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ABSTRACT 

The ability of a neuronal population to effectuate response decorrelation has been identified as an 

essential prelude to efficient neural encoding. To what extent are diverse forms of local and 

afferent heterogeneities essential in accomplishing such response decorrelation in the dentate 

gyrus (DG)? Here, we incrementally incorporated four distinct forms of biological 

heterogeneities into conductance-based network models of the DG and systematically delineate 

their relative contributions to response decorrelation. We incorporated intrinsic heterogeneities 

by stochastically generating several electrophysiologically-validated basket and granule cell 

models that exhibited significant parametric variability, and introduced synaptic heterogeneities 

through randomized local synaptic strengths.  In including adult neurogenesis, we subjected the 

valid model populations to randomized structural plasticity and matched neuronal excitability to 

electrophysiological data. We assessed networks comprising different combinations of these 

three local heterogeneities with identical or heterogeneous afferent inputs from the entorhinal 

cortex. We found that the three forms of local heterogeneities were independently and 

synergistically capable of mediating significant response decorrelation when the network was 

driven by identical afferent inputs. Strikingly, however, when we incorporated afferent 

heterogeneities into the network to account for the unique divergence in DG afferent 

connectivity, the impact of all three forms of local heterogeneities were significantly suppressed 

by the dominant role of afferent heterogeneities in mediating response decorrelation. Our results 

unveil a unique convergence of cellular- and network-scale degeneracy in the emergence of 

response decorrelation in the DG, and constitute a significant departure from the literature that 

assigns a critical role for local network heterogeneities in input discriminability. 
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SIGNIFICANCE STATEMENT 

The olfactory bulb and the dentate gyrus (DG) networks assimilate new neurons in adult rodents, 

with adult neurogenesis postulated to subserve efficacious information transfer by reducing 

correlations in neuronal responses to afferent inputs. Heterogeneities emerging from the lateral 

dendro-dendritic synapses, mediated by locally-projecting neurogenic inhibitory granule cells, 

are known to play critical roles in channel decorrelation in the olfactory bulb. However, the 

contributions of different heterogeneities in mediating response decorrelation in DG, comprising 

neurogenic excitatory granule cells projecting beyond DG and endowed with uniquely divergent 

afferent inputs, have not been delineated. Here, we quantitatively demonstrate the dominance of 

afferent heterogeneities, over multiple local heterogeneities, in the emergence of response 

decorrelation in DG, together unveiling cross-region degeneracy in accomplishing response 

decorrelation.  
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The ability of a neuronal population to effectuate response decorrelation has been identified as an 

essential prelude to efficient neural encoding, as the decorrelation process ensures that 

information conveyed by different neuronal channels is complementary (1-5). The critical 

importance of local circuit heterogeneities, — including those in intrinsic properties, in synaptic 

strengths and in neuronal structure, observed either under baseline conditions or achieved 

specifically through adult neurogenesis, — in achieving such response decorrelation has been 

recognized across different brain regions (1-18). Studies in the olfactory bulb (OB), one of the 

two prominent brain regions that express adult neurogenesis, have assessed the impact of these 

local heterogeneities on response decorrelation (1, 2, 6, 10), emphasizing the critical importance 

of intrinsic heterogeneities and lateral inhibition in the emergence of response decorrelation. 

However, despite the dentate gyrus (DG) being the other prominent brain region expressing adult 

neurogenesis and despite the widespread literature on the role of DG in pattern separation (7-9, 

19-22), it is surprising that the impact of distinct forms of local and afferent heterogeneities on 

channel decorrelation has not been assessed in the DG.  

This lacuna in the literature is especially striking because of the stark contrasts in terms 

of the unique afferent connectivity to the dentate and in the specific roles of adult neurogenesis 

in the DG vs. the OB (1-3, 7-9, 18-26), although both circuits have been implicated in response 

decorrelation and express adult neurogenesis. First, there is evidence for adult neurogenesis 

resulting in both excitatory granule cells and inhibitory basket cells in the dentate, whereas adult 

neurogenesis results in inhibitory granule cells in the OB. Second, OB granule cells lack axons 

and make local lateral inhibitory dendrodendritic synapses with other local circuit cells, and do 

not project outside the OB. In striking contrast, DG cells extend unmyelinated axons connecting 

both within and beyond (principally to CA3) the DG. It was this feature of the DG granule cells 
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as the principal projection cell to the CA3 that was important in its theoretically postulated role 

in response decorrelation before inputs are fed to the pattern completing recurrent CA3 network 

(27, 28). Third, neurogenesis results in the replacement of the majority of granule neurons in the 

olfactory bulb, whereas it leads to a substantial addition of granule neurons to the hippocampal 

dentate gyrus, suggesting that adult neurogenesis could play distinct roles in the two brain 

regions (24). Finally, and most importantly, the principal inputs to the olfactory granule cells are 

the mitral cells through local dendrodendritic synapses, whereas the principal inputs to the ~1.2 

billion dentate granule cells are the ~30,000 LII entorhinal cortical neurons. This significant 

divergence and sparsity of connections in the afferent projections from the excitatory cells in the 

EC to the excitatory DG granule cells is therefore unique to the DG, and is critical to the analysis 

in terms of the specific roles of local vs. afferent heterogeneities. 

In the DG network, there are at least four distinct forms of heterogeneities that could 

mediate response decorrelation (the first three are local to the DG network whereas the fourth is 

afferent onto the network): (i) heterogeneity in intrinsic ion channel and excitability properties of 

the neurons; (ii) non-uniformities in the local synaptic connectivity; (iii) structural 

heterogeneities in neurons introduced by adult neurogenesis; and (iv) input-driven heterogeneity 

that is reflective of the distinct sets of afferent inputs that impinge on different neurons (as a 

consequence of the unique divergence in DG connectivity). Which of these distinct forms of 

heterogeneities play a critical role in mediating response decorrelation in the DG? Does a highly 

divergent, sparsely active network need an additional layer of neurogenesis-induced 

heterogeneity for effectuating response decorrelation? What is the impact of cell-to-cell 

variability in ion channel properties and excitability on response decorrelation in the DG network 

receiving different patterns of inputs? 
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In this study, we systematically and incrementally incorporate the four different forms of 

heterogeneities into conductance-based network models of the DG and delineate the impact of 

each form of heterogeneity on response decorrelation. Specifically, we employed a stochastic 

search algorithm spanning an exhaustive parametric space (involving experimentally-determined 

ion channel as well as neurophysiological properties) to reveal cellular-scale degeneracy in the 

DG, whereby disparate combinations of passive and active properties yielded analogous cellular 

physiology of excitatory granule (GC) and inhibitory basket cell (BC) populations. Next, we 

further expanded the parametric search space to encompass biologically observed heterogeneities 

in local/afferent network connectivity and in neurogenesis-induced alteration to neuronal 

structure and excitability. We systematically assessed response decorrelation in different DG 

networks, each built with incremental addition of the four distinct forms of heterogeneities. We 

found that in the absence of afferent heterogeneities, that is when the DG network was driven by 

identical afferent inputs, the three forms of local heterogeneities were independently and 

synergistically capable of mediating significant response decorrelation. Strikingly, however, 

when we incorporated afferent heterogeneities into the network to account for the unique 

divergence in DG afferent connectivity, we found that the impact of all three forms of local 

heterogeneities were suppressed by the dominant role played by afferent heterogeneities in 

mediating the emergence of response decorrelation. These conclusions on the dominance of 

afferent heterogeneities constitute a significant departure from the literature that assigns a critical 

role for local network heterogeneities (including those induced by adult neurogenesis) in input 

discriminability, and unveils crucial distinctions in the emergence of response decorrelation in 

the DG vs. the OB network.  
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RESULTS 

In systematically delineating the impact of distinct forms of heterogeneities on response 

decorrelation, we constructed networks of 500 GCs and 75 BCs from respective conductance-

based model populations (Fig. 1A–B). The heterogeneous conductance-based model populations 

of GC and BC neurons were derived from independent stochastic search procedures that 

replicated 9 different electrophysiological measurements (Fig. 1C–G) for each cell type (Tables 

S1–S4). These 575 cells were distributed in a cylindrical neuropil of 156-µm diameter and 40-

µm depth (Fig. 1A), with cell density and local connection probability between GCs and BCs 

(Fig. 1B) matched with experimental equivalents. Each cell in the network received local circuit 

inputs from other BCs or GCs (Fig. 1B) and external inputs (Fig. 1H) from several cells in the 

medial (MEC) and lateral entorhinal cortices (LEC), which allowed it to fire (Fig. 1I) at specific 

locations (Fig. 1J) within the arena that the virtual animal traversed in randomized order (over 

the entire simulation period of 1000 s).  

 
Degeneracy in single neuron physiology of granule and basket cell model populations 

We employed a well-established stochastic search strategy (29-32) to arrive at populations of 

conductance-based models for GCs and BCs. This exhaustive parametric search procedure was 

performed on 40 parameters for GCs (Table S1), and 18 parameters for BCs (Table S3), 

involving ion channel properties derived from respective neuronal subtypes. Nine different 

measurements, defining excitability and action potential firing patterns (Fig. 1; Table S2), were 

obtained from each of the 20,000 stochastically generated unique GC models, and were matched 

with corresponding electrophysiological GC measurements. We found 126 of the 20,000 models 

(~0.63%) where all nine measurements were within these electrophysiological bounds (Table 

S2), and thus were declared as valid GC models. A similar procedure was employed for BC 
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cells, where 9 different measurements from 8,000 unique models were compared with 

corresponding electrophysiological BC measurements. Here, we found 54 of the 8,000 models 

(~0.675%) where all nine measurements were within electrophysiological bounds (Table S4), 

and declared them as valid BC models. The experimental bounds on physiological measurements 

for granule (Table S2) and basket (Table S4) cells were obtained from references (33-37). 

Did the validation process place tight restrictions on model parameters that resulted in the 

collapse of all valid models to be near-homogeneous equivalents with very little changes in their 

parametric values? To address this, we plotted model parameters of 6 GCs (Fig. 2) and 6 BCs 

(Fig. S1), which had near-identical measurements values, and found the parametric values to 

spread through a wide span of the range employed in the respective stochastic searches. To 

further validate this, we plotted histograms of each of the 40 GC model parameters and the 18 

BC model parameters, and found them to spread through the entire span of their respective 

ranges (Fig. 3A). These results demonstrated that the valid models were not near-homogeneous 

parametric equivalents, but form heterogeneous populations of GCs and BCs that functionally 

matched their respective electrophysiological measurements, thereby unveiling cellular-scale 

degeneracy in GC and BC neurons. 

How did these neuronal populations achieve degeneracy? Did they achieve this by pair-

wise compensation across parameters, or was change in one parameter compensated by changes 

in several other parameters to achieve robust physiological equivalence? In answering this, we 

plotted pair-wise scatter plots, independently on valid model parameters of the GC and BC 

populations (Fig. 3A), and computed pair-wise Pearson’s correlation coefficients for each scatter 

plot (Fig. 3B–C). We found that a vast majority of these pairs displayed very weak pair-wise 
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correlations (R2 < 0.25; Fig. 3B–C), suggesting that degeneracy in both populations was achieved 

through collective changes spanning several parameters.  

 
Heterogeneities in neuronal intrinsic properties mediated decorrelation of neuronal 

responses to identical external inputs 

Cellular-scale degeneracy in these valid model populations provided an ideal manifestation of 

physiologically constrained intrinsic heterogeneities in the GC and BC model populations. 

Consequently, in defining the first layer of heterogeneity, we constructed a network of these 

heterogeneous populations with identical external inputs from the MEC and LEC and 

homogenous local synaptic connectivity.  

We allowed the virtual animal to traverse the arena, recorded the voltage traces of all the 

GCs and BCs in this network, computed their firing rates and overlaid neuronal firing structure 

on the arena to observe the emergence of place fields (Fig. 4A). To quantify the extent of 

decorrelation achieved through the introduction of intrinsic heterogeneities, we computed 

instantaneous firing rates of all neurons in the network across the entire traversal period (Fig. 4A; 

Fig. S2) and calculated pair-wise Pearson’s correlation coefficients across these firing rate arrays 

for all neurons (Fig. 4B; Fig. S2B). If the network were composed of a homogeneous population 

of GCs and BCs receiving identical inputs, then the responses of all GCs would be identical to 

each other, with all pair-wise correlation coefficients set at unity. However, owing to 

heterogeneous intrinsic excitability of individual neurons, their responses exhibited significant 

differences, especially in terms of overall firing rate at individual place fields (Fig. 4A; Fig. S2), 

even with identical external inputs and homogeneous local synaptic weights. Such dissimilarity 

in neuronal firing rate response emerges from two distinct manifestations of intrinsic 

heterogeneity. First, certain periods of identical synaptic inputs would be subthreshold for 
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neurons with lower excitability (e.g., Cell #2 in Fig. 4A), but would be suprathreshold for 

neurons with relatively higher excitability (e.g., Cell #5 in Fig. 4A), thereby manifesting as 

changes in firing rate or in the emergence of place fields at specific locations (38). Additionally, 

these observations also suggest that DG neurons could undergo rate remapping (22, 26) merely 

as a consequence of plasticity in intrinsic excitability. Second, although the numbers and 

synaptic weights of excitatory or inhibitory synapses received by neurons were identical, the 

patterns of activation of these synapses would be different across neurons as a consequence of 

significant variability in their respective presynaptic neuronal firing (Fig. 4A, Fig. S2). 

Consequent to such variability in firing responses of this intrinsically heterogeneous 

population of neurons, we found the distribution of correlation coefficients of instantaneous 

firing rates to be significantly (Kolmogorov Smirnov, KS test; p<0.001) different from an all-

unity distribution representative of identical responses achieved in the absence of intrinsic 

variability (Fig. 4B–C; Fig. S2C). Next, we repeated these simulations with different 

combinations of excitatory and inhibitory synaptic weights, setting all local synapses to the same 

value, and computed cumulative histograms of firing rate correlation coefficients (Fig. 4D–E; 

Fig. S2D–E). We found a significant shift (Fig. 4C vs. Fig. 4E; KS test; p<0.001) in the level of 

decorrelation with different combinations of synaptic weights. 

 
Synaptic heterogeneity modulates decorrelation of neuronal responses to identical external 

inputs 

Motivated by observations on the role of the local synaptic weights in modulating response 

decorrelation, we systematically assessed the impact of altering the excitatory and inhibitory 

synaptic weights on the correlation histograms. As a first step, the network was endowed with 

intrinsic heterogeneities and all local synaptic weights were identical but were assigned different 
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values across different simulations (Fig. 5A–B; Fig. S3A–B). Although increases in either 

excitatory or inhibitory weights significantly enhanced the level of response decorrelation, the 

impact of increasing inhibitory weights had a dominant impact on decorrelating network 

responses (Fig. 5A–B; Fig. S3A–B) emphasizing the critical role of local inhibitory neurons in 

defining response decorrelation in excitatory neurons (9, 12, 13). 

Would introduction of synaptic heterogeneities, where different synapses in the local 

network assume distinct values, further enhance neuronal response decorrelation? To test this, 

we assigned weights of excitatory and inhibitory synapses in the local network to randomized 

values picked from respective uniform distributions (Fig. 5C–E; Fig. S3C). Surprisingly, we 

found that introduction of synaptic heterogeneity did not enhance the level of response 

decorrelation, but allowed response decorrelation to express at a level that was within the bounds 

set by extreme values of identical synaptic weights (Fig. 5E; Fig. S3C). Importantly, the level of 

decorrelation achieved by the introduction of local synaptic heterogeneity into a homogeneous 

population (no intrinsic heterogeneity) of GCs and BCs was significantly minimal compared to 

that achieved by the mere presence of intrinsic heterogeneity (Fig. 5E; Fig. S3C; cf. Fig. 4, Fig. 

S2). Together, although the introduction of synaptic heterogeneity critically modulated the level 

of response decorrelation, these results suggest intrinsic heterogeneity as the dominant form 

among intrinsic and synaptic forms of heterogeneities in mediating response decorrelation.  

 
Adult neurogenesis-induced structural heterogeneity in neuronal age enhances 

decorrelation of neuronal responses to identical external inputs 

A prominent hypothesis on the specific functions of adult neurogenesis in DG neurons is on their 

role in response decorrelation. One part of the rationale behind this hypothesis is the distinct 

excitability properties of new neurons that provide an additional layer of heterogeneity (7-9, 15, 
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19-21, 39). Although there are lines of evidence linking adult neurogenesis to response 

decorrelation, the specific role of new neurons and the additional layer of heterogeneity 

introduced by them in regulating input discriminability has not been systematically assessed. 

To introduce neurogenesis-induced heterogeneity into our network, we noted that the 

excitability of new born neurons in the DG, which could mature to either GCs or BCs, is higher 

as a consequence of lower surface area reflective of the diminished arborization of immature 

neurons (9, 15, 39, 40). To quantitatively match the excitability properties of these neurons, we 

introduced structural plasticity by reducing the surface area of the valid GC and BC models (Fig. 

3) through reduction of their diameter. This reduction in surface area expresses as an increase in 

input resistance (39, 41, 42) in each of these neurons (Fig. 6A), which in turn translates to 

increase in firing rate (Fig. 6B).  

With the ability to introduce intrinsic, synaptic and neurogenesis-induced forms of 

heterogeneity into our network, we analyzed three distinct networks (fully mature, fully 

immature and variable age) to specifically understand the role of neurogenesis-induced 

heterogeneity on response decorrelation to identical inputs. All three networks were endowed 

with intrinsic as well as synaptic heterogeneities receiving afferent inputs from the same arena 

(Figs. 4–5), and the distinction between the three cases was only with reference to neuronal age 

(Fig. 6D). In comparing the firing rates of the GCs for different network configurations, we 

found that the firing rates of all GCs were comparable for all cases where neurogenesis-induced 

heterogeneities were absent. However, with the introduction of neurogenesis, especially in the 

scenario where all cells were immature, the firing rates increased and spanned a larger range. In 

the more physiologically relevant scenario of heterogeneous cellular age, although the firing 
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rates spanned a larger range, a significant proportion of them were in the low firing regime 

characteristic of GCs (Fig. 6E).  

We found that the level of response decorrelation in the fully immature network was 

significantly (KS test; p<0.001) higher than that achieved in the fully mature network (Fig. 6F). 

This is to be expected because the structural heterogeneity (effectuated by changes in diameter) 

would amplify the inherent intrinsic heterogeneity of neurons in the network, thereby enhancing 

the beneficiary effects of intrinsic heterogeneity that we had observed earlier (Fig. 4). 

Importantly, reminiscent of our results with the introduction of synaptic heterogeneity (Fig. 5), in 

the network that was endowed with variability in neuronal age, the level of decorrelation was 

intermediate between that obtained with the fully mature and the fully immature networks (Fig. 

6F). Together, these results demonstrate that neurogenesis-induced variability in neuronal 

response properties adds an additional layer of heterogeneity in the DG network, and enhances 

network decorrelation to identical external inputs. 

 
Input-driven heterogeneity mediated by sparseness of afferent connectivity is a dominant 

regulator of neuronal response decorrelation 

An important defining characteristic of the DG network is the sparseness of the afferent 

connectivity matrix that is reflective of massive convergence and divergence reflecting the small 

number of layer II EC cells (~30,000) that project to a large (~1.2 million) number of DG cells, 

resulting in significant variability in the set of afferent external inputs impinging on each GC (23, 

43). Thus far in our analysis, in an effort to delineate the impact of three distinct forms of 

heterogeneity, we employed an artificial construct where all neurons in the network received 

identical inputs. To assess the impact of this fourth form of afferent input-driven heterogeneity, 
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we introduced divergence in the set of EC neurons that project onto each GC and BC. This 

implied that each GC and BC now received distinct sets of EC inputs.  

As a consequence of distinct set of inputs impinging on each GC, the firing fields were 

distinct across different GCs (Fig. 7A) and BCs  (Fig. S4), unlike the near-identical firing fields 

(except for differences in firing frequency or threshold) in the case where neurons received 

identical inputs (Fig. 4A; Fig. S2). Importantly, when we analyzed pair-wise correlation of firing 

rates across different neurons, we found that the correlation coefficients were lower irrespective 

of the presence or absence of different forms of heterogeneity (Fig. 7B). The overall firing rate 

distributions obtained with either identical (Fig. 6) or distinct (Fig. 7C) afferent inputs were 

similar, thereby ruling out changes in firing rate as a possible cause for the observed differences 

in correlation coefficients.  

Strikingly, when we plotted the cumulative distributions of correlation coefficients 

obtained with the introduction of distinct forms of network heterogeneities, we found them to 

significantly overlap with each other (Fig. 7D). This is in stark contrast to the network receiving 

identical external inputs (Fig. 5E, Fig. 6F), where introduction of each of intrinsic, synaptic and 

neurogenesis-induced heterogeneities enhanced or altered the level of response decorrelation. 

The negligible impact of the intrinsic or synaptic or age heterogeneities on the overall level of 

response decorrelation achieved in the presence of input-driven heterogeneities, which was 

higher than that obtained with identical inputs (Fig. 7E), unveiled the dominance of 

heterogeneities driven by afferent connectivity in determining response decorrelation.  

Were our conclusions on the role of different forms of heterogeneities scalable and 

invariant to network size? To test this, we repeated our analyses in Figs. 4–7 with a smaller 

network made of 100 GCs and 15 BCs, and found our conclusions to scale across different 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 8, 2017. ; https://doi.org/10.1101/173450doi: bioRxiv preprint 

https://doi.org/10.1101/173450


 15 

network sizes (Fig. S5). Together, our results demonstrate that local heterogeneities in intrinsic, 

synaptic and neuronal structural (driven by adult neurogenesis) properties contributed to 

significant levels of response decorrelation in the presence of identical afferent synaptic drive. 

However, when the network received heterogeneous external inputs, the impact of local 

heterogeneities on response decorrelation was strongly suppressed by the dominant role of 

afferent heterogeneities in mediating neuronal response decorrelation. 
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DISCUSSION 

Dominance of input-driven heterogeneity and implications for the physiological roles for 

adult neurogenesis 

Our results quantitatively demonstrate a dominant role for afferent heterogeneities, driven 

specifically by the unique network structure of the DG involving huge number of GCs innervated 

by the small number of LII EC neurons, in driving response decorrelation in the DG. Within this 

framework, this dominant connectivity divergence in feed-forward afferents, synergistically 

coupled to the hetereogeneous intrinsic properties and the sparse GC activity that is sharpened by 

the local inhibitory network places the DG network as an ideal decorrelating system. 

Importantly, our conclusions on the dominance of heterogeneous afferent connectivity, with the 

local network heterogeneities playing secondary roles, pose specific questions on the role of 

adult neurogenesis in input discriminability, questioning the rationale behind the need for new 

neurons in a highly divergent, sparsely active network (9).  

If adult neurogenesis-induced heterogeneities in neuronal properties were not the 

dominant contributor to response decorrelation, what is the precise role of adult neurogenesis in 

the DG? One possibility within our framework is that adult neurogenesis could be a mechanism 

for implementing afferent heterogeneities across DG neurons, whereby new neurons establish 

connections to afferent fibers in an activity-dependent manner (14, 44-46), thereby assigning a 

specific set of active afferent inputs to new neurons of the same time of birth (9, 25, 47). In such 

a scenario, the afferent heterogeneities would be driven by active assignment of spatial 

connectivity from the EC to individual DG neurons, whereby the novel contexts encountered by 

the animal are encoded by the temporal onset of neurons. Such active assignments could be 

driven by activity-dependent connectivity aided by the hyper-plastic, hyper-excitable nature of 
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new neurons, and the resultant afferent heterogeneities (different neurons get different EC 

inputs) then plays specific roles in response decorrelation, in encoding temporal context and in 

controlling memory resolution (9, 14, 20, 25, 39, 44-47). In addition to this, our results suggest 

that the variability introduced by new neurons in terms of their intrinsic excitability (Figs. 4, 6) 

and in terms of altered excitation-inhibition balance (Fig. 5) could also be candidate mechanisms 

through which adult neurogenesis enhances (beyond what is driven by afferent heterogeneities) 

the degree of response decorrelation achieved in the DG network (8, 9, 16, 20, 25, 47). 

 
Multiscale degeneracy: Convergence of different scales of degeneracy to achieve single-

neuron homeostasis and response decorrelation 

A central premise of robustness in biological function is degeneracy, where distinct structural 

components could combine to elicit analogous function. Given the several possible routes 

through which similar function can be achieved, it is possible for biological systems to invoke 

compensatory mechanisms to achieve the same function through very different parametric 

combinations (29-32, 48). Complementary to this powerful theory, our results show that identical 

levels of output dissimilarity could be achieved with disparate classes of parametric 

heterogeneity. Specifically, whereas degeneracy suggests that similar functionalities could be 

achieved with disparate combinations of constituent parameters, our results argue for a case 

where similar degrees of response decorrelation could be achieved through disparate classes of 

heterogeneity. Do our results constitute a departure from the premise of degeneracy in biological 

systems? 

In systems that are responsible for encoding of novel information, robust homeostasis of 

output constitutes only one side of the overall physiological goals. The other side 

constitutes encoding of new information, which by definition involves changes to certain output 
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characteristics to reflect this encoding process. With specific reference to the DG, whose prime 

encoding function has been postulated to be response decorrelation, it is important that the focus 

is not on mere maintenance of robust outputs. If response decorrelation were the overall function, 

and different classes of heterogeneity are considered as disparate structural components, our 

conclusions are consistent with the overall framework of degeneracy where distinct structural 

components could come together to elicit analogous function. Thus, there are several layers of 

degeneracy, spanning the molecular, cellular, network and behavioral scales 

of analyses, embedded in results presented in this study. At the cellular scale, distinct 

combinations of intrinsic parameters (the molecular components: the ion channels) come 

together to elicit analogous cellular response properties. At the network scale, distinct 

combinations of intrinsic and synaptic properties interact to elicit similar levels of response 

decorrelation. Together, our results unveil a systematic convergence of degeneracy spanning 

different scales of analysis in the DG network, achieving the twin goals of the DG network 

(input discriminability and firing rate homeostasis) within the broad framework of degeneracy.  

 
Comparison of mechanisms for decorrelation in the dentate gyrus and in the olfactory bulb 

The olfactory bulb (OB) is another brain region that expresses adult neurogenesis and has 

been postulated to play a critical role in channel decorrelation (referred here as response 

decorrelation) (1-3, 18). Although there are similarities in our conclusions with those in the 

olfactory literature in terms of the roles of neuronal nonlinearites, intrinsic heterogeneities and 

inhibition in effectuating channel decorrelation in the absence of afferent heterogeneities, the 

significant departure in our conclusions is with reference to the dominant role of afferent 

heterogeneities. We argue the dominance of afferent heterogeneities is a distinctive feature of the 

DG circuit, and is reflective of the unique afferent connectivity to the dentate and the several 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 8, 2017. ; https://doi.org/10.1101/173450doi: bioRxiv preprint 

https://doi.org/10.1101/173450


 19 

stark contrasts between the roles of adult neurogenesis in the DG vs. the OB circuit (1-3, 7-9, 18-

26). Specifically, the significant divergence and sparsity of connections in the afferent 

projections from the excitatory cells in the EC to the excitatory GCs is unique to the DG, and is 

critical to the conclusions that we draw here in terms of the dominance of the afferent 

heterogeneities in mediating response decorrelation.  

The well-established distinctions between these two networks, in conjunction with our 

conclusions on the unique role of afferent heterogeneities in the DG network suggest that the 

mechanisms behind achieving decorrelation in the OB and the DG networks are very different. 

Specifically, whereas decorrelation in the OB has been postulated to be aided by new laterally 

inhibiting neurons forming dendrodendritic synapses across the local circuit (1-3, 18), our 

conclusions here, derived from the specifics of the DG network, its intrinsic heterogeneities and 

its afferent connectivity, present a dominant role for the afferent heterogeneities supported by 

synergistic interactions with local heterogeneities. Together, these disparate structural routes to 

achieve decorrelation further emphasize our conclusions on degeneracy in encoding 

mechanisms. In discussing the role of distinct forms of heterogeneities in effectuating 

decorrelation, we had emphasized in the previous section the possibility of how distinct forms of 

heterogeneities could be recruited to achieve analogous levels of decorrelation. With these 

distinctions between the OB and the DG, it is clear that this degree of degeneracy could be much 

broader where the OB and DG could be using adult neurogenesis in very different ways towards 

achieving response decorrelation. 
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METHODS  

Detailed experimental procedures are provided in the SI Methods. Briefly, the principal goal of 

this study was to systematically assess the impact of different forms of heterogeneities on 

response decorrelation in the DG. In doing this, we took advantage of the versatility of 

conductance-based neuronal network models, and distinguished between four different types of 

heterogeneities: (i) intrinsic heterogeneity, where the GC and BC model neurons that were 

employed to construct the network had widely variable intrinsic parametric combinations 

yielding physiological measurements that matched their experimental counterparts. These 

heterogeneous model populations were obtained using independent stochastic search procedures 

for GCs and BCs; (ii) synaptic heterogeneity, where the synaptic strength of the local GC-BC 

network was variable with excitatory and inhibitory synaptic permeability values picked from 

uniform random distributions; (iii) neurogenesis-induced heterogeneity in age of the neuron, 

where the DG network could be made entirely of mature or immature neurons, or be constructed 

from neurons that represented different randomized neuronal ages; and (iv) input-driven 

heterogeneity, where the GC and BC populations received either identical inputs from the EC, or 

each GC and BC received unique inputs from the EC. Networks endowed with different 

combinations of heterogeneities were constructed, and received inputs that were tied to the 

location of a virtual animal traversing in an arena. Spike timings of individual neurons in 

response to arena traversals were recorded, and pairwise correlations were computed on 

instantaneous firing rates of GC or BC neuron populations. Analyses of correlation coefficients 

across distinct networks endowed with disparate forms of heterogeneities were employed to 

derive insights into the roles of distinct forms of heterogeneities in driving input discriminability 

in these networks. All simulations were performed using the NEURON simulation environment 

(49).  
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FIGURE LEGENDS 

Figure 1. Model components and measurements. (A) Schematic representation of the 

cylindrical neuropil of 156 µm diameter and 40 µm height (left) with the top view (right) 

showing the distribution of 500 GCs (black) and 75 BCs (red). (B) Conductance-based models of 

GCs (left) and BCs (right) expressed different sets of ion channels and received external inputs 

from several MEC and LEC cells. (C–G) The nine physiological measurements employed in 

defining the GC populations: input resistance, Rin, measured as the slope of a V–I curve obtained 

by plotting steady-state voltage responses to current pulses of amplitude –50 to 50 pA, in steps of 

10 pA, for 500 ms (C); sag ratio, measured as the ratio between the steady-state voltage response 

and the peak voltage response to a –50 pA current pulse for 1 s (D); firing rate in response to 50 

pA, f50 (C) and 150 pA current injection, f150 (E); spike frequency adaptation (SFA) computed as 

the ratio between the first (ISIfirst) and the last (ISIlast) inter-spike intervals in spiking response to 

a 150 pA current injection (E); action potential half-width, TAPHW (F); action potential threshold, 

computed as the voltage at the time point where dVm/dt crosses 20 V/s (F); action potential 

amplitude, VAP (G) and the fast afterhyperpolarization potential (VAHP). (H) Inputs from MEC 

(top) were modeled as grid structures with randomized scale and orientation, whereas inputs 

from LEC (bottom), carrying contextual information, were represented as smoothed and 

randomized matrices comprised of active and inactive boxes. Schematic color-coded 

representations of individual inputs (5 MEC and 5 LEC cells) and their summations (separate for 

MEC and LEC inputs) are superimposed on the virtual animal trajectory in an arena of size 1 m 

× 1 m. (I) Sample GC voltage trace in response to total MEC (top) and LEC (bottom) current 

inputs. (J) Color-coded rate map obtained by superimposing firing rate output from an isolated 

GC in response to both MEC and LEC inputs, as the virtual animal traverses the arena.  
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Figure 2. Illustration of cellular-scale degeneracy in granule cell physiology with six 

randomly chosen valid models, where analogous functional characteristics were achieved 

through disparate parametric combinations. (A) Firing pattern of six randomly chosen valid 

GC models in response to 150 pA current injection with corresponding measurement values for 

action potential amplitude (VAP), action potential half-width (TAPHW), action potential threshold 

(Vth), fast afterhyperpolarization (VfAHP) and spike frequency adaptation (SFA). (B) Voltage 

traces of six valid GC models in response to –50 pA and 50 pA current injection, with associated 

measurement values for input resistance (Rin) and sag ratio. Note that firing rate at 150 pA, f50, 

was zero for all models. (C) Firing frequency plots for six valid GC models in response to 0–400 

pA current injections, indicating values of firing rate at 150 pA for each valid model. Note that 

all the 9 different measurements are very similar across these six models. (D) Distribution of the 

40 underlying parameters in the six valid models, shown with reference to their respective min–

max ranges. The color code of the dots is matched with the plots and traces for the corresponding 

valid models in (A)–(C). 

 
Figure 3. Independently heterogeneous populations of granule and basket cells exhibited 

cellular-scale degeneracy with weak pair-wise correlations of underlying parameters. (A) 

Left, Lower triangular part of a matrix comprising pair-wise scatter plots between 40 parameters 

underlying all valid GC models (n=126). The bottommost row represents the histograms for 

corresponding parameters in the valid model population, showing all parameters spanning their 

respective min-max ranges. Right, Upper triangular part of a matrix comprising pair-wise scatter 

plots between 18 parameters underlying all valid BC models (n=54). The topmost row represents 

the histograms for corresponding parameters in the valid model population, showing all 

parameters spanning their respective min-max ranges. The red scatter plots indicate that the 
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value of correlation coefficient for the pair was greater than 0.5, whereas the blue scatter plots 

denote pairs where the correlation coefficient value was less than –0.5. (B) Top, Heat map of 

correlation coefficient values for GC cells, corresponding to each scatter plot box depicted in (A).  

Bottom, Distribution of correlation coefficient values for the 780 unique pairs, of the 40 

parameters, corresponding to scatter plots for GC parameters shown in (A). (C) Same as (B) but 

for BC cells with 153 unique pairs of correlation coefficients (A). 

 
Figure 4. Heterogeneity in intrinsic neuronal excitability is a robust mechanism for 

achieving response decorrelation through rate remapping of cellular responses. (A) Voltage 

traces (left), instantaneous firing rate (middle) and color-coded rate maps (right; superimposed 

on the arena) for five different GCs in a network made of a heterogeneous GC and BC 

populations. (B) Lower triangular part of correlation matrix representing pair-wise Pearson’s 

correlation coefficient computed for firing rates of 500 GCs spanning the entire 1000 s 

simulation period. Inset represents the histogram of these correlation coefficients. Note that there 

was no heterogeneity in the synaptic strengths of local connections, with PAMPAR=5 nm/s and 

PGABAAR=40 nm/s for all excitatory and inhibitory synapses, respectively. (C) Cumulative 

distribution of correlation coefficients represented in matrix in (B). Plotted are distributions from 

five different trials of the simulation, with each trial different in terms of the cells picked to 

construct the network. (D–E) Same as (B–C), but with the synaptic strengths of local connections 

fixed at lower permeability values: PAMPAR=1 nm/s and PGABAAR=20 nm/s. 

 
Figure 5. Heterogeneities in the strength of local network connections modulate response 

decorrelation, with increase in inhibitory synaptic strength enhancing network 

decorrelation. (A) Lower triangular part of correlation matrix representing pair-wise Pearson’s 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 8, 2017. ; https://doi.org/10.1101/173450doi: bioRxiv preprint 

https://doi.org/10.1101/173450


 29 

correlation coefficient computed for firing rates of 500 GCs. Note that there was no 

heterogeneity in the synaptic strengths of local connections, with AMPAR and GABAAR 

permeability across local network synapses set at fixed values. Shown are four different 

correlation matrices, with PAMPAR (1 or 5 nm/s) and PGABAAR (10 or 50 nm/s) fixed at one of the 

two values. (B) Left, Cumulative distribution of correlation coefficients for firing rates of 500 

GCs, computed when the simulations were performed with different sets of fixed values of 

PAMPAR (spanning 1–5 nm/s) and PGABAAR (spanning 10–50 nm/s). The gray-shaded plots on the 

extremes were computed from corresponding matrices shown in (A). Right, Cumulative 

distributions of correlation coefficients corresponding to the gray-shaded plots on the left, to 

emphasize the impact of synaptic heterogeneity on decorrelation. (C) Distribution of PAMPAR and 

PGABAAR in a network of heterogeneous GC and BC populations, constructed with heterogeneity 

in local synaptic strengths as well. Each AMPA and GABAA receptor permeability was picked 

from a uniform distribution that spanned the respective ranges. The color codes of arrows and 

plots correspond to cases plotted in (D)–(E). (D) Lower triangular part of correlation matrices 

representing pair-wise Pearson’s correlation coefficient computed for firing rates of 500 GCs. 

For the left and right matrices, which are the same plots as in Fig. 4E and Fig. 4C, respectively, 

there was no synaptic heterogeneity, with PAMPAR and PGABAAR set at specified fixed values for 

all excitatory and inhibitory synapses. The matrix represented in the center was computed from a 

network endowed with intrinsic as well as synaptic heterogeneity (shown in C). (E) Cumulative 

distribution of correlation coefficients represented in matrices in (E). Plotted are distributions 

from five different trials of each configuration. Note that except for the homogenous population, 

all three configurations were endowed with intrinsic heterogeneity. The configurations “Intrinsic 

+ synaptic heterogeneity” and “Homogeneous + synaptic heterogeneity” had randomized 
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synaptic permeabilities; for the other two configurations, the synaptic strengths were fixed at 

specific values: High P, PAMPAR=5 nm/s and PGABAAR=40 nm/s; Low P, PAMPAR=1 nm/s and 

PGABAAR=20 nm/s.   

 
Figure 6. Incorporation of neurogenesis-induced structural heterogeneity in neuronal age 

enhances response decorrelation in a network of neurons receiving identical inputs. (A) 

Input resistance of the 126 GCs (left) and 54 BCs (right) plotted as a function of diameter of cell. 

Dotted lines represent the range for immature cell diameters (2–9 µm for GC and 1–3 µm for 

BC), obtained from ranges of experimentally obtained input resistance values in immature cells. 

(B) Firing frequency plotted as a function of diameter in response to 10 pA (closed triangles) and 

100 pA (open circles) current injections into the 126 GCs (left) and 54 BCs (right). (C) 

Distribution of GC (top) and BC (bottom) diameters in a network of heterogeneous GC and BC 

populations, constructed with heterogeneity in local synaptic strengths and in the age of the 

neurons. The diameter of each GC and BC in the network was picked from a uniform 

distribution that spanned respective ranges. The color codes of arrows and plots correspond to 

fully mature network (green; large diameters), fully immature network (orange; small diameters) 

and mixed network (purple; variable diameters) cases plotted in (D)–(F). (D) Lower triangular 

part of correlation matrices representing pair-wise Pearson’s correlation coefficient computed for 

firing rates of all GCs. The matrix corresponding to the fully mature population is the same as 

that in Fig. 5D, with the same color code. Note that all three networks were endowed with 

intrinsic as well as synaptic heterogeneity, with changes only in the neuronal age. (E) Firing 

rates, represented as quartiles, of all GCs plotted for the different networks they resided in. (F) 

Cumulative distribution of correlation coefficients represented in matrices in (D). Plotted are 

distributions from five different trials of each configuration. 
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Figure 7. Heterogeneous external connectivity is the dominant form of variability that 

drives response decorrelation in a network endowed with intrinsic, synaptic and age 

heterogeneities. (A) Instantaneous firing rate (left) and color-coded rate maps (right; 

superimposed on the arena) for ten different GCs in a network endowed with intrinsic, synaptic, 

age and input-driven forms of heterogeneities. (B) Lower triangular part of correlation matrices 

representing pair-wise Pearson’s correlation coefficient computed for firing rates of all GCs. The 

four different matrices correspond to networks endowed with different sets of heterogeneities. 

(C) Firing rates, represented as quartiles, of all the GCs plotted for the different networks they 

resided in. Color-codes for the specific set of heterogeneities included into the network are the 

same as those in panel B above. (D) Cumulative distribution of correlation coefficients 

represented in matrices in (B). (E) Statistical (mean ± SEM) comparison of correlation 

coefficients obtained with networks, endowed with distinct forms of heterogeneities, receiving 

identical (solid boxes; derived from Fig. 6F) vs. variable (open boxes; derived from panel D) 

external inputs. 
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