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Abstract 

Mice use vision to navigate and avoid predators in natural environments. However, the 

spatial resolution of mouse vision is poor compared to primates, and mice lack a fovea. 

Thus, it is unclear how well mice can discriminate ethologically relevant scenes. Here, 

we examined natural scene discrimination in mice using an automated touch-screen 

system. We estimated the discrimination difficulty using the computational metric 

structural similarity (SSIM), and constructed psychometric curves. However, the 

performance of each mouse was better predicted by the population mean than SSIM. 

This high inter-mouse agreement indicates that mice use common and robust strategies 

to discriminate natural scenes. We tested several other image metrics to find an 

alternative to SSIM for predicting discrimination performance. We found that a simple, 

primary visual cortex (V1)-inspired model predicted mouse performance with fidelity 

approaching the inter-mouse agreement. The model involved convolving the images with 

Gabor filters, and its performance varied with the orientation of the Gabor filter. This 

orientation dependence was driven by the stimuli, rather than an innate biological feature. 

Together, these results indicate that mice are adept at discriminating natural scenes, and 

their performance is well predicted by simple models of V1 processing.  
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Introduction 

Visual processing of natural scenes is essential for animal survival. Mammalian 

visual systems including primates and rodents evolved to efficiently process natural 

stimuli1-5. Mice use vision to hunt prey6, avoid danger7-9, and navigate10,11.  

A number of studies have characterized the ability of mice to discriminate visual 

stimuli including gratings12-14, simple shapes13-16, and random dot kinematograms17. 

However, these results cannot be extrapolated to natural scene discrimination, because 

visual coding is substantially different between natural images and artificial ones4,5,18. 

Moreover, the spatial resolution of mouse vision is orders of magnitude lower than that 

of primates and carnivorans12,19-23. Even when natural scenes might be discriminated, 

individual mice could focus on different regions of the images to discriminate them, and 

this would lead to high mouse-to-mouse variability. Thus, investigating natural scene 

discrimination in mice can provide essential information for understanding evolved 

encoding strategies of mammalian visual systems. 

The perception of visual information depends on processing by primary (V1) and 

higher visual cortical areas24-28. One prominent feature of V1 neurons is their orientation 

tuning29,30. This selectivity can facilitate the sparse coding of natural images by V1 

neurons1-3. Orientation specific features are further transformed and integrated in higher 

visual areas to extract higher order statistical structures of the image and detect objects31-

33. Thus, the orientation selectivity is a foundation of visual perception. However, it is 

unclear how orientation features in naturalistic images can contribute to animal behavior.  

 Here, we developed a natural image discrimination task for freely moving mice 

using an automated touchscreen-based system. We found that mice successfully and 

quickly learned to discriminate images of natural scenes, the mouse-to-mouse 
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consistency was high, and their performance could be well predicted by a simple model 

of V1 encoding.  
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Results 

 

Mice learned to discriminate natural scenes 

We used the automated touchscreen-based system16,34 that we previously adapted for 

visual discriminations17 (Fig. 1a). In the task, mice were presented with two images 

simultaneously, each in one of two presentation windows on the screen. The mice 

learned to touch a target image, avoiding a distractor image, to get a reward. Thus, it is 

a type of two-alternative, forced-choice (2AFC) task. All mice trained in the main 

experiment (6 of 6) successfully passed the pre-training phases (see Methods), meeting 

criteria to advance to natural image discrimination (NID) training in 14.5 ± 2.9 days (mean 

± S.D.) (Fig. 1b). These mice also readily acquired the NID training task (6 of 6), 

ultimately discriminating correctly between a natural target image and 10 distractor 

images on 85% or more of trials (Fig. 1c,d). Two out of six mice were trained for an hour 

per day, and the other four mice were trained for two hours per day. Once mice 

performed the NID training task with 85% accuracy for two consecutive days, they moved 

to the NID testing phase. Mice required fewer training sessions to reach criterion for NID 

compared to the mice trained in the random dot kinematogram (RDK) task we previously 

reported17 (3, 3, 3, 5, 8, 9 days for NID vs. 5, 10, 11, 14, 15, 18 days for RDK; p = 0.0088, 

t-test). 

The NID testing phase consists of testing blocks and interleaved training blocks 

(Fig. 2a; see Methods), a strategy we used in our prior work17. In testing blocks, one of 

the 12 distractor images were selected for each trial. In the interleaved training blocks, 

the distractor image was always the same, and was easy to discriminate from the target. 

The target image was always the same in both block types. The mice had to touch the 

target image to receive a reward in the interleaved training blocks, otherwise they 
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received a time-out. By contrast, mice received a reward on every trial, when touching 

either of the images in the testing block. Mice are never cued as to which trial type they 

are in. We find this approach effective17, perhaps because the always-rewarded testing 

blocks prevent the mice from getting too frustrated by the difficult discrimination trials, 

while the interleaved training blocks keep the mice honest. Five out of six mice performed 

correctly on > 85% of the interleaved training trials, which indicated that they were 

performing the task correctly, and they were included for further analysis. By contrast, 

one mouse (Mouse 6) had a lower correct rate for interleaved training blocks 

(Supplementary fig.1). This mouse seemed to recognize that it does not have to touch 

the target image to get rewards during the testing blocks, and it tended to select the left 

panel. Accordingly, we excluded this mouse, and analyzed the data in the testing blocks 

from the remaining five mice. We computed the correct trial rate with all five animals for 

the testing blocks (range: 1920 - 2712 trials, over 4 – 8 sessions per mouse). Repeated 

trials with the same sets of a target and distractor (range: 60-226 trails per image pair) 

enabled us to precisely estimate the correct trial rate.  

 

Behavior performance was predicted by structural similarity between images 

To create psychometric curves to analyze mouse performance on this task, we need a 

metric that corresponds to the difficulty of each discrimination. For example, for 

discriminating gratings with different orientations, the orientation difference would be the 

appropriate metric to use. With natural images, the choice of metric is not straightforward, 

and multiple metrics could suffice. We chose to estimate the image similarities between 

two simultaneously presented images using the structural similarity (SSIM) index metric. 

The SSIM indices for all pairs of presented natural stimuli were calculated as reported 
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by Wang et al. 2004 (Ref. 35) (see Methods). SSIM indices have been used to estimate 

the discriminability of artificial image pairs in prior mouse behavior studies36,37. In the 

testing blocks, the SSIM indices for image pairs ranged from 0.074 for the most dissimilar 

images, to 1 for trials when the same image was displayed on both sides of the screen 

(Fig. 2b,c; Supplementary table 1,2.). Psychometric curves were plotted using the 

correct trial rate and SSIM indices for 12 distractor images (Fig. 3a). The performances 

of the mice were remarkably similar (the thresholds of the psychometric curves were 

0.29, 0.30, 0.27, 0.34 and 0.32; Fig. 3b). In total, the SSIM index approximated the 

correct trial rate, and the threshold was 0.30 ± 0.03 (mean ± S.D.) (Fig. 3c). To quantify 

the inter-mouse similarity, we computed the coefficient of variation (CV) for the 

psychometric threshold. The CV for the psychometric threshold in the natural scene 

discrimination task was 0.089, which is much smaller than the CV in the global motion 

discrimination task (0.24) that was carried out using the same apparatus17. Thus, the 

performance in the natural scene discrimination task is highly reproducible mouse-to-

mouse.   

 

High inter-mouse agreement 

The SSIM index-based psychometric curves fit the data well, but behavioral data for 

some image pairs deviated from the psychometric curves (Fig. 3d, 4a). Notably, this 

deviation was not due to outlying data points from a few mice, but instead, data from all 

mice similarly deviated. In fact, the correct rates for each mouse were highly predictable 

by the mean correct rate of the other four animals (Fig. 4b). We analyzed the residuals 

of the fits by computing the root mean squared error (RMSE) between a predictor and 

the actual data. The RMSE for the simple case where the correct rate for each mouse 
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was predicted by the mean correct rate of the other mice (mean ± S.E.M.: 0.047 ± 

0.0046) were significantly smaller than the RMSE values for the SSIM-based 

psychometric curve fits (mean ± S.E.M.: 0.079 ± 0.0026) (Fig. 4c; p = 0.00053, paired t-

test). These results indicate that the mouse visual system uses strategies that are not 

fully captured by SSIM indices.   

The mouse visual system does not have sufficient acuity with which to 

distinguish each pixel of the touch screen in this apparatus. One of the highest reported 

behaviorally-measured acuities in mice is 0.49 cycles per degree (Ref. 12), and this 

corresponds to 2.2 pixels if mice view the screen from just 10 mm. Thus, in this apparatus, 

mice are discriminating lower resolution representations of the two images. To 

investigate whether high spatial frequency information was biasing the SSIM-based 

estimator, we filtered the image with Gaussian filter with standard deviation from 1 to 112 

pixels (Fig. 5a, b), and recomputed SSIM indices after Gaussian filtering (fltSSIM). The 

fltSSIM reached a minimal RMSE when the standard deviation was 4.6 pixels, but the 

improvement was small. This indicates that high spatial frequency information in the 

natural images is not responsible for more than a small amount of the RMSE when 

estimating behavior with SSIM. 

SSIM is commonly used for estimating image similarity, but it is vulnerable to 

image translation. To robustly estimate the similarity between two images, we translated 

images so that the mean squared difference between two images was minimized. The 

SSIM values were then recomputed (SSIM after registration, regSSIM). However, the 

predictability of regSSIM was comparable to that of the original SSIM calculations, and 

RMSE still exceeded that of a simple inter-mouse predictor (Fig. 5c). Overall, SSIM 
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analysis does not predict performance on this task as accurately as inter-mouse 

agreement. 

SSIM is a sophisticated measurement with multiple components, and this 

sophistication could lead to biases that degrade performance as a predictor for mouse 

behavior on this task. Thus, we turned to two simple metrics to measure the similarity of 

two images: pixel-wise cross-correlation and RMSE between the two images. These 

parameters also failed to predict the correct rate as accurately as the mean performance 

of the other mice could (Fig. 5d,e). Finally, we tested the hypothesis that mice tended to 

avoid images similar to the distractor of the interleaved training phase (“anti-target”), 

because mice were only punished when they mistakenly selected interleaved anti-target 

images during the NID testing. However, recomputed SSIM indices using the anti-target 

did not yield an improved predictor (Fig. 5f). This is evidence against the hypothesis and 

indicates that the mice did not have tendency to avoid the ”anti-target”. Overall, these 

results indicate that the mouse visual system uses strategies to judge the similarity 

between two images that are not captured well by SSIM or other metrics we examined. 

Therefore, we turned to a neurobiological model-based approach. 

 

V1-inspired model accurately predicts discrimination performance 

So far, we have explored image comparison metrics that measure the similarity between 

two images. These metrics predicted mice behavior, but less accurately than a simple 

mean of other mice. Moreover, these metrics are not an intuitive model for the mouse 

visual system. Accordingly, we attempted to predict the discrimination performance with 

a model based on basic features of neuronal selectivity in mouse V1. The receptive fields 

of simple neurons in mouse V1 can be modeled as Gabor filters38,39. Each Gabor filter is 
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convolved with a small patch of the image, and the result represents the degree of which 

that patch of the image and the Gabor filter are matched in orientation and wavelength 

(Fig. 6a). We convolved the target and distractor images with individual Gabor filters of 

various orientations and wavelengths, and calculated the similarity between the target 

and distractor images after filtering. We refer to this similarity as the orientation specific 

similarity (OSS) (Fig. 6b), since it is a function of the orientation of the Gabor filter (as 

well as wavelength). We plotted psychometric curves as the correct fraction versus OSS 

(Fig. 6c). We obtained RMSE values for these curves, for each set of wavelength and 

orientation parameters of the Gabor filters (Fig. 6e,f). The RMSE of the OSS model 

averaged over all orientations reached a minimal value when the wavelength of Gabor 

filter is approximately 7.07 pixels (Fig. 6d).  

The prediction RMSE of OSS varied by orientation (Fig. 6e, ANOVA p = 9.0 ×

10-11). When OSS analysis used horizontally oriented Gabor filter, they performed poorly 

at predicting the correct trial rate, regardless of the spatial scale of the Gabor filters. By 

contrast, OSS analysis using a near vertically oriented Gabor filter predicted the animal 

behavior more accurately than the SSIM model. When OSS-based predictions were 

averaged over all orientations (using the optimal wavelength) the RMSE is similar to that 

of the SSIM model (using the optimal Gaussian filter, or blur) (RMSE of OSS, 0.082 ± 

0.003 (λ = 7.07); RMSE of SSIM, 0.074 ± 0.003; t-test, p=0.08). The orientation bias in 

OSS-based prediction accuracy was consistent over a wide range of Gabor filter 

wavelengths (Fig. 6f). These results suggest that mice could use orientation specific 

features in the naturalistic image discrimination task.  

The orientation specific prediction accuracy could result from an intrinsic bias of 

orientation selectivity in the mouse visual system40,41, or be acquired through the learning 
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of specific images. To investigate these possibilities, we trained a new cohort of mice 

using the same set of images but rotated by 90° (n = 4 mice; Fig. 7a). If the orientation 

bias was intrinsic, then the orientation dependence of the OSS-based prediction should 

be identical to that obtained in the main experiment (Fig. 6e). If instead, the bias was 

learned based on the stimuli, then the orientation dependence of the OSS-based 

prediction should be rotated by 90°. All mice trained in the additional experiments (four 

of four) successfully passed the pre-training phases, just as the mice in the main 

experiments had. In the NID testing phase, we found that the orientation bias was shifted 

by ~90° (Fig. 7b). These results indicate that the orientation-dependence of the OSS-

based prediction is not a result of a static innate orientation bias in the mouse visual 

system. Instead, the results suggest that the mouse visual system can learn to extract 

specific orientation information based on the natural images used in this behavior assay.  

 

Discussion 

Here we investigated the ability of mice to discriminate natural scenes, using an 

automated touchscreen-based system. We found that mice learned to discriminate 

natural scenes quickly, and that psychometric functions based on SSIM indices fit the 

data well. Further investigation revealed that the behavioral performance was highly 

consistent mouse-to-mouse, and deviated in significant and reproducible ways from the 

predictions from the SSIM-based psychometric curves. Thus, mice discriminate natural 

scenes using robust and common strategies, even when the images are displayed 

artificially, using an LCD monitor. To improve on the SSIM-based psychometric curves, 

we searched for a parameter or model that more accurately predicted the performance 

of the mice on this task. We found that a simple, V1-inspired model provides a prediction 
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whose accuracy can approach that of the inter-mouse agreement. Thus, V1 processing 

may partly explain the way in which the mouse vision discriminates natural images. 

Natural scenes were compared using the SSIM index, which is commonly used 

to estimate the similarity of two images35. SSIM indices correlated with the correct rate 

of the mice in our task. However, the psychometric curves plotted against SSIM provided 

only marginal fits to the data. In particular, there were several images that had 

significantly higher or lower correct rates across all mice than predicted by SSIM (Fig. 

4a). In addition, the correct rates of mice were highly correlated, which indicated that the 

deviations from the SSIM-based psychometric curves were not due to mouse-to-mouse 

variance, but rather that the mice perceived the similarity of the images in ways not 

captured by SSIM.  

Reducing the spatial resolution (i.e., blurring) of the images to better match 

mouse vision did not substantially improve the fits of SSIM-based psychometric functions, 

nor did several other approaches that we explored. Instead, we found that a Gabor filter-

based approach provided the best fit. Notably, the improvement was specific to the 

orientation angle of the Gabor patch used. Horizontal orientation filtering did not provide 

a good fit, but a peri-vertical one did. This orientation bias of the Gabor filter-based 

approach was not due to innate properties of the mouse visual system. We know this 

because we tested a separate cohort of mice on the same images rotated by 90 degrees, 

and the orientation bias of the Gabor filter-based approach was rotated by the same 

amount. These results indicate that mice could extract orientation specific information 

depending on the task context.  

In mammals, the orientation information itself could be modulated depending on 

the current demands. For instance, when humans attend to a specific orientation, there 
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is increased activity in the portions of visual cortex that preferred the attended 

orientation42. In monkey V1, orientation-selective neurons fire at higher rates when 

attention is focused in the neurons’ receptive fields43. Also, the direction and orientation 

specificity of mouse V1 neurons increased during learning of a visual discrimination tasks 

when the preferred direction of the neuron was task relevant44,45. Thus, the orientation 

specific enhancement of visual processing appears to be a common feature of 

mammalian visual systems, and enhanced visual processing for specific orientations 

might explain the results from the present study. These changes in neural responses 

based on orientation could arise through learning.  

Visual processing tasks can be categorized into scene/object recognition and 

motion/location recognition, which are represented along different “streams” or 

subnetworks of cortical visual areas28,46,47. In that context, this NID task complements the 

random dot kinematogram task we recently developed17. These experimental paradigms 

can be used to investigate stream-specific higher visual processing of mice25,26,28,48. 
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Methods 

Subjects 

Ten adult C57BL/6 mice (two males and four females in main experiments and two males 

and two females in additional experiments) were used in the experiments reported here. 

Animals were between 80 and 160 days old at the start of training, which lasted for 

approximately one month. Mice were housed in rooms on a reversed light-dark cycle 

(dark during the day, room light on at night), and training and testing were performed 

during the dark cycle of the mice. All training and procedures were reviewed and 

approved by the Institutional Animal Care and Use Committee of the University of North 

Carolina, and performed on campus, which is accredited by the Association for 

Assessment and Accreditation of Laboratory Animal Care (#329).  

 

Apparatus 

The operant chamber and controlling devices were the same as previously described17, 

and are based on work by Saksida and Bussey15,16,34. Briefly, a touchscreen panel was 

on the long size of a trapezoidal chamber, opposite of liquid reward port (a strawberry-

flavored yogurt-based drink; Kefir). Correct responses were indicated by a brief auditory 

tone, and the reward port was illuminated. During time-outs, a brief burst of white auditory 

noise was played, and the chamber light was illuminated for the duration of the time-out. 

 

Stimuli 

For the NID task, we selected pictures of natural scenes (430 by 430 pixels static images, 

JPEG format). The original set of images was taken from three naturalistic image 

databases: UPenn (http://tofu.psych.upenn.edu/~upennidb/)49, McGill 
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(http://tabby.vision.mcgill.ca/)50, and MIT (http://cvcl.mit.edu/database.htm)51. Average 

luminance of images was adjusted to be similar. One image was used as the target 

image during NID training sessions and NID testing sessions. Ten images that have low 

SSIM with the target image, and eleven images with varied SSIM (plus one image that 

is the same as the target image) were selected as distractor images on the NID training 

and NID testing sessions, respectively (Supplementary table 1,2). All images were 

masked by a circular aperture. During NID testing sessions, 5 interleaved training trials 

were provided after every 12 testing trials. One image with low SSIM (of the eleven 

distractors) was used as the distractor for the interleaved training. 

  

Behavioral Training 

Food restriction and training stages 1-3 (FR, free reward; MT, must touch; IM image 

discrimination) for the 2AFC task were conducted as previously described17. Briefly, 

during the FR phase (training stage 1), mice learned to lick the reward spout to receive 

a liquid reward. As a result, mice associated the tone with the delivery of a reward, and 

learned the location of the reward. During the MT phase (training stage 2), mice had to 

touch any location on the screen at the front of the box to receive a reward. The goal of 

this phase was to associate touching the screen with delivery of a reward. During the IM 

phase (training stage 3), a simple black-and-white dot and fan image pair stimulus16 was 

presented, and mice were required to touch a specific target stimulus on the screen to 

earn a reward. On the NID training phase (training stage 4), mice had to touch the target 

image, avoiding one of 10 distractors. SSIM indices of all pairs were less than 0.2 (low 

SSIM implies that the two images are not similar). This stage of training incorporated 

correction trials as described previously17. 
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Behavioral Testing  

The NID testing condition was similar to the testing condition for kinematogram 

discriminations we previously described17. Images for the testing phase consisted of one 

target image and 12 distractor images whose SSIM indices ranged from 0.074 to 1. 

Testing sessions consisted of interleaved blocks of testing and training. Mice were not 

cued as to whether they were in a testing or training block. During testing blocks, all 12 

distractors (12 trials per block) were presented in a random order, and all answers were 

rewarded. During training blocks (5 trials per block), stimuli with SSIM = 0.14 (i.e., very 

dissimilar to the target) were presented, and normal performance feedback (including 

time-out periods and correction trials) were provided. Performance during these 

interleaved training blocks served as an internal control to ensure the mice were still 

working to distinguish the stimuli in the testing blocks. Testing data was analyzed only if 

the animal performed on average at criteria (≥ 85% correct) during the interleaved 

training blocks. This criterion excluded one mouse out of the six mice in the main 

experiment. Testing sessions were conducted for 120 - 150 minutes per day. In 

additional experiments, the target and distractor images were rotated only in the NID 

training and testing sessions. All four mice generated testing data in the additional 

experiments.  

 

SSIM (Structural similarity) 

SSIM indices for all pairs of presented natural stimuli were calculated as reported by 

Wang et al 2004 (Ref. 35). First, the pair of two images were smoothed with Gaussian 

filter ( = 1.5 pixels). SSIM index was obtained for each window of a pair of images. First, 
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the SSIM for each pixel was calculated for square windows, centered at the same pixel 

(w,h) of two images. The length of a side of the square window was eight pixels. The 

SSIM (x,y) was then obtained for two windows in a target image (x) and a distractor 

image (y) as follows, 

,ݔሺܯܫܵܵ ሻݕ ൌ 	
ሺ2௫௬ ൅ ܿଵሻሺ2௫௬ ൅ ܿଶሻ

ሺ௫
ଶ ൅ ௬

ଶ ൅ ܿଵሻሺ௫ଶ ൅ ௬ଶ ൅ ܿଶሻ
	 

where x, y are pixel intensity averages of window x and y, x, y, xy are standard 

deviation of window x and y, and covariance of two windows, c1 and c2 are (0.01 x L)2 

and (0.03 x L)2, respectively, where L is 255 (corresponding to the dynamic range of 8-

bit monochrome images). 

SSIM(x,y) was obtained for all (w,h) and was averaged over the circular area 

where the natural images are located. The average of SSIM(x,y) was called simply the 

“SSIM index” for each pair of target and distractor images in this paper (Fig.2b). One 

distractor was the same as a target image, so that its SSIM index = 1. The other image 

pairs had SSIM indices < 1. 

 

Psychometric curve 

Psychometric curves were obtained with a regression of the following function (Weibull 

function) to the data, 

ሻܯܫሺܵܵ	݁ݐܴܽݐܿ݁ݎݎ݋ܥ ൌ 0.5 ൅	
0.5

1 ൅ ݌ݔ݁ ൬ܵܵܯܫ െ 
 ൰

 

where  and are parameters determined by the regression to each data set. The 

threshold was taken as the SSIM value (from this function) that corresponded to 70% 

accuracy. 
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Image processing 

Pixel-wise correlation and root mean squared error (RMSE) between a target image and 

each distractor image were obtained as candidate parameters that may capture the 

similarity of two images. The registration of two images were done with a MSE based 

registration algorithm (Turboreg)52.   

 

Gabor filter 

We used Gabor filtering to analyze the orientation specific features of the images:  

݃ఒ,ఏ,ఊ,ఙሺݔ, ሻݕ ൌ exp ቆെ
ᇱଶݔ ൅ ᇱଶݕߛ

ଶߪ2
ቇ cosሺ2ߨ

ᇱݔ

ߣ
ሻ 

ᇱݔ ൌ ݔ cos ߠ ൅ ݕ	 sin  ߠ

ᇱݕ ൌ െݔ sin ߠ ൅ ݕ	 cos  ߠ

The Gabor filter bank was generated using the built-in Matlab function “gabor”. The 

wavelength (λ) of the Gabor filters ranged from 5 – 28 pixels per cycle. The orientation 

(θ) of Gabor filters was either 0°, 30°, 60°, 90°, 120°, or 150°. We set the aspect ratio (γ) 

of all Gabor filters to 0.5. The standard deviation of the Gaussian envelops, σ ൌ

	
ଷఒ

గ
ට୪୭୥ሺଶሻ

ଶ
  is determined by the wavelength. We computed the Gabor feature magnitude 

,ݔఒ,ఏሺܩ  ሻ by convolving the Gabor filter (with a specific orientation and wavelength) withݕ

each image. Then we computed the orientation specific similarity (OSS) between two 

images by the following function:  

ܱܵܵሺߣ, ሻߠ ൌ
1
ܰ
	 ෍

,ݔఒ,ఏሺܩ	2 ,ݔఒ,ఏሺܩ	ሻௗ௜௦௧௥௔௖௧௢௥ݕ ሻ௧௔௥௚௘௧ݕ
ሺܩఒ,ఏሺݔ, ሻௗ௜௦௧௥௔௖௧௢௥ሻଶݕ ൅ ሺܩఒ,ఏሺݔ, ௣௜௫௘௟௦	ሻ௧௔௥௚௘௧ሻଶேݕ

 

 

Statistics 
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Student’s t-test was used for statistical comparisons. Pairwise comparisons were two-

tailed. Error bars in graphs represent the mean  S.E.M. unless otherwise noted. 

Analysis of variance (ANOVA) was used for multiple comparisons, followed by t-test 

(presented p-values for t-test were Bonferroni corrected). No statistical tests were 

performed to predetermine sample size. No blinding or randomization were performed. 
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Figures and legends 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Touchscreen-based training system and learning curves 

(a) Touchscreens displayed stimuli and registered responses in the behavior training 

system. Mice learned to touch the target image and avoid a distractor to get a reward. 

(b) Mice progressed through a series of pretraining phases within about a month (FR, 

Free Reward; MT, Must Touch; IM, Image; NID, Natural Image Discrimination; phases 

are explained in Methods). (c) Mice learned to perform the NID task to criterion (correct 

on 85% of trials) in 10 sessions or less, which corresponded to (d) 12 hours or less of 

training (data in panels c,d are the same, but are plotted against different units on the X-

axis). 
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Fig. 2. Testing procedure and SSIM index for quantifying expected difficulty 

(a) NID testing sessions were composed of two types of blocks, testing blocks and 

interleaved training blocks. In testing block trials, one of 12 distractor images was 

presented with a target image. In interleaved training trials, the same distractor image 

was always presented with a target image. The incorrect choices were only punished 

(with a time-out and no reward) in the interleaved training trials. (b) Distractor and target 

images displayed in a trial were compared using structural similarity (SSIM). An SSIM 

map was obtained for each pair, and averaged yield a scalar SSIM index for the image 

pair. (c) Twelve distractor images were used, which varied in SSIM index with the target 

image (see also Supplementary Table 1.). One distractor (ID: 12) was the same as the 

target image, and served as an internal control. 
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Fig. 3. Psychometric curves for natural image discrimination 

(a) During the testing blocks, mice were presented stimulus pairs of SSIM indices 

between 0.074 and 1 in random order, allowing us to sample the full range of SSIM 

indices for each animal. The same pairs were shown repeatedly to generate accurate 

estimates of the correct rate for each data point. Psychometric curves were fit to the data. 

The SSIM threshold (vertical dotted line; percent coherence at 70% accuracy) was 

computed from the fitted curves. (b) The psychometric curves from the five mice were 

similar. (c) The SSIM thresholds for the five mice were also very similar. (d) Each data 

point shows mean  S.E.M. for each distractor image across all five mice. The 

psychometric curve is for the averaged data (threshold = 0.30). Note that for some 

distractors (e.g., #5, #9, and #11), the correct rate was not accurately approximated by 

the psychometric curve. 
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Fig. 4. High inter-mouse agreement 

(a) To examine the difference between the actual correct rate of each mouse and the 

predicted correct rate by the SSIM-based psychometric curve for each distractor image, 

we plotted the residuals. For some images, the mice collectively deviated from the 

predicted correct rate (ANOVA, F(48, 11) = 17.8, p= 2.3 x 10-13 ;t-test, *p<0.05, **p<0.01, 

***p<0.001). (b) The correct rates of each mouse were plotted as a function of mean 

correct rates of the other mice, for each distractor image (for reference, the unity line is 

shown in black). The correct rate of each mouse can be accurately predicted by that of 

other mice. (c) The RMSE of the inter-mouse agreement was smaller (i.e., more 

accurate) than that from SSIM-based psychometric curves (***p<0.001; paired t-test). 
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Fig. 5. Blurring the images and other attempts to reduce the fit error (RMSE) 

Several approaches were investigated to determine whether they could reduce the error 

of the psychometric curve fit. (a) To determine whether high spatial frequency features 

of the images (which could be imperceivable to the mice, but still influence SSIM 

calculations) caused the relatively high root mean squared error (RMSE) values, the 

images were filtered (blurred) with Gaussian filters of a range of standard deviations (σ). 

The inset shows the filtered target image. (b) Overall, blurring the images only marginally 

decreased the RMSE, and aggressive blurring led to even higher RMSE. (c) Registration 

of images prior to SSIM calculations did not improve the psychometric curve fit. (d) An 

alternative metric, pixel-wise RMSE between distractors and a target image, also did not 

improve the RMSE of a fit curve. (e) Another alternative metric, pixel-wise cross-

correlation between distractors and the target image, also failed to yield low-RMSE curve 

fits. (f) Finally, calculating the SSIM between distractors and a distractor for the training 

phase (the “anti-target”), also failed to yield a low RMSE. RMSEs for (c-f) was 0.089, 

0.095, 0.11 and 0.10, respectively. 
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Fig. 6. A simple Gabor filter model predicts mouse performance 

(a) For a simple model the responses of V1 neurons, Gabor filters with various 

orientations and wavelengths were used to convolve the stimulus images. (b) The 

orientation specific similarity (OSS) between the target image and a distractor image was 

calculated by convolving a single Gabor filter with each image and then comparing the 

two results pixel-wise. The correct rate from the behavior data was then compared with 

these OSS values for each distractor image (compared to the target). (c) Example fits 

for the average correct rate across all mice against OSS values show that a filter with θ 

= 30°, λ = 10 (left) provided a good fit (RMSE = 0.055); and a filter with θ = 90°, λ = 10 

(right) provided a poor fit (RMSE = 0.13). (d) Gabor filter patches with relatively short 

wavelengths provided lower RMSE fits to the behavior data (mean and S.E.M. are 

plotted; based on an average OSS over all orientations), and this suggests that relatively 

high spatial frequency information in the images is used by the mice for this 

discrimination. (e) The orientation of the Gabor patch used for calculating OSS 

influenced the resulting RMSE (p = 9 ×10-11, ANOVA; patches had wavelength = 10; 

mean and S.E.M. are plotted; blue curve is a sinusoidal fit). (f) An examination of the 
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interaction between wavelength and orientation revealed that RMSE of the OSS-based 

fits depended more on orientation than wavelength of the Gabor filters. 
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Fig. 7. Experiments with rotated images showed that the orientation bias is not 

innate 

(a) To examine whether the orientation-dependence of the OSS-based predictions was 

stimulus-based or innate, a separate cohort of mice was trained and tested on rotated 

versions of the same images. (b) The prediction error (RMSE) from the OSS-based 

model in the original experiment (black data points and blue sinusoidal curve fit; plotted 

against the bottom axis) was similar to the prediction error (RMSE) from the rotated 

images experiment (grey data points and grey curve; plotted against the top axis) after 

shifting the rotated image data by exactly 90 degrees (all OSS data used patches with 

wavelength = 10). Note that the bottom axis (for the main experiment) and the top axis 

(for the rotated images experiment) are offset by 90 degrees. This shows that the 

orientation specific prediction accuracy also shifted by 90 degrees. 
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Supplementary figure 1. History dependency and choice bias 

(a) Mouse number 6 tended to select the same side of the touchscreen on subsequent 

trials, while other mice did not. (b) Mouse number 6 tended to select the left panel, while 

the other mice were more even in their selections. 
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Supplementary Table 1. Images used during NID testing phase 

The target image and all distractor images for NID testing block and interleaved training 

block are listed. The SSIM index and information for the database for each image are 

also listed. 
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Supplementary table 2. Images used during NID training phase 

A target image and all distractor images for training phase are listed. The SSIM index 

and information for the database for each image are also listed. 
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