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Abstract10

Understanding the relationship between external stimuli and the spiking activity of cortical11

populations is a central problem in neuroscience. Dense recurrent connectivity in local cor-12

tical circuits can lead to counterintuitive response properties, raising the question of whether13

there are simple arithmetical rules for relating circuits’ connectivity structure to their response14

properties. One such arithmetic is provided by the mean field theory of balanced networks,15

which is derived in a limit where excitatory and inhibitory synaptic currents precisely balance16

on average. However, balanced network theory is not applicable to some biologically relevant17

connectivity structures. We show that cortical circuits with such structure are susceptible to18

an amplification mechanism arising when excitatory-inhibitory balance is broken at the level of19

local subpopulations, but maintained at a global level. This amplification, which can be quan-20

tified by a linear correction to the classical mean field theory of balanced networks, explains21

several response properties observed in cortical recordings.22

1 Introduction23

Understanding of how the brain encodes and processes stimuli is a central problem in neuro-24

science. Information about a sensory stimulus is passed along a hierarchy of neural populations,25

from subcortical areas to the cerebral cortex where it propagates through multiple cortical areas26

and layers. Within each layer, lateral synaptic connectivity shapes the response to synaptic in-27

put from upstream layers and populations. In a similar manner, lateral connectivity shapes the28

response of cortical populations to artificial, optogenetic stimuli. The densely recurrent struc-29

ture of local cortical circuits can lead to counter-intuitive response properties [57, 41, 2, 43, 10],30

making it difficult to predict or interpret a population’s response to natural or artificial stimuli.31

This raises the question of whether there are underlying arithmetic principles through which one32

can understand the relationship between a local circuit’s connectivity structure and its response33

properties.34

In principle this relationship could be deduced from detailed computer simulations of the35

neurons and synapses that comprise the circuit. In practice, such detailed simulations can be36
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computationally expensive, depend on a large number of unconstrained physiological param-37

eters, and their complexity can make it difficult to pinpoint mechanisms underlying observed38

phenomena. In many cases, however, one is not interested in how the response of each neuron is39

related to the detailed connectivity between every pair of neurons. Relevant questions are often40

more macroscopic in nature, e.g. “How does increased excitation to population A affect the41

average firing rate of neurons in population B?” For such questions, it is sufficient to establish a42

relationship between macroscopic connectivity structure and macroscopic response properties.43

One such approach is provided by the mean-field theory of balanced networks [58, 59, 48,44

45, 30], which is derived in the limit of a large number of neurons and a resulting precise45

balance of strong excitation with strong inhibition. This notion of precise balance implies a46

simple relationship between the macroscopic structure of connectivity and firing rates, and47

balanced network models naturally produce the asynchronous, irregular spiking activity that48

is characteristic of cortical recordings [58, 59, 47, 49]. However, classical balanced network49

theory has some critical limitations. While cortical circuits do appear to balance excitation50

with inhibition, this balance is not always as precise and spike trains are not as asynchronous51

as the theory predicts [20, 40, 11, 12, 37, 14, 16]. Moreover, precise balance is mathematically52

impossible under some biologically relevant connectivity structures [48, 45, 30], implying that53

the classical theory of balanced networks is limited in its ability to model the complexity of real54

cortical circuits.55

We show that cortical circuits with structure that is incompatible with balance are suscep-56

tible to an amplification mechanism arising when excitatory-inhibitory balance is broken at the57

level of local subpopulations, but maintained at a global level. This mechanism of “imbalanced58

amplification” can be quantified by a linear, finite-size correction to the classical mean field59

theory of balanced networks that accounts for imperfect balance and local imbalance. Through60

several examples, we show that imbalanced amplification explains several experimentally ob-61

served cortical responses to natural and artificial stimuli.62

2 Results63

2.1 The arithmetic of imprecise balance in cortical circuits.64

We begin by reviewing and demonstrating the classical mean-field theory of balanced networks65

and a linear correction to the large network limit that the theory depends on. A typical cortical66

neuron receives synaptic projections from thousands of neurons in other cortical layers, cortical67

areas or thalamus. These long range projections are largely excitatory and provide enough68

excitation for the postsynaptic neuron to spike at a much higher rate than the sparse spiking69

typically observed in cortex. The notion that excitation to cortical populations can be excessively70

strong has been posed in numerous studies and is typically resolved by accounting for local,71

lateral synaptic input that is net-inhibitory and partially cancels the strong, net-excitatory72

external synaptic input [19, 53, 58, 3, 51, 41]. Balanced network theory takes this cancellation73

to its extreme by considering the limit of large external, feedforward synaptic input that is74

canceled by similarly large local, recurrent synaptic input. In this limit, a linear mean-field75

analysis determines population-averaged firing rates in terms of the macroscopic connectivity76

structure of the network [58, 59].77

To demonstrate these notions, we first simulated a recurrent network of NE = 4000 excita-78

tory (population E) and NI = 1000 inhibitory spiking neurons (population I) receiving synaptic79

connections from an “external” population (X) of NX = 4000 excitatory neurons modeled as80

Poisson processes. Cortical circuits are often probed using optogenetic methods to stimulate or81

suppress targeted neuronal sub-populations [7, 15]. As a simple model of optogenetic stimulation82

of cortical pyramidal neurons, we added an extra inward current to all neurons in population83

E halfway through the simulation (Fig. 1a). Neurons in the local population (E and I) were84
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Figure 1: Imprecise balance under optogenetic stimulation. a) Schematic. A population of recur-
rently connected excitatory (red) and inhibitory (blue) spiking neuron models receive synaptic input from
an external population (X; green) of Poisson-spiking neurons. Optogenetic stimulation of excitatory neu-
rons was modeled by an extra inward current to the excitatory population at 5s. b) Spike rasters from
50 randomly selected excitatory (red) and inhibitory (blue) neurons from recurrent network. c) Average
firing rate of excitatory (red) and inhibitory (blue) neurons in the recurrent network from simualtions (light
solid), from the balanced network approximation (Eq. (3); solid dark) and from the corrected approxima-
tion (Eq. (4); dashed). d) Mean synaptic currents to 200 randomly selected excitatory neurons in the
recurrent network from external inputs (X; green), from the local population (E + I; purple) and the to-
tal synaptic current (black). Currents are measured in units of the neurons’ rheobase here and elsewhere
(rheobase/Cm=10.5 V/s). e) Mean firing rates plotted against mean input currents to all neurons in popula-
tions E and I (gray dots) and a rectified linear fit to their relationship (black line). f) Mean firing rates from
identical simulations without stimulation except the total number of neurons, N , in the recurrent network
was modulated while scaling synaptic weights and connection probabilities so that ε ∼ 1/

√
N (see Methods).

Solid light curves are from simulations, solid dark from Eq. (3), and dashed from Eq. (4).

modeled using the adaptive exponential integrate-and-fire (AdEx) model, which accurately cap-85

tures the responses of real cortical neurons [8, 25, 26]. Connectivity was random with each86

neuron receiving 800 synaptic inputs on average and postsynaptic potential amplitudes between87

0.19 and 1.0 mV in amplitude. The recurrent network produced asynchronous, irregular spik-88

ing (Fig. 1b), similar to that observed in cortical recordings [53, 52, 47, 17]. Firing rates in89

populations E and I were similar in magnitude to those in population X and were increased90

by optogenetic stimulation (Fig. 1c). As predicted by balanced network theory, local synaptic91

input (from E and I combined) was net-inhibitory and approximately canceled the external92

input from population X and artificial stimulation combined (Fig. 1d).93

2.1.1 A review of the mean field theory of balanced networks94

To capture the notion that the net external synaptic input to neurons is strong, we define the95

small number,96

ε =
1

KEXJEX
,

where KEX = pEXNX is the average number of external synaptic projections received by each97

neuron in E from all neurons in X, pEX is connection probability, and JEX is the synaptic98

strength of each connection. Specifically, JEX is the total postsynaptic current induced in a99

postsynaptic neuron in E by a single spike in a presynaptic neuron in X. Hence, 1/ε quantifies100

the synaptic current that would be induced in each neuron in E (on average) if every neuron in101

X spiked once simultaneously. Using this convention, the mean synaptic input to each neuron102
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in populations E and I from all sources can be written in vector form as103

I =
1

ε
[Wr + X]. (1)

where I = [IE II ]
T (superscript T denotes the transpose) is the vector of mean synaptic input104

to neurons in each population and similarly for their mean rates, r = [rE rI ]
T . The rescaled105

external synaptic input, X = [XE XI ]
T , is given by106

X = WXrX +

[
s
0

]
.

where rX is the average rate of neurons in population X and s/ε is the strength of the inward107

current induced by optogenetic stimulation (s = 0 when stimulation is off). The recurrent and108

feedforward mean-field connectivity matrices are given by109

W =

[
wEE wEI
wIE wII

]
and WX =

[
wEX
wIX

]
. (2)

respectively where wab = KabJab/(KEXJEX) quantifies the relative number, Kab = pabNb, and110

strength, Jab, of synaptic connections from population b to a. To achieve moderate firing rates111

when ε is small, local input, Wr, must be net-inhibitory and partially cancel the strong external112

excitation, X, in Eq. (1).113

Balanced network theory [58, 59] takes this cancellation to its extreme by considering the114

limit of large number of neurons, N = NE +NI , while scaling connection strengths and proba-115

bilities in such a way that ε ∼ O(1/
√
N)→ 0. Under this scaling, Eq. (1) would seem to imply116

that mean synaptic currents diverge in the limit, but this divergence is avoided in balanced117

networks by a precise cancellation between external and recurrent synaptic input. To achieve118

this cancellation, firing rates must satisfy the mean-field balance equation,119

Wr + X = 0

in the large N limit, so that [58, 59, 48, 45, 30]120

r = −W−1X. (3)

Hence, balanced network theory provides a closed form, linear expression for firing rates in121

the large network limit. Generally speaking, the firing rate of a neuron depends nonlinearly122

on the mean and variance of its input current [3, 9, 46]. Notably, however, the derivation of123

the fixed point in Eq. (3) did not require us to specify the exact form of this dependence.124

Instead, Eq. (3) represents the unique fixed point firing rates for which synaptic currents remain125

bounded as N → ∞. More specifically, if Eq. (3) is not satisfied as N → ∞ then ‖I‖ → ∞126

(where ‖ · ‖ is the Euclidean norm). The existence of this fixed point does not guarantee that it127

is stable. Precise, general conditions on the accuracy of Eq. (3) for spiking network models are128

not known and the investigation of such conditions is outside the scope of this study. However,129

the approximation tends to be accurate in the N →∞ limit whenever all eigenvalues of W have130

negative real part, the solution in Eq. (3) is strictly positive, and inhibitory synaptic kinetics are131

sufficiently fast [58, 59, 46, 32, 48, 45, 30]. Indeed, Eq. (3) provides a reasonable, but imperfect132

approximation to firing rates in our spiking network simulation (Fig. 1c, compare light and dark133

solid).134

Balanced network theory has some critical limitations. Local cortical circuits are, of course,135

finite in size so the N →∞ (equivalently ε→ 0) limit may not be justified. Moreover, excitation136

and inhibition in cortex may not be as perfectly balanced and spike trains not as asynchronous137

as predicted by balanced network theory [20, 40, 11, 12, 55, 37, 14, 16]. More importantly,138

under many biologically relevant connectivity structures, precise cancellation cannot be realized139

so Eq. (3) cannot even be applied [48, 45, 30]. We next review a simple, linear correction to140

Eq. (4) that partially resolves these issues.141
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2.1.2 A linear correction to precise balance142

A correction to Eq. (3) can be obtained by considering ε non-zero, but this requires making143

assumptions on the relationship between neurons’ input statistics and firing rates. A simple144

approximation is obtained by assuming that population-averaged firing rates, r, depend only on145

population-averaged mean inputs, I, yielding the fixed points problem r = f(I) = f([Wr+X]/ε)146

where f is the population-level f-I curve. When f is an increasing function over relevant ranges147

of I, this fixed point equation can be re-written as148

Wr + X = εf−1(r).

Hence, in strongly coupled networks (ε small), the shape of f-I curves has a small effect on149

steady-state firing rates under such an approximation. Indeed, in the ε→ 0 limit, the f-I curve150

has no effect and firing rates are determined by Eq. (3). This conclusion easily generalizes to151

the case where f also depends on the average temporal variance of neurons’ inputs.152

A simple case of this approximation is obtained by using a rectified linear approximation,153

r = g[I]+ where [·]+ denotes the positive part. We fit such a function to the relationship154

between neurons’ mean synaptic inputs and firing rates from our spiking network simulation155

(Fig. 1e). Assuming that the average firing rates of all populations are positive, this rectified156

linear approximation produces a linear rate model [13] with mean firing rates given by solving157

Wr + X = ε/g r to obtain158

r = [εD −W ]
−1

X (4)

where159

D =

[
1/g 0
0 1/g

]
.

The AdEx neuron model used in our simulations has a nonlinear f-I curve (Fig. 1e; gray dots)160

and its firing rate depends on all statistics of its input, not just the mean [8, 21]. Nevertheless,161

the linear approximation in Eq. (4) was accurate in predicting firing rates in our simulations162

(Fig. 1c, solid), outperforming the balanced network approximation from Eq. (3). This can be163

explained by the fact that the balanced approximation in Eq. (3) is already somewhat accurate164

and the linear approximation in Eq. (4) corrects for some of the error introduced by imperfect165

balance, even though the true dependence of r on I is nonlinear.166

To further investigate the relative accuracy of Eqs. (3) and (4), we repeated the spiking167

network simulations from Fig. 1a-d while proportionally scaling the number of neurons (NE ,168

NI , and NX) in each population and scaling connection weights and probabilities in such a169

way that ε ∼ 1/
√
N (see Methods). As predicted by balanced network theory, excitatory and170

inhibitory firing rates increased toward the limit in Eq. (3) (Fig. 1f, compare light and dark solid171

lines). The linear correction in Eq. (4) tracks this increase in firing rates and is more accurate172

than the approximation in Eq. (3), particularly for smaller N (Fig. 1f, dashed). It is worth173

noting that, in applying Eq. (4) to obtain the dashed curve in Fig. 1f, we fixed the value of g to174

the one obtained from the simulation in Figs. 1a-e. Hence, a single estimate of the gain yields175

an accurate approximation even under different parameter values.176

The predictive power of Eq. (4) in these examples is, of course, limited by the fact that it was177

only applied after estimating the gain of the neurons using firing rates obtained in simulations.178

Moreover, highly nonlinear f-I curves could introduce additional error. However, the purpose of179

Eq. (4) in this work is to provide a first-order approximation to and general understanding of180

firing rates in networks under which Eq. (3) cannot be applied. For these purposes, Eq. (4) is181

sufficient.182
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Figure 2: Imbalanced amplification and suppression under partial optogenetic stimulation.
Same as Fig. 2 except the inward current was only provided to 20% of the excitatory neurons, modeling
ChR2-expressing pyramidal cells. Firing rates of and input current to excitatory neurons are shown separately
for ChR2-expressing (c,d) and non-expressing (e,f) neurons, as well as the average over all neurons (g,h).
Firing rates predicted by Eq. (3) are not shown in c and e because Eq. (3) is not applicable to those cases.

2.2 Imbalanced amplification under partial optogenetic stimulation183

We next show that a more realistic model of optogenetic stimulation breaks the classical balanced184

state, providing a demonstrative and experimentally relevant example of imbalanced amplifica-185

tion and suppression that explains phenomena observed in recordings from mouse somatosensory186

cortex.187

2.2.1 Firing rates are increased by stimulating fewer neurons188

The model of optogenetic stimulation considered in Fig. 1 is somewhat inaccurate since opto-189

genetic stimulation of excitatory neurons is often incomplete. For example, only a fraction of190

cortical pyramidal neurons express the channelrhodopsin 2 (ChR2) protein targeted in many191

optogenetic experiments [7, 42, 44, 2]. To more accurately model optogenetic stimulation, we192

modified the example above so the extra inward current was provided to only 20% of the ex-193

citatory neurons (Fig. 2a), modeling ChR2-expressing pyramidal cells. This change produced194

surprising results. The ChR2-expressing neurons increased their firing rates by a larger amount195

than they did when all excitatory neurons received the current (Fig. 2b,c; compare to Fig. 1b,c).196

Hence, counterintuitively, stimulating fewer neurons actually amplifies the effects of stimulation197

on the targeted cells. In contrast, non-expressing excitatory neurons were suppressed during198

stimulation and inhibitory neurons increased their rates, but by a smaller amount than they did199

under complete stimulation (Fig. 2e; compare to Fig. 1c).200

Similar effects were observed in experiments by Adesnik and Scanziani [2]. In that study,201

pyramidal neurons in layers (L) 2/3 of mouse somatosensory cortex (S1) were stimulated opto-202

genetically, but only about 23% of the pyramidal neurons expressed ChR2. During stimulation,203

non-expressing L2/3 pyramidal neurons were suppressed and inhibitory synaptic currents in-204

creased, implying an increase in inhibitory neuron firing rates.205

To understand these effects, we first extended the mean-field theory above to account for206

multiple subpopulations by defining207

r =

 rexp
rnexp
rI
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to be the vector of average firing rates for the ChR2-expressing (exp), non-expressing (nexp)208

excitatory neurons and inhibitory (I) neurons. The vector of average input to the network is209

again given by Eq. (1) where210

X = WXrX +

 s
0
0

 ,
WX = [wEX wEX wIX ]T ,211

W =

 qwEE (1− q)wEE wEI
qwEE (1− q)wEE wEI
qwIE (1− q)wIE wII


and q = 0.2 represents the proportion of neurons that express ChR2.212

Importantly, W is singular (i.e., not invertible), so classical balanced network theory fails213

for this example since Eq. (3) cannot be evaluated. More specifically, it is impossible for I in214

Eq. (1) to remain finite as ε → 0 since there is no vector, r, such that Wr = −X. Intuitively,215

this can be understood by noting that expressing and non-expressing excitatory neurons receive216

the same local input on average (Fig. 2d,f, purple), since local connectivity is not specific to217

ChR2 expression, but they receive different external input during stimulation (Fig. 2d,f, green).218

Therefore, local synaptic input cannot simultaneously cancel the external input to both sub-219

populations, so the precise cancellation required by classical balanced network theory cannot be220

achieved (Fig. 2d,f, black). A similar mechanism has been used to explain a lack of cancellation221

between positive and negative correlations in balanced networks [60, 49].222

2.2.2 Amplification in the nullspace: a general analysis223

We now give a general analysis of network responses when W is singular. The example of partial224

optogenetic stimulation is then considered as a special case. If W is a singular matrix then only225

vectors, X, that are in the column space of W admit solutions to Wr + X = 0. The column226

space of W is defined as the linear space of all vectors, u, such that u = Wr for some r. The227

column space of a matrix, W , is the orthogonal complement of the nullspace of WT . We can228

therefore decompose229

X = X0 + X1

where X0 = projN(WT ) X is the projection of X onto the nullspace of WT and X1 = projC(W ) X230

is the projection onto the column space of W . Moreover, note that projN(WT )Wr = 0 since Wr231

is in the column space of W . Therefore, the projection of the total input onto the nullspace of232

WT is233

projN(WT ) I = projN(WT )

1

ε
[Wr + X] =

1

ε
X0. (5)

Hence, the projection of the total synaptic input onto the nullspace of WT is O(1/ε) whenever X234

has an O(1) component in the nullspace of WT . Note that, despite the 1/ε term in Eq. (1), the235

total synaptic input, I, isO(1) when balance is realized due to cancellation (as in Fig. 1d). Hence,236

the singularity of W introduces large, O(1/ε) synaptic currents where they would not occur if237

W was non-singular. In other words, external input in the nullspace of WT produces strong238

synaptic currents in the network. Importantly, this conclusion does not rely on any assumptions239

about neurons’ f-I curves or other properties. This result is a fundamental property of balanced240

networks or, more generally, networks receiving strong feedforward input.241

To understand the implications of this result on firing rates in the network, however, we242

must specify an f-I curve. We again consider the linear rate approximation quantified by Eq. (4).243

Importantly, unlike Eq. (3) from classical balanced network theory, the approximation in Eq. (4)244

is applicable to this example because it accounts for imperfect cancellation between local and245
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external inputs. Specifically, the regularized matrix, εD −W , is invertible so Eq. (4) can be246

evaluated even though Eq. (3) cannot. The resulting firing rate solution from Eq. (4) agrees well247

with spiking network simulations (Fig. 2c,e). Hence, Eq. (4) provides an accurate approximation248

to firing rates in networks to which classical balanced network theory is not applicable at all.249

Eq. (4) also provides a concise mathematical quantification of firing rates when W is singular.250

Namely, if X0,X1 ∼ O(1) then firing rates can be expanded as251

r =
1

ε
r0 + r1 (6)

where r0 is in the nullspace of W and r0, r0 ∼ O(1). To derive this result, first note that Eq. (4)252

can be rewritten as253

Wr + X = εDr. (7)

If X has components in the nullspace of WT then we can project both sides of this equation254

onto this nullspace to obtain255

projN(WT ) X = ε projN(WT )Dr.

where we again used the fact that projN(WT )Wr = 0 since Wr is in the column space of256

W . Since X0 = projN(WT ) X and D are assumed O(1), this equation is only consistent when257

r ∼ O(1/ε). We can therefore decompose r = (1/ε)r0 + r1 where r0, r1 ∼ O(1). We next show258

that r0 is in the nullspace of W . From Eq. (7), we have259

W

[
1

ε
r0 + r1

]
+ X = εD

[
1

ε
r0 + r1

]
.

Isolating the O(1/ε) terms gives Wr0 = 0 and therefore r0 is in the nullspace of W . In summary,260

components of external input in the nullspace of WT partially break balance to evoke amplified261

firing rates in the nullspace of W .262

In the special case that W has a one-dimensional nullspace, a more precise characterization263

of r0 is possible. Let v0 be in the nullspace of W with ‖v0‖ = 1. Note that WT also has a264

one-dimensional nullspace (since W is a square matrix). Let v2 be in the nullspace of WT with265

‖v2‖ = 1. Since r0 is in the nullspace of W , we can write r0 = av0 for some scalar, a. Now, dot266

product both sides of Eq. (7) by v2 to obtain267

v2 ·X = εv2 ·Dr

= v2 ·D [r0 + εr1]

where we have used that v2 ·Wr = 0 since v2 is in the nullspace of WT , which is orthogonal to268

Wr in the column space of W . Keeping only O(1) terms and making the substitution r0 = av0,269

we get270

a =
v2 ·X

v2 ·Dv0

so that271

r0 =
v2 ·X

v2 ·Dv0
v0, (8)

yielding a concise expression for the amplified component of firing rates when W has a one-272

dimensional nullspace. Note that v2 ·X = projN(WT ) X = X0 and v0 is in the nullspace of W ,273

so this result is consistent with the more general conclusions above.274
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2.2.3 Amplification in the nullspace under partial optogenetic stimulation275

For the specific example of partial optogenetic stimulation considered in Fig. 2, the nullspace of276

WT is spanned by v2 = (1/
√

2)[1 − 1 0]T and the projection of X onto the nullspace of WT is277

X0 = [s/2 −s/2 0]T . The nullspace of W is spanned by v0 = (1/
√
q2 + (1− q)2)[1−q −q 0]T .278

We therefore have r = (1/ε)r0 + r1 where Eq. (8) gives279

r0 = gs

 1− q
−q
0

 .
Hence, ChR2-expressing neurons are amplified and non-expressing neurons are suppressed by280

optogenetic stimulation, as observed in simulations. A more precise result is given by expanding281

the full approximation from Eq. (4) to obtain282

ron =roff +
gs

ε

 1− q
−q
0

+O(s)

 q
q
qc

+O(ε). (9)

Here, O(s) is a constant proportional to s, c = |wIE/wII | and roff is the vector of firing rates in283

the balanced, ε→ 0, limit when stimulation is off (s = 0). Specifically, roff is the unique vector284

that satisfies Wroff + WXrX = 0, which is solvable even though W is singular because WXrX285

is in the column space of W , so balance can be maintained when s = 0.286

The O(s/ε) term in Eq. (9) quantifies the amplification and suppression observed in simula-287

tions: Non-expressing neurons are suppressed by stimulation since −q < 0 and the response of288

ChR2-expressing neurons is amplified since 1−q > 0 and s/ε is large. The O(s) term shows why289

inhibitory neurons increase their rates by a smaller amount. In summary, the optogenetically290

induced suppression observed experimentally by Adesnik and Scanziani [2] is a generic feature291

of balanced or strongly coupled networks under partial stimulation.292

2.2.4 Local imbalance with global balance explains intralaminar suppres-293

sion and interlaminar facilitation294

Interestingly, despite the break of balance at the level of ChR2-expressing and non-expressing295

subpopulations, global balance is maintained in this example. This can be understood by re-296

peating the mean-field analysis above without partitioning neurons into ChR2-expressing and297

non-expressing sub-populations, thereby quantifying the global average of firing rate of all ex-298

citatory neurons. In particular, the average synaptic input, I = [IE II ]
T , to excitatory and299

inhibitory neurons is given by Eq. (1) where W and WX are as in Eq. (2), and300

X = WXrX +

[
sq
0

]
to account for the fact that only a proportion q of the excitatory neurons receive the inward301

current from optogenetic stimulation. In this case, W is non-singular so the balanced solution302

in Eq. (3) is applicable. Indeed, the average firing rates of all excitatory neurons in our spiking303

network simulation is close to the prediction from Eq. (3) and even closer to the prediction304

from Eq. (4) (Fig. 2g; compare to Fig. 1c). The average feedforward input to all excitatory305

neurons is canceled by net-inhibitory local input (Fig. 2h; compare to Fig. 1d). Hence, balance306

is maintained globally even though the network is imbalanced at the level of ChR2-expressing307

and non-expressing populations.308

In the same study by Adesnik and Scanziani considered above [2], recordings were made in309

L5, which was not directly stimulated optogenetically, but receives synaptic input from L2/3.310
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Figure 3: Interlaminar facilitation despite intralaminar suppression under optogenetic stimula-
tion. a) Multi-layer network schematic. L2/3 was identical to the recurrent network in Fig. 2 and provided
external excitatory input to L5, which had the same internal structure as the L2/3 model. b) Excitatory
and inhibitory firing rates in L5. c) Average synaptic current to randomly sampled excitatory neurons in
L5.

Interestingly, despite the fact that most excitatory neurons in L2/3 were suppressed during311

stimulation, firing rates in L5 increased.312

To model these experiments, we interpreted the recurrent network from Fig. 2 as a local313

neural population in L2/3, which sends synaptic projections to L5 (Fig. 3a). We modeled a314

neural population in L5 identically to the L2/3 population, except its feedforward input came315

from excitatory neurons in the L2/3 network, instead of from Poisson-spiking neurons. As316

in experiments [2], L5 neurons increased their firing rates during stimulation (Fig. 3b) and317

approximate balance was maintained (Fig. 3c). This can be understood by noting that L5318

receives synaptic input sampled from all excitatory neurons in L2/3. Hence, the feedforward319

excitatory current to L5 neurons increases proportionally to the average excitatory firing rates in320

L2/3 during stimulation. As we showed above, this average rate increases (Fig. 2e), despite the321

fact that most excitatory neurons in L2/3 are suppressed by stimulation. Hence, the combination322

of intralaminar suppression and interlaminar facilitation observed during optogenetic stimulation323

in experiments [2] results from the fact that the stimulated layer is locally imbalanced, but324

globally balanced during partial stimulation.325

2.2.5 Imbalanced amplification of weak stimuli326

Sufficiently small ε or large s would introduce negative rates in Eq. (9), representing a regime327

in which non-expressing neurons cease spiking and the firing rate of ChR2-expressing neurons328

saturate at a high value. In this sense, firing rates do not truly have a O(1/ε) component for ε329

very small. However, smaller values of ε allow weak stimuli (small s) to be strongly amplified.330

Strictly speaking, if one takes s ∼ O(ε), then under the linear approximation in Eq. (4), partial331

optogenetic stimulation would have an O(1) effect on the average firing rate of stimulated and332

unstimulated subpopulations, but an O(ε) effect on globally averaged firing rates. In practical333

terms, this means that, in strongly coupled networks (ε small), partial optogenetic stimuli can334

have a moderate effect on the firing rates of stimulated neurons while having a negligible effect335

on the average firing rates of all excitatory neurons.336

To demonstrate this idea, we repeated the simulations from Fig. 2 in a network with four337

times as many neurons (N = 2 × 104) where synaptic weights and probabilities were scaled so338

that ε ∼ 1/
√
N (as in Fig. 1f) and we reduced stimulus strength, s, as well. In this simulation,339

ChR2-expressing neurons’ firing rates nearly doubled (Fig. 4a) and non-expressing neurons were340

noticeably suppressed (Fig. 4b). However, the change in the average firing rate of all excitatory341
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Figure 4: Imbalanced amplification of weak stimuli. a-c) Same as Fig. 2b,e,g except with N increased
by a factor of four, ε decreased by a factor of two, and a weaker stimulus. d) Same as Fig. 3b except using
excitatory neurons from the recurrent network in a-c as the feedforward input.

neurons was nearly imperceptible (Fig. 4c) and similarly for the firing rates of inhibitory neurons342

(Fig. 4b,c). As a result, the firing rates in a downstream layer were unnoticeably modulated343

during stimulation (Fig. 4d; compare to Fig. 3). This effect could mask the effects of optogenetic344

stimulation in recordings.345

2.2.6 Imbalanced amplification with nearly singular connectivity matrices346

An apparent limitation of the results above is that they rely on the singularity of the connectivity347

matrix, W . Singularity is a fragile property of matrices that arises from structural symmetries.348

In the example above, singularity arises from our implicit assumption that local synaptic connec-349

tivity is independent of whether neurons express ChR2. Even a slight difference in connectivity350

to or from ChR2-expressing neurons would make W non-singular so that its nullspace would351

be empty, rendering Eq. (6) vacuous. We now show that Eq. (6) and the surrounding analysis352

naturally extends to connectivity matrices that are approximately singular, with similar overall353

conclusions.354

A matrix, W , is singular if it has λ = 0 as an eigenvalue. A matrix can therefore be355

considered approximately singular if it has an eigenvalue with small magnitude. Specifically,356

let λ be an eigenvalue of W with |λ| � 1. Note that λ is also an eigenvalue of WT . Now let357

v be the associated eigenvector so that WTv = λv and assume that ‖v‖ = 1 without loss of358

generality. Take the projection of each term in Eq. (7) onto the subspace spanned by v to get359

projv[Wr] + projv X = εprojv[Dr].

Now note that projv[Wr] = λprojv r. Hence,360

λprojv r + projv X = εprojv[Dr].

If projv X ∼ O(1) and projv[Dr] ∼ projv r then this implies361

(|λ|+ ε) projv r ∼ projv X.

Hence,362

r =
1

δ
r0 + r1
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where δ = |λ|+ε. This generalizes Eq. (6) to the case where W is only approximately singular. In363

summary, the mechanism of imbalanced amplification is a general property of strongly coupled364

networks with singular or nearly singular connection matrices.365

We next show that networks with connection probabilities that depend on continuous quan-366

tities like distance or tuning preference necessarily have singular or nearly singular connectivity367

kernels and are therefore naturally susceptible to the amplification and suppression mechanisms368

described above.369

2.3 Imbalanced amplification and suppression in continuously indexed370

networks371

So far we considered networks with discrete subpopulations. Connectivity in many cortical cir-372

cuits depends on continuous quantities like distance in physical or tuning space. To understand373

how the amplification and suppression mechanisms discussed above extend to such connectivity374

structures, we next considered a model of a visual cortical circuit. We arranged 2× 105 AdEx375

model neurons (80% excitatory and 20% inhibitory) on a square domain, modeling a patch of376

L2/3 in mouse primary visual cortex (V1). Neurons received external input from a similarly377

arranged layer of 1.6 × 105 Poisson-spiking neurons, modeling a parallel patch of L4 (Fig. 5a).378

We additionally assigned a random orientation preference to each neuron, modeling the “salt-379

and-pepper” distribution of orientation preferences in mouse V1. Connectivity was probabilistic380

and, as in cortex [23, 28, 33], inter- and intralaminar connections were more numerous between381

nearby and similarly tuned neurons. Specifically connection probability decayed like a Gaussian382

as a function of distance in physical and orientation space (Fig. 5b), where distance in both383

spaces was measured using periodic boundaries.384

2.3.1 Amplification and suppression from spatially narrow stimuli385

An oriented stimulus localized in the animal’s visual field (Fig. 5c) was modeled by imposing386

firing rate profiles in L4 that were peaked at the associated location in physical and tuning387

space, again with a Gaussian profile (Fig. 5d,e). This produced external input to L2/3 that was388

similarly peaked, but was nearly perfectly canceled by net-inhibitory lateral input (Fig. 5f,g).389

Excitatory and inhibitory firing rate profiles in L2/3 were also peaked at the associated location390

in physical and tuning space (Fig. 5h,i), demonstrating that neurons in L2/3 were appropriately391

tuned to the stimulus.392

A smaller visual stimulus was modeled by shrinking the spatial profile of firing rates in L4393

while leaving the orientation-dependence of L4 rates unchanged (Fig. 5j,k). As above, synaptic394

inputs and firing rate profiles were appropriately peaked in physical and orientation tuning space395

(Fig. 5l-o). However, the smaller stimulus produced a surprising change to firing rates in L2/3.396

Despite the fact that L2/3 neurons at all locations received less excitation from L4 (Fig. 5l), peak397

firing rates in L2/3 increased and a surround suppression dynamic emerged (Fig. 5n). Hence,398

a more localized external input produced an amplification and suppression dynamic similar to399

the one observed in our model of optogenetic stimulation (compare to Fig. 2). On the other400

hand, responses in orientation tuning space were mostly unchanged by the smaller stimulus size401

(Fig. 5m,o).402

2.3.2 Mean-field theory of balance in two-dimensional spatial networks403

with orientation-tuning-specific connectivity404

The mean-field theory of balanced networks was previously extended to continuously indexed405

networks in one and two dimensions [34, 48, 49]. We now review a straightforward extension to406
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Figure 5: Response properties of a continuously indexed network. a) Network diagram. Poisson
spiking neurons in L4 (X) provide external synaptic input to 2 × 105 recurrently connected excitatory and
inhibitory AdEx model neurons (E and I) in L2/3. The spatial width of synaptic projections from population
a = X,E, I is given by βa. b) Neurons are assigned random orientations and connection probability also
depends on the difference, dθ, between neurons’ preferred orientation. c) An oriented stimulus in the animal’s
visual field. d,e) The location of the stimulus is modeled by firing rates in L4 that are peaked at the location
of the stimulus in physical and orientation space. f,g) Synaptic current to neurons in population E from
the external network (green), the local network (purple) and total (black) as a function distance from the
receptive field center and as a function of neurons’ preferred orientation. h,i) Firing rate profiles of excitatory
(red) and inhibitory (blue) neurons in the local network from simulations (light curves), classical balanced
network theory (solid, dark curves; from Eq. (13)) and under the linear correction (dashed; from Eq. (17))
in physical and orientation space. j-o) Same as (d-i) except for a smaller visual stimulus, modeled by a
narrower spatial firing rate profile in L4.
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two spatial dimensions and one orientation dimension. Eq. (1) generalizes naturally to407

I =
1

ε
[Wr + X] (10)

where r(x, θ) = [rE(x, θ) rI(x, θ)]
T is the vector of mean firing rates of excitatory and inhibitory408

L2/3 neurons near spatial coordinates x = (x, y) with preferred orientation near θ, and similarly409

for the neurons’ external input, X(x, θ), and total input, I(x, θ). The external input is given by410

X = WXrX where rX(x, θ) is the profile of firing rates in L4 The connectivity kernels, W and411

WX , are convolution integral operators defined by412

Wr =

[
wEE ∗ rE + wEI ∗ rI
wIE ∗ rE + wII ∗ rI

]
and413

WXrX =

[
wEX ∗ rX
wIX ∗ rX

]
.

Here, wab(x, θ) is the mean-field connection strength between neurons separated by x in physical414

space and θ in orientation space (see Methods), and [wab ∗ rb](x, θ) denotes circular convolution415

with respect to x and θ, i.e., convolution with periodic boundaries. These convolution operators416

implement low-pass filters in orientation and physical space, capturing the effects of synaptic417

divergence and tuning-specific connection probabilities. Similar filters describe feedforward con-418

nectivity in artificial convolutional neural networks used for image recognition [31].419

Taking ε→ 0 in Eq. (10) shows that that firing rates must satisfy420

Wr + X = 0. (11)

This is an analogue to Eq. (7) for spatial networks. From here, one may be tempted to invert421

the integral operatorW to obtain a spatial analogue of Eq. (3). However, integral operators are422

never invertible [56]. Specifically, since Eq. (11) is an integral equation of the first kind, there423

necessarily exist external input profiles, X(x, θ), for which Eq. (11) does not admit a solution424

so that the classical balanced state cannot be realized [48]. This implies that there always425

exist inputs that prevent a continuously indexed network from maintaining excitatory-inhibitory426

balance. To better understand why this is the case, we follow previous work [5, 34, 48, 50, 49]427

in transitioning to the spatial Fourier domain to rewrite Eq. (11) as428

W̃ r̃ + X̃ = 0. (12)

Here, r̃(n, k) = [r̃E(n, k) r̃I(n, k)]T is a Fourier coefficient of r(x, θ) and similarly for X̃(n, k) =429

W̃X(n, k)r̃X(n, k) where n = (n1, n2) is the two-dimensional spatial Fourier mode and k is the430

Fourier mode in tuning space. Importantly, the convolution operators above become ordinary431

matrices in the Fourier domain. Specifically,432

W̃ =

[
w̃EE w̃EI
w̃IE w̃II

]
and433

W̃X =

[
w̃EX
w̃IX

]
where w̃ab(n, k) is a Fourier coefficient of wab(x, θ). Note that going from Eq. (11) to Eq. (12)434

requires that W is a convolution operator and that the boundaries of the network are treated435

periodically, i.e., the convolutions are circular.436
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Solving Eq. (12) gives an analogue to Eq. (3) for spatial networks in the Fourier domain,437

r̃ = −W̃−1X̃. (13)

This equation gives all Fourier coefficients, r̃(n, k). However, this solution is only viable when438

the inverse transform exists, i.e., when the Fourier series of r̃(n, k) converges, which in turn439

requires that ‖X̃(n, k)‖ converges to zero faster than ‖W̃ (n, k)‖ as n → 0 and k → 0. More440

specifically, r̃(n, k) in Eq. (13) must be square-summable. Hence, balance can only be realized441

when recurrent connectivity, quantified by W̃ (n, k), has more power at high spatial frequencies442

than external input, X̃(n, k). In other words, for balance to be realized, external input, X(x, θ),443

cannot have “sharper” spatial features than the recurrent connectivity kernels, wab(x, θ) for444

a, b = E, I.445

2.3.3 Balance and imbalance in networks with Gaussian-shaped connectiv-446

ity kernels447

A more intuitive understanding of when and why balance is broken is provided by considering the448

Gaussian-shaped connectivity and firing rate profiles used in our spiking network simulations.449

This explanation applies equally to the spatial profile of firing rates and connectivity in physical450

and orientation space, so we do not distinguish between the two in this discussion. Similar451

calculations were performed previously for spatial networks [48], so we only review the results452

here and discuss some of their implications here.453

Let σa be the width of the Gaussian firing rate profile in population a, αa the width of454

outgoing synaptic connections from the presynaptic neurons in population a, and βa the width455

of the spatial profile of synaptic input from population a (Fig. 5a,d,f,h). Synaptic divergence456

broadens the profile of synaptic currents so that457

β2
a = σ2

a + α2
a. (14)

For balance to be maintained, feedforward synaptic input from L4 must be precisely canceled458

by lateral synaptic input in L2/3. This, in turn, requires that459

βE = βI = βX .

Combined with Eq. (14), this implies that balance requires the widths of firing rate profiles in460

L2/3 to satisfy [48]461

σ2
E = β2

X − α2
E

σ2
I = β2

X − α2
I .

(15)

This approximation accurately predicted firing rate profiles in our first spiking network simu-462

lation (Fig. 5h,i, solid, dark curves have widths given by Eq. (15)). Hence, by Eq. (15), the463

requirement of cancellation in balanced networks implies that recurrent connectivity sharpens464

neurons’ tuning, both in physical and orientation space.465

Interestingly, Eq. (15) implies that the amount by which excitatory and inhibitory firing466

rate profiles are sharpened in balanced networks is determined by the width of their outgoing467

synaptic projections. Pyramidal neurons in L2/3 of mouse V1 preferentially target similarly468

tuned neurons in L2/3, but the tuning of these lateral connection probabilities is much broader469

than the tuning of pyramidal neurons’ firing rates [28] (αE > σE in orientation space). This470

observation is consistent with Eq. (15): Excitatory neuron tuning curves are sharpened precisely471

because their outgoing connections are broadly tuned. Hence, sharpening of excitatory neuron472

tuning curves in L2/3 is naturally achieved in balanced networks with lateral excitation, without473

requiring lateral inhibition. Following the same line of reasoning, the broader orientation tuning474
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of inhibitory neurons [23] (σI larger) suggests that they project more locally in orientation475

tuning space than pyramidal neurons (αI < αE in orientation space).476

Eqs. (15) also clarify when and why balanced network theory fails for continuously indexed477

networks. If external inputs are sharper than lateral connectivity (βX < αE or βX < αI) in478

physical or orientation space, then Eqs. (15) do not yield real solutions for σE or σI . In other479

words, balance requires that480

αE < βX and αI < βX

because Eq. (11) does not admit a solution when these inequalities are broken [48]. In other481

words, the classical balanced state cannot be realized when external synaptic input is too lo-482

calized for the recurrent network to cancel with its broader connectivity. As a result, balanced483

network theory cannot be applied to the example in Fig. 5j-o with a smaller visual stimulus.484

2.3.4 A linear correction to balance quantifies amplification and suppres-485

sion in continuously indexed networks486

We next derive a linear correction to Eq. (13) that accounts for imperfect cancellation and,487

in doing so, gives firing rate approximations where classical balanced network theory fails.488

Specifically, we generalize the derivation of Eq. (4) to continuously indexed networks. Under489

this linear approximation, firing rate profiles are given by solving490

Wr + X = εr. (16)

This is an integral equation of the second kind, which generically admits firing rate solutions,491

r, even when Eq. (11) does not [56]. We again transition to the Fourier domain so Eq. (16)492

becomes493

r̃ =
[
εD − W̃

]−1

X̃. (17)

From Eq. (17), firing rates, r(x, θ), can be computed numerically through an inverse transform494

(the Fourier series over n and k), yielding an accurate approximation to firing rates from spiking495

network simulations even where classical balanced network theory fails (Fig. 5n,o).496

The amplification and suppression caused by the smaller visual stimulus can be roughly497

explained by the balanced amplification mechanism discussed previously. Since W is a low-pass498

filter, it approximately cancels high frequency components of firing rate profiles. Hence, high499

frequency components are in the approximate nullspace of the local connectivity operator, W,500

and are therefore amplified by the network through the same mechanism discussed for discrete501

networks previously.502

A more precise explanation is given by first averaging firing rates over orientation preference503

by setting k = 0 in Eq. (17) to give r̃(n) that depends only on spatial frequency, and similarly for504

X̃(n) and W̃ (n). The convolution operator, W, implements a low-pass filter, so W̃ (n) is O(1)505

in magnitude at low spatial frequencies and converges to zero at higher frequencies (large ‖n‖).506

The regularized inverse, [εD − W̃ (n)]−1, is therefore O(1) in magnitude at low frequencies and507

O(1/ε) at higher frequencies (Fig. 6a, purple). When external input, X(x), has sharp features,508

X̃(n) has power at higher spatial frequencies (Fig. 6a, green), which are amplified by the O(1/ε)509

component of [εD−W̃ (n)]−1 while low frequencies remainO(1). The result is that the magnitude510

of r̃(n) has a O(1/ε) peak at a non-zero spatial frequency (Fig. 6a, black), introducing a high-511

amplitude, non-monotonic rate profile (as in Fig. 5n; see [50] for a similar analysis). When512

X(x) has spatially broad features, X̃(n) has little power at high spatial frequencies so that513

this amplification dynamic is weak or absent (as in Fig. 5h). An identical argument applies514

in orientation space. In summary, high-frequency components of external input profiles are515

transmitted more strongly than low-frequency components in strongly coupled networks, and516

the cutoff frequency is determined by the width (αE or αI) of lateral synaptic projections.517

16

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 11, 2017. ; https://doi.org/10.1101/201269doi: bioRxiv preprint 

https://doi.org/10.1101/201269
http://creativecommons.org/licenses/by/4.0/


0 5 10
Spatial frequency

0

1

M
ag

ni
tu

de
 (n

or
m

al
iz

ed
)

0 0.1 0.2
L4 rate width (σX)

0

25

50

Pe
ak

 L
2/

3 
ra

te
 (H

z)

Pe
ak

 L
2/

3 
ra

te
 (H

z)

E
αE=0.2

αE=0.02

a b c

0 0.1 0.2
0

25

50

0 0.1 0.2
0

25

50
d

I

L4 rate width (σX) L4 rate width (σX)

Figure 6: Spatial filtering of external input and the dependence of suppression on outgoing

synaptic projection width. a) The magnitude of the spatial filter, [εD− W̃ (n)]−1, imposed by recurrent

connections (purple), the external input (X̃(n), green) and the resulting firing rate profile (r̃(n), black) as a
function of the spatial frequency, ‖n‖ =

√
m2 + n2, from the simulation in Fig. 5j-o. Magnitude is measured

by the Frobenius norm for [εD − W̃ (n)]−1. Curves normalized by their peaks. b) Firing rates of excitatory
(red) and inhibitory (blue) neurons with receptive fields at the center of a grating stimulus plotted as the
width of the stimulus increases (represented by increasing σX) using parameters from Fig. 5j-o. c) Same as
b, but the excitatory rate is plotted for different widths of the excitatory synaptic projection width, αE . d)
Same as c, but firing rates in L4 are shaped like a disc with radius σX instead of a Guassian with width
parameter σX .

It is worth noting that the average firing rates (over all orientations and spatial positions)518

are given by the zero Fourier coefficient r̃(0, 0). When balance is broken by sharp external519

input features, the zero Fourier mode is not affected as long as mean firing rates, r(x, θ), remain520

non-zero at all locations and orientations. Hence, sharp input features can break balance locally521

without breaking global, network-averaged, balance. This is analogous to the global balance522

obtained in the optogenetic example when local balance was broken at the level of subpopulations523

(Fig. 2).524

2.3.5 Implications of imbalanced amplification on receptive field tuning525

We next considered a study by Adesnik et al. [1] in which drifting grating stimuli of varying sizes526

were presented to mice while recording from neurons in L2/3 of V1. In that study, pyramidal527

neurons’ firing rates first increased then decreased as the stimulus size was increased. On the528

other hand, somatostatin-expressing (SOM) neuron’s firing rates increased monotonically with529

stimulus size. Intracellular recordings combined with optogenetic stimulation in that study530

showed that SOM neurons project locally and pyramidal neurons form longer range projections.531

To test our model against these findings, we applied Eq. (17) to a network with local inhibi-532

tion and longer-range excitation (αE > αI) with increasing size of a visual stimulus (increasing533

σX). Our results are consistent with recordings in Adesnik et al., 2012 [1]: Excitatory neuron534

firing rates changed non-monotonically with stimulus size, while inhibitory neuron firing rates535

monotonically increased (Fig. 6b). The non-monotonic dependence of excitatory firing rates on536

stimulus size in Fig. 6b is explained by the mechanism of imbalanced amplification. When σX537

is sufficiently small, balance is broken so imbalanced amplification introduces a large peak firing538

rate surrounded by suppression (as in Fig. 5n). However, the total amount of external excitation539

introduced by the stimulus is proportional to the size of the stimulus, so a very small σX intro-540

duces very little excitation and peak firing rates are small. As σX increases, more excitation is541

recruited and the network is still imbalanced, which leads to increasingly large peak firing rates542

(as in Fig. 5n). Once σX becomes large, balance begins to be restored and the peak excitatory543

firing rate decreases to moderate values (as in Fig. 5h).544
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The degree to which excitatory neurons suppress depends on the spatial width, αE , of lateral545

excitatory projections (Fig. 6c) and suppression of inhibitory neurons similarly depends on the546

spatial width, αI , of lateral inhibition (not pictured). Specifically, suppression occurs when547

lateral connectivity is broader than feedforward input (αE > βX or αI > βX) because this is548

when the balanced solution in Eq. (15) disappears. When a sub-population’s lateral connectivity549

is more localized than feedforward connectivity from L4 (αE < αX as in the lightest gray curve550

in Fig. 6c; or αI < αX), that sub-population cannot exhibit suppression since feedforward input551

width (β2
X = α2

X +σ2
X) is always larger than lateral connectivity, regardless of the stimulus size552

(σX).553

A similar line of reasoning explains why peak inhibitory neuron firing rates increase mono-554

tonically with stimulus size in Fig. 6b. Inhibitory neurons in that example project locally555

(αI = αX), so the inequality αI < βX is always satisfied because βX =
√
α2
X + σ2

X > αI when-556

ever αI ≤ αX . Whenever αI < βX , inhibitory firing rates reflect their balanced state values557

which increase monotonically with the increase in total excitation induced by a larger stimulus.558

Unlike SOM neurons, parvalbumin-expressing (PV) neurons were found to exhibit suppres-559

sion by Adesnik et al., 2012 [1]. Hence, our theory predicts that PV neurons project more560

broadly in space than SOM neurons. Indeed, PV interneurons in L2/3 are primarily basket cells561

whose axons project to larger lateral distances than other inhibitory neuron subtypes such as562

Martinotti cells that comprise most SOM neurons [24].563

We observed a unimodal dependence of firing rate on stimulus size (Fig. 6c, all curves have a564

single peak). However, Rubin, et al. [50] observed a multi-modal, oscillatory dependence of firing565

rate on stimulus size in recordings and in a computational model. In that study, the drifting566

grating stimuli were disc-shaped with a sharp cutoff of contrast at the edges of the disc. Above,567

we considered a Gaussian-shaped contrast profile with soft edges (Fig. 6c, inset). Repeating our568

calculations with a sharp-edged, disc-shaped stimulus (Fig. 6d, inset) produced an oscillatory569

dependence of firing rate on stimulus size (Fig. 6d), as observed by Rubin et al.. This oscillation570

only arose when lateral synaptic projections were narrower than the stimulus size (αE small).571

The oscillation results from a Gibbs phenomenon: The sharp edge in the stimulus produces572

high-frequency power in X̃, which passes through the high-pass filter [εD − W̃ ]−1 when αE is573

small.574

We next explored the functional consequences of these results on receptive field tuning. We575

first considered a disc-shaped grating stimulus (Fig. 7a), producing a disc-shaped firing rate576

profile in L4 (Fig. 7b). Synaptic divergence causes the profile of synaptic input from L4 to577

L2/3 to be “blurred” at the edges (Fig. 7c), as quantified by the low-pass filter, WX . This578

illustrates a fundamental problem in receptive field tuning: Synaptic divergence from one layer579

to another implements a low-pass filter that blurs sharp features. This problem is resolved by580

our observation above that lateral, recurrent connectivity implements a high-pass filter. If the581

width of lateral, excitatory connections in L2/3 is similar to that of feedforward connections582

from L4, the high-pass filter implemented by the recurrent network cancels the low-pass filter583

implemented by feedforward connectivity, effectively implementing a deconvolution that can584

recover the sharpness of firing rate profiles in L4 (Fig. 7d-f). Hence, counterintuitively, broader585

lateral excitation actually sharpens receptive field tuning. Broadening lateral connections further586

increases the sharpness of the firing rate profiles, but introduce oscillatory, Gibbs phenomena587

near sharp features (Fig. 7f). These points are illustrated more clearly in an example with an588

asymmetrically shaped stimulus (Fig. 7g-l). Hence, the high-pass filter described above corrects589

the blurring caused by synaptic divergence between layers in V1.590

In summary, imbalanced amplification and linear rate models provide a concise and parsimo-591

nious theoretical basis for understanding how suppression, amplification and tuning depends on592

the profile of neuron’s incoming and outgoing synaptic projections in physical and orientation593

tuning space.594
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(αE<αX)
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(αE=αX)

L2/3 Rate
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g h i j k l

Figure 7: Imbalanced amplification and suppression reverse the blurring introduced by inter-
laminar synaptic divergence. a) A disc-shaped grating stimulus gives rise to b) a disc-shaped firing rate
profile, rX(x), in L4 with slightly blurred edges (achieved by convolving contrast from a with a Gaussian
kernel). c) Input, XE(x), from L4 to excitatory neurons in L2/3 is blurred by synaptic divergence, which
effectively applies a low-pass filter, WX , to the L4 rates. c) Excitatory firing rates in L2/3 are sharper
than external input when lateral excitation is similar, but smaller, in width than interlaminar excitation
(αE = 0.85αX). bf d) Same as c, but lateral excitation is exactly as broad as interlaminar excitation
(αE = αX), which sharpens the edges further, making firing rates in L2/3 similar to those in L4. d) Same
as c, but lateral excitation is broader than interlaminar excitation (αE = 1.1αX), which sharpens the edges
even further, but also introduced suppressed regions due to Gibbs phenomena. g-l) Same as a-f, but contrast
was determined by the brightness of a photograph. Horizontal and vertical axes are neurons’ receptive fields.

3 Discussion595

We described a theory of imbalanced amplification in cortical circuits arising from a local im-596

balance that occurs when recurrent connectivity structure cannot cancel feedforward input. We597

showed that imbalanced amplification is evoked by optogenetic stimuli in somatosensory cortex598

and sensory stimuli in visual cortex, since these stimuli cannot be canceled by the connectivity599

structure in those areas. Our theoretical analysis of imbalanced amplification explains several600

observations from cortical recordings in those areas.601

Even though firing rates in balanced networks in the large N limit do not depend on neurons’602

f-I curves (see Eq. (3)), quantifying firing rates under imbalanced amplification relies on a finite603

size correction that requires an assumption on how firing rates depend on neurons’ input. For604

simplicity, we used an approximation that assumes populations’ mean firing rates depend linearly605

on their average input currents, giving rise to Eqs. (4) and (17). In reality, neurons’ firing rates606

depend nonlinearly on their mean input currents, and also depend on higher moments of their607

input currents. However, the salient effects of imbalanced amplification are not sensitive to our608

assumption of linearity. For instance, Eq. (5), which quantifies the strong synaptic currents609

evoked under imbalanced amplification, does not depend on any assumption about neurons’610

f-I curves. The precise value of the firing rates elicited by this strong input does depend on611

neurons’ f-I curves, however. We found that the linear approximation to f-I curves in Eqs. (4)612

and (17) performed well at approximating firing rates in our spiking network simulations and613

also explained several observations from cortical recordings. This may be partly explained614

due to the fact that our spiking network simulations used neuron models that exhibit spike615

frequency adaptation, which is known to linearize f-I curves [18, 29] and help networks maintain616

balance [30]. However, the linear approximation we used cannot explain some phenomena that617

rely on thresholding and other nonlinear transfer properties [50, 38]. The notion of imbalanced618

amplification extends naturally to models with nonlinear transfer functions and future work will619
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consider the implications of nonlinearities.620

Balanced networks are related to, but distinct from, inhibitory stabilized networks (ISNs) [41,621

50, 36] and stabilized supralinear networks that can transition between ISN and non-ISN622

regimes [50]. The primary distinction is that ISNs are defined by moderately strong recur-623

rent excitation (strong E → E) whereas balanced networks are defined by very strong external,624

feedforward excitation (strong X → E) canceled by similarly strong net-inhibitory recurrent625

connectivity. Classical balanced networks are necessarily inhibitory stabilized at sufficiently626

large N (small ε) unless wEE = 0. However, strongly coupled (approximately balanced) net-627

works can be non-ISN at moderately large N (small ε) if wEE is small. Cat V1 is believed to be628

inhibitory stabilized, which can be used to explain its surround suppression dynamic [41]. How-629

ever, evidence from optogenetic and electrophysiological studies, suggests that mouse L2/3 V1630

might not be inhibitory stabilized: Lateral connection probability is small between pyramidal631

neurons (small wEE) [24], stimulation of PV neurons does not produce the paradoxical effects632

that characterize ISNs [4], and modulating pyramidal neuron firing rates only weakly modulates633

excitatory synaptic currents in local pyramidal neurons [4, 1]. Nonetheless, pyramidal neurons634

and PV neurons in mouse V1 exhibit surround suppression [1], which we showed is explained635

by imbalanced amplification.636

Despite the similarity in their names, the mechanism of imbalanced amplification studied here637

is fundamentally different from the mechanism of balanced amplification [39]. First, imbalanced638

amplification is related to steady-state firing rates, while balanced amplification is a dynamical639

phenomenon. Moreover, balanced amplification is intrinsic to the local, recurrent circuit: It640

produces large firing rate transients when local, recurrent inhibition is inefficient at canceling641

local, recurrent excitation. Imbalanced amplification, on the other hand, produces large steady642

state firing rates when local, recurrent input is unable to effectively cancel feedforward, external643

excitation.644

The analysis of our spatially extended network model relied on an assumption of periodic645

boundaries in space, which are not biologically realistic, but approximate networks with more646

realistic boundary conditions [48]. Without periodic boundary conditions, the integral equations,647

(10), (11), and (16) are equally valid, but the integrals are defined by regular convolutions in648

space instead of circular convolutions. As a result, the spatial Fourier modes do not de-couple, so649

Eqs. (12), (13), and (17) are no longer valid, though they should still offer a good approximation650

when connectivity is much narrower than the the spatial domain [48]. In addition, anisotropic651

connectivity statistics, arising for example from tuning dependent connectivity in visual cortical652

circuits with coherent orientation maps [6], would prevent the integral operator in Eqs. (10),653

(11), and (16) from being a convolution operator, and therefore preclude the use of Fourier654

series for the solution. Future work will consider the effects of non-periodic boundaries and655

non-convolutional connectivity kernels on spatially extended balanced networks.656

We focused on firing rates, but sensory coding also depends on variability and correlations657

in neurons’ spike trains. Our previous work derived the structure of correlated variability in658

heterogeneous and spatially extended balanced networks when connectivity structure prevents659

positive and negative correlations from cancelling, effectively providing an analogous theory of660

imbalanced amplification of correlated variability [49]. Combining those findings with the theory661

of steady-state firing rates presented here could yield a more complete theory of neural coding662

in cortical circuits and the effects of imbalanced amplification on coding.663
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Methods668

We modeled recurrently connected networks withN neurons, composed ofNE = 0.8N excitatory669

and NI = 0.2N inhibitory neurons. The recurrent network receives external input from a670

network of NX neurons that drive the recurrent network. The membrane potential of neuron671

j from the excitatory (a = E) or inhibitory (a = I) population has Adaptive Exponential672

integrate-and-fire dynamics,673

Cm
dV aj
dt

= −gL(V − EL) + gL∆T exp[(V − VT )/∆T ] + Iaj (t)− w

τw
dw

dt
= −w.

Whenever V aj (t) > Vth, a spike is recorded, the membrane potential is held for a refractory674

period τref then reset to a fixed value Vre, and w is incremented by B. Neuron model parameters675

for all simulations were τm = Cm/gL = 15ms, EL = −72mV, VT = −60mV, Vth = −15mV,676

∆T = 1.5mV, Vre = −72mV, τref = 1ms, τw = 150ms and B/Cm = 0.267mV/ms. Membrane677

potentials were also bounded below by Vlb = −100mV. Synaptic input currents were defined by678

C−1
m Iaj (t) = Xa

j (t) +Raj (t) (18)

where Xa
j (t) is the feedforward input and Raj (t) the recurrent input to neuron j in population679

a = E, I. The recurrent input was defined by680

Raj (t) =
∑
b=E,I

Nb∑
k=1

Jabjk
∑
n

ηb(t− tb,kn )

where tb,kn is the nth spike time of neuron k in population b = E, I. The external input to the681

recurrent network is defined similarly by682

Xa
j (t) =

NX∑
k=1

JaXjk
∑
n

ηX(t− tX,kn ). (19)

where tX,kn is the nth spike time of neuron k = 1, . . . , NX in population X. Each coefficient, Jabjk ,683

represents the synaptic weight from presynaptic neuron k in population b to postsynaptic neuron684

j in population a. For all simulations, we modeled synaptic kinetics using ηb(t) = exp(−t/τb)/τb685

for t > 0 where τE = 8ms, τI = 4ms, and τX = 10ms. Note that the integral of ηb(t) over time686

is equal to 1 for all three kernels, so the choice of time constant, τb, does not effect time-687

averaged synaptic currents. We used τI < τE < τX to prevent excessive synchronous events688

that break the balanced state. While inhibition may be faster than excitation in many cortical689

circuits, excitatory neurons are more likely to contact distal dendrites and inhibitory neurons690

are more likely to contact the soma [27, 22], which could make inhibition functionally faster than691

excitation. In any case, using fast inhibition is common practice in spiking network simulations692

with strong or dense connectivity [47, 35, 50, 49, 54] and a complete resolution of this issue is693

outside the scope of this study.694

In Figs. 1, 2 and 3 an extra term, S = 2 mV/ms, was added to XE
j (t) for stimulated neurons695

during the second half of the simulation to model optogenetic stimulation. We used NE = 4000,696

NI = 1000 and NX = 4000 (so N = 5000) except for Fig. 1f where all Nb values were scaled.697

Connections were drawn randomly with connection probabilities pEE = pIE = pIX = 0.1,698

pEI = pII = pEX = 0.2. Since outgoing connections were sampled with replacement, some699

neurons connected multiple times to other neurons. Synaptic weights were then defined by700

Jabjk = (# of contacts)× Jab
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where JEE = 0.4mV, JIE = 0.83 mV, JII = JEI = −1.67 mV, JEX = JIX = 0.47 mV.701

This gives postsynaptic potential amplitudes between 0.19 and 1.0 mV. For Figs. 1f and 4,702

the values of Jab and the values of pab were each multiplied by (5000/N)1/4 so that they were703

unchanged at N = 5000 and so that ε ∼ 1/
√
N . This is slightly different from the more common704

practice of fixing small connection probabilities and scaling Jab like 1/
√
N . We instead fixed705

a relatively dense connectivity at N = 5000 and the network became increasingly sparse and706

weakly connected at increased N . Both approaches have the same mean-field (since the mean-707

field only depends on the product of pab and Jab), but our approach prevents excessively small708

synaptic weights at largeN and prevents dense connectivity at large N , which is computationally709

expensive and susceptible to oscillatory and synchronous spiking.710

Spike times in the external population were modeled as independent Poisson processes with711

rX = 5 Hz. In Fig. 3, external input to the L5 population was created using the spike times of712

excitatory neurons from the simulations in Fig. 2. Simulations for Fig. 4 were identical to those713

in Figs. 2 and 3 except there were N = 2 × 104 neurons in the L2/3 model, synaptic weights714

to neurons in that population were multiplied by 1/
√

2, and connections probabilities were also715

multiplied by 1/
√

2. Hence, in relation to Fig. 2, N was increased by a factor of four and ε was716

halved.717

Simulations for Figure 5 used algorithms adapted from previous work [49]. The recurrent718

network (L2/3) contained N = 2× 105 AdEx model neurons, NE = 1.6× 105 of which were ex-719

citatory and NI = 4× 104 inhibitory. Excitatory and inhibitory neurons in L2/3 were arranged720

on a uniform grid covering the unit square [0, 1]× [0, 1] (arbitrary spatial units). The external721

population (L4) contained NX = 1.6 × 105 neurons arranged on an identical, parallel square.722

Each neuron in each population was assigned a preferred orientation chosen randomly and uni-723

formly from 0 to 180◦. Connections were chosen randomly as above, but connection probabilities724

depended on the neurons’ distances in physical and orientation tuning space. Specifically, the725

connection probability from a neuron in population b = E, I,X at coordinates x = (x1, x2) to726

a neuron in population a = E, I at coordinates y = (y1, y2) was727

pab(x− y, dθ) = pabG(x− y;αb)g(dθ/180◦;αb,θ)

where dθ is the difference between neurons’ preferred orientation,728

g(u;α) =
1√
2πα

∞∑
k=−∞

e−u
2/(2α2)

is a one-dimensional wrapped Gaussian and G(u;α) = g(u1;α)g(u2;α) is a two dimensional729

wrapped Gaussian. The connection probability averaged over all distances is pab, which were730

chosen to be the same as in previous figures, pEE = pIE = pIX = 0.1 and pEI = pII = pEX =731

0.2. As above, outgoing connections were chosen with replacement, so some neurons made732

multiple contacts onto other neurons. Connection widths in physical space were αE = 0.15 and733

αI = αX = 0.04 (as measured on the unit square). Connection widths in orientation space were734

αE,θ = αE,θ = 0.1 and αX,θ = 0.125 (corresponding to widths of 18◦ and 22.5◦ when measured735

in degrees). Connection strengths, Jab, were the same as in Figs. 1, 2 and 3 except multiplied736

by a factor of 1.2. Each neuron in L4 was modeled as a Poisson process with rate given by737

rX(x, θ) = rX,x(x)rX,θ(θ)

where x is the location of the neuron, θ is its preferred orientation,738

rX,x(x) = c+ (1− c)G(x− x0;σX)

and739

rX,θ(θ) = cθ + (1− cθ)g([θ − θ0]/180◦;σX,θ).
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This models a stimulus with orientation θ0 = 0.5 (representing 90◦) and centered at spatial740

coordinates x0 = (0.5, 0.5). The parameters σX and σX,θ quantify the width of L4 firing rates741

in physical and orientation space. For all panels in Fig. 5, we used σX,θ = 0.1 (width 18◦) and742

cθ = 0.75. We used σX = 0.2 for Fig. 5d-i and σX = 0.06 for Fig. 5j-o. In both cases, we chose743

c so that the minimum and maximum of rX,x(x) were 10 and 20 Hz respectively.744

For the spatially extended network, the connectivity kernels, W and WX , are defined in745

Results where wab(x, θ) = JabNbpab(x, θ)/(JEXpEXNX). The Fourier series in physical and746

orientation tuning space is defined by747

ũ(n, k) =

∫∫∫
u(x, θ)e−2πi(x·n+kθ)dxdθ

where the triple integral is over the two dimensions of physical space and one dimensional748

orientation space. The Fourier series of the convolution kernels defined above turns convolution749

into multiplication in the Fourier domain, from which Eq. (10) gives Ĩ = (1/ε)[W̃ r̃+X̃] where X̃,750

W̃ , and W̃X are defined in Results with with w̃ab(n, k) = wab exp[−2π2(|n|2α2
b +k2α2

b,θ)], wab =751

w̃ab(0, 0) = JabpabNb/(JEXpEXNX), and ‖n‖2 = n2
1 + n2

2. Using the linear approximation,752

r = gI then gives Eq. (17). Firing rates for dashed curves in Fig. 5 and all firing rates in753

Figs. 6 and 7 were obtained by first computing Eq. (17), then inverting the Fourier transform754

numerically using an inverse fast Fourier transform. Solid curves in Fig. 5 were computed755

similarly, except using Eq. (13) in place of Eq. (17).756

All simulations and numerical computations were performed on a MacBook Pro running OS757

X 10.9.5 with a 2.3 GHz Intel Core i7 processor. All simulations were written in a combination758

of C and Matlab (Matlab R 2015b, MathWorks). The differential equations defining the neuron759

model were solved using a forward Euler method with time step 0.1 ms.760
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