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Summary  
 
The goal of computational neuroscience is to find mechanistic explanations of how the 
nervous system processes information to support cognitive function and behaviour. At the 
heart of the field are its models, i.e. mathematical and computational descriptions of the 
system being studied. These models typically map sensory stimuli to neural responses 
and/or neural to behavioural responses and range for simple to complex. Recently, deep 
neural networks (DNNs), using either feedforward and recurrent architectures, have come 
to dominate several domains of artificial intelligence (AI). As the term “neural network” 
suggests, these models are inspired by biological brains.  However, current DNN models 
abstract from many details of biological neural networks. Their abstractions contribute to 
their computational efficiency, enabling to perform complex feats of intelligence, ranging 
from perceptual tasks (e.g. visual object and auditory speech recognition) to cognitive 
tasks (e.g. machine translation), and on to motor control tasks (e.g. playing computer 
games or controlling a robot arm). In addition to their ability to model complex 
intelligent behaviours, DNNs have been shown to predict neural responses to novel 
sensory stimuli that cannot be predicted with any other currently available type of model. 
DNNs can have millions of parameters (connection strengths), which are required to 
capture the domain knowledge needed for task performance. These parameters are often 
set by task training using stochastic gradient descent. The computational properties of the 
units are the result of four directly manipulable elements: input statistics, network 
structure, functional objective, and learning algorithm. The advances with neural nets in 
engineering provide the technological basis for building task-performing models of 
varying degrees of biological realism that promise substantial insights for computational 
neuroscience. 
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The brain is a deep neural network 
 
The goal of computational neuroscience is to find mechanistic explanations for how the 
nervous system processes information to support cognitive function and adaptive 
behaviour. Computational models, i.e. mathematical and computational descriptions of 
component systems, capture the mapping of sensory input to neural responses and 
explain representational transformations, neuronal dynamics, and the way the brain 
controls behaviour. 

The overarching challenge is therefore to define models that explain neural 
measurements as well as complex adaptive behaviour. Computational neuroscientists 
have had early successes with shallow, linear-nonlinear “tuning”, modelling lower-level 
sensory processing. Relatively shallow models have fuelled progress in the past and will 
continue to do so. Yet, the brain is a deep recurrent neural network that exploits 
multistage non-linear transformations and complex dynamics. It therefore seems 
inevitable that computational neuroscience will come to rely increasingly on deep 
recurrent models. The need for multiple stages of nonlinear computation has long been 
appreciated in the domain of vision, by both experimentalists (Hubel & Wiesel, 1959, 
1962) and theorists (Fukushima, 1980; Lecun & Bengio, 1995; Riesenhuber & Poggio, 
1999; G. Wallis & Rolls, 1997). 

The traditional focus on shallow models was motivated both by the desire for 
simple explanations and by the difficulty of fitting complex models. Hand-crafted 
features, which laid the basis of modern computational neuroscience (Jones & Palmer, 
1987), do not carry us beyond restricted lower-level tuning functions. As an alternative 
approach, researchers started directly using neural data to fit model parameters 
(Dumoulin & Wandell, 2008; M. C.-K. Wu, David, & Gallant, 2006). Despite its 
elegance, importance, and success, this approach is limited by the amount of neural 
observations that can be collected from a given system. Even with neural measurement 
technology advancing rapidly (multi-site array recordings, two-photon imaging, or 
neuropixels, to name just a few), the amount of recordable data does not provide enough 
constraints to fit realistically complex neural models. For instance, while novel 
measurement techniques may record separately from hundreds of individual neurons, and 
the number of stimuli used may approach 10,000, the numbers of parameters in deep 
neural networks (DNNs) are many orders of magnitude larger (for instance, the 
influential object recognition network “AlexNet” has 60 million parameters (Krizhevsky, 
Sutskever, & Hinton, 2012), a more recent object recognition network, VGG-16, has 138 
million parameters (Simonyan & Zisserman, 2015)).	

An important lesson in the history of AI is that intelligence requires a lot of 
domain knowledge. Transferring this knowledge into the model parameters through the 
bottleneck of neural measurements alone is too inefficient for complex models. A key 
insight that opened the path for the use of very complex models for prediction of neural 
responses is the idea that rather than fitting parameters based on neural observations, 
DNNs could instead be trained to perform relevant behaviour in the real world. This 
approach brings machine learning to bear on models for computational neuroscience, 
enabling researchers to constrain the model parameters via task training. In the domain of 
vision, for instance, category-labelled sets of training images can easily be assembled 
using web-based technologies, and the amount of available data can therefore be 
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expanded more easily than for measurements of neural activity. Of course a model 
trained to excel at a relevant task (such as object recognition, if we are trying to 
understand the computations in the primate ventral stream) might not be able to explain 
neural data. Testing which model architectures, input statistics, and learning objectives 
yield the best predictions of neural activity in novel experimental conditions (e.g. a set of 
images that has not been used in fitting the parameters) is a powerful way to learn about 
the computational mechanisms that might underlie the neural responses. The combined 
use of task training- and neural data enables us to build complex models with massive 
knowledge about the world in order to explain how biological brains implement cognitive 
function. Deep learning provides a very efficient tool to transfer this knowledge into the 
parameters of the model. 
 
 
 
Brain-inspired neural network models are revolutionising artificial intelligence and 
exhibit rich potential for computational neuroscience	
 
Neural network models inspired by biological brains have become a central class of 
models in machine learning (Figure 1). Driven by optimizing task-performance, they 
developed and improved model architectures, hardware and training schemes that 
eventually led to today’s high-performance deep neural network models. These models 
have revolutionised several domains of AI, including computer vision (LeCun, Bengio, & 
Hinton, 2015). Starting with the seminal work by Krizhevsky et al (2012) , who won the 
ImageNet competition in visual object recognition by a large margin, deep neural 
networks now dominate computer vision	(He, Zhang, Ren, & Sun, 2016; Simonyan & 
Zisserman, 2015; Szegedy et al., 2015), and drove reinforcement learning (Lange & 
Riedmiller, 2010; Mnih et al., 2015), speech-recognition (Sak, Senior, & Beaufays, 
2014), machine translation (Sutskever, Vinyals, & Le, 2014; Y. Wu et al., 2016), and 
many other domains to unprecedented performance levels. In terms of visual processing, 
deep convolutional, feed-forward networks now achieve human-level classification 
performance (VanRullen, 2017).	

Although inspired by biology, current DNNs abstract from all but the most 
essential features of biological neural networks. They are composed of simple units that 
typically compute a linear combination of their inputs and pass the result through a static 
nonlinearity (e.g. setting negative values to zero). To what extent they can nevertheless 
bring insights to computational neuroscience is controversial (Kay & Weiner, 2017; 
Kriegeskorte, 2015; VanRullen, 2017). Optimized to perform, DNNs differ substantially 
from biological neural networks, but they also exhibit architectural similarities. Consider 
the particularly successful variant of feedforward convolutional neural networks. Inspired 
by biological vision, these networks process images through a sequence of visuotopic 
representations. Each unit “sees” a restricted local region of the visuotopic map in the 
previous layer (its receptive field). Moreover, units are grouped into sets that detect the 
same visual feature all over the image (feature maps). The units within a feature map 
jointly learn a single connection weight template. The restriction to local receptive fields 
and sharing of weights among units in the same feature map greatly reduce the number of 
parameters that need to be learned. Like the primate visual system, convolutional neural 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 4, 2017. ; https://doi.org/10.1101/133504doi: bioRxiv preprint 

https://doi.org/10.1101/133504
http://creativecommons.org/licenses/by-nc/4.0/


networks perform a deep cascade of non-linear computations, their neurons exhibit 
spatially restricted receptive fields that increase in size, invariance, and complexity along 
the hierarchical levels and similar feature detectors exist for different spatial locations in 
a given layer (although this is only approximately true in the primate brain). At the same 
time, however, these models are simplified in radical ways. They do typically not include 
lateral or top-down connections, compute continuous outputs (real numbers that could be 
interpreted as firing rates) rather than spikes. The list of features of biological neural 
networks not captured by these models is endless. 

Despite abstracting from many features of biology, deep convolutional neural 
networks predict functional signatures of primate visual processing at multiple 
hierarchical levels. Trained to recognise objects, they develop V1-like receptive fields in 
early layers, and are predictive of single cell recordings in macaque IT (Cadieu et al., 
2014; Khaligh-Razavi & Kriegeskorte, 2014a; for reviews see Kriegeskorte, 2015; 
Yamins et al., 2014; Yamins & DiCarlo, 2016). In particular, the explanatory power of 
DNNs was on par with the performance of linear prediction based on an independent set 
of IT neurons and beyond linear predictions based directly on the category labels on 
which the networks were trained (Yamins et al., 2014). DNNs thereby constitute the only 
model class in computational neuroscience that is capable of predicting responses to 
novel images in IT with reasonable accuracy. DNNs explain about 50% of the variance of 
windowed spike counts in IT across individual images (Yamins et al., 2014), a 
performance level comparable to that achieved with Gabor models in V1 (Olshausen & 
Field, 2005). DNN modelling has also been shown to improve predictions of intermediate 
representations in area V4 over alternative models (Yamins & DiCarlo, 2016). This 
indicates that, in order to solve the task, the trained network transforms the image through 
a similar sequence of intermediate representations as the primate brain.  

In human neuroscience similarly, DNNs proved capable of predicting 
representations measured with functional magnetic resonance imaging across multiple 
levels of processing in a hierarchical fashion: lower network levels better predict lower 
level visual representations, and subsequent, higher-levels better predict activity in 
higher- more anterior cortical areas (Güçlü & van Gerven, 2015; Khaligh-Razavi & 
Kriegeskorte, 2014a). In line with results from macaque IT, DNNs were furthermore able 
to explain within-category neural similarities, despite being trained on a categorization 
task (Khaligh-Razavi & Kriegeskorte, 2014a). At a lower spatial, but higher temporal 
resolution, DNNs have also been shown to be predictive of visually evoked 
magnetoencephalography (MEG) data (Cichy, Khosla, Pantazis, & Oliva, 2016; Cichy, 
Khosla, Pantazis, Torralba, & Oliva, 2016; Fritsche, G, Schoffelen, Bosch, & Gerven, 
2017). On the behavioural level, deep networks exhibit similar behaviour (Hong, Yamins, 
Majaj, & DiCarlo, 2016; Kheradpisheh, Ghodrati, Ganjtabesh, & Masquelier, 2016a, 
2016b; Kubilius, Bracci, & Op de Beeck, 2016; Majaj, Hong, Solomon, & DiCarlo, 
2015) and are currently the best-performing model in explaining human eye-movements 
in free viewing paradigms (Kümmerer, Theis, & Bethge, 2014). These early examples 
clearly illustrate the power of DNN models for computational neuroscience. 
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Figure 1. Convolutional neural network structure. (A) An example feed forward 
convolutional neural network (CNN) with 3 convolutional layers followed by a fully-
connected layer. Bottom-up filters for selected neurons are illustrated with blue 
boxes. (B) The bottom-up (blue), lateral (green), and top-down (red) filters for two 
example neurons in different layers of a recurrent convolutional neural network 
(RCNN). 
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Deep neural network models can be tested with brain and behavioural data 
  
DNNs are typically trained to optimize external behavioural objectives rather than being 
derived from neural data. Thus, model testing with activity measurements is crucial to 
assess how well a network matches cortical responses. DNNs excel at task performance, 
but even human-level performance does not imply that the underlying computations 
employ the same mechanisms. Fortunately, computational neuroscience has a rich 
toolbox at its disposal that allows researchers to probe even highly complex models, such 
as DNNs (Diedrichsen & Kriegeskorte, 2017). 

One such tool are encoding models, which use external, fixed feature spaces in 
order to model neural responses across a large variety of experimental conditions (e.g. 
different stimuli, Figure 2A). The underlying idea is that if the model and the brain 
compute the same features, then linear combinations of the model features should enable 
successful prediction of the neural responses for independent experimental data 
(Naselaris, Kay, Nishimoto, & Gallant, 2011). For visual representations, the model 
feature space can derive from simple filters, such as Gabor-wavelets (Kay, Naselaris, 
Prenger, & Gallant, 2008), from human labelling of the stimuli (Huth, Nishimoto, Vu, & 
Gallant, 2012; Mitchell et al., 2008; Naselaris, Prenger, Kay, Oliver, & Gallant, 2009), or 
responses in different layers of a DNN (Agrawal, Stansbury, Malik, & Gallant, 2014; 
Güçlü & van Gerven, 2015). 

Probing the system on the level of multivariate response patterns, representational 
similarity analysis (RSA, Kriegeskorte & Kievit, 2013; Kriegeskorte, Mur, & Bandettini, 
2008; Nili et al., 2014) provides another approach to comparing internal representations 
in DNNs and the brain (Figure 2B). RSA characterizes the representational geometry in a 
given system by the representational pattern dissimilarities among the stimuli. A model 
representation is considered similar to a brain representation to the degree that it 
emphasizes the same distinctions among the stimuli. Stimulus-by-stimulus 
representational dissimilarity matrices can be directly compared between brain regions 
and model layers, side-stepping the problem of defining the correspondency mapping 
between the units of the model and the channels of brain-activity measurement (e.g. 
voxels in fMRI, (Carlin, Calder, Kriegeskorte, Nili, & Rowe, 2011; Guntupalli, Wheeler, 
& Gobbini, 2016; Khaligh-Razavi & Kriegeskorte, 2014a; Kietzmann, Swisher, König, & 
Tong, 2012), single-cell recordings (Kriegeskorte et al., 2008; Leibo, Liao, Freiwald, 
Anselmi, & Poggio, 2017; Tsao, Moeller, & Freiwald, 2008), M/EEG data (Cichy, 
Pantazis, & Oliva, 2014; Kietzmann, Gert, Tong, & König, 2017), and behavioural 
measurements including perceptual judgments (Mur et al., 2013).  

On the behavioural level, recognition performance (Cadieu et al., 2014; Hong et 
al., 2016; Majaj et al., 2015), perceptual confusions, and illusions provide valuable clues 
as to how representations in brains and DNNs may differ. For instance, it can be highly 
informative to understand the detailed patterns of errors (Walther, Caddigan, Fei-Fei, & 
Beck, 2009) and reaction times across stimuli, which may reveal subtle functional 
differences between systems that exhibit the same overall level of task performance. 
Visual metamers (Freeman & Simoncelli, 2011; T. S. A. Wallis, Bethge, & Wichmann, 
2016) provide a powerful tool to test for similarities in internal representations across 
systems. Given an original image, a modified version is created that matches the original 
in the model representation (for instance, a layer of a DNN), while features that do not 
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change the representation are altered. If the human brain processed the stimuli through 
the same stages, it should similarly be insensitive to the two stimuli that are 
indistinguishable (“metameric”) to the model. Conversely, an adversarial example 
(Goodfellow, Shlens, & Szegedy, 2015; Nguyen, Yosinski, & Clune, 2015) is a minimal 
modification of an image that elicits a different category label from a DNN. For 
convolutional feedforward networks, minimal changes to an image (say of a bus), which 
are imperceptible to humans, suffice lead the model to classify the image incorrectly (say 
as an ostrich). Adversarial examples can be generated using the backpropagation 
algorithm down to the level of the image, to find the gradients in image space that change 
the classification output. This method requires omniscient access to the system, making it 
impossible to perform a fair comparison with biological brains, which might likewise be 
confused by stimuli designed to exploit the idiosyncratic aspects (Kriegeskorte, 2015). 
The more general lesson for computational neuroscience is that metamers and adversarial 
examples provide methods for designing stimuli for which different representations 
disagree maximally. This may enable us in the future to optimise our power to adjudicate 
between alternative models experimentally. 

Ranging across levels of description and modalities of brain-activity 
measurement, from responses in single neurons, to array recordings, fMRI and MEG 
data, and behavioural responses, the above methods enable computational neuroscientists 
to investigate the similarities and differences between brains and DNNs. Future studies 
can explore a wide range of model units and network architectures, adding features 
consistent with neurobiology so as to best predict brain activity and behaviour.  
 
 
 
Drawing theoretical insight from complex models 
 
Deep learning has transformed machine learning and only recently found its way back 
into computational neuroscience, where it originated. Despite their high performance, 
DNNs have met with scepticism regarding their explanatory value as models of brain 
information processing (e.g. Kay & Weiner, 2017). One of the arguments commonly put 
forward is that DNNs merely exchange one impenetrably complex system with another 
(the “black box” argument). That is, while DNNs may be able to predict neural data, 
researchers now face the problem of understanding what exactly the network is doing. 

The black box argument is best appreciated in historical context. Shallow models 
are easier to understand and supported by stronger mathematical results. For example, the 
weight template of a linear-nonlinear model can be directly visualised and understood in 
relation to the concept of an optimal linear filter. Simple models can furthermore enable 
researchers to understand the role of each individual parameter. Overall, a model with 
fewer parameters is considered more parsimonious as a theoretical account.  

It is certainly true that simpler models should be preferred over models with 
excessive degrees of freedom. Many seminal explanations in neuroscience have been 
derived from simple models. This argument only applies, however, if the two models 
provide similar predictive power. Models should be as simple as possible, but no simpler. 
Because the brain is a complex system with billions of parameters (presumably 
containing the domain knowledge required for adaptive behaviour) and complex 
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 dynamics (which implement perceptual inference, cognition, and motor control), 
computational neuroscience will eventually need complex models. The field has to find 
ways to draw insight from such models. One way to draw insight from complex models is 
to consider their constraints at a higher level of abstraction. The computational properties 
of DNNs are the result of four manipulable elements: the network architecture, the input 
statistics, the functional objective, and the learning algorithm.  

A worthwhile thought experiment for neuroscientists is to consider what cortical 
representations would develop if the world were different. Governed by different input 
statistics, for instance, a different distribution of category occurrences or different 
temporal dependency structure, the brain may develop quite differently. This knowledge 

 
 
Figure 2. Testing the internal representations of DNNs against neural data. (A) An 

example of neuron-level encoding with a convolutional neural network (adapted from 
Yamins & DiCarlo, 2016). (B) Comparing the representational geometry of a trained 
CNN to human and monkey brain activation patterns using representation-level 
similarity analysis (adapted from Khaligh-Razavi & Kriegeskorte, 2014b). 
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would provide us with principal insights into the objectives that it tries to solve during 
development. Deep learning allows computational neuroscientists to make this thought 
experiment a simulated reality. Investigating which aspects of the simulated world are 
crucial to render the learned representations more similar to the brain thereby serves an 
essential function in understanding of representational characteristics. 

In addition to experiments with different input statistics, the network architecture 
can be altered to test how anatomical structure gives rise to computational function, and 
which features of the biological brain are required to explain a given neural phenomenon. 
For instance, it can be asked whether neural responses in a given paradigm are best 
explained by a feed-forward or a recurrent network architecture. Moreover, starting from 
an abstract level, biological details can be integrated into DNNs in order to see which 
ones prove to be required ingredients for predicting neural responses and behaviour. 
Current DNNs derive their power from bold abstractions. Although complex in terms of 
their parameter count, they are simple in terms of their component mechanisms. 
Biological brains draw from a richer set of dynamical primitives. It will be interesting to 
see to what extent incorporating more biologically inspired mechanisms can further 
enhance the power of DNNs and their ability to explain neural activity and animal 
behaviour. 

Given input statistics and architecture, the missing determinants that transform the 
randomly initialised model into a trained DNN are the objective function and the learning 
algorithm. The idea of normative approaches is that neural representations in the brain 
can be understood as being optimized with regard to one or many overall objectives. 
These define what the brain should compute, in order to provide the basis for successful 
behaviour. While experimentally difficult to investigate, deep learning based on different 
cost functions allows researchers to ask the directly related inverse question: what cost 
functions need to be optimized such that the resulting internal representations best predict 
neural data? Various objectives have been suggested in both the neuroscience and 
machine learning community. Feed-forward convolutional DNNs are often trained with 
the objective to minimize classification error (Krizhevsky et al., 2012; Simonyan & 
Zisserman, 2015; Yamins & DiCarlo, 2016). This focus on classification performance has 
proven quite successful, leading researchers to observe an intriguing correlation: 
classification performance is positively related to the ability to predict neural data 
(Khaligh-Razavi & Kriegeskorte, 2014a; Yamins et al., 2014). That is, the better the 
network performed on a given image set, the better it could predict neural data, although 
the latter was not part of the training objective. 

The objective to minimize classification error in a DNN for visual object 
recognition requires millions of labelled training images. Although the finished product, 
the trained DNN provides the best current model of ventral stream visual processing, the 
process by which the model is obtained is not biologically plausible. The image labels are 
best viewed as a crutch for semantics, which replaces the contribution of the rest of the 
brain and the body in interaction with a complex dynamic environment. Objective 
functions from the unsupervised domain have been suggested, which would allow the 
brain (and DNNs) to create error signals without external feedback. One influential 
suggestion is that neurons in the brain aim at an efficient sparse code, while faithfully 
representing the external information (Olshausen & Field, 1996; Simoncelli & Olshausen, 
2001). Similarly, compression-based objectives aim to represent the input with as few 
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neural dimensions as possible. Autoencoders are one example of this coding principle 
(Hinton & Salakhutdinov, 2006). 

Harnessing information from the temporal domain, the temporal stability or 
slowness objective is based on the insight that latent variables that vary slowly over time 
are useful for adaptive behaviour. Neurons should therefore detect the underlying, slowly 
changing signals, while disregarding fast changes likely due to noise, potentially 
simplifying readout from downstream neurons (Berkes & Wiskott, 2005; Földiák, 1991; 
C. Kayser, Körding, & König, 2003; Christoph Kayser, Einhäuser, Dümmer, König, & 
Körding, 2001; Körding, Kayser, Einhäuser, & König, 2004; Rolls, 2012; Wiskott & 
Sejnowski, 2002). Stability can be optimized across layers in hierarchical systems, if each 
subsequent layer tries to find an optimally stable solution from the activation profiles in 
previous layer. This approach was shown to lead to invariant codes for object identity 
(Franzius, Wilbert, & Wiskott, 2008) and viewpoint-invariant place-selectivity (Franzius, 
Sprekeler, & Wiskott, 2007; Wyss, König, & Verschure, 2006). Experimental evidence in 
favour of the temporal stability objective has been provided by electrophysiological and 
behavioural studies (N. Li & DiCarlo, 2008, 2010; G. Wallis & Bülthoff, 2001). 

Many implementations of classification, sparseness and stability objectives ignore 
the action repertoire of the agent. Yet, different cognitive systems living in the same 
world may exhibit different neural representations because the requirements to optimally 
support action may differ. Deep networks optimizing the predictability of the sensory 
consequence (Weiller, Märtin, Dähne, Engel, & König, 2010), or cost of a given action 
(Mnih et al., 2015) have started incorporating the corresponding information. Finally, 
there does not have to be one true objective that the brain optimizes, as neural cost 
functions are not necessarily constant across regions or time (Marblestone, Wayne, & 
Kording, 2016). 

As a result, one way to draw theoretical insights from DNN models is to explore 
what architectures, input statistics, objective functions, and learning algorithms yield 
models predictive of neural activity and behaviour. This approach does not elucidate the 
role of individual units or connections, but it can reveal what features of biological 
structure support what aspects of a system’s function and what objectives the biological 
system might be optimised for. 

In addition to contextualising the black box in this way, we can also open the 
black box and look inside. Given a model that accounts for neural activity and behaviour, 
much is won. Unlike a biological brain, a model is entirely accessible to scrutiny and 
manipulation, enabling, for example, high-throughput “in silico” electrophysiology. One 
method for visualizing a unit’s preferences is to approximately undo the operations 
performed by a convolutional DNN (Zeiler & Fergus, 2014) to visualise what image 
features drive a given unit deep in a neural network in the context of a particular image. 
This results in visualisations such as those shown in Figure 3. A closely related technique 
is to use backpropagation (Rumelhart, Hinton, & Williams, 1986) to calculate the change 
in the input needed to drive or inhibit the activation of any unit in a DNN (Simonyan & 
Zisserman, 2015; Yosinski, Clune, Nguyen, Fuchs, & Lipson, 2015). We can select an 
image that strongly drives the unit and compute the gradient in image space that 
corresponds to enhancing the unit’s activity even further. The gradient image shows how 
small adjustments to the pixels affect the activity of the unit. For example, if the image 
strongly driving the unit is a person next to a car, corresponding the gradient image might 
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reveal that it is really the face of the person driving the unit’s response. In that case, the 
gradient image would deviate from zero only in the region of the face and adding the 
gradient image to the original image would accentuate the facial features. To understand 
the unit’s response, we might have to look at its gradient in image space for many 
different test images to get a sense of the orientation of its tuning surface around multiple 
reference points (test images). 

Backpropagation can also be used to iteratively optimise images to strongly drive 
a particular unit, starting from a noise image. This yields complex psychedelic looking 
patterns containing features and forms, the network has learned through its task 
training.  It is important to note that the tuning function of a unit deep in a network 
cannot be characterised by a single visual template. If it could, there would be no need for 
multiple stages of nonlinear transformation. However, visualizations of receptive field 
properties provide intuitions about the neuronal selectivity at different layers or time-
points.  

In summary, in silico electrophysiology enables researchers to measure and 
manipulate every single neuron, if required. In addition, researchers can gain an 
understanding at a more abstract level, by observing the effects of predictive performance 
of changes to the architecture, input statistics, objective function, and learning algorithm. 
  

 

  
Figure 3. Visualizing the preferred features of internal neurons. Activations in a random 

subset of feature maps across layers for strongly driving ImageNet images projected 
down to pixel space (adapted from Zeiler & Fergus, 2014). 
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What neurobiological details matter to brain computation? 
 
A second concern about DNNs is that they abstract too much from biological reality to be 
of use as models for neuroscience. Whereas the black box argument states that DNNs are 
too complex, the biological realism argument states that they are too simple. Both 
arguments have merit. It is conceivable that a model is simultaneously to simple (in some 
ways) and too complex (in other ways). However, this raises a fundamental question: 
Which features of the biological structure should be modelled and which omitted to 
explain brain function? 

Abstraction is the essence modelling and is the driving force of understanding.  If 
the goal of computational neuroscience is to understand brain computation, then we 
should seek the simplest models that can explain task performance and predict neural 
data. The elements of the model should map onto the brain at some level of description. 
However, what biological elements must be modelled is an empirical question. Large-
scale models should enable an exploration of the level of detail required (Eliasmith & 
Trujillo, 2014). DNNs are important not because they capture the biological features that 
matter to brain computation, but because they provide a minimal functioning starting 
point for exploring what biological details matter to brain computation. If, for instance, 
spiking models outperformed rate-coding models at explaining neural activity and task 
performance (for example in tasks requiring probabilistic inference (Buesing, Bill, 
Nessler, & Maass, 2011), then this would be strong evidence in favour of spiking models. 
Convolutional DNNs like AlexNet (Krizhevsky et al., 2012), and VGG (Simonyan & 
Zisserman, 2015) were built to optimise performance, rather than biological plausibility. 
However, these models draw from a history of neuroscientific insight and share many 
qualitative features with the primate ventral stream.  The defining property of 
convolutional DNN is the use of convolutional layers. These have two main 
characteristics: (1) local connections that define receptive fields and (2) parameter 
sharing between neurons across the visual field. Whereas spatially restricted receptive 
fields are a prevalent biological phenomenon, parameter sharing is biologically 
implausible. However, biological visual systems learn qualitatively similar sets of basis 
features in different parts of a retinotopic map, and similar results have been observed in 
models optimizing a sparseness objective (Güçlü & van Gerven, 2014; Olshausen & 
Field, 1996). 

Moving toward greater biological plausibility with DNNs, locally connected 
layers that have receptive fields without parameter sharing were suggested (Uetz & 
Behnke, 2009). Researchers have already started exploring this type of DNN, which was 
shown to be very successful in face recognition (Sun, Wang, & Tang, 2015; Taigman, 
Ranzato, Aviv, & Park, 2014). One reason for this is that locally connected layers work 
best in cases where similar features are frequently present in the same visual 
arrangement, such as faces. In the brain, retinotopic organization principles have been 
proposed for higher-level visual areas (Levy, Hasson, Avidan, Hendler, & Malach, 2001), 
and similar organisation mechanisms may have led to faciotopy, the spatially 
stereotypical activation for facial features across the cortical surface in face-selective 
regions (Henriksson, Mur, & Kriegeskorte, 2015). 

Another aspect in which convolutional AlexNet and VGG deviate from biology is 
the focus on feed-forward processing. Feedforward DNNs compute static functions, and 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 4, 2017. ; https://doi.org/10.1101/133504doi: bioRxiv preprint 

https://doi.org/10.1101/133504
http://creativecommons.org/licenses/by-nc/4.0/


are therefore limited to modelling the feed-forward sweep of signal flow through a 
biological visual system. Yet, recurrent connections are a key computational feature in 
the brain, and represent a major research frontier in neuroscience. In the visual system, 
too, recurrence is a ubiquitous phenomenon. Recurrence is likely the source of 
representational transitions from global to local information (Matsumoto, Okada, Sugase-
Miyamoto, Yamane, & Kawano, 2005; Sugase, Yamane, Ueno, & Kawano, 1999). The 
timing of signatures of facial identity (Barragan-Jason, Besson, Ceccaldi, & Barbeau, 
2013; Freiwald & Tsao, 2010) and social cues, such as direct eye-contact (Kietzmann et 
al., 2017), point towards a reliance on recurrent computations. Finally, recurrent 
connections likely play a vital role in dealing with occlusion (Spoerer, McClure, & 
Kriegeskorte, 2017; Wyatte, Curran, & O’Reilly, 2012; Wyatte, Jilk, & O’Reilly, 2014) 
and object-based attention (Roelfsema, Lamme, & Spekreijse, 1998). 

The first generation of DNNs focused on feed-forward, but the general class of 
DNNs can implement recurrence. By using lateral recurrent connections, DNNs can 
implement visual attention mechanisms (Z. Li, Yang, Liu, Wen, & Xu, 2017; Mnih, 
Heess, Graves, & Kavukcuoglu, 2014), and lateral recurrent connections can also be 
added to convolutional DNNs (Liang & Hu, 2015; Spoerer et al., 2017), which increases 
the effective receptive field size of each unit. In addition to local feedforward and lateral 
recurrent connections, the brain also uses local feedback, as well as long-range 
feedforward and feedback connections. While missing from the convolutional DNNs 
previously used to predict neural data, DNNs with these different connection types have 
been implemented (He et al., 2016; Liao & Poggio, 2016; Srivastava, Greff, & 
Schmidhuber, 2015). The field of recurrent convolutional DNNs is still in its infancy, and 
the effects of lateral and top-down connections on the representational dynamics in these 
networks, and their predictive power for neural data are yet to be fully explored. 
Nevertheless, recurrent connections are an exciting tool for computational neuroscience 
and will likely allow for insights into the recurrent computational dynamics of the brain. 

Apart from architectural considerations, backpropagation, the most successful 
learning algorithm for DNNs, has classically been considered neurobiologically 
implausible. Rather than as a model of biological learning, backpropagation may be 
viewed as an efficient way to arrive at reasonable parameter estimates, which are then 
subject to further tests. That is, even if backpropagation is considered a mere technical 
solution, the resulting model may still be a good model of the dynamics in the system 
after learning. However, there is also a growing literature on biologically plausible forms 
of error-driven learning. If the brain does optimise cost functions during development and 
learning (which can be diverse, and supervised, unsupervised, or reinforcement-based), 
then it will have to use a form of optimization mechanism, such as stochastic gradient 
descent techniques. The current literature suggests several neurobiologically plausible 
ways in which the brain could adjust its internal parameters to optimise such objective 
functions (Lee, Zhang, Fischer, & Bengio, 2015; Lillicrap et al., 2016; O’Reilly, 1996; 
Whittington & Bogacz, 2015; Xie & Seung, 2003). These methods have been shown to 
allow deep spiking neural networks to learn simple vision tasks (Guergiuev, Lillicrap, & 
Richards, 2016). The brain might not be performing the exact algorithm of 
backpropagation, but it might have a mechanism for modifying synaptic weights in order 
to optimise one or many objective functions (Marblestone et al., 2016). 
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In addition to architectural considerations and optimization, there are other ways 
in which DNNs abstract from biological detail. For instance, DNNs are generally 
deterministic, while biological networks are stochastic. While much of this stochasticity 
is commonly thought to be noise, it has been hypothesized that this variability could code 
for uncertainty (Fiser, Berkes, Orbán, & Lengyel, 2010; Orban, Berkes, Fiser, & Lengyel, 
2016). Furthermore, current recurrent convolutional DNNs often only run for a few time 
steps, and the roles of dynamical features found in biological networks, such as 
oscillations, are only beginning to be tested (Finger & König, 2013; Reichert & Serre, 
2013; Siegel, Donner, & Engel, 2012). Another abstraction is the omission of spiking 
dynamics. However, DNNs with spiking neurons can be implemented (Tavanaei & 
Maida, 2016) and represent an exciting frontier of deep learning research. These 
considerations show that it would be hasty to judge the merits of DNNs based on the 
level of abstraction chosen in the first generation. The usage of DNNs in computational 
neuroscience is still in its infancy. Integration of biological detail will require close 
collaboration between modellers and experimental neuroscientists and anatomists.  

Computational neuroscience comprises a wide range of models, defined at various 
levels of biological and behavioural detail (Figure 4). For instance, many conductance-
based models contain large amounts of parameters to explain single or few neurons at 
great level of detail but are typically not geared towards behaviour. DNNs, at the other 
end of the spectrum, use their high number of parameters not to account for effects on the 
molecular level, but to achieve behavioural relevance, while accounting for overall neural 
selectivity. Explanatory merit is not only gained by biological realism (because this 
would render human brains the perfect explanation for themselves), nor does it directly 
follow from simplistic models that cannot account for complex animal behaviour. The 
space of models is continuous and neuroscientific insight works across multiple levels of 
explanation, following top-down and bottom-up approaches (Craver, 2009). 
 
 
 
Conclusions 
 
Deep neural networks have revolutionised machine learning and AI, and have recently 
moved back into computational neuroscience. These models reach human-level 
performance in certain tasks, and early experiments indicate that they are capable of 
capturing characteristics of cortical function that cannot be captured with shallow linear-
nonlinear models. DNNs offer an intriguing new framework that enables computational 
neuroscientists to address fundamental questions about brain computation in the 
developing and adult brain. 

DNNs will not replace shallow models, but rather enhance the investigative 
repertoire of the computational neuroscientist. Understanding neural computations is 
ultimately an interdisciplinary endeavour. Experimental neuroscientists will have to 
collaborate with machine learning researchers if we are to understand how the brain 
works. With computers approaching the brain in computational power, we are entering a 
truly exciting phase of computational neuroscience. 
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Figure 4. Cartoon overview of different models in computational neuroscience. Given 
computational constraints, models need to make simplifying assumptions. These can 
either be regarding the biological detail, or behavioral relevance of the model output. 
The explanatory merit of a model is not dependent on the exact replication of 
biological detail, but on its ability to provide insights into the inner workings of the 
brain at a given level of abstraction. 
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