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In recent years, two-photon calcium imaging has become a standard tool to probe the func-

tion of neural circuits and to study computations in neuronal populations1, 2. However, the

acquired signal is only an indirect measurement of neural activity due to the comparatively

slow dynamics of fluorescent calcium indicators3. Different algorithms for estimating spike

trains from noisy calcium measurements have been proposed in the past4–8, but it is an open

question how far performance can be improved. Here, we report the results of the spikefinder
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challenge, launched to catalyze the development of new spike inference algorithms through

crowd-sourcing. We present ten of the submitted algorithms which show improved perfor-

mance compared to previously evaluated methods. Interestingly, the top-performing algo-

rithms are based on a wide range of principles from deep neural networks to generative

models, yet provide highly correlated estimates of the neural activity. The competition shows

that benchmark challenges can drive algorithmic developments in neuroscience.

We organized the spikefinder challenge to crowd-source the problem of developing algo-

rithms for inferring spike rates from calcium signals. Such challenges have been used successfully

in machine learning and computer vision to drive algorithmic developments9. We used a bench-

mark data set consisting of 92 recordings from 73 neurons6, acquired in the primary visual cortex

and the retina of mice using different calcium indicators (OGB-1 and GCaMP6s), different scan-

ning methods, and different sampling rates. For this data, calcium imaging has been performed

simultaneously with electrophysiological recordings allowing to evaluate the performance of spike

inference algorithms on ground truth data. Importantly, all data has been acquired at a zoom factor

typically used during population imaging experiments, ensuring that all benchmark results reflect

performance under the typical use-case conditions.

For the challenge, we split the data into a training and a test set (see Table 1). For the

training data, we made both the calcium and the spike traces publicly available, but kept the spike

traces secret for the test data. Additionally, the publicly available data sets provided by the GENIE

project10 were available as training data. This allowed participants to adjust their models on the
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training data set, while avoiding overfitting to the specific benchmark data set. Participants could

upload predictions for the spike rate generated by their algorithm on a dedicated website (see

Methods) and see their performance on the training set during the competition phase. Results on

the test set were not accessible to the participants during the competition. To evaluate the quality

of the prediction, we computed the Pearson correlation coefficient between the true spike trace and

the prediction sampled at 25 Hz (equivalent to 40 ms time bins) as previously described6.

We obtained 37 submissions, from which we selected all algorithms performing better than

the STM algorithm, which had previously been shown to outperform other algorithms on this

data6. In addition, if there were multiple submissions from the same group, we used the one

with the highest correlation on the test set. This resulted in a total of ten algorithms that we

studied in greater detail (see Table 2). Interestingly, these submissions include algorithms based

on very different principles: some of the algorithms built on the classical generative models of

spike-induced calcium dynamics4, while others relied on purely data-driven training of deep neural

networks or pursued hybrid strategies (see Table 3).

We found that several of the submitted algorithms performed substantially better than the

STM, increasing the average correlation on the test set from 0.36 by 0.08 to 0.44 for the best

algorithm (Figure 1A, B; Table 3). Because increases in correlation are hard to interpret, we

converted it to mutual information assuming a Gaussian distribution (see Methods), yielding an

estimated increase of almost 50% on average. For all algorithms, performance varied substantially

between data sets with the best results observed on data set I. Interestingly, performance gains were
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Figure 1: Contributed algorithms outperform state-of-the-art. A. Correlation coefficient of the

spike rate predicted by the submitted algorithms (evaluated at 25 Hz, 40 ms bins) on the test set.

Colors indicate different data sets (for details, see Table 1). Data sets I, II, and IV were recorded

with OGB-1 as indicator, III and V with GCaMP6s. Black dots are mean correlation coefficients

across all N = 32 cells in the test set. Colored dots are jittered for better visibility. STM: Spike-

triggered mixture model6; f-oopsi: fast non-negative deconvolution11 (continued next page)

5

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 19, 2017. ; https://doi.org/10.1101/177956doi: bioRxiv preprint 

https://doi.org/10.1101/177956
http://creativecommons.org/licenses/by-nc/4.0/


Figure 1: (continued from previous page) B. Difference in correlation coefficient on the test set to

the STM, split by the calcium indicator used in the data set. C. P-values for difference in mean

correlation coefficient on the test set for all pairs of algorithms (Repeated measured ANOVA,

N = 32 cells, main effect of algorithm: P < 0.001, shown are p-values for post-hoc pairwise

comparisons, corrected using Holm-Bonferroni correction) D. Difference in correlation coefficient

split by algorithm type on the training and test set, respectively, to the f-oopsi-result correcting for

systematic differences between the training and the test set.

typically larger on GCaMP6 than on OGB-1 data sets (Figure 1B). Surprisingly, the top group

of six algorithms performed virtually indistinguishably (Figure 1C), despite using very different

methodologies. Finally, we evaluated to what extent the algorithms overfitted the training data.

For example, it is possible that algorithms extracted peculiarities of the training data that did not

transfer to the test data, resulting in artificially high correlation coefficients on the training data.

We found that most algorithms showed similar performance for both the training and the test set,

with evidence for overfitting in some of the DNN-based algorithms (Figure 1D).

As the algorithms in the top group used a range of algorithmic strategies, we wondered

whether they also made different predictions, e.g., each capturing certain aspects of the spike-

calcium relationship. However, the predictions of the different algorithms are typically very sim-

ilar with an average pairwise correlation coefficient among the first six algorithm of 0.82 ± .04

(mean ± SD, Figure 2). Also, averaging the top six predictions in an ensembling approach did

not yield substantially better performance (c̄ = 0.4436 compared to c̄ = 0.4382 for Team 1). This
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Figure 2: Top algorithms make highly correlated predictions. A.-B. Example cells from the test

set for dataset 1 (OGB-1) and dataset 3 (GCaMP6s) show highly similar predictions between most

algorithms. C. Average correlation coefficients between predictions of different algorithms across

all cells in the test set at 25 Hz (40 ms bins).

indicates that despite their different algorithmic strategies, all algorithms capture similar aspects

of the spike-fluorescence relationship.

In summary, the spikefinder challenge has shown that a community competition making use

of suitable benchmark data can catalyze algorithmic developments in neuroscience. The challenge

triggered a range of new and creative approaches towards solving the problem of spike inference

from calcium data and improved the state-of-the-art substantially. Interestingly, the challenge did

not distill the optimal strategy out of the different possible algorithmic approaches, something we
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had initially hoped for; rather, it showed that – given the current data – a range of approaches yield

very similar outcomes. In particular, it is noteworthy that algorithms based on generative models

such as those by Team 1 and 6 perform on par with more flexible deep learning-based approaches.

Each algorithm comes with their own advantages and disadvantages regarding speed, interpretabil-

ity, and incorporation of prior knowledge. For example, training the DNN-based models is compu-

tationally quite costly, and care has to be taken when using complex DNN-based models to avoid

overfitting the training set, as this could lead to false confidence about the prediction performance

on new data. On the other hand, the DNN-based approaches are less reliant on prior knowledge

and may be more easily adapted when new training data sets are acquired with new indicators

with different dynamics. In contrast, the algorithms based on generative models allow for very

fast inference (Team 6) or Bayesian treatment (Team 1), but may be less easily adapted to novel

settings.

More generally, the spikefinder challenge raises the question of what the actual performance

bound of an ideal decoder is. Model simulations can help to answer these questions7, 12, but their

interpretation is limited by the accuracy of the model regarding indicator dynamics, noise struc-

ture, and other experimental factors6. However, the challenge contributions by Team 9 and a recent

paper13 by Team 3 have shown that they can actually be useful for training supervised algorithms.

It remains to be seen whether new and larger data sets of simultaneously recorded and imaged

neurons will yield further improvements and distinguish more clearly between different algorith-

mic strategies. It will also be interesting to see whether new indicators will allow for more precise

spike-rate inference.
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In addition to improving on the state-of-the-art, competitions such as the spikefinder chal-

lenge can boost standardization of algorithms, something that has been lacking from neuroscience

analysis tool chains14. During and after the challenge, lively debates ensued online about the best

way to handle several of the processing steps highlighting several potential pitfalls in analyzing

calcium imaging data. Some of these difficulties were also reflected in the choices made for this

challenge. For example, we resampled all data to 100 Hz for ease of comparison, which induced

problems for some of the participating algorithms through the properties of the used filter. In addi-

tion, several of the participating teams found it necessary to introduce means of adapting the model

parameters to the specific data set as, e.g., the average time delay between the spike and calcium

signal seemed to vary between data sets. This may be due to different preprocessing procedures

performed in the different data sets, but such confounds should be avoided in future competitions

on this topic. Finally, the challenge was performed on traces extracted from the raw imaging data

by averaging all the pixels within manually placed regions-of-interest (ROIs). It is thus possible

that the extracted signals contain contamination from the neuropil or were suboptimally placed, a

problem tackled by methods that combine ROI placement and calcium-trace extraction in a sin-

gle algorithm5, 15. However, at least for data with simultaneous imaging and electrophysiological

recordings, it is not clear how methods integrating ROI placement and spike-rate extraction should

be evaluated and compared to regular data, since the recording electrode is always present in the

picture.

Alternatives to our primary evaluation measure, the correlation coefficient, may also need to

be considered. While it is easy to interpret and more sensitive than the often used AUC-score, it is

9
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still invariant under global scaling of the predicted spike rate6. In fact, different metrics can lead

to different conclusions about which algorithm is optimal since the metric contains part of the task

specification16. On the other hand, information gain – which may be considered a canonical model

comparison criterion for probabilistic predictions6, 17 – is considered less intuitive by some.

We believe that quantitative benchmarks are an essential ingredient for progress in the field,

providing a reference point for future developments and a common standard with regards to how

new algorithms should be evaluated. We strongly believe that many fields of computational neu-

roscience can benefit from community-based challenges to assess where the field stands and how

it should move forward. As for the problem of spike inference from two-photon imaging, the

spikefinder challenge should not be considered the last word in this matter: More comprehensive

data sets and new functional indicators may require organizing another round of community-based

development, further pushing the boundaries of what is attainable.

Methods

Data The challenge was based on data sets collected for a previous benchmarking effort6 and the

publicly available cai-1 data set from crcns.org10. Details about the recording region, indicators,

scan rate and cell numbers are summarized in Table 1. All data was resampled to 100 Hz indepen-

dent of the original sampling rate. Upon request during the challenge, we made the data available

at the native sampling rate.

10
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Challenge organization For the challenge, we split the available data into training and test sets

(see Table 1). The training set contained both calcium and spike data, while for the test set, only

calcium data was available during the challenge period. The GENIE datasets were only used as

training data, since they are completely publicly available and consist of recordings from individual

zoomed-in cells.

The data and instructions were available on a dedicated website, based on an open-source

web framework (https://github.com/codeneuro/spikefinder). There was a dis-

cussion board linked from the website to allow for questions and discussion among participants.

Each team could make multiple submissions, but during the challenge period, only results on the

training set were shown. The challenge ran from 30/11/2016 to 04/05/2017.

Algorithms The submitted algorithms are described in detail in the Supplementary Information.

For comparison, we used publicly available implementations of the STM algorithm6 and fast-

oopsi11. STM parameters were optimized on the training set.

Evaluation The evaluation of the submissions was done in Python using Jupyter notebooks. All

notebooks are available at https://github.com/berenslab/spikefinder_analysis.

We used the correlation coefficient between the inferred and the real traces resampled to 25 Hz

(40 ms time bins) as a quality measure. Because difference in correlation is hard to interpret (e.g.,

because an increase from .40 to .45 means something very different than an increase from .94 to

.99), we converted correlation coefficients to information rate assuming a Gaussian channel:

I ialgo = −1

2
log2(1− (cialgo)

2)
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Improvements in performance were then computed as the increase in average information

rate compared to the STM algorithm:

100 · (
< I ialgo >

< I iSTM >
− 1)%

We used the R package afex to compute a repeated measures ANOVA on the correlation

coefficients with within-subject factor algorithm and cells as subjects. Pairwise comparisons be-

tween algorithms were performed using the lsmeans package with Holm-Bonferroni correction

for 66 tests.
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Dataset Indicator Scan rate N in training set N in test set

I OGB-1 11 5

II OGB-1 21 10

III GCamp6s 13 6

IV OGB-1 6 3

V GCamp6s 9 8

Table 1: Overview over datasets with training and test data used in the competition.

Team Contributors

1 T. Deneux

2 N. Chenkov, T. McColgan

3 A. Speiser, J. Macke, S. Turaga

4 P. Mineault

5 P. Rupprecht, S. Gerhard, R. W. Friedrich

6 J. Friedrich, L. Paninski

7 M. Pachitariu

8 B. Bolte

9 T. Machado, L. Paninski

10 D. Ringach

Table 2: Reference table resolving team numbers to contributors
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Supplementary Material

For all algorithms, we denote the spike train s, the fluorescence trace f and the underlying calcium

signal c, where applicable. We observe a total of T time bins, and the measurement in time bin t

is written st, ft and ct, respectively.

Team 1 — T. Deneux The MLspike algorithm7 is a model-based Bayesian inference algorithm.

Similarly to the method by Vogelstein et al.4, the conversion of neuronal spiking activity to calcium

fluorescence is modeled by a biophysical dynamical system, and a two-ways filtering scheme is

applied to estimate the hidden dynamics of the intracellular calcium concentration given the noisy

fluorescence recording. MLspike implements two major improvements over previous models:

The first one is an extension of the biophysical model including a slowly drifting baseline, which

allows disentangling a wide range of noises often observed in the real data from the spike-related

signals. The second one is to represent probabilities as dense arrays rather than using Monte-

Carlo approximations, namely making MLspike a histogram filter instead of a particle filter, which

improves both speed (at least for a models hidden state dimension not greater than 2) and accuracy.

For the spikefinder competition, MLspike was set to estimate a-posteriori probabilities E(s|c)

rather than maximum-a-posteriori spike trains arg maxs p(s|c). The biophysical model entailed

a drifting baseline and nonlinear calcium to fluorescence conversion (i.e. saturation for OGB

dataset; polynomial supralinearity for GCaMP6 dataset), and therefore had 6 or 7 parameters.

One of these parameters (the a-priori spiking rate) was fixed while the 5 or 6 remaining ones
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were estimated independently for each training dataset so as to maximize the match between the

estimated and observed spikes. This was preferred to using MLspikes autocalibration method on

each individual neuron, because the data appeared too noisy for this autocalibration to perform

accurately. The match between spike trains was defined as the correlation after resampling to 25

Hz. We used an additional postprocessing optimization on the estimates consisting of temporal

smoothing and a time shift to account for apparent differences between data sets. Once these

optimizations were performed, the same model and postprocessing parameters were applied to

the test data sets. Interestingly, the hyperparameter optimization strategy pursued here was very

similar to that chosen by Team 6.

Code is available at https://github.com/MLspike.

Team 2 — N. Chenkov, T. McColgan This algorithm is based on a convolutional neural net-

work, which receives the calcium signal and an index vector as input, denoting the data set the

inputs come from. The network consists of eight convolutional layers and one recurrent layer

(LSTM) (see Fig. 3A). We optimized the parameters by maximizing the Pearson correlation coef-

ficient with the ground-truth spiking data at 25 Hz using the ’Adam’ optimizer with 50 epochs.

The first layer consists of 10 units. Each unit uses a kernel with a width of 3 seconds (300

time steps) that is correlated with the input calcium signal. The learned kernels catch a basic reper-

toire of spike-related calcium dynamics (see Fig. 3A). The output of this layer is passed through

a hyperbolic tangent activation function (‘tanh’). This layer is followed by multiple convolutional
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A B

...

...

Figure 3: A. Network Architecture. In the convolutional layers the notation mxn denotes n units

with kernel width of m time steps. B. Example of convolutional kernels learned by the model. The

ten kernels of the first convolutional layer can describe a wide range of transient calcium dynamics.
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layers with smaller kernel widths (100 and 50 ms, or 10 and 5 time steps, respectively) and with

rectified linear activation functions (‘ReLU’). The data set indicator is concatenated with the out-

put of the second layer and feed into the input of the third layer. We observed that the data set

indicator improved the performance of the model, possibly setting different states of the recurrent

layer dynamics. Moreover, a bidirectional LSTM layer is fed by the input of the third layer, and

its output is added to the input to the fourth layer. The following four layers have decreasing size,

with the last layer consisting of a single unit.

To distribute the amount of information that different units are carrying, dropout is applied

at the output of the first five convolutional layers.

Code is available at https://github.com/kleskjr/spikefinder-solution.

Team 3 — A. Speiser, S. Turaga, J. H. Macke We trained neural networks consisting both of

convolutional and recurrent layers to learn a mapping from fluorescence trace to neural spiking. In

contrast to other methods, we trained the network to approximate a correlated posterior conditional

probability distribution q(s|f) of a spike-train st=0...T given a fluorescence trace ft=0...T . We use

a recurrent layer to model an autoregressive conditional probability distribution to account for

correlations in this posterior between spike probabilities and previously sampled spikes, similar to

ref 18. The temporal ordering over spikes is used to factorize the joint distribution as qφ(s|f) =∏
t qφ(st|f, s0, ..., st−1), by conditioning spike probabilities at t on all previously sampled spikes.

The resulting stochastic RNN models a correlated posterior conditional distribution over spike
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trains (See fig. 4). The stochastic RNN samples correlated spike trains (similar to MLSpike)

which might be useful for certain applications. However, none of the performance measures used

in this challenge are sensitive to this property, as they are based on marginal firing rate predictions.

As our objective function we used the binary cross entropy between our predictions and the

true spike train to train the model in a supervised fashion

min
φ
st log (qφ(st|f, s0, ..., st−1)) + (1− st) log (1− qφ(st|f, , s0, ..., st−1)) . (1)

In separate work13, we developed an approach for training this network in an unsupervised fashion

using variational auto-encoders 19 that can perform inference on a wide range of biophysical gen-

erative models (e.g. using the ones used by team 1). For the challenge, all available training data

was labeled (i.e. ground truth spikes were provided), and we therefore trained the network using

supervised learning.

Our architecture contains one forward running RNN that uses a multi-layer CNN with leaky

ReLUs units to extract features from the input trace. The outputs of the forward RNN and CNN

are transformed into Bernoulli spike probabilities through a dense sigmoid layer. Additional input

is provided by a second RNN that runs backwards and also receives input from the CNN. Forward

and backward RNN have a single layer with 128 gated recurrent units each20. In order to generate

a single marginal probability distribution qφ(st|f) for evaluation, samples drawn by running the

stochastic RNN 50 times were averaged. We trained one separate network for each dataset.

To minimize the artifacts introduced by upsampling the data to a common imaging rate, we
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Sampled spikes

Predicted probability

Forward 
RNN

1D CNN

Backward
RNN

Figure 4: Network Architecture We use a multi-layer network architecture: Fluorescence-data

is first filtered by a deep 1D convolutional network (CNN), providing input to a stochastic forward

running recurrent neural network (RNN) which predicts spike-probabilities and takes previously

sampled spikes as additional input. An additional deterministic RNN runs backward in time and

provides further context.

performed our own pre-processing (including percentile-detrending, normalizing and resampling)

where we kept the fluorescence traces as close to the original recording frequency as possible (i.e.

50, 25/3, 75, 25/2, 75 Hz for data sets 1-5 respectively). For training we split the traces into

snippets of between 100-300 timesteps, using short shorter sections for lower recording rates and

arranged them into batches of size 10. To cope with high firing rates which can lead to multiple

spikes per time bin, predictions of our network are produced at an upsampled rate that is up to 8

times higher than the imaging rate. For the rare cases where the true spike train still contains bins

with multiple spikes at this rate, we clip the values to be binary. Furthermore we used stochastic
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gradient descent with the Adam optimzer (using default parameters). Each CNN layer contained

≈ 20 filters.

To find good hyperparameters we performed a small grid search on the following parameters

and chose the best model using cross validation: learning rate {5e−4, 1e−3}, number of layers in

the CNN {3, 4}, length of trace snippets {100, 200, 300}. For the upsampling-factor for superres-

olution, we optimized over a subset of {1, 2, 3, 4, 6, 8, 12} depending on the dataset. Performance

proved to be rather robust to the exact choice of hyperparameters. The only exception is the

upsampling-factor, which needs to be sufficiently high to prevent frequent occurrence of multiple

spikes per bin.

Team 4 — P. Mineault This submission casts the problem as a supervised learning problem,

where the goal is to estimate the parameters of a basis transformation g and an output non-linearity

h such that a loss L(µt, st) between spike train st and prediction µt is minimized. g is given

by a deep convolutional artificial neural network. The first layer of this network is a standard

convolutional layer followed by a rectified linear (ReLU) nonlinearity21, mapping each calcium

time series ft to 32 parallel time series indexed by k.

z0tk = (ft ∗ w0
jk + β0

k)
+

Here (x)+ ≡ max(0, x) is the ReLU nonlinearity. We use a large window (33 time points, or 330

ms), batch normalization, as well as a dropout fraction of .3. This initial layer is followed by seven
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adjustment layers in the style of a residual network22:

zl+1
tk = zltk +

∑
m

(zltm ∗ wl+1
tk + βl+1

k )+

These adjustment layers use smaller windows (9 time points, or 90 ms). The nonlinear component

of each layer is batch normalized. Finally, the output is composed linearly via:

ηt =
∑
k

z7tkw
7
k + β7

The output nonlinearity h was given by a RelU nonlinearity, such that st = η+t . We minimized a

scaled sum of squared error criterion:

L =
∑
i

min
αi

∑
j(s

i
t − αiµit)2∑
j(s

i
t)

2

Here, i indexes different neurons and αi is a set of scalars which are learned alongside the other

parameters of the model (w and β). One can show that the loss is equivalent to 1− ρ2, where ρ2 is

the square of the cosine similarity between prediction and spike train. The model was specified and

fit using the tf.contrib.learn library in TensorFlow23. Model parameters were initialized

with the Xavier method and fit using the Adam optimizer. One large model for all 10 recordings

from the training set was fit (173 neurons) in this phase and goodness-of-fit was monitored on

a leave-aside validation set to control overfitting by early stopping. Convergence took close to

200,000 iterations.

The model described so far uses fixed filters for each recording, and uses local information

(≈ 1 second of data) to estimate spikes from calcium traces. To adapt filters, we learned long-

range features with an unsupervised mixture density network 24, 25. The model, a 3-layer recursive
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neural network with 512 long-short-term memory (LSTM) nodes, was fit to the calcium data to

obtain one 1536-dimensional latent vector per mini-batch, which was reduced to 32 dimensions

by PCA after z-scoring. These features were processed by two fully connected layers to produce

4 hidden features γtp. These 4 hidden features were used to additively adapt the filters w0
tjk =∑

p softmax(γtp)Wjkp, in a manner similar to attention models.

Originally, one large model was fit for all recordings. We then created refined versions of this

model for each of the 10 data sets by a transfer learning process. We took the large model with its

learned parameters and ran up to 50,000 extra iterations of gradient descent on just the data from

the kth dataset.

Code is available at

https://github.com/patrickmineault/spikefinder_submission

Team 5 — P. Rupprecht, S. Gerhard, R. W. Friedrich In order to infer a spike probability

for time bin t (Fig. 5A), the calcium trace located around t was used, including 25% before and

75% after t, totaling to 128 samples, i.e., 1.28 sec (Fig. 5C). A convolutional neural network

was trained to use these 128-wide windows to predict the corresponding spiking probability. To

facilitate gradient ascent, we smoothed the discrete spiking ground truth with a Gaussian filter

(σ =
√

2 samples, Fig. 5B).

We implemented the convolutional neural network in Python using Keras26 with the Tensorflow23
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Figure 5: The basic convolutional neural network. A,B. The spiking ground truth was smoothed to

facilitate gradient descent. C. A 1.28 sec time window of the calcium trace was used to infer the

spiking probability for each time point. D. The N inputs were transformed using a neural network

with three convolutional layers. The numbers in the boxes indicate the output size of the respective

layers.

backend (see Fig. 5 for the network architecture). The convolutional filter size, particularly for the

first layer, was chosen rather large, since simple CNNs with 3 or 4 convolutional layers with small

input filter sizes (3, 5 or 7) performed poorly. No zero-padding was used. The numbers of filters

were chosen to increase with depth in order to allow for a larger capacity to represent higher-order

features. Standard relu activation units were used after each convolutional and dense layer, except

for the last dense layer, where a linear activation was used to allow the output of continuous spiking

probabilities.

All parameters were chosen based on intuition gained through a small exploratory hyperpa-

rameter study using diverse 3- and 4-layer CNNs with varying filter sizes, filter numbers and input

window sizes. Overfitting was controlled by randomly omitting single neurons from the training
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data and checking predictive performance of the CNN model for the respective omitted neuron.

Although the above-described CNN performed well when it came to fitting single datasets

of the ground truth, one single model trained on all datasets usually performed not as well for

any of the datasets as the same CNN trained on the respective dataset alone. To better understand

this, it was quantified how well a model that had been fitted to predict spikes for neuron i can

make the same kind of predictions for neuron j. To this end, a low-capacity CNN (with two

locally connected convolutional layers and one dense layer) was fitted for each neuron i. The

small size of the network together with a high dropout rate during training (50% after each layer)

was used to prevent overfitting. This model was then applied to predict spiking probabilities both

for neuron i and all neurons j 6= i, resulting in a matrix of ’predictive power’ (measured with the

Pearson correlation coefficient between prediction and ground truth, identical to the evaluation of

the spikefinder competition computed (Fig. 6A). For instance, row 55 shows how well spikes of

neuron 55 can be predicted by the networks generated by all other neurons. Column 55, on the

other hand, shows how well the model generated by neuron 55 can predict spikes of other neurons.

The 5% neurons that were worst at predicting their own spiking were discarded from the following

modeling, assuming bad recording quality that is not suited for inclusion into a training dataset.

Normalization over columns, symmetrization of the matrix and averaging over datasets yields

a matrix of predictive power, i.e., a matrix of proximity in prediction-space between datasets (Fig.

6B). A PCA of this matrix results in an embedding space that was limited to two dimensions due

to the low number of datasets. Datasets close to each other in the embedding space (e.g. 2 and 4)
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can predict each other’s spikes very well, whereas datasets distant from each other in space (e.g.

datasets 4 and 5) fail to do so. The idea behind this approach is very similar to the embedding

spaces used by Team 8.

Using this approach, it is however not yet possible to map a neuron of a new dataset of

unknown properties onto the right location of the embedding space above. To solve this problem,

the following statistical properties of the raw calcium time traces were calculated (Fig. 6D), in an

approach that is similar to the long-range features of calcium traces used by Team 4:

• coefficient of variation, kurtosis, skewness

• autocorrelation of the calcium time trace with its future value in 0.5, 1 and 2 seconds

• generalized Hurst exponents of order 1-5

• the power spectral density at different frequencies between 0.1 and 3.6 Hz

We did not attempt to find a minimal set of predictive properties to reduce computation time here,

but used dimensional reduction techniques to automatically extract the relevant independent com-

ponents. After averaging the standardized values over datasets (Fig. 6E), we used the two first

principal components to generate a map of proximity in statistical property space (Fig. 6F). This

map was generated using the training datasets (numbers located on the right side of the symbols).

Test datasets were mapped into this PCA space (numbers on the left side of the symbols).

To generate a mapping between the locations of the datasets in the two embedding spaces,
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Figure 6: Using embedding spaces to choose datasets for focused retraining. A. Matrix of mu-

tual predictive power, measured using the Pearson correlation coefficient between prediction and

ground truth. B. Same as (A), but normalized for columns and binned to datasets. C. Principal

component analysis applied to (B), keeping the first two PCs. D. Statistical parameters quantified

for single neurons, standardized. E. Same as (D), but binned for datasets. F. 2D principal com-

ponent space generated using (E). Symbols with numbers to the right are from training datasets,

used to span the PCA space; symbols with numbers to the left are from the test dataset and were

projected into the PCA space.
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a simple regressor (DecisionTreeRegressor from the scikit-learn package27) was fit to the training

datasets (schematic arrows in Fig. 6C,F). We then used this mapping to determine the position of

the test datasets in the embedding space of mutual predictive power.

Once the position in the embedding space is known for a dataset, the model that had been

trained before on all datasets is retrained, but preferentially with neurons from datasets that lie

close to the position in the embedding space. This preference was weighted with a function that

decays exponentially over distance in the embedding space, as indicated by the red shading (Fig.

6C). Again, the functional form of the decay and the decay constant have been chosen heuristically

without systematic optimization, since our goal was to showcase the power of our embedding space

approach rather than finding a global optimum.

Embedding spaces as a visual and explicit intermediate step for model refinement are more

easily accessible for users, allow the use of relatively small convolutional neuronal networks and

can highlight similarities and differences between datasets. For example, it is interesting to see

that in both embedding spaces, datasets 3 and 5 cluster together, whereas dataset 8, which uses

the same calcium indicator (GCaMP6s) in the same brain region (V1), is in proximity of dataset 6

(GCaMP5k in V1). It was also observed that the datasets that use OGB-1 as indicator (1,2 and 4)

tend to occupy similar regions of the embedding spaces.

This indicates that model selection is not only based on the calcium indicator and the brain

region, but on hidden parameters, e.g., signal-to-noise of the calcium recording, sampling rate,

spike rate, temperature, indicator concentration, or others. To reliably comprise these possible
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hidden parameters with embedding spaces, it will be necessary to increase the number of datasets

in order to support as many possible types of datasets as possible. However, the unknown dimen-

sionality of this hidden parameter space makes it difficult to predict how many datasets would be

required.

Code is available at

https://github.com/PTRRupprecht/Spikefinder-Elephant.

Team 6 — J. Friedrich, L. Paninski This algorithm approximates the calcium concentration

dynamics c using a stable autoregressive process of order p (AR(p)).

ct =

p∑
i=1

γict−i + st. (2)

The observed fluorescence f ∈ RT is related to the calcium concentration as 11:

ft = a ct + b+ εt, εt ∼ N (0, σ2) (3)

where a is a non-negative scalar, b is a scalar offset parameter, and the noise is assumed to be i.i.d.

zero mean Gaussian with variance σ2. We assume units such that a = 1 without loss of generality.

The goal of calcium deconvolution is to extract an estimate ŝ of the neural activity s from the

vector of observations f . This leads to the following non-negative LASSO problem for estimating

the calcium concentration8, 11:

minimize
ĉ,ŝ

1
2
‖b1 + ĉ− f‖2 + λ‖ŝ‖1 subject to ŝt = ĉt −

p∑
i=1

γiĉt−i ≥ 0 (4)
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where the `1 penalty on ŝ enforces sparsity of the neural activity. Note that the spike signal ŝ is

relaxed from non-negative integers to arbitrary non-negative values11.

Problem (4) could be solved using generic convex program solvers, however, it is much faster

to use OASIS 28, a dual active set method that generalizes the pool adjacent violators algorithm,

a classic algorithm for isotonic regression 29. The dual active set method yields an exact solution

of Eq. (4) for p = 1 and merely a greedy one for p ≥ 2. Although an exact solution for the latter

can be obtained by the primal active set method8, here p = 2 is used and the greedy but faster dual

method which yielded similar scores (i.e. correlation values with ground truth).

The noise level σ is typically well estimated from the power spectral density (PSD) of f

5. The parameters γi are either known a priori for a given calcium indicator or estimated from

the autocovariance function of f , and possibly improved by fitting them directly. The sparsity

parameter λ can be chosen implicitly by inclusion of the residual sum of squares (RSS) as a hard

constraint and not as a penalty term in the objective function5, 28. The dual problem

minimize
b̂,ĉ,ŝ

‖ŝ‖1 subject to ŝt = ĉt −
p∑
i=1

γiĉt−i ≥ 0 and ‖b̂1 + ĉ− f‖2 ≤ σ̂2T. (5)

is solved by iterative warm-started runs of OASIS to solve Eq. (4) while adjusting λ, b̂ (and op-

tionally also γi) between runs until Eq. (5) holds. We refer the reader to 8 for the full algorithmic

details.

The above parameter choices rely on a robust noise estimate σ̂. The resampling of each

spikefinder dataset to a fixed frame rate introduced artifacts into the data that corrupted the autoco-
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variance and PSD such that it was not possible to obtain reliable noise and AR estimates based on

the preprocessed data. Therefore, these parameters for baseline, sparsity and AR dynamics were

determined based on the training data sets and kept fix for each test trace, thus not accounting for

differences between neurons within one data set. Six parameters were fit: the percentile value and

window length to estimate the baseline using a running percentile, the two AR coefficients, and

the slope and offset of a linear function that determines the sparsity parameter λ as function of the

noise. The latter was estimated on traces that were decimated by a factor of 10 to counteract the

artifacts that had been introduced by upsampling the raw data.

Running OASIS with the known parameters directly yields an estimate ŝ of the neural ac-

tivity. This estimate was already good for datasets 6-10, but noticeably improved for the first 5

datasets by convolving it with some kernel k, to obtain the final estimate ŝ′ = ŝ ∗ k. The kernel

adjusts for mismatches between the actual calcium response kernel and the AR(2) model, smoothes

the estimate, and accounts for the uncertainty of the exact spike timings by distributing spikes as

spike rates over a few time bins. We used a kernel width of 30 bins and obtained it by averaging

the closed form solutions of the least squares linear regression problem k = arg mink ‖ŝ∗k−s‖2

for each true spike train s in the training set. Interestingly, the strategy used for hyperparameter

optimization used here was very similar to that used by Team 1.

Because the evaluation criterion was correlation not the residual sum of squares, we consid-

ered to further optimize the kernel for this specific criterion using gradient decent initialized at the

least squares solution; however, we did not obtain significant improvements.
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Code is available at

https://github.com/j-friedrich/spikefinder_submission

Team 7 — M. Pachitariu, K. D. Harris This algorithm has been developed as part of Suite2p,

a complete calcium processing pipeline 15. This algorithm is called L0 deconvolution and consists

of solving the following problem

minimize ‖f − s ∗ k‖2 + λ‖s‖0, such that st ≥ 0, ∀t, (6)

where k is the calcium kernel (assumed, or estimated), s∗k is the convolution of s and k, and

‖s‖0 is the L0 norm of s, in other words the number of non-zero entries in s. We do not describe

here the inference method for this model, but point the reader to our original derivation in 30. This

solution is approximate, due to its greedy nature. Exact solutions have been obtained by 31, in the

case where the positivity constraint on s was removed, and the calcium kernel was restricted to be

exponential.

The L0 deconvolution model was developed as an alternative to the L1-deconvolution model

5, 8, 11. We originally believed that an L0 penalty would better account for the binary nature of spike

trains, and allow the algorithm to return sparse spike trains. The algorithm indeed returns very

sparse descriptions of the calcium data, which can deceptively look like electrophysiologically

recorded spike trains. However, neither the L0 nor the L1 penalties are necessary or desirable for
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achieving best performance, the positivity constraint is sufficient 30.

Here, the training data was not used to set the parameters for the deconvolution (with the

exception of time lags, see below). Instead, calcium kernels were chosen to be exponentials

with timescales obtained from the literature for each specific sensor3. Following deconvolution,

dataset-specific timelags were introduced for some of the spikefinder datasets. Also, the output

was smoothed with a Gaussian kernel of a preset standard deviation (80ms for spikefinder data

sets, 20 ms for GENIE datasets).

Code is available at https://github.com/cortex-lab/Suite2P.

Team 8 — B. Bolte The algorithm used for this submission consisted of a series of stacked

convolutional neural networks with filter lengths of 10 to 100 milliseconds. The model was trained

to maximize the Pearson correlation between the spike probabilities predicted by the model and

the ground truth spike data. To capture the non-linear dynamic characteristic of this problem,

additional features were added besides the raw calcium trace, including the first and second order

derivatives, as well as quadratic features. Additionally, average pooling over convolutional filters

was used to capture dynamics at multiple time scales.

During experimentation, it was observed that the spike behavior varied quite a bit in different

data sets. From this observation, it was inferred that different convolutional filters would perform

well for different data sets. To implement this idea, ”data set embeddings” were used to weight
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Figure 7: For each of the 10 data sets (5 spikefinder data sets and 5 GENIE-data sets), a unique

embedding was learned, which was used to weight the output of the first convolutional layer of the

network. Each cell represents the cosine similarity between the embeddings learned for that data

set pair. A high similarity indicates that the two data sets used similar filters for inferring spike.

the output of each convolutional filter during learning. A unique vector was learned for each data

set, where the number of dimensions in the vector corresponded to the number of convolutional

filters in the first layer of the model. The output of the first convolutional filter was weighted by

it’s corresponding vector.

Intuitively, these vectors represent embeddings for each data set, and the similarity between

two embeddings represents the similarity of the spike behavior in each data set, since a model

trained to infer spikes in the two data set would employ similar convolutional filters. This is

illustrated in Figure 7.

Code is available at https://github.com/codekansas/spikefinder
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Team 9 — T. Machado, L. Paninski The inference framework developed by Team 9 consists of

two parts: a linear encoding model that takes in spikes and outputs simulated fluorescence traces

(trained on paired spike train and fluorescence data), and a simple convolutional neural network

to serve as a decoding model that outputs estimates of spikes given fluorescence observations and

encoding model parameter estimates. This network is trained on large data sets simulated from

the encoder model. The advantage of this approach is that we can train the decoder model to

“saturation” by providing it as much training data as necessary to achieve good performance. On

linear-Gaussian simulated data, the neural network decoder performed comparably to OASIS8,

a state-of-the-art inference method for efficiently efficiently solving the spike inference problem

under linear-Gaussian assumptions (though both are fast enough to support online data analysis,

OASIS runs significantly faster than the neural network decoder at test time).

Instead of directly using the spikefinder data sets to train a decoding algorithm, we generated

simulated training data sets consisting of 5,000 traces, each of length 3,000 time steps. Each

fluorescence trace was generated with the following second-order autoregressive model (p = 2):

ct =

p∑
k=1

γct−k + ast (7)

ft = ct + b + εt (8)

The parameterization of each trace generated using Equation 8 was random. The noise was mod-

eled as εt ∼ N(0, σ2
t ). The jump size a of each spike was randomly sampled from a uniform

distribution between 0.5 and 1.5. Each simulated spike train, s , was sampled from a homogeneous

Poisson process with a mean firing rate between 0 and 2 Hz. The baseline drift component, b, was
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modeled by low-pass filtering white noise. The baseline drift component significantly improved

inference quality, in agreement with the observation of Team 1. In contrast, the statistics of the

simulated spike trains, as well as the randomized jump sizes following each spike, had a much

smaller impact on decoder performance.

The time constants of the autoregressive model, γ, and the scale of the noise, σ, were also

sampled from random uniform distributions (such that a single decoder trained on these data could

work well across multiple indicators and frame rates), but the precise parameterization was varied

between model training sessions. However, in all cases, we found that a wide range of γ values

could be learned by a single decoder model. For instance, we successfully trained decoder models

across data with γ values spanning approximate decay times for fast OGB data recorded at 25

Hz, to slow GCaMP6S data recorded at 100 Hz. This shows that a single decoding model trained

on simulated data can be used to analyze data produced by many different indicators and many

different acquisition rates in agreement with Theis et al.6. Similarly, wide ranges of σ values could

be learned by single decoders. However, there was a slight performance enhancement seen by

training single encoders on mostly low SNR or high SNR data to improve performance on low

SNR and high SNR real data, respectively.

Finally, in almost all cases, the second-order models (i.e. p = 2 in Equation 7) outperformed

first-order models (p = 1). An exception were the OGB-1 data sets, as the sensor displays very

rapid rise time kinetics following action potentials and has been previously shown to be especially

well-described by first-order models11.
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To estimate the most likely spike train underlying a given fluorescence trace, we built a con-

volutional neural network. During training, the network was presented with f as well as parameter

estimates for σ and γ given by methods published in earlier work5. Because the spikefinder data

was upsampled from its native resolution and this introduced artifacts in the power spectrum of

each fluorescence trace, we decimated each trace by a factor of 7-10 (depending on the approx-

imate native time resolution of each dataset) before performing subsequent parameter fitting and

analysis. The target of the network during training was the set of simulated spike trains, s , used to

generate f using Equation 7.

A fairly simple architecture inspired by research into the construction of generative models

for audio data was found to be effective 32. In brief, the network consists of four 1D dilated con-

volutional layers containing 100 units, a filter size of 32, and rectified-linear (relu) nonlinearities.

The first layer was dilated by a factor of 1, the second layer by 2, the third by 4 and the fourth by

a factor of 8. Dropout (rate = 0.5) was also used at each layer. Finally, a fifth 1D convolutional

layer with one unit, a filter size of one, and a relu nonlinearity was used to read-out a non-negative

estimate of s from each f vector provided.

This architecture contained about 950,000 parameters and could be trained on a simulated

data set of 5,000 traces in about 20 minutes (over 20 epochs) using the Google ML Engine. A single

model trained on simulated data that spanned a wide range of σ and γ values performed well,

but an ensemble of four models, each trained on a slightly different simulated data set, worked

even better–as some decoders tended to work better or worse on each spikefinder data set. For
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our submission, we chose the decoding model that worked best for each dataset to use as our

submission. For data set 5, which had high firing rates, we found that convolving the results with

a small Gaussian kernel resulted in a modest improvement to our inference quality.

Code is available at

https://bitbucket.org/tamachado/encoder-decoder

Team 10 — D. Ringach This algorithm consists of a simple linear filter followed by a static-

nonlinearity f(t) = φ(h(t) ∗ s(t)). The filter h(t) is a linear combination of an even filter, estimat-

ing the mean of the signal at time t, and an odd filter, estimating the derivative of the signal at time

t.

The even filter is a Gaussian,heven(τ) = A exp(−τ 2/2σ2), and the odd filter is the derivative

of a Gaussian hodd(τ) = Bt exp(−τ 2/2σ2). The constants A and B are such that the norm of

the filters is normalized to one, ‖A‖ = ‖B‖ = 1. These two filters are linearly combined while

keeping the norm of resulting filter equal to one, h(τ) = cosαheven(τ) + sinαhodd(τ). The output

nonlinearity is a rectifier to a power, φ(x) = (x− θ)β if x > θ, and zero otherwise.

The model has only 4 parameters, σ, α, θ, β. The amount of smoothing of the signal is

controlled by σ, the shape of the filter is controlled by α, and the threshold θ and power β determine

the shape of the nonlinearity. The model is fit by finding the optimal values of σ, α, θ, β that

maximize the correlation between its output ŝ(t) and the recorded spiking of the neuron. Matlabs
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fminsearch was used to perform this optimization, which was typically finished in about 60

sec or less for most data sets. The only pre-processing done was a z-scoring of the raw signals.

In one dataset (dataset 5, GCaMP6s in V1), an extra-delay parameter between the signal and the

prediction was allowed.

Code is available at https://github.com/darioringach/Vanilla.
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