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Abstract 10 

Oculomotor behaviors integrate sensory and prior information to overcome sensory-motor delays and 11 

noise. After much debate about this process, reliability-based integration has recently been proposed and 12 

several models of smooth pursuit now include recurrent Bayesian integration or Kalman filtering. However, 13 

there is a lack of behavioral evidence supporting these theoretical predictions.  14 

Here, we independently manipulated the reliability of visual and prior information in a smooth pursuit task. 15 

Our results show that both smooth pursuit eye velocity and catch-up saccade amplitude were modulated 16 

by visual and prior information reliability. 17 

We interpret these findings as the continuous reliability-based integration of a short-term memory of 18 

target motion with visual information, which support modelling work. Furthermore, we suggest that 19 

saccadic and pursuit systems share this short-term memory. We propose that this short-term memory of 20 

target motion is quickly built and continuously updated, and constitutes a general building-block present in 21 

all sensorimotor systems. 22 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 19, 2017. ; https://doi.org/10.1101/151381doi: bioRxiv preprint 

https://doi.org/10.1101/151381
http://creativecommons.org/licenses/by/4.0/


2 
 

Introduction 23 

Over the last two decades, Bayesian integration of different signals (i.e. the weighted summation based on 24 

the respective reliability of each signal) has been widely applied to the study of cognitive processes. Its 25 

intrinsic ability to handle the uncertainty of different signals and combine them makes it a particularly 26 

useful tool to model how the brain handles the imperfect sensory representations of the external world. 27 

Indeed, be it relative to movement (Tassinari, Hudson, & Landy, 2006; Yang, Lee, & Lisberger, 2012), 28 

learning (Nassar, Wilson, Heasly, & Gold, 2010) or estimation (Stocker & Simoncelli, 2006), numerous 29 

studies have highlighted behaviors that exhibit reliability-based integration. Furthermore, when several 30 

senses give information about the same event or object, reliability based integration allows their (near) 31 

optimal combination (Ernst & Banks, 2002; Jacobs & Fine, 1999; Landy, Banks, & Knill, 2011). It has recently 32 

been suggested that internal predictive and sensory afferent information is combined in a Bayes-optimal 33 

fashion during smooth pursuit eye movements; however this prediction has not been tested explicitly. 34 

The oculomotor system is well-studied and offers many typical examples of sensorimotor processes relying 35 

on both noisy sensory inputs (Bogadhi, Montagnini, & Masson, 2013; Osborne, Lisberger, & Bialek, 2005; 36 

Spering, Kerzel, Braun, Hawken, & Gegenfurtner, 2005) and prior experience (Kowler, Martins, & Pavel, 37 

1984; Madelain & Krauzlis, 2003; Yang et al., 2012) to produce accurate movements. For example, visual 38 

tracking has to cope with sensory delays (Osborne, Bialek, & Lisberger, 2004) and internal noise (Osborne 39 

et al., 2005). By integrating visual inputs with past experience and cues, the oculomotor system can 40 

overcome sensory delays and noise to produce eye movements matching current target movement. In the 41 

pursuit system, this allows, for example, anticipatory smooth eye movements (Dodge, Travis, & Fox, 1930; 42 

Hayhoe, McKinney, Chajka, & Pelz, 2012; Kowler, Aitkin, Ross, Santos, & Zhao, 2014; Westheimer, 1954) or 43 

zero-lag smooth pursuit tracking of a sinusoidal target motion (Dodge et al., 1930; Orban de Xivry, Coppe, 44 

Blohm, & Lefèvre, 2013). In the saccadic system, predictive saccades can be observed when tracking a 45 

target jumping at a fixed frequency (Shelhamer & Joiner, 2003), or a bouncing ball (Diaz, Cooper, Rothkopf, 46 

& Hayhoe, 2013). Thus predictive and sensory information interact to drive oculomotor behavior. 47 
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The process of integration of sensory and predictive signals is still up to debate. Several models have been 48 

proposed to explain how sensory inputs and predictive signals might be integrated during smooth pursuit: 49 

some have used a switching mechanism between predictive and sensory-feedback processes (Barnes, 2008; 50 

Bennett & Barnes, 2004), but in recent years several authors turned to reliability-based integration 51 

(Bogadhi, Montagnini, Mamassian, Perrinet, & Masson, 2011; Dimova & Denham, 2009; Freeman, 52 

Champion, & Warren, 2010; Montagnini, Mamassian, Perrinet, Castet, & Masson, 2007). In 2013, Orban de 53 

Xivry, Coppe et al. proposed a model that, for the first time, was able to simulate the integration of a 54 

continuous flow of sensory information with past experience to drive motor behavior. This model used 55 

reliability-based integration (Kalman filtering) both to predict target movement and to simultaneously build 56 

a dynamic memory of it. Specifically, the model predicts that the estimated target movement is the 57 

reliability-weighted (reliability = 1/variance) average of visual and predictive target motion signals, in 58 

agreement with Bayes-optimal cue integration. This model managed to reproduce a large repertoire of 59 

pursuit behaviors. The same year, Bogadhi, Montagnini and Masson (2013) proposed a similar model that 60 

used a static memory of target velocity and two recurrent Bayesian networks for sensory and predictive 61 

signal integration. However, while there are several studies on the influence of prior information on 62 

oculomotor tracking (Kowler, 2011; Kowler et al., 2014; Wende, Theunissen, & Missal, 2013; Yang et al., 63 

2012), few have investigated the mechanisms of integration of such prior information with sensory 64 

information, and how the reliability of the memory and the sensory inputs can influence this integration.  65 

Here, we present two target-eye-tracking experiments in which we independently manipulated the 66 

uncertainties of visual information and short-term memory. As predicted by the model of Orban de Xivry, 67 

Coppe et al. (2013), we observe reliability-based integration of a short-term memory of target motion with 68 

visual information during movement. Furthermore, we show that this integration occurs in two types of eye 69 

movements: smooth pursuit and catch-up saccades. Given the similarities of smooth pursuit with other 70 

cortical sensorimotor systems (Lisberger, 2015; Lynch & Tian, 2006) and recent studies of memory updating 71 

(Gershman, Radulescu, Norman, & Niv, 2014; Nassar et al., 2010), we believe that our results validate an 72 

important prediction; continuous reliability-based integration of current sensory information with working 73 

memory signals is a general principle that is likely to be part of all sensorimotor processes.   74 
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Results 75 

Prior information about the target velocity biases smooth pursuit eye velocity  76 

In this study, we varied the reliability of sensory and prior information in order to see how each of these 77 

information channels can influence the oculomotor response. First, we measured the effect of prior 78 

information on smooth pursuit by comparing eye velocity for a selection of catch and control trials (Fig. 8B). 79 

The selected trials had identical target velocities (for example 15°/s) during the current trial but different 80 

target velocities during the previous ones (for example 15°/s for control and 20°/s for catch trials). In 81 

addition, these trials were matched by trial number. Therefore, any difference in behavior between these 82 

catch and control trials has to be attributed to the influence of prior information on the oculomotor 83 

response. This comparison is illustrated on Figure 1A, which shows average eye velocity profiles (noisy 84 

target) for control and catch trials for different trial numbers. On this figure, a clear and long-lasting bias 85 

(up to 500ms after the target motion onset) can be seen. Furthermore, this bias appears to increase with 86 

Figure 1: Prior information effect on eye velocity gain. A. Averaged eye velocity traces of Control15 and Catch15, 
for all participants (of the 1st experiment, noisy target), for all trials allowing direct comparison between a catch 
and a control condition with a current target at 15°/s. Blue traces are the average eye velocity of control trials, 
while red traces are those of the catch trials. The surrounding hue indicates the standard error of the mean. B. 
Averages of participant’s mean differential gains of the smooth pursuit eye velocity response to a noisy target 
moving at 15°/s (full red line) or 20°/s (dashed green line) that was preceded by trials with the same target either 
at a higher (20°/s, full red line) velocity or a lower (15°/s, dashed green) velocity (catch trials). The error bars 
indicate the standard error of the mean. C. Same as panel B, but for the second experiment with a standard target. 
Dashed lines indicate a 15°/s prior target velocity. 
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the number of previous trials.  87 

To evaluate the influence of the prior information on the smooth pursuit response, we computed the 88 

steady-state smooth pursuit gain for each trial (see Methods) and subtracted the gain of the control trial 89 

from the gain of the corresponding catch trial (Fig. 1B and Fig. 1C). For all types of catch trials, the smooth 90 

pursuit response was biased towards the velocity of the preceding trials (main effect of trial type; Noisy 91 

Target, catch15 : F(1,12)=51.81, p<0.0001, ges=0.17, catch20: F(1,12)=53.11, p<0.0001, ges=0.1; Standard 92 

Target, catch15 : F(1,12)=21.38, p=0.0006, ges=0.07, catch20 : F(1,12)=24.95, p=0.0031, ges=0.06). That is, 93 

on a given trial, the steady state smooth pursuit gain was higher (resp. lower) if this trial was preceded by 94 

trials with higher (resp. lower) target velocity. This demonstrates the effect of prior information on smooth 95 

pursuit eye velocity. This effect was true for both target types. 96 

Visual information about the target velocity affects smooth pursuit eye velocity  97 

The impact of visual information on the smooth pursuit eye movements was measured by comparing catch 98 

and control trials that had the same prior information (same number of previous trials with the same target 99 

velocity), but different target velocities (see Fig. 8B). 100 

Looking at eye velocity, this comparison (see Fig. 2A) showed that visual information had a clear effect: 101 

conditions having a higher target velocity showed, when compared to controls, a bias towards higher eye 102 

velocities and conditions having a lower target velocity showed a bias towards lower eye velocities. This 103 

effect was already present during the first active trial (#2), persisted during later trials, and could be 104 

observed as late as 500ms after the target onset.  105 
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 106 

To highlight the effect of visual information on smooth pursuit eye velocity, we computed the difference of 107 

pursuit gains (see methods) to obtain the change in pursuit gain between catch and control trials. The 108 

differential gains show that the visual information modulated the smooth pursuit gain for all conditions of 109 

each experiment (Fig. 2B and C), which was confirmed by statistical analyses.  110 

We found that the steady state eye velocity gains of catch trials were significantly different from those of 111 

control trials, both for the noisy target (main effect of trial type: F(2,24)=37.03, p<0.0001 Huynh-Feldt 112 

corrected, ges=0.23) and the standard target (main effect of trial type: F(2,24)=124.29, p<0.0001 Huynh-113 

Feldt corrected, ges=0.53). Note that the interaction with the trial number is discussed in the last section of 114 

the results.  115 

For both types of target, the magnitudes of the biases were higher for the conditions for which prior target 116 

velocity was at 15°/s (interaction effect between trial type and prior target velocity; Noisy target: 117 

Figure 2 : Visual information effect on eye velocity gain. A. Averaged velocity traces of all participants (noisy target), 
for all trials with the same target velocity prior – 15°/s – and all comparable trial numbers (all but the first and the 
last). The conditions Control15 (blue trace), Catch10 (decrease of velocity, red trace) and Catch20 (increase in velocity, 
green trace) have the same prior at 15°/s. The hue around each trace is the standard error of the mean. B. Averages of 
participant’s mean differential gains of the smooth pursuit eye velocity response to trials of a noisy target moving at 
10°/s or 20°/s (resp. red and green dashed lines) or at 15°/s or 25°/s (resp. red and green solid lines) that were 
preceded by trials with the same target either at a higher velocity (all red lines) or a lower velocity (all green lines). The 
X-axis indicates the trial number and the error bars the standard error of the mean. C. Same as panel B, but for the 
second experiment with a standard target. 
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F(2,24)=29.34, p<0.0001 Huynh-Feldt corrected, ges=0.03; Standard target : F(2,24)=30.08, p<0.0001 118 

Huynh-Feldt corrected, ges=0.05). Thus overall, visual information affected pursuit gain. 119 

Saccade amplitude is biased by prior information about the target velocity 120 

It is known that saccade and pursuit share many inputs. In particular, catch-up saccade amplitude is 121 

dependent on the difference between target and eye velocity (S. de Brouwer, Missal, Barnes, & Lefèvre, 122 

2002). Therefore, if the internal representation of target velocity is biased by prior information, we would 123 

expect that this bias also results in alterations of catch-up saccade amplitude. Thus, we tested if the prior 124 

information about the target motion would also influence the catch-up saccades. To do so, we compared 125 

the amplitude of saccades in catch and control trials by computing the difference between the amplitude of 126 

saccades made during catch trials and the amplitude of saccades made during control trials of the same 127 

target velocity (see methods and Fig. 10).  128 

We found that saccades were biased by prior information about target velocity; the amplitude of saccades 129 

made during catch trials was more likely to be larger than during control trials if the previous trials had a 130 

higher target velocity and to be smaller if the previous trial’s target was slower (main effect of trial type; 131 

Noisy Target, catch15: F(1,12)=34.47, p<0.0001, ges=0.28, catch20: F(1,12)=18.62 p=0.001, ges=0.18). 132 

When the standard target was presented on the screen, we found a similar effect of the prior on saccade 133 

amplitude (Standard target, catch15: F(1,12)=6.82, p=0.023, ges=0.02, catch20: F(1,12)=17.1, p=0.0014, 134 

ges=0.16). Fig. 3A illustrates this effect on some representative trials from one participant. Another way to 135 

look at this effect is presented in Fig. 10, where it can be observed that the data points from catch trials – 136 

the red dots – tend to be located above the regression line, indicating a bias towards larger saccades 137 

coherent with an effect of a higher target velocity prior.  138 
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 139 

Because saccades can sometimes be adjusted online via internal feedback, we also studied the peak 140 

velocity of the saccades, as it is a good marker of saccade (Chen-Harris, Joiner, Ethier, Zee, & Shadmehr, 141 

2008) planning. Similarly to saccade amplitude, we also found peak velocity to be biased towards prior 142 

target velocity. Peak velocity tended to be higher, compared to control trials, during catch trials with higher 143 

prior target velocity, while it tended to be lower when prior target velocity was lower (main effect of trial 144 

type; Noisy Target, catch15: F(1,12)=24.05, p=0.0004, ges=0.26, catch20: F(1,12)=12.95, p=0.0037, 145 

ges=0.10; Standard target, catch15: F(1,12)=5.36, p=0.04, ges=0.05, catch20: F(1,12)=14.5, p=0.0025, 146 

ges=0.17).  147 

  148 

Figure 3 : A. Effect of prior information on concomitant saccades. Position and velocity profiles of saccades made at 
the same time (15ms window) in representative control and catch trials. Left panel: saccades made around 220ms after 
the onset of the target, during control trials with a prior of target velocity at 15°/s (blue traces) and catch trials with a 
prior of target velocity at 20°/s (red traces). Right panel: saccades made around 220ms after the onset of the target, 
during control trials with a prior of 20°/s (blue traces) and catch trials with a prior of 15°/s (green traces). B. Effect of 
prior information on saccades (noisy target). Averages of participant’s mean residuals (vertical distance from fit on 
control data) of the amplitude of saccades made during catch trials, with respect to the trial number. The blue dotted 
line indicates the control reference (that has been subtracted from all data), red/green traces show residuals of 
saccades made during catch trials. The error bars indicate the standard error of the mean. C. Same as panel B, but for 
the second experiment with a standard target. 
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Saccade amplitude is also biased by visual information about the target velocity 149 

As a sanity check for our analysis of saccades, we compared saccades made within conditions having the 150 

same prior information and different visual information about the target velocity. As expected, saccade 151 

amplitude was also influenced by visual information (Fig. 4), meaning that catch-up saccades accounted for 152 

the velocity change. Catch trials with a higher target velocity than control trials (green traces) had larger 153 

saccade amplitude, and the opposite pattern was seen for catch trials having a lower target velocity (red 154 

traces). Once more, this effect was present for all velocities, and in both experiments (main effect of trial 155 

type, Noisy Target: F(2,24)=69.39, p<0.0001 Huynh-Feldt corrected, ges=0.4; standard Target: 156 

F(2,24)=211.96, p<0.0001 Huynh-Feldt corrected, ges=0.7). We found no influence of the control (previous) 157 

target velocities (15°/s and 20°/s) on the magnitude of the effect (cf. dashed lines vs full lines in Fig. 4).  158 

 159 

Prior information induces stronger biases when the reliability of the visual 160 

information is lower 161 

By comparing the normalized effect of prior information across the two types of target (Fig. 5), we found 162 

that the influence of the prior was significantly stronger for the noisy target than for the standard target. As 163 

such, the magnitude of the effect on eye velocity was significantly different between the two targets (main 164 

effect of target type: F(1,24)=4.43, p=0.046, ges=0.08). Furthermore, we observed significant differences of 165 

the modulation of saccade amplitudes by prior information (main effect of target type: F(1,24)=7.17, 166 

Figure 4 : A. Effect of visual information on saccades. Averages of participant’s mean residuals (vertical distance 
from fit on control data) of the amplitude of saccades made during catch and control trials, with respect to their 
trial number. Red/green traces show residuals of saccades made during catch trials (the control residuals have 
been subtracted from all data). The X-axis indicates the trial number and the error bars the standard error of the 
mean. B. Same as panel A, but for the second experiment with a standard target. 
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p=0.0132, ges=0.08). In other words, when confronted to a noisy, less reliable target, participants gave 167 

more weight to prior information than when confronted to the standard target.  168 

 169 

Visual information impact is stronger when the reliability of the visual 170 

information is higher 171 

As a complement to the previous analysis, comparing the two types of target (Fig. 6), we found that the 172 

standard target elicited a stronger effect of the visual information on both smooth pursuit and saccadic eye 173 

movements. Indeed, the effect on eye velocity was stronger (main effect of target type; F(1,24)=20.77, 174 

p=0.0001, ges=0.26), and saccade amplitude was more strongly modulated (main effect of target type; 175 

F(1,24)=8.64, p=0.007, ges=0.1) when the target was standard rather than noisy.  176 

This behavior, opposite to that of prior information, is coherent with the hypothesis that the reliability of 177 

visual information is higher for the standard target than for the noisy target, which would give more weight 178 

to visual information when pursuing the standard target. 179 

Figure 5 : Magnitude of the effect of prior information. Boxes represent averages of participant’s means 
across both comparable velocities. Effect on eye velocity (left panel, % is relative to the target velocity 
change: 5°/s) and on saccade amplitudes (right panel). Significativity (* indicates p<0.05) refers to a mixed 
design ANOVA with within factors ‘target velocity’ and ‘trial#’ and between factor ‘type of target’. Errorbars 
indicate standard errors of the mean. 
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 180 

Higher prior reliability induces stronger effect of the prior, but doesn’t seem to 181 

affect visual effect 182 

Postulating that the reliability of the prior information increases with the number of repetitions (Orban de 183 

Xivry, Coppe et al., 2013), we analyzed how the effect of prior information (measure of normalized gains, 184 

see methods) evolves with trial number. To do so, we computed a simple linear regression to predict the 185 

effect magnitude based on the trial number. 186 

Across target types, we found that the magnitude of the effect of the prior on the eye velocity gain 187 

significantly increased with the trial number (significant regression slope of 4.9%/trial: F(1,206)=11.39, 188 

p=0.0009, R²=0.0478), supporting the hypothesis that the weighting of prior information is dynamically 189 

updated to reflect its reliability (Fig. 7A). We also computed the linear regression separately for each target 190 

type, and observed that for both targets there was a significant increase of the effect with the trial number 191 

(noisy target: slope of 4.7%/trial, F(1,102)=5.1, p=0.026, R²=0.04; standard target: slope of 5.2%/trial, 192 

F(1,102)=6.76, p=0.011, R²=0.053). 193 

In contrast, we found no indication (p>0.39) of an effect of the number of repetitions on the impact of 194 

visual information on eye velocity (Fig. 7B).  195 

Figure 6 : Magnitude of the effect of Visual information on the eye velocity (left panel, % is 
relative to the target velocity change: 5°/s), and on saccade amplitude (right panel). Boxes 
represent averages of participant’s means across all comparable velocities. Significativity (* 
indicates p<0.05) refers to a mixed design ANOVA with within factors ‘control target velocity’ 
and ‘trial#’, and between factor ‘type of target’. Errorbars indicate standard errors of the 
mean. 
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 196 

Note that we could not perform the analysis of interaction of the number of repetitions on saccades 197 

because, since we had to match saccade latency distributions to compare saccades across targets 198 

(experiments), the number of comparable saccades was reduced by almost 50%. Consequently, the number 199 

of comparable saccades per (catch) trial number was too low for such an analysis. 200 

 201 

Figure 7 : Effect of trial number. A. Influence of trial number on the magnitude of the effect of prior 
information on eye velocity (averages of participant’s means). B. Influence of trial number on the magnitude of 
the effect of visual information on eye velocity (averages of participant’s means). Percentages are relative to 
the target velocity change (% of 5°/s). Errorbars indicate the standard error of the mean. 
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Discussion 202 

To investigate the dynamic reliability-based-weighting of visual information and memory of target motion 203 

during eye movements, we asked participants to visually track either a noisy (Gaussian) target or a standard 204 

target for a variable number of identical trials. Then, we tested how the nervous system weighted new 205 

sensory information and prior expectations by presenting a trial with a different target velocity.  206 

Our results show that previous trials had a greater effect on eye velocity and catch-up saccades amplitude 207 

when the target was a Gaussian blob, in a manner consistent with a reliability-weighted integration of 208 

visual information with short-term memory. It was also observed that the effects of previous trials on eye 209 

movements appeared as early as after one trial and increased with the number of trials, hinting at a short-210 

term memory of perceived target motion that is dynamically built and updated. 211 

Eye movements use a reliability-based representation of target motion 212 

It has been known for a long time that extra-retinal and sensory signals can both drive smooth pursuit 213 

(Barnes & Asselman, 1991; Dodge et al., 1930; Kowler & Steinman, 1979); however, how these two signals 214 

are integrated within the pursuit system has remained elusive. The first models including predictive smooth 215 

pursuit had separate pathways which were activated by switches (Barnes, 2008). Such models often 216 

struggled to explain the transition between predictive and reactive pursuit and why predictive signals are 217 

observed despite the randomization of target features (Kao & Morrow, 1994; Kowler & McKee, 1987). 218 

More recently, Orban de Xivry, Coppe et al. (2013) as well as Bogadhi, Montagnini and Masson (2013) both 219 

proposed models of smooth pursuit that were able to combine sensory and extraretinal signals without the 220 

need for a switch between pathways. Those two models included 2 separate recursive Bayesian/Kalman 221 

filters (one for visual inputs, one for extraretinal inputs) and could reproduce many aspects of smooth 222 

pursuit behavior in different contexts of visual information. They differed in a few aspects, including the 223 

type of memory of the target and assumptions about the visual reliability of the target. Here, we mainly 224 

refer to the model of Orban de Xivry, Coppe et al. because we can compare its predictions of the repeated 225 

tracking of a noisy target to our experiment. However, given a few modifications, we believe that similar 226 

predictions could be made by the model of Bogadhi, Montagnini and Masson.  227 
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Compared to the predictions of the model of Orban de Xivry, Coppe et al., we found that our results 228 

supported them. Indeed, the modulation of the effect of previous trials on eye velocity by both the 229 

reliability of visual information (noisy or standard) and the reliability of the memory (number of repetitions) 230 

are strong indicators of a reliability-based integration of visual information with some memory of target 231 

motion. 232 

Importantly, our results go further and show that similar processes are at work for catch-up saccades, 233 

which fits well with the idea that both saccades and smooth pursuit are influenced by common inputs 234 

(Krauzlis, 2004, 2005; Orban de Xivry & Lefèvre, 2007). While these common inputs were either sensory 235 

signals from position and motion pathways (Blohm, Missal, & Lefèvre, 2005; S. de Brouwer, Yüksel, Blohm, 236 

Missal, & Lefèvre, 2002; Krauzlis, 2004) or from the forward model (Ego, Yüksel, Orban de Xivry, & Lefèvre, 237 

2016; Orban de Xivry, Bennett, Lefèvre, & Barnes, 2006), we show here that the internal representation of 238 

target motion, stored in short-term memory, is also shared by the two systems. Hence, catch-up saccade 239 

amplitude was affected both by the target velocity of previous trials and by the velocity of the ongoing 240 

target. Moreover, the magnitude of the effect of previous trials was greater when the visual target was the 241 

(less reliable) Gaussian blob, which is fully compatible with reliability-based integration. 242 

Therefore, we show in the present study that the whole oculomotor system has access to a single short 243 

term memory of target motion, and that reliability-based integration captures well the process by which 244 

this memory is combined with sensory signals.  245 

Nature of the representation: short-term memory or prior 246 

Here, we made the assumption that the extra-retinal signals consist of an internal representation of target 247 

motion (Orban de Xivry, Missal, & Lefèvre, 2008) and not a prior on target velocity (Bennett & Barnes, 248 

2004; Bogadhi et al., 2013; Yang et al., 2012). These two possibilities differ in the sense that an internal 249 

representation of target motion is a memory of the target motion paired to a measure of uncertainty while 250 

the prior is a Gaussian distribution with a mean and standard deviation (see Tassinari et al., 2006 for a 251 

study on the ability of humans to do reliability-based integration). In addition to previous evidence in favor 252 

of an internal representation of target motion (Orban de Xivry et al., 2008), the rapid change in the weight 253 
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of the extra-retinal signals with trial number (Fig. 7) is at odds with a prior on target velocity, which is 254 

commonly slowly built and gradually updated. An internal representation of target motion can also drive 255 

anticipatory pursuit (Orban de Xivry, Coppe et al., 2013) and, through continuous reliability-based 256 

integration, would fit well the results of Heinen, Badler and Ting (2005) on the effect of previous trials on 257 

anticipatory pursuit, and the results of Maus, Potapchuk, Watamaniuk and Heinen (2015) who showed that 258 

anticipatory eye velocity was best correlated with the target velocity of the 2 previous trials. 259 

Indeed, we observed that the weight of the extra-retinal signals was updated on a trial-by-trial basis. Such a 260 

rapid update in reliability can be modelled through Kalman filtering (Orban de Xivry, Coppe et al., 2013) in 261 

the case of an internal representation of target motion. In contrast, achieving the same with a prior on 262 

target velocity would require one trial to very rapidly affect its Gaussian distribution, while many trials are 263 

usually required to obtain a prior distribution (Yang et al., 2012: several days of training in monkeys; 264 

Kording and Wolpert, 2004: 1000 trials in humans). However, there appears to be a trend towards 265 

describing shorter timescales for the building of certain sensorimotor ‘priors’, for example of target 266 

position: in 2008, Izawa and Shadmehr suggested continuous prior integration with sensory information; in 267 

2011, Verstynen and Sabes reported on ‘fast adapting priors’ built within 10 trials; in 2012, Rao, De Angelis 268 

and Snyder suggested rapidly-varying priors downstream of the sensory representation. Priors of target 269 

velocity and timing were also suggested to be continuously integrated with other sensorimotor signals by 270 

authors such as Heinen, Badler and Ting (2005). Such priors would still allow for other priors built on longer 271 

timescales, like priors towards zero target velocity, to be taken into account (Yang et al., 2012) but also 272 

explain trial-to-trial effects such as those observed in this experiment.  273 

Reliability-based integration of a short-term memory with new information 274 

In recent years, reliability-based integration of sensory inputs with other signals has provided an elegant 275 

framework to explain how the brain can process noisy and changing visual information to produce 276 

appropriate movements. Reliability-based integration has already been observed for inputs from different 277 

sensory systems (Ernst & Banks, 2002; Landy et al., 2011), for visual information and ongoing motor 278 

commands (Kording & Wolpert, 2004), for visual information and a low-velocity prior (Jogan & Stocker, 279 
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2015; Stocker & Simoncelli, 2006) and for sensory predictions and sensory feedback (Vaziri, Diedrichsen, & 280 

Shadmehr, 2006) but, to the best of our knowledge, it has until now not been shown to occur for ongoing 281 

sensory information and a working memory.  282 

Outside of the oculomotor context, several authors have studied the dynamics of memory and learning and 283 

found processes that relate to reliability-based integration of working memory with new information. They 284 

have suggested different models for which a memory is updated on the basis of the outcome of a previous 285 

action. The core principle is as follows: maintain states/beliefs about the environment (in our case the 286 

target motion), and update the existing beliefs on the basis of prior information and recent outcomes for 287 

the next trials. In addition, these models particularly focus on whether a new state (a memory) should be 288 

formed or the previous one updated, depending on whether a fundamental change in the system is 289 

thought to have occurred or not. The states are therefore updated or created depending on the probability 290 

of a fundamental change and on the reliability of the signals, namely memory or new sensory information, 291 

for example by means of an approximately Bayesian delta-rule model (Nassar et al., 2010; Wilson, Nassar, 292 

& Gold, 2013), or a similar optimal filtering model (Gershman et al., 2014). Such belief-updating models 293 

have also been applied to the motor adaptation domain (Kording, Tenenbaum, & Shadmehr, 2007; Wei & 294 

Kording, 2010).  295 

In all these studies, memory updating is influenced by the reliability of the new incoming information but 296 

takes place during the inter-trial interval. In contrast, the present study demonstrates that the integration 297 

of the memory content and the sensory information takes place during the movement and directly 298 

influences it. Such reliability-based integration of two different signals during movement was reported in a 299 

study in which one signal came from the internal model of the arm and the other signal was sensory in 300 

nature (Kording & Wolpert, 2004) but, to our knowledge, it is the first time that reliability-based integration 301 

during movement is reported for sensory and working memory signals. 302 

Integration of short-term memory and visual signals in other contexts 303 

Several studies investigated the influence of the memory of a target position on reaching arm movements. 304 

Brouwer and Knill (2007, 2009) showed that reaching movements towards a visual target were biased 305 
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towards its last known position and that the effect was stronger if the contrast of the target was low. 306 

Verstynen and Sabes (2011) also showed the presence of a bias towards previous positions of the target 307 

during reaching movements despite the fully predicable nature of the next positions. In addition to the 308 

position of the target, the spatial structure of the environment itself has also been shown to be memorized 309 

during visuomotor tasks (Aivar, Hayhoe, Chizk, & Mruczek, 2005; Hayhoe, Shrivastava, Mruczek, & Pelz, 310 

2003).  311 

Those studies clearly highlight that the reliability of a visual target, and previous information about it, can 312 

affect hand movements in a way that is similar to their effect on eye movements (Issen & Knill, 2012). 313 

However, these studies mainly focused on the integration of a memory of target position with the visually 314 

presented one. Such memories are limited to a position signal and a spatial representation of the scene and 315 

do not contain the evolution of the signal over time. Given that we know that the oculomotor system does 316 

not restrict this memory to a measure of target velocity but also includes its time course (Bennett, Orban 317 

de Xivry, Lefèvre, & Barnes, 2010; Orban de Xivry et al., 2008), we believe that the content of the working 318 

memory used for reliability-based integration during movement is much more complex than the ones 319 

previously described (Song & Nakayama, 2009).  320 

Finally, while the integration of the position signals from visual information and memory occurs mostly 321 

before movement onset, we observe here a continuous integration of working memory and sensory 322 

information during eye movements. Given the similarities between the oculomotor system and other 323 

sensorimotor systems (Lisberger, 2015; Lynch & Tian, 2006), we may expect to find a similar process of 324 

continuous short-term memory updating in those systems. 325 

Conclusion 326 

In this study, we report experimental evidence in the context of oculomotor behaviors that short-term 327 

memory can be quickly built, constantly updated and continuously integrated in a reliability-based manner 328 

with incoming visual information. We believe that this constitutes a general principle of dynamical updating 329 

of working memory, one that is consistent with two recent studies (Gershman et al., 2014; Nassar et al., 330 

2010), and that is likely to be present in other sensorimotor systems (Lisberger, 2015). 331 
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Methods 332 

Participants 333 

Because of the absence of previous literature on the topic, a power analysis could not be used beforehand 334 

to determine the number of participants. We therefore decided to refer to what is typically done in eye 335 

movement research and targeted a pool of more than 10 participants per experiment. Twenty participants 336 

between 18 and 30 years old were recruited to participate in our experiments. Thirteen participants (4 337 

female) participated in the first experiment and thirteen (6 from the first) in the second experiment (5 338 

female).  339 

Participants had normal or corrected to normal vision. After being given a full description of the 340 

experiment, informed consent was given by the participants. The procedures were approved by the 341 

Université catholique de Louvain Ethics Committee and were in accordance with the Declaration of 342 

Helsinki. 343 

Protocol 344 

Participants were seated in a dark room, and looked at a 197x150 cm screen at 151 cm in front of them, 345 

spanning ±40° of their visual field. Head movements were restrained with chin and forehead rests. The 346 

stimuli were projected onto the screen with a cine8 Barco projector (Barco Inc., Kortrijk, Belgium) at a 347 

refresh rate of 100 Hz and the eye movements were recorded at 1000Hz using an Eyelink 1000 (SR 348 

Research, Ottawa, Ontario, Canada). The display of visual stimuli was handled by an in-house toolbox, while 349 

interactions with the Eyelink® were handled by the Psychtoolbox (Kleiner et al., 2007). Calibrations trials 350 

were first performed at the start of the experiments, then every 30 trials (±2min). Breaks were allowed 351 

before every calibration (every 2min), and the total duration of an experiment was around 30 minutes. 352 

In the design of the protocol, we wanted to make sure that behaviors could only be related to the current 353 

block, i.e. that there was no transfer of information between blocks. As such, block duration and features 354 

were randomized, direction changed after each block and each of them started with a passive trial meant 355 

to wash out previous block-related memories. 356 
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Two types of stimuli were used: a red fixation target (uniform disk, diameter 0.8°), and a red pursuit target. 357 

The protocol was identical for both experiments except for the pursuit target. In experiment #1, the pursuit 358 

target was a 2D Gaussian spot (σ=1.27°; hereafter the noisy target, cf. Fig. 8 - supplement 1). In experiment 359 

#2, the pursuit target was a uniform disk (0.8° of diameter; hereafter the standard target, cf. Fig. 8 - 360 

supplement 2). The overall luminance of the stimuli was the same for all stimuli, however, given the 361 

difference in the distribution (the pixel at the center of the noisy target has 5% of the luminance of any 362 

pixel of the standard target), the noisy target was harder to perceive.  363 

For both experiments, there were two main types of trial, passive and active, and two sub-types (of active 364 

trials): control and catch. All trials started with the display of the fixation target at the center of the screen. 365 

After 500ms, the pursuit target appeared at the center and immediately moved in one out of 6 possible 366 

directions (-20°, 0°, 20°, 160°, 180° or 200°) at a constant velocity (15°/s or 20°/s for control trials) during 367 

650ms. In passive trials, the fixation target remained on for the whole trial, and participants were 368 

instructed to keep looking at the fixation target while inhibiting movements towards the pursuit target. In 369 

active trials, the fixation target disappeared at the onset of the pursuit target and participants were 370 

instructed to follow the pursuit target with their eyes (see Fig. 8).  371 

The trials were presented in blocks: each block consisted of one passive trial followed by 1 to 5 active trials 372 

with 850ms between trials. To warn participants of a transition from active to passive trial, i.e. the start of a 373 

new block, an auditory cue (440Hz, 80ms) was given 200ms before the appearance of the fixation target. 374 

Target direction and velocity remained constant throughout a block, except for the last trial, hereafter 375 

named catch trial, for which velocity was reduced or increased by 5°/s with respect to previous trials of the 376 

same block. Active trials that are not catch trials are hereafter categorized as control trials. To summarize, 377 

each block started with one passive trial and ended with one catch trial, with up to 4 control trials in-378 

between (Fig. 8B).  379 

There were 120 conditions in total (6 directions x 2 control velocities x 5 block lengths x 2 catch velocities). 380 

The average number of trials per condition was 4, yielding 480 trials per participant. The collected data is 381 

available from the Dryad Digital Repository (http://dx.doi.org/10.5061/dryad.h0qr3). 382 
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Comparisons between trials 383 

 384 

To observe the influence of previous trials on the oculomotor response, we compared trials that had the 385 

same current target velocity, but different past target velocities (different prior trials). For example, we 386 

compared catch trials having a target velocity of 15°/s (thus preceded by control trials at 20°/s) with control 387 

Figure 8: Experimental protocol. A. Trial example. Timing of trials (for one of the six possible directions). B. 
Template of blocks (regardless of direction). Each block starts with a passive trial and ends with a catch trial 
(red/green). Percentages indicate the % of blocks containing trials of the same type (color) and number (#) at one of 
the two available velocities (ex: 100% of the blocks have one passive trial). Black & white disks give an example of 
two trials that can be compared to highlight the effect of previous trials. Black & white diamonds give an example of 
trials comparisons highlighting visual effect. Dashed arrows indicate a 15°/s prior target velocity. Solid arrows 
indicate a 20°/s prior target velocity. Note that the noisy target shown here has been made more salient to ensure 
that it remains visible. Its actual appearance is shown in Figure 1 - supplement 1, with supplement 2 showing the 
standard target as reference. 
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trials having a target velocity of 15°/s (thus preceded by control trials at 15°/s). In this situation, visual 388 

information (target motion) is the same for both catch and control trials, but prior information is different, 389 

effectively highlighting its effect (cf. black & white disks in Fig. 8B).  390 

In a similar way, the impact of visual information was estimated by comparing catch trials to control trials 391 

that had the same past target velocity, but different current target velocities. (cf. black & white diamonds in 392 

Fig. 8B). 393 

We always made comparisons between trials with the same trial number (in the same column on Fig. 8B). 394 

Data processing 395 

Data were processed using the Matlab® software (RRID:SCR_001622). Blinks were detected based on 396 

missing values in the Eyelink® output (when the pupil cannot be detected) and subsequently removed from 397 

the data, including a safety margin before and after the blink, up to the first local minimum in the y-398 

coordinate. Eye position signals were low-pass filtered at 40 Hz. Eye velocity and acceleration were 399 

obtained from position signals using a central difference algorithm on a ±10-ms interval. For the analyses, 400 

we pooled data across all directions.  401 

Saccade onset and offset were detected using a 500°/s² threshold on the acceleration data. Saccades were 402 

thereafter removed from smooth eye velocity data and replaced by linear interpolation.  403 

In order to remove abnormal trials from the data set while limiting visual inspection of the data, we set a 404 

few criteria: (1) during the last 100ms of fixation, eye position within 3° of the fixation target, (2) no missing 405 

data (blinks) in the first 450ms of pursuit, (3) lower limit on eye displacement of at least 40% of target 406 

displacement, (4) no eye velocity over 40°/s during pursuit epochs. Based on these criteria, we set aside 407 

less than 3% of the trials. When analyzing eye velocity during pursuit epochs, we included only trials for 408 

which steady state pursuit velocity reached 33.33% of target velocity (98% of trials). 409 
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Eye velocity and pursuit gain computation 410 

Eye movement velocity during steady-state pursuit was obtained by fitting a piece-wise linear regression on 411 

the eye velocity data (mean least square regression, using the lsqcurvefit function of the Matlab® 412 

Optimization Toolbox), as follows (Fig. 9):  413 

𝑓(𝑡) = {

𝑃1                                        𝑖𝑓 𝑡 < 𝑇1

𝑃1 + 𝐵 ∗ (𝑡 − 𝑇1)                     𝑖𝑓 𝑇1 < 𝑡 ≤ 𝑇2
𝑃2                                        𝑖𝑓 𝑇2 < 𝑡 

  414 

Where t is time in seconds, P1 and P2 are velocity plateaus 415 

(representing initial and steady-state velocities - in degrees 416 

per second), T1 and T2 are the reaction time and the pursuit 417 

steady-state onset time (seconds), and B is the initial 418 

acceleration, connecting the plateaus between times T1 and 419 

T2 (degrees per second squared). P1, P2, T1 and B were the 420 

free parameters of this fit. The fitted interval spanned 421 

600ms, from 50ms before target onset up to 600ms after.  422 

Initial parameters for P1, P2, T1, and B were determined as 423 

follows: P1 was set to the average velocity in the first 100ms 424 

of the interval, T1 to the time after which the eye velocity exceeded 20% of the target velocity. The variable 425 

T2 was defined as the start of the sub-interval during which eye velocity exceeded 33% of the target 426 

velocity for at least 125ms. P2 was then set to the average value of the eye velocity during the interval. 427 

Finally, B was determined from the previous parameters, such that it didn’t exceed 150°/s². If any of the 428 

conditions couldn’t be met, or if a suitable interval (>33% of target velocity for 125ms) couldn’t be found, 429 

the initial parameters were set to default values: T1 to 320ms, T2 to 470ms and P2 to 80% of the target 430 

velocity. 431 

Since we wanted the fitting algorithm to measure smooth pursuit eye velocity, we gave less weight to the 432 

eye velocity data interpolated during catch-up saccades, setting it to 0.3 (compared to 1 for pursuit data). 433 

Figure 9 : Typical fit and its initial parameters.  
The orange dashed line shows the initial 
parameters for the fit. The continuous green 
line shows the resulting fit of the eye velocity 
data. 
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After applying the fitting algorithm, trials whose steady-state velocity plateau (P2) duration was under 434 

50ms were analyzed again. They went through a second step of fitting, using the same function, but with T2 435 

as a free parameter instead of B. This allowed the use of a different set of initial values, with a steady-state 436 

velocity plateau lasting at least 50ms. After the second fitting, any trial whose fitted steady-state plateau 437 

(P2) was still less than 50ms long was rejected (±6% of trials), as it meant that the algorithm could not find 438 

the steady-state of the smooth pursuit.  439 

We computed the eye velocity gain of a trial by dividing the eye velocity during steady state by the target 440 

velocity of a control trial with the same trial number. The control trial used was the one the catch trials 441 

were being compared to, and therefore depended on the type of comparison (prior or visual). When 442 

studying the influence of prior information, the eye velocity gain was computed with respect to the control 443 

trial having the same target velocity as the catch trial (cf. black & white disks in Fig. 8B). When studying the 444 

influence of visual information, the eye velocity gain was computed with respect to the control trial having 445 

the same prior target velocity as the catch trial (cf. black & white diamonds in Fig. 8B).  446 

When we compared the effect of prior on gains across different velocities, we normalized eye velocity using 447 

the following equation (1): 448 

𝐺𝑎𝑖𝑛𝑝𝑟𝑖𝑜𝑟 =  
𝐸𝑦𝑒 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 − 𝐸𝑦𝑒 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 𝐶𝑎𝑡𝑐ℎ

𝑃𝑟𝑖𝑜𝑟 𝑇𝑎𝑟𝑔𝑒𝑡 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 − 𝑃𝑟𝑖𝑜𝑟 𝑇𝑎𝑟𝑔𝑒𝑡 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 𝐶𝑎𝑡𝑐ℎ
    (1) 449 

When the comparison across velocities had to be made for the effect of visual information, eye velocity 450 

gains were normalized using the following equation (2): 451 

𝐺𝑎𝑖𝑛𝑣𝑖𝑠𝑢𝑎𝑙 =  
𝐸𝑦𝑒 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 − 𝐸𝑦𝑒 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 𝐶𝑎𝑡𝑐ℎ

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑇𝑎𝑟𝑔𝑒𝑡 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 − 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑇𝑎𝑟𝑔𝑒𝑡 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 𝐶𝑎𝑡𝑐ℎ
   (2) 452 
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Saccade metrics 453 

We also studied the amplitude of the first (catch-up) saccade 454 

occurring between 100ms and 400ms after target onset 455 

(94% of first saccades made after target onset). The 456 

amplitude of the catch-up saccades made during control 457 

trials was used as a reference to build a linear model of the 458 

saccadic behavior of each participant (cf. Fig. 10).  459 

For each of the participants, we computed the ideal 460 

amplitude of each saccade (difference between eye position 461 

at the onset and target position at the offset), and its actual 462 

amplitude. Then, the baseline relationship between those 463 

two parameters was obtained from control trials by fitting a 464 

linear regression (robustfit function, Statistics Toolbox, Matlab®) on the saccades data. Finally, saccades 465 

made during catch trials were compared to this regression line by computing the mean of the residuals 466 

(vertical distances between catch saccades data points and the regression line). Given this method, a mean 467 

value greater than zero implied that saccades made during catch trials had larger amplitudes than those 468 

made during control trials. 469 

To compare saccades made during catch trials across experiments (standard and noisy targets), we had to 470 

take into account differences of average saccade latency between the two experiments. Therefore, we 471 

used a bootstrap procedure to create N=10000 samples of saccades from the two experiments, such that, 472 

for each sample, the latency distributions of the two experiments would be the same. This was done for 473 

each control target velocity. For each participant, the average residuals (one per control velocity) for each 474 

experiment were then obtained by averaging the average residuals (𝑅𝑖̅) obtained for each of the 10000 475 

bootstrapped samples (𝑅 =
1

𝑁
∙ ∑ 𝑅𝑖̅𝑖 ). For example, considering the saccades depicted in Fig. 10, the 476 

bootstrap procedure might give several subsets of the red dots (catch trials), which will then be compared 477 

to the regression model built from all blue dots (control trials) to obtain one average residual per subset.  478 

Figure 10: Computation of saccade residuals. 
Blue dots correspond to saccades made during 
control trials, red dots to saccades made during 
catch trials with the same target velocity, but 
whose prior trials had a higher target velocity. 
The fit made on the control data is shown by the 
black line. Dashed lines and arrows show the 
measure of the residual of one of the catch trials. 
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Data analysis  479 

The effect of prior information (see previous section) on eye velocity or saccade amplitude was analyzed by 480 

comparing trials with the same target velocity but different priors of target velocity. For each control target 481 

velocity there was only one corresponding catch target velocity condition (catch at 20°/s-5°/s for a control 482 

at 15°/s, 15°/s+5°/s for a control at 20°/s). For each of those 2 conditions separately, we compared eye 483 

movement measures using a repeated measures analysis of variance (rANOVA), using the trial number (4 484 

levels) and the type of trial (control or catch) as within-subjects factors.  485 

The effect of visual information on eye velocity or saccades was analyzed by comparing trials with the same 486 

target velocity during the previous trials (15 or 20°/s) but with different target velocities in the current trial 487 

(three levels: -5, 0, +5°/s with respect to target velocity during the previous trials, which correspond to 3 488 

types of trial: catch -5°/s, control and catch +5°/s). Eye movement measures were compared using 489 

repeated measures ANOVA with the following within-subject factors: target velocity in previous trials (2 490 

levels), type of trial (3 levels) and trial number (4 levels). 491 

When comparing data across the two types of target to examine differences in the magnitudes of the 492 

effects, we used a mixed-design analysis of variance with the type of target as between-subject factor. 493 

Comparisons on the effect of the prior were made for the two velocity conditions (after normalization with 494 

control data), and included the trial number as within-subject factor. The comparison was also made with 495 

the velocity condition as an additional within subject factor. Comparisons on the effect of visual 496 

information were made with target velocity in previous trials, type of trial and trial number as within-497 

subject factors. 498 

We analyzed the influence of the number of trials on the magnitude of the effects using linear regressions. 499 

ANOVAs and linear regressions were performed with the R software (R Core team 2016, RRID:SCR_001905; 500 

ez package 2015). Sphericity assumptions were verified through Mauchly's Test for Sphericity. If sphericity 501 

assumptions were violated, we only reported results that were significant after Huynh-Feldt sphericity 502 

correction. When appropriate, we also reported the Generalized Eta-Squared (ges) as a measure of effect 503 

size (Bakeman, 2005). 504 
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Figure supplements 676 

Figure 8 – supplement 1 :  677 

 678 

Noisy, 2D Gaussian target on a dark background, closer to real experimental conditions. Note that to obtain 679 

a correct representation of its luminosity distribution, it is necessary to correct for the non-linearity in RGB 680 

color scaling of the display. If the picture is properly scaled so that its height is 12cm, seeing the target at 681 

50cm should be equivalent to the perspective of the participants.  682 
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Figure 8 – Supplement 2 :  683 

 684 

Standard target (0.8° of diameter). If the picture is properly scaled so that its height is 12cm, seeing the 685 

target at 50cm should be equivalent to the perspective of the participants. 686 

 687 
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