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ABSTRACT 16 

Path integration is a navigation strategy by which animals track their position by integrating their self-17 

motion velocity over time. To identify the computational origins of bias in visual path integration, we asked 18 

human subjects to navigate in a virtual environment using optic flow, and found that they generally travelled 19 

beyond the goal location. Such a behaviour could stem from leaky integration of unbiased self-motion 20 

velocity estimates, or from a prior expectation favouring slower speeds that causes underestimation of 21 

velocity. We tested both alternatives using a probabilistic framework that maximizes expected reward, and 22 

found that subjects’ biases were better explained by a slow-speed prior than imperfect integration. When 23 

subjects integrate paths over long periods, this framework intriguingly predicts a distance-dependent bias 24 

reversal due to build-up of uncertainty, which we also confirmed experimentally. These results suggest that 25 

visual path integration performance is limited largely by biases in processing optic flow rather than by 26 

suboptimal signal integration. 27 

INTRODUCTION 28 

The world is inherently noisy and dynamic. In order to act successfully, we must continuously monitor our 29 

sensory inputs, gather evidence in favor of potential actions, and make subjectively good decisions in the 30 

face of uncertain evidence. Traditional binary-decision tasks lack the temporal richness to shed light on 31 

continuous behaviors in demanding environments1,2. Here we develop a visuo-motor virtual navigation task 32 

with controllable sensory uncertainty, and provide a unified framework to understand how dynamic 33 

perceptual information is combined over time. We then use this framework to understand the origins of bias 34 

in path integration – a natural computation that involves sensory perception, evidence accumulation, and 35 

spatial cognition. 36 

Path integration is a navigation strategy used to maintain a sense of position solely by integrating self-37 

motion information. Humans and animals are capable of path integrating3–8, albeit often with systematic 38 

errors (or biases). Bias in path integration has been observed in many species under a variety of 39 

experimental conditions involving visual9–12 and/or body-based13–15 (e.g. vestibular, proprioceptive) self-40 

motion cues, yet its origins are not fully understood. Broadly speaking, path integration entails two stages – 41 

estimating one’s self-motion, and integrating that estimate over time. Most previous accounts of behavioral 42 

biases in path integration implicate the latter, arguing for suboptimal integration of movement velocity that 43 

produces errors that increase with time16–18 or distance19–22. However, past modeling approaches were 44 

dominated by attempts to fit empirical functions using only subjects’ final states at the end of the integration 45 

process, without considering the performance constraints imposed by noise in the sensory inputs. This has 46 

led to the view that bias in path integration is due to leaky integration – a severely suboptimal strategy, that 47 

is  inconsistent with studies in other domains demonstrating statistically optimal behavior in static and 48 

dynamic binary tasks23–27. An alternative explanation is that bias in path integration stems from errors 49 

sensory estimates – e.g., from bias in velocity estimation or from accumulating perceptual uncertainty over 50 

time. For example, human judgement of retinal speed is known to be biased and this is well explained by a 51 

Bayesian observer model with a slow-speed prior28–31. If a similar prior influences our judgement of self-52 

motion velocity, the resulting bias in velocity estimates will naturally lead to path integration biases even if 53 

the integration itself is perfect. 54 

To determine whether bias in path integration stems mainly from a slow-speed prior or suboptimal 55 

integration, we tested human subjects on a visual path integration task in which they navigated within a 56 

horizontal plane using sparse optic flow. We found that subjects underestimated both linear and angular 57 

displacements when navigating short distances. We analysed this data using a mathematical theory that 58 

includes components for sensory processing, integration dynamics, and decision-making. Our analysis 59 

revealed that the behavioural errors can be explained by a model in which subjects maximized their expected 60 

reward under the influence of a slow-speed prior, rather than by leaky integration of unbiased velocity 61 
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estimates. This result was confirmed in a separate experiment in which we tested the predictions of both 62 

models by manipulating the reliability and the range of optic flow. In addition, when extended to longer 63 

distance scales, the model predicts a potential reversal in the pattern of bias from overshooting to 64 

undershooting due to build-up of uncertainty, and we also confirmed this prediction experimentally. These 65 

findings suggest that human subjects can maintain a dynamic probabilistic representation of their location 66 

while navigating, and their ability to path integrate is limited largely by brain structures that process self-67 

motion rather than by downstream circuits that integrate velocity estimates based on optic flow.  68 

RESULTS 69 

We asked human subjects to perform a visual navigation task in which they used a joystick to steer to a cued 70 

target location in a virtual environment devoid of allocentric reference cues (Fig. 1a, Methods). At the 71 

beginning of each trial, a circular target blinked briefly (~1s) at a random location on the ground plane, after 72 

which it disappeared and the joystick controller was activated. The joystick had two degrees of freedom that 73 

controlled forward and angular velocities, allowing the subject to steer freely in two dimensions (Fig. 1b). 74 

Subjects were instructed to stop steering when they believed their position fell within the target, but did not 75 

receive any performance-related feedback. Target locations were varied randomly across trials and were 76 

uniformly distributed over the ground plane area within the subject’s field of view (Fig. 1c – top). The 77 

subject’s movement trajectory was recorded throughout each trial (Fig. 1c – bottom). 78 

Behavioural data 79 

The subject’s ‘response location’ was given by their stopping position at the end of each trial. We quantified 80 

behavioural error on each trial by comparing the response location against the target location. Figure 1d 81 

(left) shows an aerial view of the target location and one subject’s trajectory during a representative trial. On 82 

this trial, the error vector points radially outward and away from straight ahead, implying that the subject 83 

overshot the target both in terms of the net distance moved as well as the net angle rotated. The vector field 84 

of errors across all trials revealed a qualitatively similar pattern of behavioural errors throughout the 85 

experiment (Fig. 1d – right). To quantify these errors, we separately compared the radial distance and 86 

angular eccentricity of the target to those of the subject’s response location in each trial. We found a 87 

systematic bias underlying the behavioural errors in both quantities: this subject consistently travelled a 88 

greater distance and rotated through a greater angle than necessary (Fig. 1e). We observed similar biases 89 

across subjects (Supplementary Fig. 1), and these biases were well described by a simple linear model with 90 

multiplicative scaling of the subjects’ estimates of their net displacement and rotation (mean coefficient of 91 

determination, 𝑅2 across subjects – distance: 0.70 ± 0.12, angle: 0.92 ± 0.11). Therefore, we used the 92 

slopes of the corresponding linear regressions as a measure of bias in radial distance and angle for each 93 

subject. Slopes greater than and less than unity correspond to overshooting and undershooting respectively, 94 

while unity slope corresponds to unbiased performance. Both radial and angular biases were significantly 95 

greater than unity across subjects (Fig. 1f, mean distance bias (± standard error), 𝑟 = 1.19 ± 0.07, 𝑝 =96 

4.1 × 10−2, t-test; mean angle bias,  = 1.78 ± 0.16, 𝑝 = 2.8 × 10−3). 97 

We varied target locations across trials to preclude the use of strategies based only on movement duration. 98 

Nevertheless, subjects may have been encouraged to use such a strategy due to the inherent relationship 99 

between distance and time. To test this, we randomly interleaved a subset of trials in which we removed all 100 

ground plane elements thereby eliminating optic flow. The correlation between target and response locations 101 

dropped substantially for these trials (Supplementary Fig. 2), implying that subjects relied heavily on optic 102 

flow cues, rather than a mental clock, to perform the task.  103 

We allowed subjects to freely control their velocity at all times and found modest variability in average 104 

velocity across trials. This trial-by-trial variability in velocity was uncorrelated with trial-by-trial variability 105 

in subjects’ radial and angular position biases (Supplementary Fig. 3), suggesting that movement velocity  106 
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Figure 1. Task structure and behavioural response. a. Subjects use a joystick to navigate to a cued target (yellow 
disc) using optic flow cues generated by flickering ground plane elements (orange triangles). b. Left: The time 
course of linear (top) and angular (bottom) speeds during one example trial. Time is also encoded by line color. 
Right: Aerial view of the subject’s spatial trajectory during the same trial. c. Top: Aerial view of the spatial 
distribution of target positions across trials. Positions were uniformly distributed within subjects’ field of view. 
Bottom: Subject’s movement trajectories during a representative subset of trials. d. Left: Target location (solid 
black) and subject’s steering response (colored as in b) during a representative trial. Red arrow represents the error 
vector. Right: Vector field denoting the direction of errors across trials. The tail of each vector is fixed at the target 
location and vectors were normalized to a fixed length for better visibility. The grayscale background shows the 
spatial profile of the error magnitude (Euclidean distance between target and response, smoothed using a 50cm 

wide Gaussian kernel). e. Top: Comparison of the radial distance 𝑟̃ of the subject’s response (final position) against 

radial distance 𝑟 of the target across all trials for one subject. Bottom: Angular eccentricity of the response 𝜃̃ vs. 
target angle 𝜃. Black dashed lines have unity slope (unbiased performance) and the red solid lines represent slopes 
of the regression fits. Inset shows the geometric meaning of the quantities in the scatter plots. f. Radial (top) and 
angular (bottom) biases were quantified as the slopes of the corresponding regressions and plotted for individual 
subjects. Error bars denote 95% confidence intervals of the slopes. Horizontal dashed lines show slopes of 1 
expected for unbiased responses.  
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within the range we observed does not influence subjects’ path integration errors during self-generated 107 

movement. Velocities varied across time differently for different subjects as well: four of the seven subjects 108 

used a serial strategy, first rotating and then moving straight ahead to reach the target (Supplementary Fig. 109 

4a,b), while the remaining subjects travelled along curvilinear trajectories. Subjects with both strategies had 110 

comparable radial and angular biases (Supplementary Fig. 4c), suggesting that they do not benefit from 111 

integrating the angular and linear components separately. This finding also shows that overshooting is not 112 

restricted to cases in which subjects make curvilinear trajectories.  113 

Finally, we introduced angular landmarks in the virtual environment by displaying a distant mountainous 114 

background (Supplementary Fig. 5a). This manipulation did not alter the radial bias, but eliminated angular 115 

bias almost completely (𝑟 = 1.29 ± 0.08,  = 1.1 ± 0.04; Supplementary Fig. 5b). This suggests that 116 

biases measured in the absence of landmarks reflect errors in spatial perception rather than problems 117 

associated with motor control. To further validate this, we conducted an additional experiment in which we 118 

passively transported subjects over trajectories that passed through the targets at a constant velocity, thereby 119 

eliminating motor control (Methods, Supplementary Fig. 6a). Subjects simply pressed a button to indicate 120 

when they believed they had reached the target. Again we observed overshooting that scaled linearly with 121 

the radial distance of the target (𝑟 = 1.38 ± 0.1; Supplementary Fig. 6b). Note that a delay in pressing 122 

the button would produce an identical bias at all distances and thus cannot explain the above result.  123 

Together, these data suggest that subjects overshoot when using optic flow to navigate modest distances 124 

regardless of the precise speed or curvature of the trajectory, and this bias is due to a systematic error in the 125 

subject’s perception, not action. 126 

Dynamic Bayesian Observer model 127 

Past studies have attributed biases in path integration to leaky integration16–20. According to those 128 

behavioural models, subjects forget part of their movement history, leading to sub-additive accumulation of 129 

self-motion information while they steer to the target. Consequently, they underestimate their distance 130 

moved and end up travelling further than necessary, overshooting the target. We asked whether the 131 

overshooting could instead result from accurate integration of inaccurate, biased velocity estimates. 132 

Specifically, if subjects were to underestimate their linear and/or angular movement velocities, accurate 133 

integration might yet lead to overshooting. In fact, human subjects are known to underestimate retinal 134 

velocities, and those effects have been successfully attributed to a slow-speed prior using Bayesian 135 

theories28–31. 136 

 137 

We hypothesized that such a slow-speed prior might also underlie the biases observed in our experiments. 138 

We tested this possibility against the alternative of leaky temporal integration using the framework of a 139 

dynamic Bayesian observer model. In this framework, we explicitly model a subject’s beliefs, i.e. the 140 

subjective posterior distribution, which is the posterior over position given its model assumptions. This is 141 

computed across two stages: combining noisy optic flow input with a prior belief to compute the posterior 142 

over self-motion velocity (inference step), and integrating the resulting posterior with a constant leak rate 143 

(integration step). Since the position estimate is uncertain, we used this framework to identify model 144 

parameters that maximized the expected reward, a quantity that takes both the mean and uncertainty in 145 

position into account. Although we will shortly show that the above behavioural results can be understood 146 

purely in terms of a bias in subjects’ mean position estimates, we will also show in a later section that 147 

uncertainty plays a pivotal role in determining subjects’ responses when navigating larger distances. 148 

Since position is computed by integrating velocity, bias in position estimates can originate either from bias 149 

in velocity estimation or from imperfect integration. We modelled the distinction between the two 150 

hypotheses within the proposed framework by manipulating the shape of the prior to be exponential or 151 

uniform, and the nature of integration to be perfect or leaky (Fig. 2). At one extreme, the combination of an 152 
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exponential prior and perfect integrator would attribute path integration bias entirely to underestimation of 153 

self-motion velocity. At the other extreme, a uniform prior would yield unbiased velocity estimates which, if 154 

integrated with leak, could also lead to a path integration bias as proposed by other studies. We will refer to 155 

the above two instantiations as the slow-speed prior and the leaky integrator models, respectively. We 156 

assumed a Gaussian velocity likelihood whose variance scales linearly with the magnitude of measurement, 157 

as it yields a convenient mathematical form for the mean and variance of velocity estimates (Methods – 158 

Equation 1). Since the same parameterization was used for both models, this assumption does not 159 

intrinsically favor one model over another. Furthermore, we assumed that the noise in the optic flow 160 

measurement is temporally uncorrelated so that the mean and variance of the integrated position estimates 161 

change at the same rate in both models (Methods). Later, we relax this assumption to examine path 162 

integration bias for a more general class of integrated noise models. Although both the slow-speed and the 163 

leaky integration model can lead to overshooting, they attribute the bias to two very different sources – 164 

velocity underestimation or leaky dynamics. For uniform motion in one dimension, this difference can be 165 

readily detected by observing how the subject’s bias scales with distance: the bias due to a slow-speed prior 166 

will scale linearly, whereas leaky integration produces a sub-linear scaling ultimately leading to saturating 167 

estimates of position. However, when velocity changes over time, distinguishing the models will require 168 

analyzing the subject’s entire movement history rather than just comparing the pattern of bias in the stopping 169 

position. Our framework allows us to incorporate our measurements of the subject’s time-varying velocities 170 

to fit and distinguish the models. 171 

 172 
Since the task was performed on a two-dimensional ground plane, subjects had to infer and integrate two 173 

components (linear and angular) of their velocity. We assumed the two velocity components were integrated 174 

by separate integrators with possibly different time constants (Methods – Equation 2). Consequently, both 175 

models had four free parameters (see Methods): two likelihood widths to represent uncertainties in linear 176 

and angular velocity, and either two exponents to represent priors for those same components (for the slow-177 

speed prior model) or two time constants to represent rates of leak in integrating them (for the leaky 178 

integrator model). Additionally, we fit a two-parameter null model that attributed subjects’ movements 179 

entirely to random variability as well as a full model with six-parameters that featured both exponential 180 

priors and leaky integrators. 181 

 182 

 

Figure 2. Dynamic Bayesian observer model.  Subjects combine noisy sensory evidence from optic flow with 
prior expectations about self-motion speed to perform probabilistic inference over their movement velocity. The 
resulting noisy velocity estimates are integrated to generate beliefs about one’s position. Bias in position estimation 
might come about from two extreme scenarios. Slow-speed prior (green): A velocity prior that favors slower speeds 
coupled with perfect integration. Leaky integration (purple): A uniform prior over velocity coupled with leaky 
integration. For simplicity, this schematic shows the one-dimensional case. For general planar motion, both linear 
and angular velocity must be inferred and integrated to update position in two dimensions. 

 183 
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Model fitting and comparison 184 

For each subject, we fit the models using the sequences of velocities along each trajectory. The models infer 185 

and integrate these velocity inputs and, depending on their parameters, generate specific trajectory estimates. 186 

Trajectories of different models correspond to the subject’s believed (rather than actual) positions during the 187 

trial. Our probabilistic framework assumes that subjects maintain estimates of both the mean and the 188 

uncertainty about their location, and steer to the target to achieve the greatest possible reward. We therefore 189 

fit the models to maximize the subject’s expected reward, defined as the overlap between the posterior 190 

distribution over their position and the rewarded target region at the end of each trial (Methods – Equation 191 

3).  192 

 193 

We found that the slow-speed prior model was about 1.35 times more likely per trial than the leaky 194 

integrator model for each individual subject. Multiplying this ratio over all trials, this means that speed 195 

misperception from a slow-speed prior is an overwhelmingly more likely explanation of subjects’ path 196 

integration biases than leaky integration (Fig. 3a, mean (± standard error) log-likelihood ratio across 197 

subjects: 66.6 ± 18.2). Both models had substantially greater likelihoods than the null model, with larger 198 

improvements when biases were larger since the null model could not explain any bias (Supplementary 199 

Fig. 7). Since the evidence supporting both the slow-speed prior and leaky integration models was 200 

correlated, we asked whether subjects’ behaviour may have been influenced by both. To test this, we fit a 201 

model that incorporated both exponential prior and leaky integration. This full model was not much better at 202 

explaining subjects’ responses than the slow-speed prior model (Supplementary Fig. 8). Moreover, for all 203 

subjects, the best-fit time constants of integration in the full model were much greater than the average trial 204 

duration (Supplementary Table 1), implying that integration was nearly perfect in this model. Therefore, 205 

leaky integration could not explain any appreciable variability in the data in excess of what was already 206 

explained by the slow-speed prior. 207 

 208 
We wanted to know why the slow-speed prior model was better at explaining path integration behaviour. A 209 

good behavioural model will believe that subjects should stop moving where they do stop. This means that 210 

the model’s beliefs about its position should be concentrated near the true target, even when the actual 211 

position has overshot. To evaluate this, we used the best-fit model parameters to reconstruct the subjects’ 212 

beliefs, given by the posterior distribution over their position throughout each trial as they steered towards 213 

the target. Belief trajectories implied by the two models during an example trial are shown in Figure 3b. 214 

Since the model has a cloud of uncertainty over position, the plots actually show this cloud of beliefs swept 215 

out over time. This is overlaid with the subject’s actual trajectory and the target position. On this trial, the 216 

beliefs implied by the slow-speed prior model (Fig. 3b – left) terminated near the target (ellipse contains 217 

68% of posterior density), indicating that the subject strongly (and wrongly) believed he steered to the target 218 

location. On the other hand, the leaky integrator model believes it completely missed the target (Fig. 3b – 219 

right), contradicting the basic premise that the subject is making a subjectively good decision. This 220 

difference between the models’ estimates of the final position was consistent across trials, as revealed by the 221 

much greater estimation error magnitudes for the leaky integrator model (Fig. 3c – grey level). Moreover, 222 

unlike the slow-speed prior model, the vector field of errors in the estimates generated by the leaky 223 

integrator model was non-random (Fig. 3c – arrows), betraying this model’s inability to fully account for the 224 

subject’s systematic errors. 225 

To assess the difference in the quality of fits of the two models, we compared the final position estimates 226 

generated by each of the two models against the target position. This comparison is similar to the one used 227 

to evaluate subjects’ behavioural responses (Fig. 1e), except that we now replace the subject’s actual 228 

position with the model estimates. We emphasize that the model estimates are meant to reflect subjects’ 229 

internal beliefs about their position (which should be nearly unbiased) rather than their actual positions 230 

(which we know are biased). For the example subject shown in figure 3d, it can be readily seen that the 231 
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estimates of the slow-speed prior model were in reasonably good agreement with target distances and 232 

angles. However, estimates generated by the leaky integrator model were still biased, and those biases were 233 

particularly large for nearby targets. Intuitively, this is because nearby targets only require short integrations, 234 

so the leak does not have time to take effect. Consequently, the leaky integrator model is objectively 235 

accurate at short times, and thus cannot account for the subjective biases in those trials, leading to a 236 

relatively poor fit. On the other hand, the slow-speed prior model attributes path integration bias to velocity 237 

underestimation, a bias which persists at all times and thus generalizes well across all trials. 238 

 

Figure 3. Model comparison and validation. a. The log-likelihood ratio for the slow-speed prior model (ℒ1) 

compared to the leaky integrator model (ℒ2) is plotted for all subjects. Error bars denote  1 standard deviation 

obtained by bootstrapping. b. Posterior probability distribution over position implied by the best-fit slow-speed prior 

(left, green) and leaky integrator (right, purple) models, swept over time during an example trial of the subject with 

the largest bias. The distributions at different time points were rescaled to the same height, so these plots reflect this 

subject’s relative beliefs about his location across the duration of the trial. Target location (yellow dot) and the 

actual trajectory (black line) have been overlaid. Yellow ellipses depict an isoprobability contour (68% confidence 

interval) of the model posteriors over position at the end of the trial. c. Vector field of errors in the mean estimate of 

final position across trials, for the two models. Error vectors of both models were rescaled to one-fifth of their actual 

length to minimize overlap. The spatial profiles of the error magnitude (Euclidean distance between target and mean 

estimated final position) for the two models are shown beneath the vector fields. Darker shadings correspond to 

larger errors. d. Model estimates of the radial distance (𝑟̂, top) and angle (𝜃̂, bottom) are plotted against target 

distances and angles for the subject in (b,c). Model estimates for each trial are shown as vertical bars centered on the 

mean, and 1 standard deviation in length. e. Bias in model estimates (termed ‘residual bias’) of radial distance (left) 

and angle (right) for the two models, obtained by a cross-validation procedure (Methods). Error bars denote 1 

standard error in mean obtained via bootstrapping. 

 239 
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We quantified the goodness-of-fit of the models by computing residual biases in the model estimates of 240 

radial distance and angle using a four-fold cross-validation procedure (Methods). These residual biases were 241 

not significantly different from unity across subjects for the slow-speed prior model (mean (± sem) residual 242 

radial bias=1.03 ± 0.04, p=0.27, t-test; residual angular bias=1.01 ± 0.1, p=0.36). On the other hand, 243 

residual biases of the leaky integrator model were significantly greater than unity (residual radial 244 

bias=1.09 ± 0.06, p=3.2x10-2, residual angular bias=1.31 ± 0.14, p=3.4x10-3). Therefore, the slow-speed 245 

prior model provided a much better account of subjects’ biases (Fig. 3e). 246 

Recent studies on path integration have modelled leak using space constants instead of time constants, so 247 

that the integration dynamics are only active during movement (Methods). This variation still performed 248 

worse in predicting subjects’ responses than the slow-speed prior model (Supplementary Fig. 9). This is 249 

not surprising because spatial leak suffers from the same problem responsible for the relatively poor 250 

performance of the model with temporal leak. 251 

Test of model predictions 252 

The likelihood comparison above clearly favors attributing the path integration bias to a slow-speed prior 253 

over leaky integration of velocity estimates. This makes new predictions, which we have tested 254 

experimentally by manipulating parameters of the task. One manipulation involved changing the reliability 255 

of optic flow by varying the density of the ground plane elements between two possible values (sparse and 256 

dense). A hallmark of Bayesian inference is that, for unimodal non-uniform priors and symmetric likelihood 257 

functions, the bias increases for less reliable observations. Therefore, if subjects had a slow-speed prior, 258 

sparse optic flow would increase how much they underestimate their velocity, leading to a larger path 259 

integration bias (Fig. 4a). However, if the prior is uniform, the density of optic flow would merely affect 260 

subjects’ uncertainty about their speeds while the instantaneous optic flow estimates themselves would still 261 

be unbiased under both conditions. The leaky integrator model thus predicts that changing the texture 262 

density would leave position bias unaffected. The performance of an example subject is shown in figure 4b. 263 

For this subject, sparsifying optic flow had a detrimental effect on behaviour as indicated by a steeper 264 

relationship between true and perceived distance moved as well as angle rotated. As before, we quantified 265 

the bias as the slope of this regression and found similar effects across subjects (Fig. 4c, Supplementary 266 

Fig. 10a). Consistent with the prediction of the slow-speed prior model, decreasing the density lead to a 267 

significantly greater bias both in distance moved (mean (± sem) radial bias, 𝑟 – high density: 1.27 ± 0.1; 268 

low density: 1.46 ± 0.1; p =2.5× 10−2, paired t-test) and in angle rotated (mean angular bias, 𝜃 – high 269 

density: 1.58 ± 0.1; low density: 2.13 ± 0.1; p=9.1x10–4). 270 

In a second manipulation, we imposed two different speed limits (slow and fast) on different trials, which we 271 

implemented by randomly switching the gain by which the joystick controlled velocity. To avoid inducing 272 

different effects on biases in distance and angle, both linear and angular velocities were scaled by the same 273 

gain factor (Methods). Since the leaky integrator model incorporates a uniform prior, subjects’ estimates of 274 

speeds will always be unbiased in this model. However, a fundamental feature of this model is that the 275 

integration error accumulates over time, so the condition with a lower speed limit is expected to lead to a 276 

larger positional bias due to increased travel time (Fig. 4d). On the other hand, for a Gaussian likelihood 277 

whose variance scales linearly with speed, an exponential slow-speed prior predicts that the velocity would 278 

be underestimated by the same multiplicative factor at all velocities. Therefore, the slow-speed prior model 279 

predicts that subjects will accurately perceive the relative change in their speeds and thus be biased to the 280 

same extent under both conditions. Note that this latter prediction strictly holds only under our assumptions 281 

about the shape of the likelihood function, and may not be applicable to alternative formulations of the 282 

model. However, the prediction of the leaky-integrator model’s speed dependence does not depend on the 283 

velocity likelihood, and can therefore be unambiguously tested. 284 
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Figure 4. Test of model predictions. a. Reliability of optic flow was manipulated by altering the density of ground 
plane elements. Decreasing the density will increase subjects’ bias only if they have a slow-speed prior. Therefore, the 
slow-speed prior model predicts an increase in path integration bias for the low density condition. b. Scatter plots 
showing the effect of density on radial and angular bias of one subject. c. Effect of density manipulation on radial 
(left) and angular (right) biases of individual subjects. Trials are colored according to density – red: high density trials, 
blue: low density trials. d. Subjects’ speed limit was manipulated by altering the gain of the joystick. Increasing speed 
will reduce integration time thereby reducing the cumulative leak. The leaky integrator model predicts that subjects’ 
biases will be reduced in the high-speed condition. Integration is perfect in the slow-speed prior model, so this 
manipulation is predicted to have no effect on subjects’ performance under the assumptions of our model (see main 
text). e. Scatter plots showing the effect of speed on distance and angle bias of one subject. f. Speed manipulation does 
not affect subjects’ biases in a systematic way. Dashed line represents unity slope (unbiased performance) and solid 
lines represent slopes of regression fits. Trials are colored according to speed – red: high speed trials, blue: low speed 
trials. 

 285 

We analysed subjects’ biases and found that their performance was, on average, unaffected by the speed 286 

manipulation (Fig. 4e-f, Supplementary Fig. 10b) both for distance (𝑟  – high speed: 1.33 ± 0.1; low 287 

speed: 1.38 ± 0.1; p=0.59, paired t-test) as well as angle (𝜃: high speed, 1.92 ± 0.1; low speed, 1.72 ±288 

0.1; p=0.15). This result once again argues against the leaky-integrator model. 289 
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Distance-dependent bias reversal 291 

Since subjects compute their position by integrating noisy velocity estimates, their position estimates are 292 

uncertain. When travelling modest distances, such as those tested in the above experiments, the integrated 293 

uncertainty in position is relatively small. Although we took this uncertainty into account, we could 294 

qualitatively explain overshooting solely in terms of a bias in the subject’s mean position estimates resulting 295 

from integrating biased velocity estimates. In this section, we show that when path integrating over larger 296 

distances, the influence of position uncertainty can produce a reversal in the pattern of bias — from 297 

overshooting to undershooting — and we provide experimental evidence for this phenomenon.   298 

Recall that the proposed framework assumes that subjects incorporate their knowledge of position 299 

uncertainty by tracking the expected reward of stopping at a given location. When this expected reward 300 

reaches its maximum, they stop moving. At any given moment during the trial, the expected reward is given 301 

by the overlap of the probability distribution over their position with the target. Let us examine how it 302 

should change as a function of their position, by considering uniform motion in one dimension for clarity. 303 

Subjects integrate both the mean (signal) and random fluctuations (“noise”) in their velocity estimates. If 304 

integration is leak-free, then their uncertainty in position would gradually keep building up over time 305 

(Methods – Equation 4).  The rate at which position uncertainty builds up depends on the nature of sensory 306 

noise (independent or temporally correlated) as well as ability to represent and integrate large uncertainties. 307 

Here, rather than positing a particular mechanism, we choose a phenomenological model for this 308 

uncertainty, assuming that the standard deviation σ of the position distribution grows as a power-law 309 

function of time t, as 𝜎(𝑡) ∝ 𝑡. For uniform motion, this can also be expressed as a distance-dependent 310 

scaling of the width with the same power-law exponent so that 𝜎(𝑟) ∝ 𝑟 for distance 𝑟 (Fig. 5a). A scaling 311 

exponent of  = 0.5 (Wiener process) would result from integrating velocity estimates with independent 312 

Gaussian noise. Other types of noise may yield smaller (sub-diffusion) or larger (super-diffusion) exponents, 313 

depending on whether variance in the position estimate (𝜎 2) scales faster or slower than the mean. We 314 

analysed how the expected reward should qualitatively depend on distance for a range of exponents. 315 

Intuitively, one would expect it to be greatest when the probability distribution over position is centered on 316 

the target. However, this is not always true. Figure 5b shows how the expected reward evolves with 317 

distance for near and far targets for one example case ( = 1.5). When steering to nearby targets, the built 318 

up uncertainty is relatively small so the expected reward is indeed greatest when the mean of the distribution 319 

over distance moved roughly matches the target distance. For faraway targets however, the expected reward 320 

actually peaks before reaching the target. This happens because, if the subject moves beyond that optimal 321 

distance, the probability distribution over their position becomes so wide that its overlap with the target 322 

begins to decrease. Therefore, when steering towards sufficiently distant targets, an ideal observer should 323 

stop short of the target (Fig. 5c).  324 

The precise extent of undershooting depends on the noise process, with larger exponents producing greater 325 

undershooting due to a faster build-up in uncertainty (Fig. 5d – top left). Furthermore, for exponents larger 326 

than one, the tendency to undershoot grows stronger with distance. Thus, potentially, large biases in path 327 

integration can stem solely from a subject hedging their bets against increasingly uncertain position 328 

estimates — even when those estimates are unbiased. We have already demonstrated that velocity, and 329 

consequently the distance moved, is likely underestimated due to a slow-speed prior (Fig. 5d – bottom left). 330 

The two factors will have opposing effects on path integration bias, with potentially different spatial 331 

dependences: whereas the slow-speed prior causes overshooting through a perceptual bias that scales 332 

linearly with distance, growing uncertainty does not alter the perceptual bias but generates an increasing 333 

tendency for responses to undershoot. This undershooting can increase linearly or supra-linearly depending 334 

on whether uncertainty scales slower ( < 1) or faster ( > 1) than a Weber law. The combined effect of the 335 

two factors is shown in Figure 5d (right). For sub-Weber law scaling in uncertainty, path integration bias 336 

will increase linearly with distance, consistently producing either overshooting or undershooting depending 337 
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on the relative strength of the two effects. For scaling exponents larger than one, the different spatial scaling 338 

from the slow-speed prior and from growing positional uncertainty — leads to a rather surprising prediction: 339 

when position uncertainty grows faster than the mean, bias in the subjects’ responses should gradually 340 

reverse from overshooting to undershooting when navigating to increasingly distant targets. 341 

 

Figure 5. Model explains bias reversal with distance. a. The width of the subjects’ probability distribution over 

their position (black) is modeled as a power law with exponent . The overlap (grey shade) of the probability 
distribution with the target (orange) corresponds to the subjects’ expected reward. b. Evolution of subjects’ expected 

reward when steering to a nearby (left) and distant (right) target for  = 1.5 and proportionality constant equal to one. 
Insets show probability distributions over position at three different locations indicated by solid circles of the 
corresponding color on the reward curve. The peaks of the reward curves correspond to the optimal response distance. 
Orange bars denote the width of the target and dashed vertical lines the target center. c. The optimal response distance 
as a function of target distance, for the above case. Dashed line on the diagonal indicates unbiased responses. d. The 
effect of position uncertainty (top) and the effect of slow-speed prior (bottom) combine to determine the model 
prediction for path integration bias, shown for various values of the power-law exponent (right). The interaction scales 
the optimal response distance by the slope Γ of the relation between actual and perceived distance moved. Dashed line 
on the diagonal indicates unbiased responses in all panels. e. Mean net distance moved by one subject in response to 
targets at five different distances. Grey solid line corresponds to the best-fit model. f. Grey circles denote mean 
responses of individual subjects. Black line corresponds to the subject-averaged response. g. Mean response of one 
subject under conditions of low-density (blue) and high-density (red) optic flow. Asterisks denote a significant 
difference between mean responses under the two conditions (2m: p=0.029, 4m: p=0.007, 32m: p=4.1x10–4, paired t-
test). h. Mean responses of individual subjects under the two conditions. Asterisks denote a significant difference 
between mean responses (across subjects) under the two conditions (2m: p=0.035, 32m: p=0.013, paired t-test). Solid 
lines correspond to subject-averaged response. (c-h) Black dashed lines have unit slope; (e, g) Error bars denote 
standard error of mean across trials.  
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Although the above prediction was discussed in the context of one-dimensional motion, it also holds for 344 

motion in two dimensions. In this case, both linear and angular components of motion are subject to the 345 

effects of growing uncertainty, and may eventually lead to undershooting both in radial as well as angular 346 

responses. To test whether there is such a bias reversal, we conducted an additional experiment in which we 347 

asked subjects to steer to targets that were much further away. Target locations were discretized and their 348 

distances were varied from 2m to 32m on a logarithmic scale (Methods). Since the limited viewing angle in 349 

our set up restricted the angular eccentricity of the targets, we did not test for bias reversal in the angular 350 

domain. Similar to our original experiment, subjects continued to exhibit a significant angular bias (𝜃 =351 

2.32 ± 0.6, p = 1.6 x 10-4, t-test, Supplementary Fig. 11), turning much more than required. On the other 352 

hand, the pattern of radial bias was strikingly consistent with our prediction. Figure 5e shows how the radial 353 

distance of an example subject scaled with target distance in this task. The subject exhibited overshooting in 354 

trials with nearby targets ([2, 4, 8, 16] m), as was observed in the original task, but this pattern of bias was 355 

replaced by significant undershooting to the farthest targets (32 m). Note that when steering to distant 356 

targets, the effect of the slow-speed prior would still persist but its effect is outweighed by that of increasing 357 

positional uncertainty. To quantify the relative strength of the two effects, we simultaneously fit a 358 

multiplicative constant 𝛤 and exponent  to the subject’s data (Methods – Equation 5). The multiplicative 359 

constant captures the linear effect of velocity underestimation that causes overshooting, while the exponent 360 

reveals the rate of scaling of uncertainty with distance that causes undershooting to faraway targets. Both 361 

parameters must be greater than unity in order to produce a reversal from overshooting to undershooting. 362 

This was indeed the case for this subject (Fig. 5e – grey curve; 𝛤 = 2.2,  = 2.4). A similar pattern of bias 363 

reversal was observed across subjects (Supplementary Fig. 12a;  𝛤 = 1.5 ± 0.2, p=3.6x10–5, t-test;  =364 

1.8 ± 0.4, p=8x10–5) and can be noticed in the subject-averaged responses (Fig. 5f). 365 

The undershooting observed for distant targets could simply have been due to motor fatigue. To test whether 366 

the bias was influenced by sensory uncertainty, we re-analysed our data by dividing the trials into two 367 

groups based on the density of optic flow cues. If sensory uncertainty contributes to undershooting, 368 

decreasing the reliability of sensory cues should cause greater undershooting. The behaviour of an example 369 

subject shown in Figure 5g confirms this assertion. When steering to the farthest target, this subject covered 370 

significantly less distance when the density of optic flow was reduced. Note that for nearby targets, the 371 

effect is reversed because the influence of the slow-speed prior is stronger than that of position uncertainty. 372 

These effects of density manipulation were observed across subjects (Fig. 5h; Supplementary Fig. 12b). 373 

Overall, our results suggest that prior expectations about self-motion velocity, and uncertainty in position 374 

due to accumulated uncertainty about optic flow, are largely responsible for bias in visual path integration. 375 
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DISCUSSION 377 

We have presented a unified framework that combines Bayesian inference, evidence integration, and the 378 

principle of utility maximization to explain human behaviour in a naturalistic navigation task. This 379 

framework yields a parsimonious account of bias in visually-guided path integration in which bias stems 380 

from prior expectations and sensory noise associated with self-motion. Our claim is based on four primary 381 

findings. First, when navigating modest distances using optic flow, humans overshoot the goal location, 382 

implying that they underestimated both their net translation and rotation. Second, analysis of subjects’ 383 

movement trajectories using a dynamic observer model revealed that their bias was more likely to originate 384 

from a slow-speed prior rather than forgetful integration of self-motion. Third, experimental outcomes of 385 

manipulating the reliability of self-motion cues and speed confirmed the predictions of the slow-speed prior 386 

model. Finally, when navigating long distances, the model predicts a possible reversal in the direction of 387 

bias due to the growing influence of uncertainty on the expected reward, a phenomenon that was confirmed 388 

experimentally. 389 

In order to study visual path integration, we used virtual reality to eliminate vestibular and proprioceptive 390 

inputs. Specifically, subjects used a joystick to steer to a cued target location based solely on optic flow. To 391 

perform accurately on this task, participants had to determine the location of the target, remember that 392 

location, and integrate their own movements until they reached that location. Each of those steps is a 393 

potential source of behavioural errors. However, there are several reasons why systematic errors seen in our 394 

data cannot be attributed to biased perception of the initial target location. First, we used stereoscopic stimuli 395 

to generate an immersive virtual environment with depth cues that facilitated judgement of target distances. 396 

Although distance estimates may still be distorted in virtual reality, the distortion is generally 397 

compressive32,33. This would cause subjects to underestimate target distances and always result in 398 

undershooting, rather than the overshooting observed in part of our data. Second, judging target angles is 399 

more straightforward and does not require depth cues, yet subjects exhibited a large angular bias in the task. 400 

Notably, introducing angular landmarks in the virtual environment abolished this angular bias. The 401 

landmarks themselves were uninformative about target angles, but helped obviate the need to integrate 402 

angular velocity by providing a direct estimate of the subject’s orientation in the virtual environment. Thus 403 

the large angular biases seen in the absence of landmarks must be related to the perception of optic flow 404 

cues.  Finally, and perhaps most importantly, manipulating the reliability of optic flow would not influence 405 

subjects’ perception of target location, yet this manipulation significantly altered their biases in path 406 

integration at all distance scales. Problems associated with retaining the target location in memory might 407 

lead to a random diffusion in the mental representation of its location over time on any given trial, but this 408 

process would be uncorrelated across trials and would only add to subjects’ response variability, not bias. 409 

Therefore, the behavioural bias seen in our task likely reflects error in estimating one’s own position, rather 410 

than difficulties associated with estimating or remembering the target location. 411 

Past studies on visual path integration employed visually simulated motion along a straight line or along 412 

predetermined curvilinear trajectories. In contrast, our experimental task allowed subjects to actively steer 413 

using two degrees of freedom allowing for precise control of their self-motion velocity at all times, as would 414 

be the case during natural foraging. This design was motivated by the need to engage neural mechanisms 415 

and computations that likely underlie path integration in the real world. Yet, our behavioural results are 416 

qualitatively similar to those of previous studies, even though those studies tested path integration along a 417 

one dimensional hallway. Specifically, one study that tested visual path integration over short distances 418 

found that subjects overshoot the target8 while studies that used long-range targets found the opposite10,19,21. 419 

To explain our subjects’ behaviour, we tested two different instantiations of a dynamic Bayesian observer 420 

model and found that bias in path integration appears to stem mainly from a slow-speed prior that causes 421 

subjects to underestimate their velocity. Unlike a prior over retinal speed28–31, the prior in our Bayesian 422 
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model corresponds to subjects’ prior expectation of their self-motion velocity. Nonetheless, the latter might 423 

be inherited from low-level sensory priors that govern human perception of local image velocities. 424 

Alternatively, the prior over self-motion velocity could reflect the statistics of sensory inputs experienced 425 

during natural self-motion, which is known to be biased towards slower velocities34. Regardless of its 426 

specific origins, this work demonstrates that sensory priors can have tangible consequences for complex 427 

dynamic behaviours such as path integration, well beyond the realm of traditional binary decision-making 428 

tasks. Although we focused on visual self-motion, this model is also applicable to other modalities. 429 

Availability of additional modalities should diminish the effect of the prior leading to reduced bias. Such a 430 

reduction has in fact been observed when path integrating using multimodal cues35–37. 431 

While the slow-speed prior can explain why subjects would travel beyond the goal, it cannot account for 432 

undershooting reported in previous studies that used distant goals10,19,21. However, analysis of our model 433 

revealed that when path integrating over longer distances, the effect of growing uncertainty can eventually 434 

override the effect of perceptual bias induced by prior expectations and cause undershooting in subjects’ 435 

responses. This is a spatial analog of a model that explains early abandonment on a waiting task as a rational 436 

response to increasing uncertainty about the next reward38. We tested this prediction and found that the 437 

pattern of bias changed from overshooting to undershooting, when navigating to increasingly distant targets. 438 

This phenomenon of bias-reversal is also discernable in the results of previous visual10,19,21 and non-439 

visual12,22 path integration studies. Traditional leaky integration models cannot explain why subjects would 440 

undershoot. To account for undershooting, such models have had to be modified to update distance-to-target 441 

rather than distance moved11. However, such a change of variable neither explains why subjects overshoot to 442 

relatively nearby goals, nor why the degree of undershooting is sensitive to the reliability of optic flow. Here 443 

we show that a distance-dependent reversal in the response bias naturally emerges when performing 444 

probabilistic inference over position under the influence of a slow-speed prior, to maximize expected 445 

reward. 446 

 447 

Recent path integration models based on iterative Bayesian estimation suggest that subjects may exploit 448 

trial-history to update an explicit prior over net distances and angles turned39,40. While such models can 449 

explain responses that exhibit a regression towards the mean of previously experienced movement distances 450 

and angles, they cannot account for the unidirectional response bias observed in many studies, including our 451 

own (Fig. 1e). Besides, those models do not consider the roles of speed perception and integration dynamics, 452 

and thus cannot describe path integration behaviour in novel, unexplored environments. Other models 453 

attribute bias in path integration primarily to either a path-dependent19–22 or temporal16–18 decay in 454 

integrating self-motion. However leaky integration cannot explain the effect of reliability of optic flow cues 455 

reported here. Moreover, it is worth noting that, in addition to the leak factor, a recent model of “leaky-456 

integration” incorporated a gain factor that rescaled subjects’ displacement in each step. The best-fit gain 457 

factors were generally less than unity19–22 which essentially amounts to velocity underestimation. Coupled 458 

with small leak rates (~0.01–0.02m-1) found in those studies, it is clear that the performance of that model 459 

for short-range targets is in fact dominated by velocity underestimation rather than leaky integration. 460 

 461 

Although the precise neural circuit underlying path integration has not been worked out, there is 462 

physiological evidence for near-perfect integration of visual motion cues by neurons in macaques41,42 463 

suggesting that our model is neurally plausible. Our work is also supported by recent behavioural accounts 464 

showing lossless evidence accumulation of temporally disjoint sensory inputs in rats25,43, humans25,44, and 465 

monkeys41,42 performing binary-decision tasks. Subjects may benefit from imperfect integration when the 466 

statistical structure of sensory inputs is unpredictable45,46 or when signal strength fluctuates wildly47,48. 467 

However, when sensory dynamics are known a priori or are predictable from physical laws, it makes sense 468 

that behaviour is limited by sensory inputs, rather than leaky integration. One limitation of this work is that 469 

it is based solely on the principle of probabilistic perceptual inference and ignores the costs incurred in 470 
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performing actions. Since navigation is effortful, future extensions should test whether the subjects also 471 

optimize their actions at finer timescales to minimize the total cost during goal-oriented navigation. 472 
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METHODS 567 
Behavioural experiments. Seven human subjects, five of whom were unaware of the purpose of the study, 568 

participated in the experiments. All experimental procedures were approved by the Institutional Review Board at 569 

Baylor College of Medicine and all subjects signed an approved consent form. Subjects used an analog joystick with 570 

two degrees of freedom and a circular displacement boundary to control their linear and angular speeds in a virtual 571 

environment. This virtual world comprised a ground plane whose textural elements had limited lifetime (~250ms) to 572 

avoid serving as landmarks. The ground plane was circular with a radius of 70m (near and far clipping planes at 5cm 573 

and 4000cm respectively), with the subject positioned at its center at the beginning of each trial. Each texture element 574 

was an isosceles triangle (base × height: 0.85 × 1.85 cm) that was randomly repositioned and reoriented at the end of 575 

its lifetime, making it impossible to use as a landmark. The stimulus was rendered as a red-green anaglyph and 576 

projected onto a large rectangular screen (width × height: 149 × 127 cm) positioned 67.5cm in front of the subject’s 577 

eyes. Subjects wore goggles fitted with Kodak Wratten filters (red #29 and green #61) to view the stimulus. The 578 

binocular crosstalk for the green and red channel was 1.7% and 2.3% respectively. Subjects pressed a button on the 579 

joystick to initiate each trial, and the task was to steer to a random target location that was cued briefly at the 580 

beginning of the trial (Fig. 1a). The target, a circle of radius 20cm whose luminance was matched to the texture 581 

elements, blinked at 5Hz and appeared at a random location between 𝜃 = ±42.5° of visual angle at a distance of 𝑟 =582 

0.7 − 6m relative to where the subject was stationed at the beginning of the trial. After one second, the target 583 

disappeared, which was a cue for the subject to start steering, and the joystick controller was activated.  584 

 585 

All seven subjects performed a total of 2000 trials equally spread across eight sessions. Prior to the first session, 586 

subjects were asked to perform around ten practice trials in which they steered to a visible target to familiarize 587 

themselves with joystick movements and the task structure. In four of the sessions (two of which contained angular 588 

landmarks in the form of a panoramic mountainous background), the maximum linear and angular speeds were fixed 589 

to 𝑣max = 2ms−1 and 𝜔max = 90°/s  respectively, with the floor density also held constant at 𝜌 = 50 elements/m2. 590 

In the remaining four sessions, trials with two different speed limits (𝑣max = 2ms−1 and 𝜔max = 90°/s; 𝑣max =591 

4ms−1 and 𝜔max = 180°/s) and two floor densities (𝜌 = 2 elements/m2 and 𝜌 = 50 elements/m2) were randomly 592 

interleaved.  593 

 594 

Six of the seven subjects participated in two additional experimental sessions (250 trials each). The first of these 595 

additional experiments was similar to the original experiment except that half the trials contained no optic flow cues, 596 

so subjects had to steer in complete darkness. In the second additional experiment, as before, subjects pressed a button 597 

on the joystick to initiate each trial. Targets appeared briefly at random locations sampled from a distribution identical 598 

to the original experiment. However, rather than actively steering to the target, they were passively transported along 599 

trajectories that took them through the target at one of two possible linear speeds (𝜈 = 2ms−1 or 4ms−1). Since 600 

trajectories necessarily passed through the target and the velocity was held constant throughout the trial, the angular 601 

velocity on each trial was constrained by the location of the target. Subjects were instructed to press the button when 602 

they believed they had reached the target. Therefore, in this experiment, subjects used the joystick only to initiate trials 603 

and register their responses.  604 

 605 

Furthermore, six subjects (five of whom did not participate in any of the above studies) were tested on an extended 606 

version of the original task wherein the targets were presented at distances of up to 32m. As before, subjects had to 607 

steer to a target location that was cued briefly for a period of 1 second at the beginning of the trial. However in this 608 

experiment, target locations were discretized to five possible distances (𝑟 = [2, 4, 8, 16, 32] m) and five possible 609 

angular eccentricities (θ = [0, 15, 30]) resulting in a total of 25 unique target locations. Subjects performed ten 610 

randomized repetitions of each location yielding a total of 250 trials. Trials with two different floor densities (𝜌 =611 

2 elements/m2 and 𝜌 = 50 elements/m2) were randomly interleaved. 612 

 613 

All stimuli were generated and rendered using C++ Open Graphics Library (OpenGL) by continuously repositioning 614 

the camera based on joystick inputs to update the visual scene at 60 Hz. The camera was positioned at a height of 1m 615 

above the ground plane. Spike2 software (Cambridge Electronic Design Ltd.) was used to record and store the 616 

subject’s linear and angular velocities, target locations, and all event markers for offline analysis at a sampling rate of 617 

833
1

3
 Hz. 618 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 20, 2017. ; https://doi.org/10.1101/191817doi: bioRxiv preprint 

https://doi.org/10.1101/191817


Estimation of bias. Behavioural error on each trial was quantified by computing the difference between the subject’s 619 

response position and the corresponding target position to yield an error vector 𝑒. Error magnitudes were computed as 620 

the Euclidean norm of the error vectors, and were convolved with a 50cm wide Gaussian kernel 𝑔(𝑥, 𝑦) to yield 621 

smoothed error magnitudes 𝑒𝑠(𝑥0,𝑦0) = ∑ 𝑔(𝑥 − 𝑥0,𝑦 − 𝑦0)𝑒(𝑥, 𝑦)𝑥,𝑦  for visualization. We regressed each subject’s 622 

response positions (𝑟̃, 𝜃̃) against target positions (𝑟, 𝜃) separately for the radial (𝑟̃ vs 𝑟) and angular (𝜃̃ vs 𝜃) co-623 

ordinates, and the radial and angular multiplicative biases (𝑟 and 𝜃) were quantified as the slope of the respective 624 

regressions. Quantifying the biases in this polar representation of the positions allowed us to qualitatively relate them 625 

to perceptual biases in linear and angular speeds — quantities that the subjects controlled using the joystick. 626 

 627 
Dynamic Bayesian observer model. To account for the pattern of behavioural results, we considered an observer 628 

model comprised of a Bayesian estimator that used noisy measurements 𝑚𝜈 and 𝑚𝜔 to decode linear and angular self-629 

motion velocities ν and 𝜔, which were then temporally integrated to dynamically update the subject’s position. We 630 

parameterized the model by making the following three assumptions: First, we chose an exponential function to 631 

describe the priors over both linear and angular velocities:  𝑝(𝜈) = 𝑒𝑎𝜈|𝜈| and 𝑝(𝜔) = 𝑒𝑎𝜔|𝜔|. Second, likelihood 632 

functions 𝑝(𝑚𝜈|𝜈) and 𝑝(𝑚𝜔|𝜔) were assumed to be Gaussian, centered around the respective measurements mν and 633 

mω, with variances proportional to the magnitude of the measurement: Var(𝑚𝜈) = 𝑏𝜈|𝑚𝜈| and  Var(𝑚𝜔) = 𝑏𝜔|𝑚𝜔|. 634 

Under these conditions, it can be shown that the means and variances of the maximum a posteriori estimates 𝜈̂  and 𝜔̂  635 

are given by30: 636 

E[𝜈̂| 𝑚𝜈] = 𝛽𝜈 𝑚𝜈;  E[𝜔̂|𝑚𝜔] = 𝛽𝜔  𝑚𝜔 (1.1) 

 637 

Var[𝜈̂| 𝑚𝜈] ≈ 𝛽𝜈
2 Var(𝑚𝜈);  Var[𝜔̂|𝑚𝜔] ≈ 𝛽𝜔

2  Var(𝑚𝜔) (1.2) 

where 𝛽𝜈 = 1 + 𝑎𝜈𝑏𝜈 and 𝛽𝜔 = 1 + 𝑎𝜔𝑏𝜔 have a straight-forward interpretation in the form of multiplicative biases 638 

in the subjects’ estimates of their linear and angular speeds respectively. Note that a flat prior corresponds to an 639 

exponent of zero yielding an unbiased estimate, while negative/positive values of the exponents would result in 640 

under/overestimation of the speeds. The final assumption pertains to the nature of the integrator that computes position 641 

from speed. We assume that the integration process is governed by two independent leak time constants 𝜏𝑑 and 𝜏𝜑 that 642 

specify the timescales of integration of estimated linear and angular speeds to compute distance 𝑑 and heading 𝜑 643 

respectively: 644 

𝑑̇ = −𝑑(𝑡)/𝜏𝑑 +  𝜈̂(𝑡); 𝜑̇ = −𝜑(𝑡)/𝜏𝜑 +  𝜔̂(𝑡) (2.1) 

The mean distance and heading at each time point can be determined by convolving the mean velocity estimates with 645 

an exponential kernel: E[𝑑̂(𝑡)] = 𝑒−𝑡/𝜏𝑑 ∘ E[𝜈̂(𝑡)] and E[𝜑̂(𝑡)] = 𝑒−𝑡/𝜏𝜑 ∘ E[𝜔̂(𝑡)] where the expectations are taken 646 

over the corresponding posterior probability distributions. Likewise, if noise in the velocity measurements is 647 

temporally uncorrelated, the variance of the distance and estimates can be expressed in terms of the variances of the 648 

velocity estimates as: Var[𝑑̂(𝑡)] = 𝑒−𝑡/𝜏𝑑 ∘ Var[𝜈̂(𝑡)] and Var[𝜑̂(𝑡)] = 𝑒−𝑡/𝜏𝜑 ∘ Var[𝜔̂(𝑡)]. Thus, in this case, both 649 

mean and variance of the integrated estimates will share the same temporal dynamics. Note that the mean estimates 650 

E[𝑑̂(𝑡)] and E[𝜑̂(𝑡)] will be accurate in the limit of large time constants (perfect integration), but are misestimated if 651 

the time constants are comparable to travel time, 𝑇. Since the timecourse of distance and heading together determine 652 

position, it follows that the subjects’ mean estimates of their linear and angular coordinates (𝑟̂ and 𝜃̂) will also be 653 

different from their actual values (𝑟 and 𝜃) when 𝜏 ≈ 𝑇.  654 

We also analysed a variation of the leaky integration model in which the leak was implemented using space constants 655 

𝑑 and 𝜑 according to: 656 

𝑑̇ = −𝜈̂(𝑡)𝑑(𝑡)/𝑑 + 𝜈̂(𝑡);  𝜑̇ = −𝜔̂(𝑡)𝜑(𝑡)/𝜑 + 𝜔̂(𝑡) (2.2) 

 657 

Note that unlike the temporal leak model in Equation 2.1, this model only integrates when velocity is non-zero. 658 

Therefore position is only updated during movement resulting in estimates that are robust in time. 659 
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Model fitting. In order to determine the key factor underlying subjects’ biases, we fit two different variants of the 660 

model: (i) A ‘slow-speed prior model’ (ℳ1) in which the integration was assumed to be perfect (𝜏𝑑 = 𝜏𝜑 = ∞) and 661 

(ii) a ‘leaky integration model’ (ℳ2) where the prior was held flat (𝑎𝜈 = 𝑎𝜔 = 0). These models represent the two 662 

extreme scenarios in which bias in path integration is attributed exclusively to speed misperception and forgetful 663 

evidence accumulation, respectively. The models both had four parameters each: Width parameters (𝑏 and 𝑏)  of the 664 

two likelihood functions to represent how fast the respective widths scale with the magnitude of linear and angular 665 

velocity measurements, in addition to either two exponents (𝑎𝜈 and 𝑎𝜔) to represent priors in ℳ1  or two time 666 

constants (𝜏𝑑 and 𝜏𝜑) to represent the degree of leak in ℳ2. Since subjects’ position estimates are probabilistic, we fit 667 

model parameters 𝜓 by taking both mean and uncertainty of position into account – by maximising the expected 668 

reward, which is essentially, the probability that the subjects believed themselves to be within the target at the end of 669 

each trial: 670 

ℒℳ =
argmax

𝜓
∏ ∫ 𝑃 (𝐱(𝑖)|𝐱̇1,…,𝑇

(𝑖)
)

∞

−∞ 𝟙𝑄(𝐱)𝑑𝐱𝑁
𝑖=1   (3) 

where 𝐱 is a vector that denotes position on the horizontal plane, 𝑃(𝐱(𝑖)|𝐱̇1,…,𝑇
(𝑖)

) is the probability distribution over the 671 

subject’s stopping position on the ith trial conditioned on the path taken in that trial, 𝑇 is the duration of that trial, 672 

𝟙𝑄(𝐱) is the indicator function which is equal to 1 for all values of 𝐱 that fall within the target Q and zero everywhere 673 

else, ℒℳ denotes the likelihood of model ℳ with the best-fit parameters, and model parameters 𝜓 ∋ {𝑎𝜈, 𝑎𝜔 ,𝑏 ,𝑏} 674 

and {𝑏, 𝑏,𝜏𝑑 , 𝜏𝜑} for ℳ1 and ℳ2 respectively. We fit two more models in addition to the above: a ‘null’ model ℳ0  675 

that had only two free parameters –  𝜓 ∋ {𝑏 ,𝑏} – essentially attributing the biases in subjects’ position estimates 676 

entirely to random variability in their self-motion speed estimates, and a ‘full’ model ℳ12 in which all six model 677 

parameters were free such that 𝜓 ∋ {𝑎𝜈, 𝑎𝜔 ,𝑏 ,𝑏 ,𝜏𝑑 , 𝜏𝜑}. 678 

Model comparison and validation. For each subject, we estimated the likelihoods of all four models – the slow-679 

speed prior model (ℒ1), leaky integration model (ℒ2), the null model (ℒ0) and the full model (ℒ12 ) – by fitting the 680 

corresponding model parameters to the subject’s response trajectories from all trials as explained above. Additionally, 681 

for each trial, we generated the subjects’ believed trajectories implied by the best-fit parameters for both models. We 682 

then computed the “residual bias” for both models by regressing the final position estimates corresponding to the 683 

resulting trajectories against the target positions both for linear and angular co-ordinates. Prior to doing the regression, 684 

we used a four-fold cross-validation procedure in which we fit both models to 75% of the trials at a time (training set) 685 

and generated model estimates for the remaining trials (test set) using the learned model parameters, to avoid 686 

overfitting. We repeated this procedure four times so that each trial was allocated to the test set exactly once. We then 687 

quantified the residual bias by performing linear regression on the pooled model estimates from all the four non-688 

overlapping test datasets. 689 

 690 

Test of model predictions. Fitting and comparison of the two models described above was done using behavioural 691 

data collected during the sessions when the ground plane density (𝜌) and speed limits (𝜈𝑚𝑎𝑥 and 𝜔𝑚𝑎𝑥) were held 692 

fixed. But the models make distinct predictions for how bias would be affected by the latter quantities, so we 693 

manipulated both of those quantities in a separate experiment. For each subject, we performed linear regression and 694 

quantified bias as the regression slope. For estimating the effect of density manipulation, we collapsed trials across 695 

both speeds. Similarly, the effect of speed manipulation was analysed by combining trials from the two densities.  696 

Modeling position uncertainty. Since position is estimated by integrating velocity, uncertainty in velocity estimates 697 

will accumulate over time, leading to growing uncertainty in position estimates. If integration is leaky, noise will only 698 

accumulate over the time constant of integration, causing position uncertainty to eventually asymptote to a fixed 699 

value. However, if the integration is perfect, noise will accumulate perpetually leading to uncertainty that grows with 700 

time. Let 𝑟(𝑇) denote the subject’s one-dimensional position estimate at time T. If 𝜈(𝑡) denotes subject’s 701 

instantaneous velocity estimate, we have: 702 
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𝑟(𝑇) = ∫ 𝜈(𝑡)𝑑𝑡
𝑇

0
+ ∫ 𝜂(𝑡)𝑑𝑡

𝑇

0
 

(4) 

where 𝜂(𝑡) represents a noise in the velocity estimate and the integral of this noise corresponds to a random walk. If 703 

noise has zero mean, the subject’s mean position estimate 〈𝑟(𝑇)〉 is not affected. However, the noise variance of 704 

position estimate 𝜎2 = 〈(𝛿𝑟)2〉 will grow with time. For integration of temporally uncorrelated noise, the variance of 705 

position uncertainty is proportional to time T. We postulate that uncertainty in position 𝛿𝑟, will be proportional to 𝑇 706 

for some exponent . Large exponents may occur due to temporal correlations, or computational constraints within the 707 

system. For the case of uniform motion, 𝜈(𝑡) = 𝜈, the mean position estimate is 〈𝑟(𝑇)〉 = 〈∫ 𝜈𝑑𝑡
𝑇

0
〉 = 𝜈𝑇. Since mean 708 

position then scales linearly with time, position uncertainty can be expressed in terms of position as 𝜎(𝑟) = 𝑘𝑟 for 709 

some proportionality constant k . 710 

Fitting distance-dependent bias reversal. To simultaneously quantify the effects of position bias (due to velocity 711 

underestimation) and position uncertainty leading to a distance-dependent bias-reversal, we modeled the subject’s 712 

radial distance response as: 713 

𝑟̂𝑖 =  
argmax

𝑟𝑖
∫ 𝑃(𝑟𝑖|𝑘, 𝛾)

∞

−∞

𝟙𝑄(𝑟)𝑑𝑟 (5) 

where r̂i is the model estimated radial distance on the ith trial, 𝑃(𝑟𝑖|𝑘,) ~ 𝒩(𝑟𝑖 , 𝑘𝑟𝑖
) is the modeled probability 714 

distribution over the subject’s position, 𝟙𝑄(𝑟) is the indicator function which is equal to 1 for all values of 𝑟 within the 715 
target Q and zero otherwise, and  is a multiplicative constant that captures multiplicative bias in the subject’s mean 716 
position estimate. If the mean position is underestimated, the multiplicative bias should be greater than unity because 717 
the subject would respond by overshooting. The integral on the right-hand side represents the subject’s belief that 718 
he/she is on target, and captures the effect of position uncertainty, whereas the multiplicative constant captures the 719 
bias in mean position induced by prior expectations of self-motion velocity. For each subject, we fit the model 720 

parameters , , and k  by minimizing the squared-error between the radial distance of the model and the subject’s 721 

actual response across trials according to 
argmin

, , 𝑘
∑ (𝑟̂𝑖 − 𝑟𝑖)2𝑁

𝑖=1  where N is the total number of trials.  722 

 723 
Data and Code availability. The datasets generated in this study and code to analyse them are available from the 724 
corresponding author on request. 725 
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