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Summary 1	

Shared variability is common in neuronal populations, but its origin is unknown. Attention has 2	

been shown to reduce this variability, leading to the hypothesis that attention improves 3	

behavioral performance by suppressing common noise sources. However, even with precise 4	

control of the visual stimulus, the subject’s attentional state varies across trials. While these state 5	

fluctuations are bound to induce some degree of correlated variability, it is currently unknown 6	

how strong their effect is, as previous studies have not manipulated the degree of attentional 7	

variability. Therefore, we designed a novel paradigm to dissociate changes in attentional strength 8	

from changes in attentional state variability and found a pronounced effect of attentional state 9	

fluctuations on correlated variability. This effect predominated in layers 2/3, as expected from a 10	

feedback signal such as attention. Thus, significant portions of shared neuronal variability may 11	

be attributable to fluctuations in internally generated signals, such as attention, rather than noise.  12	
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Introduction 32	

Neuronal responses to repeated presentations of identical stimuli are highly variable (Softky and 33	

Koch, 1993). This variability can be correlated across populations of neurons (Bach and Krüger, 34	

1986; Bair et al., 2001; Zohary et al., 1994), but its origin and significance is unclear.  35	

One factor modulating correlations is attention. Studies of population activity in V4 found 36	

that attending to a stimulus inside the receptive fields of the recorded neurons reduced 37	

correlations in the trial-to-trial variability of the responses of those neurons to identical stimuli, 38	

compared to conditions in which attention was directed away from the receptive field (Cohen 39	

and Maunsell, 2009; Mitchell et al., 2009). These studies concluded that increasing the strength of 40	

attention reduces correlated variability by suppressing sources of shared noise (Fig. 1A). 41	

However, because the subject’s state of attention can be controlled on average but not 42	

precisely across trials, the strength of attentional modulation may vary from trial to trial even 43	

within a given attention condition (Cohen and Maunsell, 2010, 2011). Therefore, shared variability 44	

could also be driven by fluctuations in the state of attention (Fig. 1B). Indeed, the patterns of 45	

shared variability induced by fluctuations in the strength and spatial focus of gain-modulating 46	

signals such as attention are consistent 47	

with experimental data (Ecker et al., 2016; 48	

Rabinowitz et al., 2015).  49	

In other words, correlated variability 50	

during attention tasks has been 51	

interpreted as evidence for both a 52	

suppression of common noise by 53	

attention (Cohen and Maunsell, 2009; 54	

Herrero et al., 2013; Mitchell et al., 2009) 55	

as well as trial-to-trial fluctuations of 56	

attentional state (Cohen and Maunsell, 57	

2010, 2011; Ecker et al., 2016). However, it 58	

is unknown to what extent fluctuations in 59	

the state of attention indeed contribute to 60	

	
	
Figure 1. Attention and correlated variability. A) Hypothesis 1: 
Attentional gain is increased, but relatively stable under both 
conditions (top left). Correlated variability is driven by a 
common noise source (top right), which is suppressed by 
attention (Mitchell et al. 2009, Cohen & Maunsell 2009). B) 
Hypothesis 2: Attentional gain is increased, but fluctuates from 
trial to trial (Cohen & Maunsell 2010, 2011, Ecker at al. 2016). 
Correlated variability is driven by fluctuations of attentional 
state. The reduction in correlations under attention would 
imply that the attentional gain is less variable when attending.	
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correlated variability in population responses, because the paradigms employed in previous 61	

studies did not manipulate the degree of attentional fluctuations behaviorally.  62	

To create such a scenario, we developed a novel, cued change-detection task that can 63	

dissociate changes in the strength of attention from changes in the variability of the attentional 64	

state by manipulating the behavioral relevance of two simultaneously displayed stimuli across 65	

task conditions. If the dominant factor governing levels of correlated variability is attentional 66	

suppression of common noise, we expect correlations to decrease as attentional strength 67	

increases, resulting in intermediate levels of correlations when both stimuli need to be attended 68	

(Fig. 2A). Alternatively, if fluctuations in attention are the dominant factor modulating 69	

correlations, correlations should be highest when both stimuli need to be attended (Fig. 2B), as 70	

this is the condition where attentional fluctuations are most likely to occur. In practice, of course, 71	

both mechanisms may contribute. However, the degree to which attentional fluctuations are 72	

relevant is revealed by considering the difference in correlations between conditions in which 73	

attention is focused on a single stimulus and when attention to both stimuli is required (Fig. 2C).  74	

 
 
Figure 2. Predicted effects of attention on correlations when attending one (“Attend In/Out”) or two stimuli 
(“Attend Both”). A) Scenario in which attentional fluctuations are negligible and attention primarily acts by 
suppressing common noise sources. In this case, we expect intermediate correlations when attending two stimuli. 
B,) Scenario in which fluctuations in attention induce correlations. In this case, we expect attention to switch 
randomly between the two targets in the “Attend Both” condition, resulting in the highest correlations in this 
condition. C) Both mechanisms may contribute to different degrees. The relevance of attentional fluctuations is 
revealed by the relative level of correlation in the “Attend Both” condition.  
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5	
	

 We recorded neuronal responses from primary visual cortex of macaque monkeys while they 75	

performed this task and found that attention modulated firing rates of V1 neurons. We found that 76	

shared variability was highest when both stimuli were behaviorally relevant and lowest in 77	

conditions in which only one stimulus was the focus of attention, arguing that fluctuations in the 78	

state of attention, induced by changes in attentional allocation strategies, are an important factor 79	

governing shared neuronal variability. This modulation predominated in supragranular cortical 80	

layers, as expected if it were due to a feedback signal such as attention (Anderson and Martin, 81	

2009; Maunsell and van Essen, 1983; Rockland and Pandya, 1979; Ungerleider et al., 2008). 82	

 83	

Results 84	

Change detection task and manipulation of attentional allocation strategy 85	

We trained two rhesus macaque monkeys to perform a cued, orientation-change detection task 86	

(Fig. 3A). A trial was initiated when the subject fixated a central fixation spot. Two “noisy” Gabor 87	

patches appeared symmetrically in the lower left and lower right visual field 300ms later. During 88	

the Zero-Coherence Period (ZCP), these patches randomly changed their orientation every frame 89	

(10ms per frame; set of 36 orientations evenly spaced between 0 and 175 degrees). After a random 90	

period of time, drawn from an exponential distribution (minimum of 0.01s, mean of 2.17s, and 91	

maximum of 5s), one of the two stimuli entered the Coherent Period (CP). During the CP one 92	

particular orientation, called the “signal” orientation, was shown with a higher probability than 93	

the other orientations. By varying this probability, we could control the “coherence” of the 94	

stimulus, making the occurrence of the signal orientation more or less obvious over the 95	

background orientation noise, to manipulate the difficulty of a trial. The occurrence of this signal 96	

orientation was the change the monkey had to detect, which he reported by making a saccade to 97	

the changed stimulus within a short reaction time window. On 10% of trials no signal orientation 98	

occurred, and the monkey was rewarded for maintaining fixation throughout the trial.  99	

 We used a cued block design to manipulate the focus of the subject’s attentional state 100	

(Fig. 3B), where the cue was the color of the fixation spot. Two of these conditions, “attend in” 101	

(AI) and “attend out” (AO), were similar to those in typical spatial attention tasks, where the 102	

stimulus overlapping the neurons’ receptive fields is cued in the AI condition, and the other 103	
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stimulus is cued in the AO condition. The cues for these conditions (red for AI, blue for AO) were 104	

100% valid, such that the change occurred only at the cued location. In the condition labeled 105	

“attend both” (AB), indicated by a black fixation spot, either stimulus had an equal probability 106	

(50%) of showing the change on a given trial.  107	

Our paradigm therefore differs from typical covert attention tasks used to study neuronal 108	

variability in two respects. First, during the AI and AO conditions in our task, there are no catch 109	

trials with invalid cues (Cohen and 110	

Maunsell, 2009) or signals in the 111	

distractor that need to be ignored 112	

(Herrero et al., 2013). While catch 113	

trials are typically used to measure the 114	

behavioral shift due to attention, they 115	

are likely to induce attentional 116	

fluctuations, as they render the cue 117	

unreliable and encourage some 118	

degree of attentional focus on the non-119	

cued stimulus by rewarding 120	

successful performance at that 121	

location. As our goal in the AI and AO 122	

conditions is to minimize attentional 123	

fluctuations, we used 100% reliable 124	

cues. In our third condition (AB), 125	

Figure 3. Task diagram with behavioral results. A) Orientation change-detection task. Two stimuli (L: left, R: right) 
randomly change their orientation during the ZCP (length 10-5000ms). One stimulus (R in this example) then enters 
the CP (300ms) when the signal orientation is shown (coherence exaggerated for clarity). This period is followed by 
another 200ms ZCP to allow time for a behavioral response. B) Illustration of attention conditions. Attention is cued 
according to fixation spot color. This color scheme is used in all figures to represent each condition. Percentages 
below the stimuli indicate the probability that the change occurs in this stimulus on a given trial. One stimulus 
overlaps the recorded neurons’ receptive fields. C) Example session psychophysical performance.  Individual 
points represent fraction of changes detected at a given coherence. Solid lines indicate fit of logistic function to the 
data. Inset shows detection threshold with 95% CIs. D) Behavioral summary. Same as inset in c, but averaged across 
sessions in our dataset (N=27; mean±SEM). E) Percentage of changes detected in each condition averaged across 
sessions (mean±SEM).	
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indicated by a black fixation spot, either stimulus was equally likely to change. We used this 126	

condition as the baseline to measure the behavioral improvement attributable to attention, 127	

analogous to how other paradigms use catch trials. 128	

There were, therefore, three attentional conditions but two attentional strategies that our task 129	

engaged. To maximize reward in the AI and AO conditions, attention should be focused on only 130	

the cued stimulus. With attention deployed consistently across trials with regard to spatial 131	

location, attentional state fluctuations should be minimized. In the AB condition, attention should 132	

fluctuate more strongly between the two spatial locations across trials, as ignoring one of the 133	

stimuli is no longer a viable strategy for maximizing reward. One way to conceive of this 134	

allocation strategy is that the AB condition is comprised of a mixture of the attentional states 135	

deployed in the AI and AO conditions. Note, attentional state fluctuations need not be non-136	

existent in the AI and AO conditions but only decreased relative to the AB condition in order to 137	

test our hypothesis. 138	

If subjects used the strategies described above, there should be some trials in the AB condition 139	

where the subject attended the unchanged stimulus and required a higher coherence level to 140	

notice a change in the correct stimulus on that trial. Such occurrences would lead to a rightward 141	

shift in the psychometric function and higher detection thresholds in the AB condition. The 142	

example session in Figure 3C exhibits a clear rightward shift in the psychometric curve along 143	

with a significantly elevated coherence threshold in the AB condition. This effect was consistent 144	

across sessions (Fig. 3D, p < 10-10, two-way ANOVA), being present in 22 out of 27 sessions. To 145	

avoid potential confounds from changes in task difficulty across attention conditions, we 146	

balanced the overall percent correct performance in each condition by raising coherence levels 147	

one step in the AB condition. Overall, subjects identified an average of 77±1.2% of changes, and 148	

there was no significant effect of attention condition on performance (Fig. 3E, p = 0.10, two-way 149	

ANOVA).  150	

Our goal was to develop a behavioral paradigm in which attention could fluctuate or shift 151	

between two stimulus locations – the AB condition – and remain focused on one location in the 152	

other conditions. While our behavioral results are consistent with this attentional allocation 153	

strategy, they are also consistent with a strategy in which attention acts as a zoom lens, as 154	
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suggested in Eriksen and St James (1986), widening its focus to encompass both stimuli 155	

simultaneously. Note, the fact that detection thresholds are elevated in the AB condition suggests 156	

that if attention is allocated to both stimuli simultaneously, the stimuli are not processed to the 157	

same degree as they are in the AI or AO conditions. That is, widening the attentional field entails 158	

a reduction in attentional strength within the field. As we will see, however, these strategies make 159	

different predictions for the patterns of correlated variability we expect to see across our task 160	

conditions. 161	

 162	

Attentional modulation of neuronal firing rates 163	

While subjects performed the task, we recorded spiking responses from neurons in primary 164	

visual cortex using 32-channel silicon probes with a spacing of 60µm between channels 165	

(NeuroNexus V1x32-Edge-10mm-60-177). We recorded 416 single units (15.4±.95 units per 166	

session) across 27 sessions (N=7 from Subject B, N=20 from Subject D) from two male macaque 167	

monkeys. The two Gabor stimuli in our task were placed symmetrically in the lower visual field 168	

with one stimulus covering the receptive fields of the recorded neuronal population. Given the 169	

laminar nature of our recordings, receptive fields overlapped almost completely.  170	

Our highly dynamic stimulus drove neurons strongly, with mean firing rates of 23.2±1.1 171	

spikes/sec across sessions. Consistent with previous studies we found that attention increased 172	

firing rates of V1 neurons (McAdams and Maunsell, 1999; McAdams and Reid, 2005; Motter, 1993; 173	

Roelfsema et al., 1998), with on average ~30% of single units being significantly modulated by 174	

attention in a given session. This modulation was present in both the AI and AB conditions and 175	

appeared strongest early in the ZCP (Fig. 4A).  176	

Note, our dataset contains fewer trials of long duration, given the exponential distribution of 177	

ZCP lengths and a slight tendency of subjects to prematurely abort longer trials (only ~40% of 178	

valid trials are longer than 1s, and ~15% are longer than 2s). We thus focused our analyses on the 179	

first second after stimulus onset, in which attentional modulation of firing rates was strongest, 180	

and on correct trials, where we can have the most confidence that the subject’s attention was 181	

oriented as desired in our task. Additionally, note that all analyses of firing rates and spike counts 182	

were performed during the ZCP, before any changes in stimulus coherence or behavioral 183	
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responses were made, ensuring that analyses were performed on identical stimuli across 184	

conditions.  185	

We first calculated fractional firing rate increases in the AI and AB conditions, relative to the 186	

AO condition (Fig. 4B). During this interval, firing rates in the AI and AB conditions were 187	

significantly elevated relative to the AO condition (AI: 5.0±1.1% increase, p = 0.0001, Bonferroni-188	

corrected t-test, α=0.0167; AB: 4.1±1.1%, p = 0.001) but not different from each other (p = 0.35). 189	

Amongst the roughly 30% of units showing significant modulation of firing rates by attention, 190	

around 32% showed pure gain modulation, around 20% showed pure offset modulation, while 191	

the remainder exhibited a mixture of multiplicative and additive modulation. Examples of pure 192	

gain- versus pure offset-modulated cells are shown in Figure 4C.  193	

 194	

Differentiating the effects of attention on shared variability 195	

Our behavioral and neurophysiological results so far, beyond demonstrating that our task 196	

engages attention, are consistent with two different attentional allocation strategies in the AB 197	

condition, while we conclude that attention is primarily focused on the single, relevant stimulus 198	

in the AI and AO conditions. The first strategy involves widening the focus of attention to 199	

encompass both stimuli. In this case, we would expect attentional fluctuations to be negligible. 200	

This scenario would support the interpretation that attention suppresses a common noise source 201	

(Mitchell et al. 2009, Cohen & Maunsell 2009) and we would expect correlations to be intermediate 202	

in the AB condition (Fig. 2A). The second strategy involves shifting the focus of attention 203	

Figure 4. Attentional modulation of neuronal responses A) Example session spike density function for 
each condition, normalized to the average response in AI condition (mean across units). B) Fractional 
increase in firing rates in the AB and AI conditions relative to the AO condition averaged across sessions 
(N=27; mean±SEM). C) Example single unit tuning curves in AI (red) and AO (blue) conditions. Dots show 
responses to specific orientations; solid lines show fitted von Mises functions. 
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randomly between the two stimuli. In this case, we would expect correlations to be highest in the 204	

AB condition (Fig. 2B). Note that this scenario does not rule out the possibility that attention 205	

suppresses a common noise source, as both mechanisms could be at play (Fig. 2C). However, 206	

given that the same dataset has been interpreted as evidence that attention suppresses noise 207	

(Cohen & Maunsell 2009) and that attention fluctuates (Cohen & Maunsell 2010), it is an 208	

important question to quantify to what degree attentional fluctuations induce trial-to-trial 209	

variability. 210	

 211	

Attentional modulation of shared variability 212	

To measure the degree to which attentional fluctuations induce trial-to-trial variability, we 213	

calculated pairwise spike count correlations over repeated presentations of identical ZCP 214	

sequences in each attention condition. Our results match the predictions in Figure 2B and support 215	

the hypothesis that fluctuations in the state of attention are the dominant factor inducing shared 216	

neuronal response variability in our dataset (Fig. 5A). Spike count correlations were significantly 217	

modulated by attention condition (p = 0.00002, two-way ANOVA), correlations were highest in 218	

the AB condition (p = 0.00001, t-test, see methods), and correlations in the AI and AO conditions 219	

were not significantly different from one another (p = 0.82, post-hoc Tukey’s test). This 220	

relationship held individually for both subjects (Fig. 5B “task”; Subject B: p = 0.013, Subject D: p 221	

= 0.002, two-way ANOVA). Task-evoked correlations were higher overall in Subject D than in 222	

Subject B, though both subjects had more comparable correlation levels during fixation when no 223	

stimulus was present (Fig. 5B “fix”). Despite a clear modulation of shared variability across 224	

attention conditions, Fano factors, a measure of individual neuronal variability, assessed over the 225	

same time interval were not modulated significantly by attention condition (p = 0.21, two-way 226	

ANOVA). However, this result is likely due to a lack of statistical power, because the estimation 227	

error for Fano factors was larger than the expected effect given the correlation differences. 228	

Additionally, fixational eye movements, also called micro-saccades, cannot account for our 229	

results, as there was no difference in the number of such events across attention conditions (p = 230	

0.25, two-way ANOVA). Note also that these results are not trivially explained by changes in 231	

firing rates across conditions, as firing rates in the AI condition were elevated compared to the 232	

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 15, 2017. ; https://doi.org/10.1101/189282doi: bioRxiv preprint 

https://doi.org/10.1101/189282
http://creativecommons.org/licenses/by-nc-nd/4.0/


	

11	
	

AO condition (Fig. 4B), but 233	

correlation magnitudes were 234	

not significantly different in 235	

these conditions (Fig. 5A and 236	

B). Nor do changes in 237	

stimulus coherence function 238	

as an explanation for elevated 239	

correlations in the AB 240	

condition, as spike counts 241	

were analyzed during the 242	

ZCP before any changes in the 243	

coherence of the stimulus occurred. 244	

Next, we wanted to investigate the timescale of the correlation effect we found, to better 245	

understand its origin. Synaptic processes unfold on the millisecond scale whereas cognitive 246	

processes, such as attention, unfold over longer timescales. Behavioral work suggests that 247	

voluntarily shifting attention between different stimuli takes on the order of several hundred 248	

milliseconds (Duncan et al., 1994; Müller et al., 1998). Thus, if attention is indeed shifting between 249	

the two stimulus locations during the AB condition, these psychophysical results provide a lower 250	

bound for the timescale over which we expect to see correlations rise in the AB condition.  251	

Using the relationship between spike count correlations and cross-correlograms described in 252	

Bair et al. (2001) and modified in Ecker et al. (2014), we calculated spike train cross-correlograms 253	

for neuronal pairs in each attention condition and integrated them from 1ms to 1000ms, our 254	

maximum counting window. Examining the point at which the resulting correlation levels 255	

saturate provides an estimate of the timescale of correlation. The results in Figure 5C show that 256	

correlations in the AB condition began to diverge from the AI and AO conditions after 200ms, 257	

and correlations in the AI and AO condition saturated to similar levels near 400ms, while AB 258	

correlations continued to rise for several hundred milliseconds more. The time course of these 259	

results fits well with the estimated time course of changes in attentional state (Duncan et al., 1994; 260	

Müller et al., 1998). Interestingly, between 40ms and 400ms, the level of correlations appeared 261	

Figure 5. Effects of attention on shared variability. A) Spike count 
correlations from 0-1s following stimulus onset, averaged across sessions 
(N=27). B) Spike count correlations shown separately for both subjects 
during fixation (300ms interval) and during the task (same interval as in A). 
C) Cumulative correlation coefficient, calculated by integrating the cross-
correlogram, for each attention condition and averaged across sessions. 
Data in A-B show mean ± SEM, C omits SEM.	
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lower in the attended versus unattended conditions (Fig. 5C), consistent with earlier work (Cohen 262	

and Maunsell, 2009; Herrero et al., 2013; Mitchell et al., 2009) and suggesting that attention indeed 263	

suppresses common noise at this faster timescale. However, despite being consistent with 264	

previous results and being observable in both monkeys individually (data not shown), this trend 265	

was not statistically significant in our dataset (p = 0.074 at 100ms, two-way ANOVA without 266	

correction for multiple comparisons). 267	

 268	

Laminar profile of attention effects 269	

To examine the laminar profile of the attentional modulation of firing rates and shared 270	

variability, we calculated the current source density (CSD; Mitzdorf, 1985) across channels for 271	

each session from the task-stimulus evoked local field potentials (Fig. 6A). These profiles were 272	

quite consistent across sessions, with the most prominent stimulus-evoked sink-source 273	

configurations in L5-6 and L1-2/3, largely washing out the earliest sink-source switch typical of 274	

the L4-5 boundary (van Kerkoerle et al. (2017) report a similar effect). We computed CSDs to aid 275	

in the grouping of single units into the supragranular (S), granular (G), or infragranular (I) layers, 276	

but we also took advantage of known electrophysiological characteristics of cells in different 277	

layers (Snodderly and Gur, 1995; see methods). The most reliable such property was the high 278	

spontaneous activity associated with L4C (Snodderly and Gur, 1995), which was readily 279	

discernible from multi-unit activity and was located consistently close to the L4-5 boundary 280	

determined from the CSD. Additional factors included the weaker orientation tuning of the deep 281	

granular layer and smaller receptive fields (Fig. 6A). The first channel below the L4-5 boundary 282	

was our zero-point for relative unit depths. We defined the granular layer as the first 400µm 283	

superficial to the L4-5 boundary, consistent with previous histological (Fitzpatrick et al., 1985; 284	

Lund, 1988) and recent electrophysiological studies (Hansen et al., 2012; Smith et al., 2013). All 285	

units above this 400µm band were labelled supragranular, and all those below it were labelled 286	

infragranular. The G-I (L4-5) boundary could be determined most reliably across sessions, but 287	

the S-G boundary could not always be determined as precisely. We therefore varied the cut-off 288	

boundary between the supragranular and granular groups over a span of nearly 200µm and re-289	

calculated the results presented in Figure 6. Doing so did not qualitatively affect our results. 290	
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Attentional modulation 291	

of V1 neuronal responses is 292	

thought to be a feedback 293	

process (Buffalo et al., 2009; 294	

Buschman and Miller, 2007; 295	

Gregoriou et al., 2009), and 296	

anatomical work has shown 297	

that feedback projections 298	

from higher order visual 299	

areas target the supra- and 300	

infra-granular layers 301	

(Anderson and Martin, 2009; 302	

Maunsell and van Essen, 303	

1983; Rockland and Pandya, 304	

1979; Ungerleider et al., 305	

2008). As a result, we 306	

expected the strongest 307	

attentional modulation of 308	

firing rates to manifest there. 309	

Indeed, in the supragranular 310	

group, firing rates were modulated most strongly (Fig. 6B), and this modulation was significant 311	

in both the AB and AI conditions relative to the AO condition (AB: 5.5±1.2%, p = 0.0001, AI: 312	

5.5±1.3%, p = 0.0004, Bonferroni-corrected t-test, α=0.025). In the infragranular group, there was 313	

also significant modulation of firing rates in the AI condition but not the AB condition (AB: 314	

3.4±1.6%, p = 0.045, AI: 5.5±2.0%, p = 0.011, α=0.025). In the granular group, firing rates were not 315	

significantly elevated in the AB or AI conditions (.45±1.7%, p = 0.814, AI: 4.0±1.7%, p = 0.035, 316	

α=0.025).  317	

Next, we examined the laminar profile of attentional effects on spike count correlations 318	

(Fig. 6C). Correlations were significantly modulated by attention condition in the supragranular 319	

Figure 6. Laminar profile of attention effects. A) Example session CSD profile 
evoked by task stimulus (left column) with multi-unit receptive fields 
(middle) and tuning curves (right). Depths are relative to first L5 channel. 
Dotted black line shows L4-5 transition. Arrow shows initial current sink-
source flip in L4C. B) Fractional increase in firing rates in AB and AI, relative 
to AO, conditions split by laminar group. C) Spike count correlation over 0-
1s interval split by laminar group. Data in B-C show mean across sessions ± 
SEM (N=27).	

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 15, 2017. ; https://doi.org/10.1101/189282doi: bioRxiv preprint 

https://doi.org/10.1101/189282
http://creativecommons.org/licenses/by-nc-nd/4.0/


	

14	
	

group (p = 0.0007, two-way ANOVA). Post-hoc testing again showed correlations were highest 320	

in the AB condition (p = 10-6) and equivalently low in the AI and AO conditions (p = 0.84). In the 321	

granular and infragranular groups, correlations were constant across attention conditions. 322	

Although there was a downward trend in overall spike count correlation magnitude from 323	

superficial to deep, there was no significant effect of layer (p = 0.62, two-way ANOVA; S: rsc = 324	

0.11±0.02, G: rsc = 0.10±0.03, I: rsc = 0.08±0.02).  325	

 326	

Discussion 327	

We developed a task to dissociate changes in the strength of attentional modulation from changes 328	

in variability in the attentional state by varying the behavioral relevance of two simultaneously 329	

presented stimuli and encouraging the use of different attentional allocation strategies across task 330	

conditions. We found levels of shared variability to be highest in the condition in which both 331	

stimuli were behaviorally relevant, supporting the idea that this condition introduced 332	

competition for attentional resources, which increased attentional state variability. In contrast, 333	

shared variability was lowest in the conditions in which attention could be focused on only one 334	

stimulus. These results support the hypothesis that fluctuations in the state of attention can be a 335	

prominent source of shared neuronal response variability. More specifically, our results for 336	

correlations on timescales on the order of individual trials are most consistent with the scenario 337	

presented in Figure 2B, in line with the predictions of Ecker et al. (2016). More generally, our 338	

results suggest that a significant fraction of shared variability in neuronal populations can be 339	

attributed to fluctuations in behaviorally-relevant, internally generated signals, rather than 340	

shared sensory noise (Ecker and Tolias, 2014; Ecker et al., 2010, 2014, 2016; Goris et al., 2014; 341	

Haefner et al., 2016; Nienborg and Cumming, 2009; Rabinowitz et al., 2015). 342	

We focused primarily on the level of correlations in the AB condition, the condition in which 343	

the two possible mechanisms driving correlations made diverging predictions (Fig. 2). Previous 344	

studies have focused on the comparison of AI vs. AO conditions and found a reduction of 345	

correlations when attending (AI condition). At the one-second timescale we analyzed, we did not 346	

observe this reduction, suggesting that the difference between AI and AO conditions observed in 347	

previous studies was not driven by fluctuations in attention. However, at a timescale around 348	
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100ms, we did find a trend towards lower correlations, consistent with earlier work that 349	

considered faster timescales (Cohen and Maunsell, 2009; Herrero et al., 2013; Mitchell et al., 2009). 350	

Taken together, these results suggest that both mechanisms – suppression of common noise and 351	

attentional fluctuations – are at play, but operate at different timescales. Also consistent with this 352	

picture, Verhoef and Maunsell (2017) recently proposed that the reduction of correlations under 353	

attention is due to a suppression of (variable) normalizing inputs from the unattended surround, 354	

which predicts that this effect should be limited to timescales of synaptic integration (i.e. < 100ms). 355	

Because the impact of variability in the attentional state on correlations manifested on a 356	

timescale of individual trials in our task, should we therefore expect that fluctuations in internal 357	

signals, in general, only induce correlations on long timescales? For correlations resulting from 358	

fluctuations in a gain-modulating signal, correlations are roughly proportional to the square of 359	

the number of spikes in the count window (Ecker et al., 2010, 2016; Goris et al., 2014), so it is not 360	

until this window grows sufficiently large that the AB condition effect manifests. Ultimately, 361	

however, this timescale is likely to depend on the mechanism by which such signals impact 362	

neuronal populations. Work on orienting of attention and attentional dwell time suggests that 363	

voluntarily shifting attention between different stimuli takes on the order of several hundred 364	

milliseconds (Duncan et al., 1994; Müller et al., 1998). In our case, this shifting of attention between 365	

stimulus locations is the strategy we were hoping to induce in our paradigm and appears to be 366	

the likeliest explanation for how attention is allocated across trials in our AB condition, given our 367	

behavioral and neurophysiological results. We would, thus, expect that AB correlations should 368	

be elevated on a timescale of at least several hundred milliseconds, which is what we found 369	

(Fig. 5C).  370	

Note that this line of reasoning stands regardless of whether the shift in attention that occurs 371	

involves a narrowly-focused attention field encompassing only one stimulus at a time – 372	

resembling the spotlight or narrowly-focused zoom lens models (Eriksen and St James, 1986; 373	

Eriksen and Yeh, 1985)  – or whether some degree of attention is allocated to both stimuli 374	

simultaneously, but with one stimulus receiving a greater degree of attention than the other on a 375	

given trial – resembling the Variable Precision model of resource allocation (van den Berg et al., 376	

2012). In this latter case, the shift of attention corresponds to alternations in which stimulus 377	
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receives the greater strength of attentional focus on a given trial. The key, however, is that some 378	

change in attentional resources allocated to the receptive field stimulus occurs across trials. 379	

Therefore, our results are not consistent with models of attention that suggest that both stimuli 380	

are processed simultaneously and that a consistent or uniform degree of attentional processing is 381	

distributed across the full field of attention. 382	

Recent studies have examined the laminar profile of attentional modulation of firing rates 383	

(van Kerkoerle et al., 2017) or of spike count correlations during passive fixation (Hansen et al., 384	

2012; Smith et al., 2013). Only one study has examined the laminar relationship between 385	

attentional modulation and shared variability (Nandy et al., 2017), and ours is the first to do so in 386	

V1. Nandy et al. (2017) found significant attentional modulation of firing rates in all layers, with 387	

the strongest effects in the granular layer. In contrast, van Kerkoerle et al. (2017) found the 388	

weakest attentional modulation of firing rates in the granular layer of V1. Our results are in better 389	

agreement with those of van Kerkoerle et al. (2017), as we found the strongest attentional 390	

modulation of firing rates in the supragranular, followed by the infragranular layers, as expected 391	

given the anatomical distribution of feedback cortical connections (Anderson and Martin, 2009; 392	

Maunsell and van Essen, 1983; Rockland and Pandya, 1979; Ungerleider et al., 2008).  393	

Regarding correlation magnitude across layers, we observed a different pattern of results 394	

from both Nandy et al. (2017), who found the highest correlations in the granular layer of V4, and 395	

Hansen et al. (2012) and Smith et al. (2013), who found the lowest correlations in the granular 396	

layer in V1. In our study, overall correlation magnitude did not differ significantly by layer. These 397	

differences across studies could be attributable to the variable behavioral demands placed on 398	

each study’s subjects, which would be consistent with our overarching hypothesis that 399	

differences in correlation magnitude across studies can be accounted for in large part due to 400	

differences in the nature of the internal signals engaged by different tasks and how they are 401	

deployed to meet the subjects’ behavioral needs.  402	

Indeed, we created a task in which one condition’s behavioral demands were quite different 403	

(AB) from those of the other two conditions (AI, AO), and we found a large difference in 404	

correlations that varied with those demands, which was confined primarily to the supragranular 405	

layers. This modulation of correlations was not present in the infragranular layers, despite 406	
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attentional modulation of rates in the AI condition. One reason may be a lack of sufficient 407	

statistical power. Most of our isolated single units were from the supragranular layers (just over 408	

eight units per session on average), with about half that number isolated in the infragranular 409	

layers, and fewer still from the granular layer. The difference could also be attributable to the 410	

anatomical and computational characteristics of each layer, which by no means are completely 411	

understood (Callaway, 1998; Douglas and Martin, 2004; Lund, 1988). The infragranular layers 412	

additionally receive feedback from and send projections to subcortical regions (Lund et al., 1975) 413	

and such signals may modulate shared variability differently. Ultimately, the finding that 414	

fluctuations in attention predominantly modulate correlations in the supragranular layers 415	

matches the location where we found the most pronounced attentional modulation of firing rates 416	

and accords well with the known anatomy of corticocortical interactions, particularly for 417	

feedback signals. 418	

Finally, there has been an increasing interest in recent years in leveraging population 419	

recording and latent-variable modeling techniques to infer the state of internally-generated, 420	

cognitive signals, such as attention, on more behaviorally-relevant timescales, to better 421	

understand the nature of these signals and their impact on decision-making and behavior (Afshar 422	

et al., 2011; Engel et al., 2016; Latimer et al., 2015; Rabinowitz et al., 2015; Yu et al., 2009). To make 423	

such inferences, these methods make use of the patterns of covariance in population activity and 424	

rely on the assumption that this variability occurs in a low-dimensional space (e.g., the “attention 425	

axis” of Cohen and Maunsell (2010)). A further, but critical, assumption of these techniques is 426	

that much of this shared variability is not noise but is attributable to the action of behaviorally-427	

relevant, internally generated signals. However, a clearer demonstration that changes in internal 428	

signals indeed contribute significantly to shared neuronal variability was lacking. We presented 429	

a paradigm designed specifically to test for such a contribution, and our results provide support 430	

for this critical assumption. Additionally, our results demonstrate the subtlety of the effects that 431	

internal signals such as attention have on correlated variability, exemplified by the two timescales 432	

over which attention modulated correlations.433	
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Figure Legends 589	

Figure 1. Attention and correlated variability.  590	

A) Hypothesis 1: Attentional gain is increased, but relatively stable under both conditions (top 591	

left). Correlated variability is driven by a common noise source (top right), which is suppressed 592	

by attention (Mitchell et al. 2009, Cohen & Maunsell 2009). B) Hypothesis 2: Attentional gain is 593	

increased, but fluctuates from trial to trial (Cohen & Maunsell 2010, 2011, Ecker at al. 2016). 594	

Correlated variability is driven by fluctuations of attentional state. The reduction in correlations 595	

under attention would imply that the attentional gain is less variable when attending. 596	

Figure 2. Predicted effects of attention on correlations when attending one (“Attend In/Out”) 597	

or two stimuli (“Attend Both”).  598	

A) Scenario in which attentional fluctuations are negligible and attention primarily acts by 599	

suppressing common noise sources. In this case, we expect intermediate correlations when 600	

attending two stimuli. B) Scenario in which fluctuations in attention induce correlations. In this 601	

case, we expect attention to switch randomly between the two targets in the “Attend Both” 602	

condition, resulting in the highest correlations in this condition. C) Both mechanisms may 603	

contribute to different degrees. The relevance of attentional fluctuations is revealed by the 604	

difference between focused attention and split attention conditions.  605	

Figure 3. Task diagram with behavioral results.  606	

A) Orientation change-detection task. Two stimuli (L: left, R: right) randomly change their 607	

orientation during the ZCP (length 10-5000ms). One stimulus (R in this example) then enters the 608	

CP (300ms) when the signal orientation is shown (coherence exaggerated for clarity). This period 609	

is followed by another 200ms ZCP to allow time for a behavioral response. B) Illustration of 610	

attention conditions. Attention is cued according to fixation spot color. This color scheme is used 611	

in all figures to represent each condition. Percentages below the stimuli indicate the probability 612	

that the change occurs in this stimulus on a given trial. One stimulus overlaps the recorded 613	

neurons’ receptive fields. C) Example session psychophysical performance.  Individual points 614	

represent fraction of changes detected at a given coherence. Solid lines indicate fit of logistic 615	
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function to the data. Inset shows detection threshold with 95% CIs. D) Behavioral summary. Same 616	

as inset in c, but averaged across sessions in our dataset (N=27; mean±SEM). E) Percentage of 617	

changes detected in each condition averaged across sessions (mean±SEM). 618	

Figure 4. Attentional modulation of neuronal responses. 619	

A) Example session spike density function for each condition, normalized to the average response 620	

in AI condition (mean across units). B) Fractional increase in firing rates in the AB and AI 621	

conditions relative to the AO condition averaged across sessions (N=27; mean±SEM). C) Example 622	

single unit tuning curves in AI (red) and AO (blue) conditions. Dots show responses to specific 623	

orientations, solid lines show fitted von Mises functions. 624	

Figure 5. Effects of attention on shared variability.  625	

A) Spike count correlations from 0-1s following stimulus onset, averaged across sessions (N=27). 626	

B) Spike count correlations shown separately for both subjects during fixation (300ms interval) 627	

and during the task (same interval as in A). C) Cumulative correlation coefficient, calculated by 628	

integrating the cross-correlogram, for each attention condition and averaged across sessions. Data 629	

in A-B show mean ± SEM, C omits SEM. 630	

Figure 6. Laminar profile of attention effects.  631	

A) Example session CSD profile evoked by task stimulus (left column) with multi-unit receptive 632	

fields (middle) and tuning curves (right). Depths are relative to first L5 channel. Dotted black line 633	

shows L4-5 transition. Arrow shows initial current sink-source flip in L4C. B) Fractional increase 634	

in firing rates in AB and AI, relative to AO, conditions split by laminar group. C) Spike count 635	

correlation over 0-1s interval split by laminar group. Data in B-C show mean across sessions ± 636	

SEM (N=27). 637	

 638	

  639	
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Materials and Methods 640	

 641	

EXPERIMENTAL MODEL AND SUBJECT DETAILS 642	

All behavioral and electrophysiological data were obtained from two healthy, male rhesus 643	

macaque (Macaca mulatta) monkeys (B and D) aged 12 and 13 years and weighing 11 and 10 kg, 644	

respectively, during the time of study. All experimental procedures complied with guidelines of 645	

the NIH and were approved by the Baylor College of Medicine Institutional Animal Care and 646	

Use Committee (permit number: AN-4367). Animals were housed individually in a large room 647	

located adjacent to the training facility, along with around ten other monkeys permitting rich 648	

visual, olfactory and auditory interactions, on a 12h light/dark cycle. Regular veterinary care and 649	

monitoring, balanced nutrition and environmental enrichment were provided by the Center for 650	

Comparative Medicine of Baylor College of Medicine. Surgical procedures on monkeys were 651	

conducted under general anesthesia following standard aseptic techniques. To ameliorate pain 652	

after surgery, analgesics were given for 7 days. Animals were not sacrificed after the experiments.  653	

 654	

METHOD DETAILS 655	

Visual stimuli and behavioral paradigm 656	

Visual stimuli were two Gabor patches (size: 2–3° depending on eccentricity; spatial frequency: 657	

3–3.5 cycles per degree; contrast: 100% Michelson) presented on CRT monitors (at a distance of 658	

100 cm; resolution: 1600 × 1200 pixels; refresh rate: 100 Hz) using Psychophysics Toolbox 659	

(Brainard, 1997). The monitors were gamma corrected to have a linear luminance response 660	

profile. Video cameras (DALSA genie HM640; frame rate 200Hz) with custom video eye tracking 661	

software developed in LabView were used to monitor eye movements. 662	

Monkeys performed a noisy, orientation–change detection task. Trials were initiated by a 663	

sound and the appearance of a colored fixation target (~0.15°). Monkeys were required to fixate 664	

within a radius of 0.5°–1°, but typically fixated much more accurately, as revealed by offline 665	

analysis. After fixating for 300ms, two Gabor patches were presented symmetrically in the lower 666	

left and right visual fields. During what we labeled the Zero-Coherence Period (ZCP), these 667	

stimuli changed their orientation pseudo-randomly every 10ms (uniform distribution over 36 668	
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orientations spaced by 5° between 0 and 175°) for a random period of time drawn from an 669	

exponential distribution with a minimum of 10ms, mean of 2170ms, and maximum of 5000ms.  670	

After this time one of the two stimuli entered the Coherent Period (CP), where one particular 671	

orientation, called the “signal” orientation, was shown with a higher frequency than the other 672	

orientations. The CP lasted 300ms (30 frames), and from trial to trial the number of frames in the 673	

CP showing the signal orientation was selected from a set of five unique “coherences” chosen for 674	

that session, which allowed us to vary the difficulty of the trials within a session and compute 675	

psychometric functions. After this period, the stimulus returned to the ZCP for a further 200ms 676	

to allow sufficient time for subjects to report whether or not they noticed the presence of the signal 677	

orientation by making a saccade to the stimulus showing the change. Subjects were prevented 678	

from responding within the first 100ms of the CP to minimize guessing. Successful identification 679	

of the signal orientation was rewarded with a small drop of juice. On 10% of trials in each 680	

attention condition no change occurred, and subjects were rewarded for maintaining fixation. 681	

Orthogonal signal orientations were used in the left (135°) and right (45°) stimuli. 682	

Note, occurrences of the signal orientation during the CP were not constrained to occur in 683	

successive frames. Also note that the left and right stimuli displayed different orientation 684	

sequences, so that subjects could not identify a change simply by noticing when the two 685	

orientation sequences diverged. Orientation sequences were described as pseudo-random for the 686	

following reason. For each trial a random number generator seed was chosen from a set of five 687	

such seeds selected for a given recording session. Doing so meant there were five unique stimuli 688	

that could be repeated across attention conditions for the purposes of calculating spike count 689	

correlations and Fano factors over identical stimuli. Sequences were constrained to show each 690	

orientation once before any repetitions were allowed so that the maximum number of signal 691	

orientations that could occur by chance in a period of time equal to the CP (300ms) was two. 692	

Attention was cued in blocks of trials by the color of the fixation spot (Fig. 3B). In the Attend 693	

Out (AO) condition, 100% of the changes occurred in the non-receptive field stimulus. In the 694	

Attend In (AI) condition, 100% of changes occurred in the receptive field stimulus. In the Attend 695	

Both (AB) condition, the change was equally likely to occur in either stimulus (50% chance that 696	

the change was in the receptive field stimulus). Block transitions occurred after a total of 60 hit 697	
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and miss trials was achieved (i.e. false alarms did not count). Blocks were randomized in sets of 698	

three so that each attention condition was seen before one was allowed to repeat. Coherences 699	

were increased by one frame in the AB condition to keep task difficulty approximately constant 700	

across conditions. 701	

 702	

Surgical methods 703	

Our surgical procedures followed a previously established approach (Tolias et al., 2007). A cranial 704	

headpost was first implanted under general anesthesia using aseptic conditions in a dedicated 705	

operating room. After premedication with Dexamethasone (0.25–0.5 mg/kg; 48 h, 24 h and on the 706	

day of the procedure) and atropine (0.05 mg/kg prior to sedation), animals were sedated with a 707	

mixture of ketamine (10 mg/kg) and xylazine (0.5 mg/kg). During the surgery anesthesia was 708	

maintained using isoflurane (0.5–2%). 709	

After subjects were trained to perform the above described task, they were implanted with a 710	

form-fitted titanium recording chamber, designed based on pre-operatively obtained anatomical 711	

MRI scans, placed at a location over the operculum in V1 determined by stereotactic coordinates 712	

(Tolias et al., 2007). This surgery was performed under identical conditions as described for 713	

headpost implantation. The chamber was attached to the skull using orthopedic screws only. We 714	

used a small amount of dental cement to seal any openings between the bone and the lower 715	

surface of the recording chamber. A custom-made chamber cap was then placed to seal the 716	

chamber and prevent infection. A minimum of three weeks was provided for the implant to heal. 717	

After healing, small 2–3mm trephinations could be performed, in aseptic conditions under 718	

ketamine (10 mg/kg) sedation with ketoprophen (2mg/kg) for analgesia and meloxicam 719	

(0.2mg/kg for two days), to enable access for subsequent daily electrophysiological recordings. 720	

 721	

Electrophysiology in awake, behaving monkeys 722	

We performed daily electrophysiological recordings beginning 48 hours after a craniotomy was 723	

performed. Custom-designed 32 channel, linear silicon probes (NeuroNexus V1x32-Edge-10mm-724	

60-177) were mounted in a Narishige microdrive (MO-97) with a nested, stainless steel guide tube 725	

composed of one extra-thin walled 23-gauge piece, spanning most of the length of the probe shaft, 726	
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and a smaller 27-gauge piece (roughly 6mm long) nested inside such that 4mm of the smaller 727	

tubing protruded beyond the large piece. This design enabled a tight fit around the probe to 728	

support it during dural penetrations. We took care during the insertion procedure to ensure that 729	

the dura was penetrated only by the probe itself, rather than the guide tube, to minimize damage 730	

to the superficial layers of cortex. We alternated lowering the guide tube in steps of 250µm and 731	

extending the probe up to ~500µm beyond the guide tube, retracting and repeating as necessary, 732	

until either characteristic changes in the LFP or multi-unit activity, or both, were observed, 733	

indicating successful penetration of cortex.  734	

The probe was then lowered in ~250µm steps at < 10µm per second, pausing for several 735	

minutes after each step, until activity was seen on all channels. As a result of this procedure there 736	

would be variable degrees of tissue compression. Some of this compression was relieved early in 737	

the positioning of the probe by retracting the guide tube by ~500µm after the probe was several 738	

hundred microns inside the cortex. If compression remained after completely lowering the probe, 739	

we could successfully relieve it by slowly retracting the guide tube further. The single most 740	

reliable indicator of the position of our probe in cortex before receptive field mapping was a band 741	

of high spontaneous activity corresponding to layer 4C (Snodderly and Gur, 1995), which could 742	

be clearly seen to span roughly 6–7 channels. In general, we found the basic laminar properties 743	

described by Snodderly and Gur (1995) to be very reliable guidelines. After final positioning of 744	

the probe, we allowed between 30–60min for tissue settling and recording stability to become 745	

established. The entire insertion procedure typically took around 3-4 hours, from penetrating the 746	

dura to the start of recording. Receptive field mapping experiments were performed (see Data 747	

Analysis below for details) to determine where to place one of the two stimuli such that it covered 748	

the recorded neurons’ receptive fields for that session. 749	

 750	

Data acquisition and spike sorting 751	

The methods described below for spike detection and spike sorting were adapted for use with 752	

multi-channel silicon probes from our previous methods used for tetrode recordings (see Ecker 753	

et al., 2014). Neural signals were digitized at 24 bits using analog acquisition cards with 30 dB of 754	

onboard gain (PXI-4498, National Instruments, Austin, TX) and recorded continuously at 32 KHz 755	
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as broad-band signal (0.5 Hz to 16 kHz). Eye movement traces were sampled at 2kHz. 756	

Spikes were detected offline when the signal on a given channel crossed a threshold of five 757	

times the standard deviation of the corresponding channel. To avoid artificial inflation of the 758	

threshold in the presence of a large number of high amplitude spikes, we used a robust estimator 759	

of the standard deviation, given by 𝜎 = median(|𝑥|)/0.6745 (Quiroga et al., 2004). Spikes were 760	

aligned to the center of mass of the continuous waveform segment above half the peak amplitude. 761	

Code for spike detection is available online at https://github.com/atlab/spikedetection.  762	

Virtual electrodes consisting of six channels were constructed in a sliding window (stride 2) 763	

spanning the length of the probe to aid in the spike sorting process by enabling some degree of 764	

triangulation, as with tetrodes. Given a channel spacing of 60µm, in many cases the waveforms 765	

of a single neuron could be detected by several channels. To extract features for spike sorting, we 766	

performed principal component analysis on the extracted waveform segments (individually for 767	

each channel). This step reduced the data to three dimensions per channel, resulting in an 18-768	

dimensional feature vector. We fit a mixture of t distributions with a Kalman filter on the cluster 769	

means to track waveform drift (Shan et al., 2017). 770	

The number of clusters was determined based on a penalized average likelihood, where the 771	

penalty term was a constant cost per additional cluster. Code for spike sorting is available online 772	

at https://github.com/aecker/moksm. Following this automatic step, results of the model were 773	

examined manually for each virtual electrode and single units were flagged at this time according 774	

to degree of cluster isolation, uniqueness of waveforms and size of refractory period. To avoid 775	

duplicate single units due to overlapping channel groups used for spike sorting, we included 776	

only those single units that had their largest waveform amplitude on one of the two central 777	

channels of the group (this was not an issue for the first and last two channels on the probe). 778	

 779	

Dataset and inclusion criteria 780	

Our dataset included 27 sessions (N=7, Subject B; N=20, Subject D), yielding 416 single units 781	

(N=83, Subject B; N=333, Subject D). We included recording sessions with at least 10 single units 782	

that were visually responsive and significantly orientation tuned in each attention condition. To 783	

ensure reliable estimates of neuronal (co-)variability, sessions were also excluded if there were 784	
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fewer than three (of five possible) valid seed conditions. A seed condition was considered invalid 785	

if in any of the three attention conditions there were fewer than three correct trials generated 786	

using that seed that had sufficient ZCP length available for spike count analysis. On average for 787	

the 1-second analysis window, included sessions had ~10 correct trials per seed per attention 788	

condition.  789	

After having collected a complete dataset of 13 sessions from Subject B and a dataset of 29 790	

sessions from monkey D, we found that sessions with recording locations close to the vertical 791	

meridian did not exhibit our predicted main effect. We reasoned that this lack of effect was likely 792	

because the two stimuli were too close to each other, allowing the monkey to attend to both 793	

simultaneously. To verify that this result was not a false positive due to post-hoc analysis, we 794	

collected an independent 10-session dataset at high eccentricities from Subject D (the termination 795	

condition of 10 sessions was set before starting to collect additional data), which confirmed the 796	

effect at high eccentricity. The results reported in this paper include all sessions with x-axis 797	

receptive field eccentricities of at least 3° in Subject B and 3.2° in Subject D (representing the 798	

median such eccentricities for each subject), including the separate validation dataset from 799	

monkey D. 800	

 801	

Data analysis 802	

Analysis of behavioral results 803	

Trial results were classified as ‘hits’, ‘misses’, ‘correct rejections’ (for successful completion of 804	

trials with no change) and ‘false alarms’ (for saccades made to a stimulus before any change 805	

occurred). For each session, behavior was analyzed by calculating the fraction of changes detected 806	

(hits / [hits + misses]), both conditioned on and marginalized over coherence in each attention 807	

condition. Psychometric functions were plotted as the fraction of changes detected versus 808	

coherence in each attention condition. Using the psignifit toolbox (Wichmann and Hill, 2001a, 809	

2001b) in MATLAB, logistic functions were fit to the attention condition specific curves using the 810	

method of maximum likelihood, and 50% performance thresholds were extracted. 811	

 812	

Analysis of receptive fields 813	
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Prior to starting the main task, we quantitatively mapped receptive fields based on unsorted 814	

multi-unit responses using a white noise random dot stimulus. A single square dot of size 0.29 815	

degrees of visual angle was presented on a uniform gray background, changing location and 816	

color (black or white) randomly every three frames, or 30ms, for 1 second. Receptive field profiles 817	

were obtained by spike-triggered averaging. 818	

 819	

Analysis of orientation tuning 820	

Our task allowed us to compute orientation tuning curves for each neuron. We binned the spike 821	

counts in bins of 10ms and used linear regression based on a one-hot encoding of the 15 stimuli 822	

directly preceding the response (i.e. the stimulus is a 36×15-dimensional vector, because there 823	

were 36 possible stimulus orientations). We defined the optimal latency of each neuron as the 824	

time delay that produced the strongest response modulation across orientations (determined by 825	

taking the variance of the regression weights across orientations). The optimal latency of most 826	

neurons was 50ms. We then re-estimated the regression using only that single time lag to obtain 827	

a tuning curve. Significance of tuning was then tested by projecting the weight vector onto a 828	

complex exponential with one cycle, the norm of which was compared to its null distribution 829	

calculated by randomly shuffling orientation labels. A p-value was obtained by performing 1,000 830	

iterations of the shuffling procedure and using the fraction of runs in which the norm of the 831	

shuffled projection was greater than that observed in the real data. Signal correlations were 832	

computed for pairs of neurons by calculating the correlation coefficient between the two cells’ 833	

tuning curves. 834	

 835	

Analysis of gain versus offset modulation 836	

For each unit, a von Mises distribution function, parameterized as 837	

𝑌 = 	𝑤( + exp(𝑤. + 𝑤/ cos 𝑥 −	𝑤4 ), 838	

was fit to the tuning curve obtained across all trials via the method described above. From this fit, 839	

the shape and preferred orientation parameters, 𝑤/ and 𝑤4, were obtained. These parameters were 840	

assumed not to change across attention conditions, leaving only the offset, 𝑤(, and gain, exp(𝑤.), 841	
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terms to vary across conditions. New von Mises functions were then fit for each attention condition 842	

using a linear regression model with a binary indicator variable for attention condition and an 843	

interaction term. To illustrate, we write the response 𝑦 to orientation 𝑖 as 844	

𝑦8 = 	𝑤( + exp(𝑤. + 𝑤/ cos 𝑥8 −	𝑤4 ) = 	𝑏( + 𝑏.𝜃8 845	

where 𝜃8 = exp(𝑤/ cos 𝑥 −	𝑤4 ) and was obtained from the overall tuning curve as described. 846	

Our linear regression model comparing fits in the AO and AI condition, for example, then 847	

became: 848	

𝑦8 = 𝛽< + 𝛽(𝑋8( + 𝛽.𝑋8. + 𝛽/𝑋8(𝑋8. 849	

where 𝑋8( = 𝜃8 and 𝑋8. ∈ {0, 1}, with 0 coding the AO condition and 1 coding the AI condition. 850	

In this manner we enabled different gain and offset terms to be fit to different attention conditions. 851	

We then assessed whether significant attentional modulation was present by performing an F-test 852	

comparing the full model above to the reduced model containing only the 𝛽< and 𝛽( terms, and 853	

when significant, we tested whether the offset and gain parameters differed between conditions 854	

with t-tests. 855	

 856	

Analysis of firing rates 857	

Visual responsiveness of neurons was determined by comparing firing rates in the 300ms fixation 858	

interval before stimulus onset to those in the 300ms immediately following stimulus onset. A t-859	

test was performed to test for a significant change in rate following stimulus onset. Spike density 860	

functions (SDFs) were calculated first for a given neuron, across all hit trials grouped by attention 861	

condition and stimulus seed, by counting spikes in 50ms bins relative to stimulus onset and 862	

averaging across trials. Averages were then taken across seeds and smoothed with a Gaussian 863	

window. To calculate SDFs for a given session, individual neuron SDFs were normalized by the 864	

average response in the AO condition, starting from 100ms after stimulus onset, before averaging 865	

across neurons. Fractional firing rate increases were also calculated first at the individual 866	

neuronal level, by averaging all available bins from the first second following stimulus onset 867	

conditioned on the stimulus seed for each attention condition, and then averaging across seeds. 868	
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The rates were again normalized by the AO condition rate before averaging across neurons to get 869	

a session-level rate modulation for each attention condition. Finally, responses in the AI and AB 870	

conditions were converted to fractional changes relative to the AO responses. 871	

 872	

Analysis of neuronal (co-)variability 873	

Fano factors and spike count correlations were computed on the first 1000ms of the response. 874	

Fano factors were computed as the variance of the spike count divided by its mean. Spike count 875	

correlations were computed as the covariance of the two neurons’ z-scored responses to 876	

identical repetitions of the same stimulus condition (seed). Z-scoring and Fano factor 877	

calculations were performed in a block-wise fashion to control for slow fluctuations in firing 878	

rate across a recording session. For the analysis of correlation timescale we used the relationship 879	

between spike count correlations and cross-correlation functions first described in Bair et al. 880	

(2001) to compute a cumulative correlation coefficient, rCCG. We compute a spike train cross-881	

correlation function for a pair of neurons j and k, as well as a shift-predictor, which is the cross-882	

correlation function of the spike density functions of neurons j and k. The shift-predictor is 883	

subtracted from the cross-correlation function to control for stimulus-induced correlation. This 884	

shift-corrected cross-correlation is denoted 𝐶EF(𝜏). The cumulative cross-correlation is given by 885	

  886	

𝐴EF	 = 	 𝐶EF(𝑡)𝑑𝑡
K

LK
 887	

 888	

Following Ecker et al. (2014), the cumulative correlation coefficient is 889	

 890	

𝑟NNO(𝜏) =
𝐴EF(𝜏)

𝐴EE(𝑇)𝐴FF(𝑇)
 891	

 892	

where T is the last time point in the counting window, in our case 1000ms. 893	

 894	

Analysis of micro-saccades 895	

We identified micro-saccades our subjects made during the ZCP of our task (when spike counts 896	
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were analyzed) to determine whether our correlation results could be accounted for by an 897	

increase in micro-saccade frequency in our AB condition, relative to the AI and AO conditions. 898	

We followed the definitions described in Bair and O’Keefe (1998). Periods of stable gaze were 899	

taken to be those intervals during which eye position remained within a 0.1-degree window. 900	

Deviations greater than 0.1 degree in 10ms (10deg/s velocity) were taken to be micro-saccades. 901	

The number of micro-saccades during analysis periods was counted for each attention condition 902	

in each session and a two-factor ANOVA was performed to determine whether micro-saccades 903	

differed across conditions. 904	

 905	

Analysis of laminar data 906	

The CSD profile at each time point was calculated following Mitzdorf (1985) as the second spatial 907	

derivative of the task-stimulus evoked LFPs across channels, smoothed with a Gaussian kernel 908	

to aid visualization. The granular layer was identified according to several criteria used in 909	

conjunction. The earliest current sink to source transition (identified by an arrow in Fig. 6A) is 910	

one indicator, immediately below which is a complementary source to sink transition in L5. We 911	

used additional criteria, described by Snodderly and Gur (1995), to verify this positioning, 912	

because there was a prominent current sink to source transition in L6 as well. These criteria 913	

included higher spontaneous activity and more poorly defined orientation tuning curves 914	

characteristic of the granular layer (Snodderly and Gur, 1995). Additional reports have described 915	

the granular layer to contain smaller receptive fields (Hubel and Wiesel, 1968; Livingstone and 916	

Hubel, 1984), which we also saw (Fig. 6A). In general across sessions, all of these granular layer 917	

features were quite consistent, allowing for confident determination of the L4-5 boundary. The 918	

first L5 channel was labeled as the zero-point for depth. Negative depths are more superficial to 919	

this point. The granular layer was defined as a roughly 400µm band just superficial to the zero-920	

point (Fitzpatrick et al., 1985; Hansen et al., 2012; Lund, 1988; Smith et al., 2013). The 921	

supragranular group (L1–3) was defined as everything superficial to the top of the granular layer, 922	

and the infragranular group (L5–6) was defined as everything deeper than and including the 923	

zero-point. 924	

 925	
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QUANTIFICATION AND STATISTICAL ANALYSIS 926	

Although customary in the field, we did not consider units or pairs as independent samples. 927	

Treating units as independent samples ignores the session-to-session variability and leads to 928	

underestimated confidence intervals and, consequently, inflated false positive rates. Instead, we 929	

first averaged our measurements across observations within a session and then performed all 930	

statistical tests across sessions, treating the session averages as independent samples. While this 931	

approach sacrifices some statistical power, it leads to conservative estimates of p values. 932	

For statistical analyses involving our attention conditions, two-factor ANOVAs were used, 933	

with session and attention condition as the two factors. The Tukey-Kramer method was used for 934	

post-hoc analyses. The only exception is the test for significantly elevated AB condition 935	

correlations, where we performed a one-tailed t-test on a contrast between the AB condition and 936	

the average of the AO and AI condition results. This choice is justified by our previously 937	

published model (Ecker et al., 2016), which predicts this effect and its direction and was 938	

hypothesized and specified before data collection. For assessments of visual responsiveness and 939	

significant increases in fractional firing rates, two-tailed t-tests were used, which, for rate 940	

increases, were Bonferroni-corrected for multiple comparisons. Orientation tuning significance 941	

was assessed according to the permutation test described above. Statistical comparisons were 942	

considered significant at p < 0.05 (p < 0.0167 for Bonferroni-corrected tests for firing rates in 943	

association with Figure 4B, as there were 3 comparisons; p < 0.025 for those associated with Figure 944	

6B, given two comparisons). All error bars show the standard error of the mean (SEM; either 945	

directly calculated or estimated via two-factor ANOVA), except in the Figure 3C inset, which 946	

shows 95% confidence intervals. 947	

 948	

Data availability 949	

The datasets generated during and analyzed during the current study, along with the code to 950	

replicate the presented analyses, are available from the corresponding author on reasonable 951	

request. 952	
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