an 52

RNN visits while being driven with a certain input pattern. It does so by extracting 53

directions of maximum variance from the state development observed in the RNN state 54

space. In other words, conceptors are a dimensionality reduction technique that try to 55

identify the manifolds in the state space of a reservoir in which different signals live. If 56

imposed on the reservoir, the conceptor restrains it to visit only those manifolds, hence 57

acting like an attractor. It is therefore possible to use an RNN of limited size to learn 58

representations of multiple dynamic patterns in the form of conceptors and then use 59
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these as input to the same network to reproduce the learned patterns. This makes 60

reservoir-conceptor dynamics a viable option to model representation formation in the 61

brain. Furthermore, it allows for comparing the already learned conceptors to the 62

network dynamics observed for new input to obtain evidence for which pattern the 63

current input might belong to, thus performing recognition. 64

In the auditory domain the brain has to deal with a one-dimensional, but highly 65

variable and complex dynamic signal. This makes it an optimal candidate to 66

demonstrate pattern learning and recognition within RNNs. In human speech, this 67

complexity is even increased by its deep hierarchical structure, ranging from single 68

phonemes to nested sentences [35] [6]. As capturing this hierarchy would require a 69

similarly deep and complex model, we chose birdsongs as the dynamic pattern to model. 70

Birdsongs have gained increasing popularity for investigating auditory processing in the 71

brain, because of their similar, yet less complex hierarchy as compared to human 72

language, paired with the better understood neural circuits of the auditory bird 73

brain [10] [6]. Many birdsongs show a hierarchical structure combining single syllables 74

to complex songs, thereby resembling human syntax [6]. Such a hierarchical structure 75

has also been found in the bird brain performing song generation [2]. More specifically, 76

high-level neurons encoding syllables fire in a certain sequence that refers to a song and 77

drive neurons on a lower level to initiate the respective motor output [38] [33]. Thus, a 78

hierarchically structured model performing recognition on the level of syllables and 79

songs seems plausible from both a biological and behavioral perspective. Moreover, 80

similar to early language acquisition in humans, song-learning in many bird species has 81

been shown to be error driven [5]. Therefore, song recognition and acquisition processes 82

driven by the similarity between sensory input and stored song representations are 83

readily motivated as underlying computational principles of auditory processing in the 84

bird brain. Birdsongs can be divided in two categories depending on their inherent 85

complexity. Some songs exhibit linear syntax structure, i.e. the song always consists of 86

the same sequence of syllables, whereas other songs show stochastic patterns with the 87

sequence of syllables changing between repetitions. Our study focuses on the linear song 88

syntax found in species like zebra finch and sparrow [36], since it compares better to the 89

deterministic succession of syllables within words in human language. 90

Recent approaches in modeling birdsongs either focused on mere recognition 91

performance instead of the underlying brain processes [29] [25] [31] or on the brain 92

processes mapping a song to an actual motor output [44] [45]. However, none of these 93

studies tried to capture the inherent hierarchy of the birdsong within a neural network 94

model of the listening bird brain. Here, we propose a birdsong recognition model that 95

recognizes single syllables on a bottom level and sequences of syllables, which we refer 96

to as songs, on a top level. It does so by forming representations of syllables and songs 97

on the respective levels and classifying input according to its similarity to those 98

representations. Both levels are thereby instantiated as reservoirs while syllables and 99

songs are represented by conceptors. By demonstrating that such a model can recognize 100

hierarchical, dynamic signals such as birdsongs, we claim that the recurrent structure at 101

a given level of a certain cortical hierarchy could be sufficient to explain how the brain 102

is able to deal with time-evolving sensory stimuli. Conceptor-learning would thereby 103

describe what kind of information the brain has to extract from its sensory areas to 104

form representations of those stimuli. Namely, it would need to find linear combinations 105

of neurons that describe the directions in the state space of the respective sensory area 106

along which the state of that area varies the strongest under a certain input. Moreover, 107

we propose that conceptors as used for song recognition on the top level of our model 108

are adequate for implementing a predictive coding scheme within an RNN. In summary, 109

3/18

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 28, 2017. ; https://doi.org/10.1101/131052doi: bioRxiv preprint 

https://doi.org/10.1101/131052
http://creativecommons.org/licenses/by/4.0/


we suggest that our model resembles a possible general principle of how the brain can 110

deal with hierarchically structured dynamic patterns based on the activation patterns of 111

recurrently connected sensory areas. The subsequent chapter describes our model in 112

detail, while the third chapter reports the model performance on birdsong data. We 113

believe that a plausible model for recognizing any kind of sensory signal needs to be 114

performing well on basic recognition tasks that the species in question is clearly able to 115

solve. This is why we compared the performance of both levels of our model to 116

state-of-the-art machine learning methods. Finally, we discuss the implications of our 117

model for future research on pattern formation and recognition in the brain as well as 118

for computational models of these processes. 119

2 Model 120

2.1 Syllable Classification Module 121

Our syllable classification module is based on the model used by Herbert Jaeger for 122

speaker recognition on the Japanese vowel data set [23] with slight adaptations to 123

network parameters and data preprocessing. It consists of a small reservoir in which 124

extracted features of the preprocessed audio data are fed in, as can be seen in the left 125

box of figure 1. The resulting states of the reservoir units are then used to learn 126

conceptors, i.e. representations of each syllable. Those representations can then be 127

compared to the reservoir states emerging from driving the reservoir with test data and 128

thus be used for syllable classification. These two processes are depicted by the green 129

and red arrows of the syllable classification module in figure 1, respectively. 130

Fig 1. Architecture of the combined model with syllable classification module on the left and
song recognition module on the right. Incoming signals are the preprocessed MEL features of
the audio signal. Green pathways show information flow for learning, leading to the formation
of conceptors c. Red pathways show the information flow for classification, leading to evidences
e or γ. Black pathways are for general functionality of the module.

2.1.1 Architecture and Training 131

The main component of the syllable classification module is a small reservoir of 132

sigmoidal neurons, following the subsequent update equation: 133

x(n+ 1) = tanh(Wx(n) +W ins(n) + b) (1)

In 1, x is the state vector of the reservoir, W is the internal connectivity matrix, W in
134

are the input weights, s(n) is the input signal and b is a bias term. W as well as W in
135

are randomly initialized. On training time, we fed training samples of each syllable into 136

the reservoir and collected its states. We then used those as well as the input of the 137
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reservoir to compute a preliminary conceptor C for each syllable j, employing the 138

following equation: 139

Cj = Rj(Rj + I)−1 (2)

In 2, R corresponds to the correlation matrix of the jth syllable, expressing the 140

correlation of each reservoir unit and input dimension with each other over all training 141

samples, while I stands for the identity matrix. On top of that conceptor (which we will 142

from now on refer to as positive conceptor), we also calculated a preliminary negative 143

conceptor for each syllable, resembling all of the state space not occupied by the 144

positive conceptors of all other syllables. This was done using the logical operators for 145

conceptors defined in [23]. With both positive and negative preliminary conceptors at 146

hand, we employed the following equation to receive the final conceptors: 147

Cj = Cj(Cj + α−2(I − Cj))
−1 (3)

The purpose of 3 is to weave the aperture α into the conceptors, which controls how 148

strong the solution is pulled to the identity or to zero. A more detailed explanation of 149

the aperture and how to use it to adapt conceptors can be found in [23]. By the end of 150

this training procedure, each syllable was represented by its own positive conceptor and 151

the logical exclusion of all other syllables. 152

2.1.2 Classifying Test Data 153

On testing time, separate test samples of each syllable were fed into the reservoir while 154

collecting its states. Subsequently, we computed the similarity between the collected 155

states x for one test sample and each of the conceptors the following way: 156

h(j) = xTCjx (4)

The outcome h is a vector containing an evidence value for each conceptor, expressing 157

the similarity between that conceptor and the testing sample that was fed into the 158

reservoir. This was done for the positive and negative conceptors separately. Finally, 159

the resulting evidences were normalized to be restricted to the interval [0,1]. A test 160

sample was then classified as the syllable with the highest combined evidence from 161

positive and negative conceptors. 162

2.2 Song Recognition Module 163

For song recognition we decided to use an adaptation to the Hierarchical Feature 164

Conceptor (HFC) architecture as proposed by Herbert Jaeger [23]. Similar to the 165

syllable classification module, a conceptor is learned for each song. However, the module 166

does not need to hear the whole song to provide evidences for which song it heard. 167

Instead, it assigns belief values to each learned song and updates them for every new 168

syllable that it receives as input. This update is based on the difference between the 169

network state observed after applying the input and each of the stored conceptors. 170

Another difference to the syllable classification module is the setup of reservoir and 171

conceptors. They follow an architecture which is called Random Feature Conceptor 172

(RFC) and has first been introduced by Herbert Jaeger [23]. This architecture is 173

visualized in the right box of figure 1. In the following, we will explain its sub-parts and 174

dynamics in more detail. 175

2.2.1 Architecture and Training 176

The RFC is the main building block of the song recognition module. It is an attempt to 177

store conceptors in a more efficient and biologically plausible way by applying the 178
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conceptors on the neurons of a network instead of their connections. This can be done 179

by introducing a second, larger reservoir z, whose states evolve in the following way: 180

z(n+ 1) = diag(c(n))Fr(n+ 1) (5)

In 5 diag refers to the mathematical operator that creates a matrix with the elements of 181

its input vector on the diagonal and zeros on off-diagonal elements. Thus, every row of 182

F is weighted by the respective entry in the conceptor c(n), with F being a random 183

matrix mapping the states from the smaller reservoir r(n) to z. The dynamics of r are 184

described by: 185

r(n+ 1) = tanh(Gz(n) +W ins(n) + b) (6)

As one can see, 6 is nearly identical to 1 except for the dependency on its own states 186

from the previous time step, which is replaced by a dependency on z. G is again a 187

random matrix, mapping from z to r. The dynamics of the RFC as described by 5 and 188

6 can thus be understood as a loop of two major mechanisms. First, a state space 189

expansion from a smaller reservoir r with sigmoidal units to a substantially larger 190

reservoir z with linear units performed by F and second, a mapping back from z to r by 191

G. In such an architecture, the conceptor c can be seen as a single unit or neuron, 192

acting in a multiplicative manner on the units of z according to its learned weights to 193

each of them. Thereby, c is also time dependent, being updated at each time step 194

according to the following stochastic gradient descent online adaption rule 195

ci(n+ 1) = ci(n) + λi(z
2
i (n)− ci(n)z

2
i (n)− α−2ci(n)) (7)

with λ being the step size and α the aperture. In this case, the aperture determines how 196

strong the conceptor should be able to change in the presence of new information stored 197

in the current state vector z. For a more detailed analysis of these dynamics, we refer 198

the interested reader to the chapter on RFCs in [23]. To train conceptors for different 199

songs, we created training patterns of multiple repetitions of each song and fed them 200

into reservoir r for a certain training period during which 7 should converge. After this 201

was done for all songs, we trained read-out weights for r using Ridge regression over all 202

training patterns [20]. This method chooses the weight for each unit in r such that it 203

minimizes the L2 norm of the weights and the sum of the squared residuals between the 204

read-out and the input to r. The same method was used to update G, changing the 205

internal weights of the mapping from z to r such that z is capable of resembling the 206

input r has received during training. This gave us the final RFC which we then used for 207

song recognition. 208

2.2.2 Classifying Test Data 209

Song recognition was performed on the timescale of single syllables. More specifically, at 210

every time step a syllable was fed into the network, which returned a belief value for 211

each known pattern, thus performing online song recognition. Thereby, the belief values 212

refer to the weights γ assigned to each previously trained conceptor. These weights were 213

used to calculate a weighted sum of all trained conceptors, which was then applied to z 214

the same way as the conceptor c in 5. They were updated at each point in time 215

according to 216

γ(n+ 1) = γ(n) + ηm(z2PγT diag(γ)) (8)

In 8 η is the learning rate, m is the number of patterns stored in the RFC and P is a 217

matrix with a conceptor in each column. Thus, the change of γ is a function of the 218

input to z, i.e. it is related to the difference between the weighted sum of the stored 219

conceptors and the state of z observed for the current input. We used a softmax 220

transformation on γ after each update, restricting each weight to [0,1] and ensuring that 221
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they sum up to 1. Therefore, each weight can be interpreted as the networks belief in 222

what kind of pattern it is currently driven by. Input was then classified as the song with 223

the highest belief at each time step. 224

2.3 Combined Model 225

Our final goal was to built a hierarchical model for online birdsong recognition by 226

connecting the syllable classification and the song recognition module, as it is shown in 227

figure 1. In such a model, training had to be done separately within each module, as the 228

conceptors used for syllable representations cannot be learned from the error signal on 229

the top level as of yet. We started out by creating a set of songs (i.e. a set of syllable 230

sequences) from a pre-defined set of syllables. We then trained our syllable classifier on 231

each syllable and ran the songs through it, receiving sequences of syllable evidences h. 232

Those syllable evidences are a noisy representation of the original songs and can be 233

interpreted as beliefs of lower level sensory areas in the type of syllable heard. Those 234

noisy representations were then used to train the RFC on each song in the above 235

described way. On testing time, we were again running our syllable test samples 236

through the syllable classifier. The resulting syllable evidences were used afterwards to 237

drive the song recognition module. This gave us a weight γ for each song at each time 238

step, indicating the evidence for which song is sung at a given moment. The full data 239

flow of the combined model can be seen in figure 2. 240

Fig 2. Dataflow visualization for the combined model. The left side is processed on syllable
timescale, i.e. in seconds, the right is processed on song timescale, i.e. in syllable indices. Raw
audio data from syllables is preprocessed into enriched MEL features and classified by the
syllable classifier. The classification vectors are fed over time into the song recognizer, which
produces an evidence value for each of the learned songs.

3 Model Evaluation 241

3.1 Dataset 242

Our model was tested on a combination of bird recordings and synthetic data. All of our 243

syllable data was extracted from the online database BirdDB [1]. This database contains 244

recordings from Cassin’s Vireo (vireocassini) among other bird species, including 245

syllable annotation for a total repertoire of 65 different syllables. We cut the recordings 246

according to the syllable annotations, creating sets of samples for each syllable. Such a 247

recording is visualized for an exemplary syllable in figure 2. These syllable samples were 248

down-sampled to 20 kHz. Afterwards, we extracted 20 mel frequency cepstral 249

coefficients (MFCCs) as these have not only proven to be very useful for human speech 250

recognition, but also for birdsong classification [30]. The extracted MFCCs were then 251
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normalized to a total of 4 time steps and each coefficient was bound to the interval [0,1]. 252

In a final step, we added the first and second derivative of each coefficient. Thus, every 253

syllable was represented by a vector of 60 spectral features at each time step as it is 254

depicted for a single syllable in figure 2. The input p to the syllable classification 255

module as in 1 were those spectral feature vectors. As the Cassin’s Vireo does not have 256

a linear song syntax, we could not use these data for song recognition, but only for 257

syllable classification. Therefore, we created a total of 20 synthetic songs from the set of 258

65 syllables. Each song consisted of 3-5 syllables and was of Markov order 1 or 2, as it is 259

typical for birdsongs [9]. In this case, the Markov order refers to the number of previous 260

syllables necessary to predict the next syllable within a particular song. We created a 261

number of songs for each combination of song length and Markov order using different 262

sets of syllables for the songs of each combination. A song was represented by n vectors, 263

whereas n refers to the number of syllables the song consists of. Such a vector was of 264

length m with m being the number of unique syllables present in the set of songs used 265

for the current simulation. Each entry in that vector referred to a single syllable and 266

represented the evidence for that syllable being the input at that particular time-step. 267

A noise free syllable representation would thus be a vector with all entries being 0 268

except the one of the syllable currently being input, which would be a 1. These syllable 269

vectors were then used as input s to the song recognition module as in 6. 270

3.2 Results 271

The following paragraphs describe how well our model performs on the tasks it was 272

trained on. To evaluate the performance of a model on a task, some kind of comparison 273

or benchmark is necessary. When modeling a sensory recognition task, ideally one 274

would like to compare against behavioral data from actual living organisms performing 275

the same task. Unfortunately, to our knowledge there is no data on how well certain 276

birds are able to recognize bird songs or syllables under different conditions like 277

increased sensory noise. Therefore, we decided to compare our model against other 278

methods for bird song or syllable classification. We did not compare against 279

performance values reported in the birdsong recognition literature, since most of these 280

values refer to species recognition or were performed on substantially different data sets. 281

Instead, we decided to implement alternative methods for song and syllable recognition 282

ourself. We chose to use deep neural network (DNN) architectures as comparison to our 283

model, since they have proven to be the best performing supervised methods on time 284

series data like human speech [40] [7]. Due to the available training data being limited, 285

we used rather simple DNN architectures, which showed convergence behavior in their 286

performance on the training data sets. We will first compare the classification 287

performance of our bottom level syllable classifier with a multi-layer perceptron (MLP) 288

on the syllable classification task and then compare the performance of our top level 289

song recognition module with a gated recurrent unit (GRU) network on an online song 290

recognition task. Finally, we will evaluate the behavior and performance of our 291

combined model during song recognition. 292

3.2.1 Syllable Classification 293

We tested the performance of our syllable classification module on an increasing number 294

of syllables to distinguish between. Furthermore, we also tested a shallow MLP on the 295

same task, serving as a comparison to our conceptor-based syllable classification. It 296

employed a single hidden layer of hyperbolic tangent units whose size matched the 297

number of input features. With 20 MFCCs plus their first and second derivatives 298

evaluated at 4 time steps, this amounted to a total of 240 units. The output layer used 299

a softmax activation function and its size always equaled the number of unique syllables 300
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the MLP was trained on. During training, the cross-entropy between MLP output and 301

target was minimized using an Adam optimizer with an initial learning rate of 302

0.001 [27]. Initial weights were sampled from a normal distribution with zero mean and 303

standard deviation of 0.1. We trained the MLP on all training samples for 3 epochs 304

using mini-batches of size 10. The reservoir of the conceptor-based classifier was 305

initialized with 10 neurons. The apertures for positive and negative conceptors were αp 306

= 25 and αn = 27, respectively. Both models were trained and tested 10 times for each 307

number of syllables within the range from 5 to 55. Each run used a different set of 308

randomly drawn syllables and random training-test data splits with 50 training samples 309

and 10 test samples. Each test sample was classified as the syllable with the highest 310

evidence from the respective output units. We then calculated the overall classification 311

performance as the mean of correct classifications over all test samples. The resulting 312

mean classification performances of conceptor-based and MLP classifier are visualized in 313

figure 3 A. As can be seen, the performances of the classifiers are very similar for 314

smaller syllable numbers and drop off with increasing syllable numbers. Thereby, 315

performance drops slightly faster for the conceptor-based classifier. However, for the 316

amount of songs we test our full model on, the number of used syllables never reaches a 317

regime in which the MLP clearly outperformes the conceptor-based classifier. In part B 318

of figure 3 the evidences for a single test run with 30 syllables are depicted. It is worth 319

noticing how the evidences of the negative conceptors clearly reduce the number of 320

miss-classifications. This effect was observed for 73,6% of our test runs and 321

demonstrates the potential of logical operations for cognitive tasks such as inferring the 322

nature of sensory input. 323

3.2.2 Song Recognition 324

The performance of our song recognition module was also investigated for an increasing 325

number of songs. However, within the full model the module will have to learn and 326

recognize songs based on the input of the syllable classifier. The noise level of this input 327

will depend on the number of used syllables, as we have learned from the first 328

experiment. Therefore, we additionally tested the robustness against noise of our song 329

recognition module by adding white noise of variable strength to each of the syllable 330

vectors fed to it on testing time. We tested the song recognition performance for up to 7 331

different songs and a signal-to-noise ratio (SNR) ranging between 4:1 and 1:8. For each 332

combination of song number and SNR we compared the performance of our 333

conceptor-based classifier against a GRU network. The latter consisted of 3 hidden 334

layers, each of which contained 100 units with rectified linear activation. All 3 hidden 335

layers were regularized by dropout of 40%. As input the syllables comprising the songs 336

were fed to an embedding layer, converting the scalar index representation into a vector 337

of length 16. The output was calculated using a softmax layer with the number of units 338

equaling the number of different songs. The categorical-crossentropy between output 339

and targets was minimized using an Adam optimizer with initial learning rate of 0.001. 340

The network was trained for 10 epochs with a mini-batch size of 64. Hyper-parameters 341

were optimized using Tree of Parzen Estimators implemented in the hyperopt 342

package [4]. The conceptor-based classifier was initialized with a smaller reservoir of 400 343

neurons and a larger reservoir of 2000 neurons. We chose learning rates of λ = 0.5 and 344

η = 0.005 and an aperture of α = 3. Both classifiers were trained and tested on 345

randomly selected sub-sets of the 20 synthetic songs described above. Thereby, the 346

training set consisted of a total of 600 song samples while the test set consisted of 100 347

song samples. On test time, we collected the classifiers’ outputs for each input vector 348

and used a winner-takes-it-all transform on those to arrive at a song classification. 349

Performance was then measured as the fraction of correct classifications over the entire 350

test data set. Each combination of song number and signal-to-noise ratio was tested 10 351
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Fig 3. A: Mean classification performance of the conceptor-based syllable classifier and a
multi-layer perceptron on different numbers of syllables. Error bars indicate the standard
deviation over 10 trials. B: Evidences from positive, negative and combined conceptors for an
exemplary test run with 30 different syllables.
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times with different randomly selected songs. The mean results of those simulations are 352

visualized in figure 4. For our song recognition module we can observe the effects of 353

song number and SNR on recognition performance to be roughly additive, as indicated 354

by the diagonal structure of the performance matrix. This is very different from the 355

GRU classifier, which can deal well with increasing numbers of songs, but is more 356

susceptible to noise. Looking at the difference between the two performance matrices, it 357

is clearly visible that the conceptor-based classifier is superior at low SNRs. It is 358

important to notice that it was trained on noise-free training data, while we added noise 359

to the training data of the GRU to improve its performance. This training data noise 360

was in the range of the noise used for the testing data. We do recognize that increasing 361

the amount of training data could have improved the performance of the GRU classifier. 362

However, since both methods are supervised and we already allowed the GRU to see 363

noisy training data, we decided to keep the amount of training data equal for both 364

methods. While these results demonstrate that the combined model should be robust to 365

the noise of the syllable classifier on test time, it remains unclear how well the song 366

recognition module can deal with noisy training data. 367

Fig 4. Left: Mean classification performance of conceptor-based classifier and GRU
classifier on different numbers of songs and signal-to-noise ratios. Right: Differences in
classification performance between both classifiers

3.2.3 Combined Model 368

In a final step, we investigated whether the song recognition module is able to learn and 369

recognize songs based purely on the syllable evidences provided by the syllable 370

classification module. Again, we tested the performance for up to 7 songs drawn 371

randomly from the 20 synthetic songs described above. The syllable classifier was 372

trained on all syllables used for the songs of a respective run. Afterwards, we created a 373

training and a test data set consisting of multiple repetitions of the randomly drawn 374

songs. The training data consisted of around 400 repetitions of each song, while the test 375

data consisted of a total of 100 song repetitions. We then drew a random wave sample 376

for each syllable in training and test data, using different sets of samples for the both. 377

Subsequently, we ran these data through the syllable classifier and stored the resulting 378
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syllable evidences as final training and test data. The song recognition module was then 379

trained on the respective songs. In a final step, we drove the fully trained model with 380

the test data and collected the yielded song evidences. This procedure was repeated 10 381

times for different random splits of training and test samples and different randomly 382

chosen songs. Model parameters were set to the same values as reported in the results 383

sections of the single modules. The recognition performance for 2 to 7 different songs 384

can be observed in part A of figure 5. As evidenced by the position of the performance 385

values within the performance range of the song recognition module, the combined 386

model performs as well as the mere song recognition module on high SNR test data. 387

Thus, the song recognition module proved to be robust to the noisy data provided by 388

the syllable classifier for both song learning and song recognition. In part B of figure 5 389

the dynamics of the song recognition process are depicted for an exemplary test run of 390

multiple repetitions of 3 different songs. During the time course of a single song 391

repetition the belief value for the respective song increases while the belief values of the 392

other songs decrease. At the end of a song belief values tend to go back to chance level 393

given no new input, meaning that pauses between song repetitions function as reset if 394

sufficiently long. Within part B of figure 5 there are no pauses, i.e. the end of a song 395

repetition is followed by another song immediately. In cases where the following song is 396

the same as the previous song, the belief values stay within a similar range, while they 397

adapt very quickly (within a single song repetition) given a new song. Thus, 398

miss-classifications usually only happen at the very beginning of the initial repetition of 399

a new song. 400

4 Discussion 401

The main goal of our work was to demonstrate how a recurrent neural circuit can 402

encode and decode complex dynamic patterns such as birdsongs. Thereby, we employed 403

a recently developed technique that allows the capture and control of the dynamics of 404

randomly connected RNNs [23]. Using this mechanism, we were able to show how 405

birdsongs can be learned and recognized within a 2-level hierarchical model of RNNs. 406

While the first level learned and recognized single syllables based on their spectral 407

features, the second level learned and recognized songs as sequences of syllables. Both 408

processes, learning and recognition, relied on extracting information from the activity 409

pattern of an RNN driven by dynamic input. We were able to show that on a limited 410

number of distinguishable patterns the recognition performance of our model compares 411

to state-of-the-art machine learning methods and that song recognition is remarkably 412

robust to noise, a desirable property when dealing with recognition in natural 413

environments. Our model was motivated by two basic organizational properties of the 414

brain. First, its recurrent structure on the level of local neuronal circuits [8] [41], and 415

second, the hierarchical organization of the brain and the representations stored 416

therein [12]. If the description of sensory areas in the brain as recurrently connected 417

recurrent neural circuits is sufficient to capture the crucial information transmitted by 418

those areas, our model suggests general computational principles for encoding and 419

decoding dynamic sensory signals in the brain. 420

It is important to emphasize that our model merely describes what kind of 421

computations the brain has to perform given a certain architecture and how they can be 422

implemented by means of reservoir computing. It does not try to answer how those 423

computations are performed by the brain. The smallest units of our network are 424

sigmoidal neurons, which can resemble the mean activity of a population of real neurons 425

at best. As this is a hugely oversimplified model of neuronal computations, our model 426

cannot resemble the complex processes at work in the brain during representation 427
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Fig 5. A: Recognition performance of the combined model for different song numbers in the
context of the song recognition performance range. B: Song evidences (γ values) for an
example run of the song classifier for multiple repetitions of three different songs.
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formation. Despite these limitations, it can still describe what influence a certain 428

sensory input has on a recurrently connected neuronal population and how the resulting 429

change in the state of that population can be used to encode and recognize patterns of 430

different complexity. Thus, while we do not claim that sensory representations in the 431

brain are formed in any way like the conceptors used in our model, we nevertheless 432

propose that they could contain the same information as captured by the conceptors. 433

Specifically, we highlight the importance of extracting information about the state 434

development of a neural circuit and about which directions of the state space are 435

important and which ones are unimportant in describing the state development under a 436

certain input. In other words, we believe dimensionality reduction to be an essential 437

tool for extracting information from the activation patterns of large neuronal 438

populations in hierarchically organized neural circuits. Conceptors are a special form of 439

dimensionality reduction and we demonstrated its usefulness for dynamic sensory 440

pattern recognition within this paper. Furthermore, our model shows how such pattern 441

recognition processes could be embedded in a hierarchical structure. This hierarchy is 442

not only present in the topography of the model, but also in its timescales. While the 443

bottom level reservoir develops on the timescale of the feature representation we chose 444

for our syllables, the top level evolves on the timescale of full syllables. As each syllable 445

is represented by spectral features at 4 different time steps, the top level reservoirs 446

evolve approximately 4 times slower than the bottom level reservoir. This behavior is in 447

line with experimental evidence on timescales in the brain [26]. 448

Given that descriptive level, we showed that to learn a stimulus based on the 449

activation pattern of a neuronal population, the brain has to find out which linear 450

combinations of neurons encode information about the stimuli and store that knowledge 451

somehow. In our model, this process is represented by creating the conceptors which 452

amplify neurons whose activity varies a lot over the course of an input pattern while 453

suppressing the ones that do not. On top of that we showed how recognition of new 454

stimuli could be performed given such stored knowledge about stimulus patterns. This 455

has been done differently in song and syllable classifier, however. For song classification, 456

we implemented a predictive coding scheme employing random feature conceptors. 457

Using RFCs as song representations comes with two desirable properties. The first one 458

is related to the weights γ assigned to each conceptor. These weights formed a 459

probability distribution, expressing the networks current belief in what song it was 460

driven by. At a given time step, this belief was a function of the belief from the previous 461

time step as well as the new evidence gathered from the changes in the network states 462

caused by new input. This dependency is in line with Bayesian inference steps 463

performed within a predictive coding framework [28]. Since each conceptor in our 464

top-level module was a unit with weights to every neuron in the reservoir z, they could 465

also be interpreted as single neurons with synaptic connections. From such a 466

perspective the weights γ would represent the activation of the neurons, meaning that 467

each neuron’s activity would be determined by the similarity of the song it codes for to 468

the current input to the reservoir r. Such activation could then be detected by a 469

hierarchically even higher level and used for decision processes and the like. This could 470

be a possible way of how probability distributions are represented and used in the brain. 471

Furthermore, this offers a direct way to implement top-down influences by acting on the 472

weights of the conceptors. The second desirable property is that the trained conceptors 473

can serve as generative models. More specifically, applying a conceptor encoding a 474

certain song to the RNN it was trained on will force the RNN to generate that song 475

without any further input needed. Therefore, one cannot only use the learned 476

representations for recognition, as demonstrated in this paper, but also for other 477

cognitive tasks requiring generation processes. One drawback to using RFCs is the 478
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limited stability of the training process. At its current development state, the RFC can 479

sometimes fail to converge to a correct solution for a certain pattern. More specifically, 480

it can fail to capture the subspace of the RNN state space which the RNN visited for a 481

certain input pattern. This is not a problem for the presented recognition task, as once 482

a correct conceptor is learned for every pattern, the network performance is stable. 483

Unfortunately, the probability of at least one pattern not being learned correctly 484

increases with the number of overall patterns to learn. Therefore, given limited training 485

data and computational capacities, testing recognition performance for more than 7 486

songs was unfeasible for us. To resolve that issue in a satisfactory manner, more work 487

has to be invested in stabilizing the RFC architecture. One possible direction of 488

research could be, to extend conceptors to other dimensionality reduction mechanisms 489

apart from the one currently employed in conceptor learning. 490

Due to that limitation of the RFC we used a more simplified architecture for syllable 491

classification, which allowed us to use a bigger set of syllables to construct our songs 492

from. While the conceptors within this simplified architecture cannot serve as 493

generative models, they still allow for using the logical operations AND OR and NOT 494

on them. Thus, we were able to calculate negative conceptors for each syllable, 495

representing the logical exclusions of all other syllable conceptors. Combining the 496

evidences of the network being driven by a certain syllable with the evidence of the 497

network not being driven by any of the other syllables boosted our classification 498

performance significantly. Integrating these logical operations into an online recognition 499

process such as the song recognition on the top level would in theory be possible as well. 500

However, one would have to integrate both positive and negative conceptor into a single 501

one in order to use the update scheme for the belief values in the way it is laid out in 502

this paper. Importantly, the simplified architecture of the syllable classifier sufficed to 503

demonstrate that an abstract spectral representation of highly variable sound patterns 504

such as bird calls is sufficient to learn and recognize those syllables. This is in line with 505

experimental evidence suggesting that mental representations are typically 506

under-specified and abstract, making them more robust to noise [11]. 507

In summary, we put forth a hierarchical model of RNNs which is able to recognize 508

non-stochastic birdsongs online. However, the mechanisms used in the model are in 509

principle not specific to that one task or domain. Every dynamic pattern of similar 510

length and dimensionality could be learned and recognized by such an architecture. 511

Thereby, the complexity of the hierarchy of the input could be met by a suitable 512

amount of hierarchical levels in the model. Our model suggests a general principle of 513

how the activity pattern of a population of neurons with different receptive fields could 514

be used to encode and decode information about and from the environment. Moreover, 515

it shows how these principles could be implemented in a hierarchically organized neural 516

circuit performing recognition tasks, though they could even be used in a similar fashion 517

to perform pattern generation tasks. 518
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