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Highlights

- A neuronal architecture that learns to integrate saccadic commands for eye position.

- Learning is based on the recurrent dendritic prediction of somatic teaching signals.

- Experiment and model show that no visual feedback is required for initial integrator learning.

- Cerebellum is an internal teacher for motor nuclei and integrator population.

Abstract

There has been much focus on the mechanisms of temporal integration, but little on how circuits learn to
integrate. In the adult oculomotor system, where a neural integrator maintains fixations, changes in integra-
tion dynamics can be driven by visual error signals. However, we show through dark-rearing experiments that
visual inputs are not necessary for initial integrator development. We therefore propose a vision-independent
learning mechanism whereby a recurrent network learns to integrate via a ‘teaching’ signal formed by low-
pass filtered feedback of its population activity. The key is the segregation of local recurrent inputs onto
a dendritic compartment and teaching inputs onto a somatic compartment of an integrator neuron. Model
instantiation for oculomotor control shows how a self-corrective teaching signal through the cerebellum can
generate an integrator with both the dynamical and tuning properties necessary to drive eye muscles and
maintain gaze angle. This bootstrap learning paradigm may be relevant for development and plasticity of

temporal integration more generally.

1 Introduction

Neuronal integrators are involved in various cortical
and subcortical processes. For example, when our eyes
scan over a text, when we memorize what we read,
and when we make a decision upon the reading, neu-
rons need to accumulate information in time. During
scanning eye movements, command signals encoding
the velocity of fast eye movements termed saccades
are integrated by neurons to generate position signals
which fixate the gaze upon a point of interest (Aksay,
Olasagasti, et al. 2007). In working memory, a new
item is added when the activity of memory neurons
incrementally grows upon presentation of a brief stim-
ulus (Goldman-Rakic 1995; Pereira and Brunel 2018).
In decision making, continuously presented evidence is
gradually accumulated by a neuronal population dis-
playing ramp-like changes in activity prior to the deci-
sion (Gold and Shadlen 2007; Brody and Hanks 2016).

A hallmark of neuronal integration is that the un-
derlying network has an integration time constant that
is orders of magnitude longer than the membrane time
constant of the individual neurons. A range of mech-
anisms for generating long integration time constants
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have been proposed, including synaptic facilitation, ac-
tive dendritic properties, and recurrent network inter-
actions (Seung 1996; Koulakov, Raghavachari, et al.
2002; Goldman et al. 2003; Lim and Goldman 2013;
Sanders et al. 2013). All models based on these mech-
anisms require some degree of tuning to show stable
integration, and the tuning requirements tend to be
more severe the greater the dependence on recurrent
interactions. Since these recurrent interaction models
generally have the most explanatory power across the
various settings where neural integration has been ob-
served, it is especially important to consider how such
networks might learn to perform their tasks.

Here we investigate in the context of oculomo-
tor control the problem of how a neural integrator
might develop and autonomously be tuned. Tempo-
ral integration in the oculomotor system is impor-
tant for maintaining the desired gaze angle. The eye
position command signals necessary for maintaining
gaze are generated in the velocity-to-position neural
integrator (VPNI), a hindbrain neuronal population
that receives velocity-encoding command signals from
vestibular neurons for smooth eye movements such as
the vestibulo-oculo reflex, and from burst generator
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neurons for saccades and fixations. Studies of the
mechanism of integration in this system implicate a
prominent role for recurrent (excitatory) network in-
teractions in establishing positive feedback: structure-
function studies demonstrate local collaterals within
the network (Lee, Arrenberg, and Aksay 2015; Aksay,
Gambkrelidze, et al. 2001; Vishwanathan et al. 2017),
intracellular recordings during gaze holding show that
VPNI neurons receive synaptic input consistent with
positive feedback (Aksay, Gamkrelidze, et al. 2001),
and localized disruption of this feedback leads to ex-
pected deficits in the capacity of the network to inte-
grate (Aksay, Olasagasti, et al. 2007). This network is
also tunable, with learning of new integration dynam-
ics occurring on the tens of minutes time scale when
visual error signals are presented (Major et al. 2004). It
is unclear, however, if visual error signals are the only
trigger for integrator tuning, or if visual signals are
even relevant for the early development of the VPNI.

In the following, we show that in the zebrafish vi-
sual error signals are not necessary for the early devel-
opment of the neural integrator, and present a model
for how the integrator can develop using a feedback
loop through the cerebellum. Integrator output is low-
pass filtered at the cerebellum through an internal
model of the oculomotor plant before being fed back.
This cerebellar feedback then serves as a teaching sig-
nal at the VPNI by virtue of segregation of local and
global feedback signals onto separate neuronal com-
partments. In this manner we show how an initially
randomly connected forgetful network can learn the
appropriate recurrent connection weights necessary to
perform temporal integration. As the feedback strictly
uses internally generated signals, it achieves a form of

Figure 1: Learning to integrate is independent
of external feedback. A) Typical spontaneous
saccades and fizations of zebrafish larvae reared in
the dark (left column) or reared on a standard light-
dark cycle (right column). B) Example plots of fix-
ation drift velocity versus fixation position for both
eyes of a dark-reared (left) and light-reared (right)
animal. C) Violin plots of drift dynamics from dark-
reared and light-reared animals.

bootstrap learning.

2 Results

We first present the experimental finding that visual
error signals do not play a significant role in the early
development of the zebrafish VPNI. We then lay out
a new hypothesis for how this self-sustained develop-
ment could occur through a low-pass filtered feedback
of the aggregate integrator activity via bootstrap learn-
ing. We begin presenting this hypothesis with a simple
model that captures the essence of our proposal. Next,
we present two real-time stabilization mechanisms that
complement the synaptic tuning mechanism and help
generate robust temporal integration. We then demon-
strate how the tuning mechanism is intimately related
to a segregation of local and global feedback inputs
onto separate neuronal compartments, and show that
these mechanisms function appropriately in a spiking
network composed of conductance-based neurons. Fi-
nally, we incorporate all of the proposed components
into a model of the oculomotor system that includes
the VPNI, the cerebellum, and motoneurons to demon-
strate how realistic tuning curves and response dynam-
ics can arise through our bootstrap learning hypothesis.

Early development of the neural integrator is
independent of visual inputs

Given prior work suggesting visual error signals are im-
portant for integrator plasticity, at least in adult ani-
mals, we first asked if visual feedback was important
for the early development of the neural integrator. We
compared the integration time constant of light-reared
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Figure 2: Integrator learning with a delayed feedback acting as target activity. A) Bootstrap learning
in an integrator population (green) is based on a delayed feedback signal from a teaching population (gray). The
learning is based on a delayed feedback signal r© that represents a low-pass filtered version of the integrator activ-
ity rV. Both r€ and rY are driven by saccade inputs v° to be integrated in time (via synaptic strengths w and
wYs, set in Eqs 1 & 2 to 1 for the sake of simplicity, but see Methods for also learning these synapses). To keep
its value, vV feeds back onto itself through the weight w" that is learned by an error-correcting plasticity rule
(Eq. 8). B) The feedback r° transforms at the level of the postsynaptic voltage to an error signal w)/S(r¢ —r")
that pushes ¥ towards r°. After 30 min saccade stimulations the decay was eliminated and r¥ = r° = [r®
(rectangles). C, D) Averaged traces of rV (top, green, averaged across 20 traces) with positive (bottom, red) or
negative (blue) saccade pulses r*, after early learning (C; 5, 10, 15 min) and late learning (D; 25 min, simula-
tions of Eqs 7-9 that include noise; black dashed: true integral of the saccade commands, i.e. right-hand side of
Eq. 4). E) During learning, w"" converges to 1 (solid red) while the network integration time constant becomes

infinite (1/7,.. = 0, dashed, Eq. S2). The learning rate is chosen to get stable learning with a 0.5 Hz saccade

rate, but slower learning is also possible.

animals to those of dark-reared animals. Light-reared
animals were raised under standard conditions with a
12 hour light-dark cycle. Sibling dark-reared animals
were raised in similar conditions but only exposed to
ambient light for a minute or two during preparation
for eye tracking. When measured at 5 days post fertil-
ization, within 24 hours of the development of saccade
eye movements, animals in both groups made sponta-
neous saccades in the dark, with saccades occurring
every 30.1 4 11.6 seconds for light-reared animals, and
35.9 £ 14.1 seconds for dark-reared animals (Fig. 1A).
After saccades, the eyes generally exhibited a relatively
rapid slide to a period of fixation with moderate to min-
imal drift towards baseline, a drift pattern that reflects
the presence of a leaky integrator (Fig. 1A).

Quantification of this drift revealed that there was
little difference in integrator functionality between the
two populations. To quantify this drift pattern, we
plotted drift velocity as a function of eye position and
identified the inverse slope of the best linear fit as an
integration time constant (Fig. 1B). The analysis re-
vealed that light-reared animals had comparable in-
tegration time constants to dark-reared animals (Fig.
1C, p = 0.22; 7L . =0.033£0.013s7%, n = 18;
1 = 0.039 £ 0.01557!, n = 13. This demon-

light reared

strates that the initial tuning of the neural integrator
must use a mechanism distinct from the retinal-slip me-
diated plasticity shown to be important for oculomotor
plasticity in the adult setting.

Conceptual model for bootstrap
learning

integrator

Motivated by the above finding, we propose a boot-
strap learning mechanism that would allow for the
development of temporal integration without the use
of external error signals. To illustrate the learning
paradigm we consider first a simple model with two
neurons, one representing an integrator population,
and the other a teaching population (Fig. 2A). In the
example of the zebrafish, the integrator population is
identified by the VPNI, and the teaching population
is identified as the cerebellum. Both populations re-
ceive the same stimulus (r®) driving saccadic eye move-
ments. The cerebellum receives excitatory input from
the integrator, and the integrator receives a teaching
signal from the cerebellum with mixed excitatory and
inhibitory synaptic pathways (through vestibular neu-
rons, not shown). The integrator is recurrently con-
nected to itself through an excitatory connection.
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The performance of the integrator is critically de-
pendent on the strength of the local excitatory recur-
rent feedback wVV. When mature, the integrator pop-
ulation feeds back onto itself with sufficient strength
to integrate the saccadic input 7° and sustain its own
activity (rY) during the subsequent fixation. Perfect
integration occurs if the synaptic feedback strength is
one, w"Y = 1. Initially, however, the feedback strength
may be mistuned; if it is too small, for instance, the
integrator is forgetful (Fig. 2B).

Learning in this paradigm is driven by the difference
between the activity of the integrator and the cerebel-
lum. We posit that the cerebellum low-pass filters the
input from the integrator; hence, if the integrator is
forgetful, during the attempted fixation the cerebel-
lar signal (r°) will always decay more slowly than the
integrator signal (rV) so that we have ¢ > rv. To
learn how to integrate, then, we determine at the in-
tegrator population the difference between the delayed
feedback signal from the cerebellum and integrator ac-
tivity (r¢ — V), scale it by a teaching weight (w<),
and use this difference signal to drive plasticity of the
local recurrent feedback strength w"Y. The strength
w"YY is modified until the control and integrator activ-
ity become equal; i.e., when perfect integration is ob-
tained (Figure 2B, right). Our self-supervised learning
scheme effectively allows the integrator to correct its
forgetfulness in a manner reminiscent to pulling one-
self up by their own bootstrap. We therefore refer to
this self-supervised scheme as bootstrap learning.

More formally, the dynamics for integrator and con-
trol population can be written as (setting neuronal time
constants and other adaptable weights to 1 for simplic-
ity; see Methods)

,’;,V — 77"\/ + wVVrV + wVC(TC o ,,,,V) + TS ,

tch
7= —r4+rV 471"

(1)
(2)

where both populations receive the brief driving stim-
ulus 7° (Fig. 2A). Here, wyS(r® — rV) is the teaching
current that contributes to the stabilization both on
the fast neuronal and the slow synaptic time scale as
explained below. The plasticity is postulated to follow

the error-minimizing gradient rule (Methods)

w =n(r

—r)rY, (3)
with n being the learning rate. Learning only stops
when plasticity drives the activities to become equal,
r¥ = r°, and hence WYY = 0. But equality also implies
7V = 7° and for Eqs 1 and 2 to generally hold one
infers that wVY = 1. In this case the activity dynamics
reduces to 7V = r® and 7° = r5, and integrating the

first equation yields

(4)

Simulating a noisy version of Eqs 1-3 (Methods)
leads to the development of a stable integrator with
a network time constant that in fact grows to infin-
ity (Fig. 2C-E). In the full zebrafish oculomotor model

below, we show that the bootstrap procedure can also
be nested to simultaneously learn the low-pass filtering
r°(¢) in the cerebellum based on noisy and distributed
VPNI activity.

The delayed feedback signal also provides real-
time stabilization

Proper integration over a wide dynamic range requires
a precision of tuning that might be challenging to
achieve and maintain for biological systems. Var-
ious robustness mechanisms have been proposed to
deal with this fine tuning problem, including synapto-
dendritic nonlinearities and (Koulakov, Raghavachari,
et al. 2002) and delayed negative feedback (Lim and
Goldman 2013). We show in the section and the next
that our learning mechanism can work in concert with
these robustness mechanisms.

The synaptic teaching signal introduced above
drives learning on a multiple minutes time scale, but
also provides a moment-to-moment delayed derivative
feedback that helps to alleviate the fine-tuning concern.
On the one hand, the integrator activity rV is directly
fed back via plastic synaptic strength w"" that is mod-
ified to sustain the activity in the absence of input.
On the other hand, it is indirectly fed back via low-
pass filtered activity r° and fixed connection strength
wYS to form a negative error feedback wYS(r® — rV),
see Fig. 2A and Eq. 1. At any given moment, this
difference signal dampens deviations in integrator ac-
tivity from its low-pass filtered version: whenever rV
deviates from r°, the signal wYJ(r° — rV) counteracts
on a fast time-scale. Whenever the recurrent feedback
strength w"V is mistuned and, as a consequence, the
activity diffuses away, the difference signal counteracts
(Fig. 3A-C). The effect of this correction is visualized
by varying w.S: the weaker the strength of this nega-
tive derivative feedback, the stronger the drift.

While the stabilization acts on the fast time scale
of seconds, the teaching signal simultaneously serves
as a drive for synaptic plasticity that adjusts the feed-
back strength towards wYY = 1, as explained above.
As we show later, the self-supervised learning of the
integrator property can naturally be interpreted in a
two-compartment neuron model where synapses on the
dendritic tree learn to predict the somatic firing (Ur-
banczik and Senn 2014). Before describing this den-
dritic implementation, we consider populations of prin-
cipal and interneurons and show that a nonlinear re-
cruitment of the population neurons further stabilizes
the persistent activity.

Learning in a population and stabilization
through nonlinearities in recurrent feedback

In the above simplified model we considered a single in-
tegrator unit that in biology would be represented by
a population of neurons, typically composed of excita-
tory and inhibitory neurons. Learning in the presence
of multi-synaptic feedback loops in a population of neu-
rons is more challenging and we show that our boot-
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Figure 4: Formation of stabilizing nonlinear feedback through recruitment. A) With a nonlinear
feedback learned by recurrently recruiting interneurons endowed with synaptic short-term depression (wiggled
blue line, (r"), see Eq. 6), the integrator remains stable even when the teaching signal is cut after learning (red
cross). B) For stability, the net recurrent feedback, w"YrY +(r") (purple lines with different values for w""),
needs to cross the identity line v (black) from above (red circles). C) Example for ¢ (blue sinusoidal function
of V) yielding 10 stable fized points between 0 and r™* (red circles). D) If ¥(r"Y) dynamically develops due
to the plasticity of the depressing synapses from inter-to-principal neurons (w¥'), stability even improves (top,

stmulation of Fqs 8, 10 and 153-16).

strap learning can also deal with this situation (Fig. recruitment of neurons provides an additional stabi-
4A). Additionally, we incorporate nonlinear synaptic lization mechanism (Seung et al. 2000; Brody, Romo,
interactions within the Integrator such that sequential and Kepecs 2003).
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In the population model of the Integrator, we con-
sider a system with integrator principal neurons that
provide feedback connections within the integrator and
interact with other circuits, and integrator interneu-
rons that only receive and provide input to the princi-
pal neurons (Fig. 4A). In the following, we first describe
for illustrative purposes how learning can be achieved
with an idealized form of nonlinear feedback through
the interneuron population, and we then show how the
appropriate structure of inter- and principal neurons
can evolve through learning.

Through the recruitment of neurons in a popula-
tion an additional stabilization can be achieved, by
effectively finding a population input-output transfer
function that is ‘wiggling’ around the identity. To ex-
plore the idea, we split the population feedback into
a linear, direct feedback of strength wVVrY between
principal neurons, plus a nonlinear indirect feedback
of strength ¢ (rV) through interneurons. The integra-
tor dynamics then reads as

Vo=V VY 4+ "/}(TV) +wVe (Tc _ ,r,V) 45 (5)

tch

To study the benefits of local nonlinearities, we first
consider a sinusoidal modulation (¢» = sin). Learn-
ing then leads to an overall feedback close to unity,
w¥VrY +4p(r¥) = rY, with the direct feedback strength
w¥Y =~ 1 as before. But now, for rates r] with
Y(rY) = 0 and negative slope ¢'(rY) < 0, stable at-
tractors develop (Fig. 4B).

We next describe how the interneuron popula-
tion can be organized to generate the nonlinear feed-
back described above. In this simplified example,
we considered two integrator principal neurons with
average rate r¥ that drive a population of N; in-
terneurons. Both principal and interneurons fire with
rates determined by a threshold-linear transfer func-
tion, 7, = [wi¥rY — 9", as observed for VPNT neu-
rons (Fig. 5A, see also Aksay, Baker, et al.). The
principle-to-interneuron weights w;’ are sampled from
a heavy-tail distribution, assuring that the number of
recruited interneurons linearly increases with v (Fig.
5C and Methods, Eq. 17). The interneurons project
to the principal neurons through either excitatory or
inhibitory weights w)" that undergo short-term synap-
tic depression. The synaptic release rate of these in-
terneurons is a saturating function of the presynaptic
rate rV (Fig. 5C). With this, the indirect feedback now
becomes

v ZNI wy'
virt) = 1+ Thee T}, "k (6)
- e

where 7,.. determines the recovery time from the synap-
tic depression, NV; the number of interneurons recruited

at VPNI rate rV, and —— is the depression factor
k

14-Tree 7,
that down-scales the absolute synaptic weight w;" from
interneuron & to the principal neurons (neglecting the
‘use’-parameter, see Methods, Eq. 14, and Tsodyks and
Markram).

The absolute inter-to-principle neuron strengths
wy" are plastic with the same error-correcting learn-

ing rule as for the previously described direct feedback
weights, w)" oc (r®—r")r) . With these additional non-
linearities introduced by the interneuron recruitment
and the synaptic depression, the bootstrap learning can
still form a recurrently connected neuronal population
that faithfully integrates saccade inputs (Fig. 4D). In-
deed, the learning mechanism is able to find weights
w)" to yield a feedback loop through the interneuron
population that is qualitatively similar to the idealized
sinusoidal form introduced before. The number of at-
tractors is limited by the number of neurons in the
VPNI population and it also depends on the distribu-
tion of saccade inputs r* used during learning (Supp.
Fig. S1).

Integrator learning with two-compartment
spiking neurons

Before moving to the full model, we explain how the
teaching current I, = w'S(r® —rY) in Eq. 5, ie.
the deviation of the integrator activity from its de-
layed feedback via cerebellum, is generated biophysi-
cally and how it can serve as a drive for plasticity. For
this we endow our VPNI integrator neurons with a so-
matic and dendritic compartment. The direct VPNI
feedback with connection strength wV"Y projects to the
dendritic compartment, as does the indirect feedback
through the interneurons and the saccade input with
corresponding connection strengths. The cerebellar ac-
tivity r© projects through conductance-based direct in-
hibition and indirect excitation to the somatic com-
partment (Fig. 5A).

The key property of the membrane biophysics is
that the total conductance-based cerebellar input, I,
defines a reversal potential (called the matching po-
tential Uy;) where excitatory and inhibitory currents
exactly balance out so that the total cerebellar input
current vanishes (Urbanczik and Senn 2014). As a con-
sequence, if the recurrent input to the VPNI neuron
already imposes the same postsynaptic voltage in the
soma, U = Uy, the cerebellar input vanishes, I, = 0,
and the somatic voltage stays at its value. Formally,
the total cerebellar input current is proportional to the
difference between the matching potential and the so-
matic voltage, I,., = g'$ (Uy — U), with proportion-
ality factor being the sum of the excitatory and in-
hibitory conductances (¢S = gg + ¢1) induced by the
cerebellum.

The biophysics of the cerebellar input is reflected in
the form of the teaching current in the simplified model
of Eq. 5, I, = wYS(r® — rY). The matching potential
Uy is induced by the cerebellar activity r°, and the
postsynaptic voltage U is, in the absence of saccade
commands, driven by the VPNI activity V. Impor-
tantly, the VPNI and cerebellar activities are identical,
r¥ = r° when U = Uy, and hence the teaching cur-
rent in the simplified model faithfully represents the
biophysics of the cerebellar input. Learning is driven
by the difference between the firing rate established
by cerebellar inputs minus the firing rate caused by
the dendritic input, the so-called dendritic prediction
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Figure 5: Two-compartment neuron implementation and emergence of balanced states. A)
Conductance-based somatic input naturally implements the delayed teaching signal w?S(r¢ —rY) from Eq. §
as a somatic teaching current. Recurrently recruited interneurons (blue, with identical current-to-rate transfer
functions, inset) project to the dendritic compartment of the principal neurons through synapses with short-
and long-term plasticity. B) The distribution of the principal-to-interneuron weights, wy (red), that lead to
a linear recruitment of the interneurons is roughly log-normal (black) C) Contribution of the Ny = 200 in-
terneurons as a function of the population rate rV = 1\} >, 1 with Ny = 2 principal neurons (for a more
realistic number/VPNI structure see Fig. 6/7). Blue lines represent the individual terms in Eq. 6, interpreted
as synaptic release rate (cf. Eqs 13-15). The number of recruited interneurons is roughly linear in r¥ (black).
D) Evolution of vV (green) and r¢ (black) in response to positive and negative saccade inputs (middle traces).
Lowest traces: Repackmg of the direct (via wy V) and indirect ( via w, ) feedback currents into groups excitatory
(w;Y >0 and wj! >0, purple) and inhibitory (w;}" <0 and w}! <0, grey) currents. After learning (rightmost),
the total e:z:cztatory current is mirrored in the znhzbztory czm"ent and 1s fully balanced by the sum of inhibitory
and leak current during the stabilization period (dashed grey, see also Supp. Info. §1.5). E) The weights w};
from the inter-to-principal neurons evolved during learning such that they stabilize the firing rates in the absence
of inputs. F) Open-loop mean firing rate r" that would be evoked in the population of principle neurons if these
are clamped to a given value (green curve: wYVrY + ¢ (rY) as a function of r). Downwards crossings with the
diagonal (black) yield stable fized points for rV (inset, cf. Fig. 4).

error, that becomes a fixed fraction of the difference rule w'Y o< (r° —rV)rY as expressed in Eq. 3 (see also

r® — rY. This leads to the error-correcting learning Methods, Eqs 23-28).
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Figure 6: Stable integrator learning
with spiking two-compartment neu-
rons. Same simulations as in Fig. 5D,
but with spikes triggered by the instanta-
neous Poisson rates for principle and in-
terneurons, rY and rL (Eq. 22). Lower
panels:  spike raster plot of a fraction
of principal neurons (green, N, = 100)
and release raster plot of the interneu-
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To demonstrate the functionality of this frame-
work, we simulated a VPNI network composed of two-
compartment principal neurons and a large population
of VPNI interneurons that project through depressing
but plastic synapses back to the principal neurons. Af-
ter 30 minutes of biological simulation time a robust in-
tegrator evolved (Fig. 5D), with the well-known balanc-
ing of excitation and inhibition (Denéve and Machens
2016). The recurrent excitation is balanced by the
overall recurrent inhibition including the leak, as re-
quired by the very nature of the sustained activity be-
tween saccades, formally w"VrY + ¢(rV) —r¥ = 0 in
Eq. 5. The learning rule can also cope with the pop-
ulation of interneurons by appropriately adapting the
inter-to-principal connections, w¥* o« (r° — r¥) r!, such
that the overall feedback exploits the nonlinear recruit-
ment and robustly stabilizes the delay activity as ex-
plained above (Fig. 5E,F).

The integrator also robustly emerged when both
the principal and interneurons were spiking with an in-
stantaneous Poisson rate r) and 7}, respectively (Fig.
6). Here, to reduce fluctuations, the number of prin-
cipal neurons was increased to a more realistic 100.
Learning was driven by the spiking version of the den-
dritic predictive plasticity rule for all the spiking inputs
from the principal neurons themselves, the interneu-
rons, and the saccadic units (Eq. 28 and Supp. Info.
S1.5). During the ongoing random saccade stimula-
tions, all these synaptic weights jointly learn to match
the spike-induced postsynaptic potential of a principal
neuron to the cerebellum-imposed matching potential
in real time (Fig. 6B).

Learning in the cerebello-integrator circuit of
the larval zebrafish

We next applied the idea of bootstrap learning to a
more realistic model of oculomotor temporal integra-
tion in the developing zebrafish. In the above, we first
showed that the oculomotor neural integrator is able
to tune up in the absence of visual inputs (Fig. 1),

firing rate rV = NLVZz rY (green solid:
mean; green dashed: Zstandard devia-
tion) deviates from the cerebellar teaching
signal r¢ (solid grey). B) After 20 min of
exposure to the saccade inputs (r°, middle
trace) the VPNI principal neurons learned

to integrate.

presented a conceptualization of how this could be ac-
complished through a delayed internal feedback that
provides a teaching signal (Fig. 2), showed how this
delayed feedback could by itself (Fig. 3), and when
coupled with local feedback nonlinearities (Fig. 4), be
used also to provide real-time network stabilization.
We further demonstrated how at the cellular level the
stabilizing plasticity rule emerges from the distribu-
tion of the cerebellar teaching feedback and the local
VPNI feedback across somatic and dendritic compart-
ments of neurons within a population (Figs 5 and 6).
Extension of these concepts to a more realistic setting
of the zebrafish, however, requires that we tackle two
additional challenges beyond the generation of persis-
tent firing: namely, the development of the appropriate
neuronal tuning curves and the generation of the ap-
propriate delayed feedback signal. Specifically, the first
challenge is to have an integrator network also learn
the slope-threshold organization apparent experimen-
tally over a bilateral population (Aksay et al, 2000); the
second challenge is to compile from the threshold-linear
responses of developing integrator neurons a teaching
signal that evolves to represent the desired eye posi-
tion. Furthermore, the tuning curves, teaching signals,
and persistent firing need to mature in tandem.

The key to dealing with these challenges is to allow
cooperative development of the different brain centers
involved in producing oculomotor responses. The full
model consists of four neural populations (Fig. 7A):
the integrator (VPNI), the saccade generator (Sacc),
the cerebellum (CE), and the abducens motoneurons
(AN). The VPNI consists of an ipsi- and contra-lateral
population of VPNI neurons. Initially, the integrator
neurons are randomly connected among themselves,
and they randomly project to motor neurons in the
abducens, but these neurons receive structured teach-
ing feedback from the cerebellum. To develop prop-
erly, the system must simultaneously find the appro-
priate weights of modifiable synapses at several key
locations: at the synapses from the saccade genera-
tor onto each of the other populations, and at the
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Figure 7: Self-supervised learn-
ing in CE, VPNI and AN
produces stable integration
with observed connectivity and
transfer functions.

A) Full circuit of the cerebellum
(CE), the abducens nucleus (AN)
and the VPNI. All synapses marked
by a crossing arrow are plastic.
The evolving CE provides teaching
signals (weighted by wSe, w)¢ and
wi?) to itself as well as to the VPNI
and AN neurons. Inset: Ipsi- and
contralateral VPNI neurons that are
recurrently connected, with initially
random connectiwity matriz (color
code). They receive saccadic input
% and a teaching signal rV° from
the CE. B) 5s example traces of the
saccade integral (black dashed), the
produced eye position (blue) and the
firing rate of an ipsi (green) and
contralateral (green dashed) VPNI
neuron, before (left) and after 5h
of stochastic saccade stimulation
(right). Below:  Corresponding
saccade inputs r°. C) Cerebellar
position-to-rate  transfer  function
before (inset) and after learning,
with error bars for the produced eye
positions and rates. D-E) Eram-
ple of a AN (D) and VPNI (E)
position-to-rate  transfer function
after learning with error bars for the
produced eye positions and rates.
Insets:  Transfer functions for all
AN and VPNI neurons before and
after learning. F) Recurrent weights
within the VPNI developed ipsi-
lateral excitation and contralateral
inhibition, plotted against the eye
position 6 at which the pre- and
postsynaptic neurons start firing.
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synapses from the integrator onto both the abducens
and the cerebellum. The teaching signals that regulate
the simultaneous adaptation at the disparate synaptic
sites all arise from the cerebellum (Fig. 7A): the cere-
bellar projection w2{ regulates adaptation of synapses
from the saccade generator and integrator onto the ab-
ducens; the cerebellar projection wYS regulates plas-
ticity of synapses from the saccade generator onto the
integrator and of synapses between integrator cells; and
the cerebellar self-projection wyy regulates plasticity of
the synapses from the saccade generator and integra-
tor onto the cerebellum (Eqgs 38, 33 and 29). Note that
these teaching signals themselves evolve over time as
the inputs to the cerebellum from the saccade genera-
tor and integrator are modified.

With the specific choices for the above parametriza-
tion of the cerebellar teaching signals we imposed a
minimal set of biologically-inspired constraints upon
the model. A first set of constraints could origi-
nate from proprioceptive inputs from the oculomotor
muscles that sets the appropriate internal model in
the cerebellum (Fiorentini and Maffei 1977; Steinbach
1987). We posited that proprioceptive inputs help gen-
erate an internal model of the aggregate response in the
abducens and plant by setting the filtering properties
of the cerebellar self-projection loop (Eq. 29). We also
posited that proprioceptive inputs help calibrate the
range of abducens firing rates appropriate for covering
the oculomotor range, and we assumed that the mus-
cle force, being the weighted sum of the abducens fir-
ing rates, is matched to the oculomotor range and the
muscle properties (Eq. 40). A second set of constraints
could originate from genetic factors. One of these were
that the inputs from the cerebellum were excitatory
(through interneurons) to one half of the integrator
population and inhibitory to the other half of the in-
tegrator population through a monotonically increas-
ing distribution of ‘teaching weights’ (Eq. 33). An-
other constraint is that the cerebellar input similarly
‘teaches’ the abducens neurons again through mono-
tonically increasing distribution of teaching weights
(Eq. 38).

To test whether this full model can cooperatively
develop a stable integrator with the appropriate tun-
ing curves, we started out with a system with initially
mistuned random weights, and simultaneously ran the
neuronal dynamics (Eqgs 29, 31 and 36) and the synap-
tic plasticity rules (Egs 30, 34 and 39) during a se-
quence of saccades. To relate to the experiments, we
further plotted the cerebellar, AN and VPNI activi-
ties as a function of the produced eye position 6*N.
Due to the random initialization, the teaching signals
from the cerebellum to itself, to the VPNI and the AN,
were initially inappropriate and the cerebellar activ-
ity, which should eventually represent internal model
of the eye position, did not reflect the desired eye posi-
tion, 7°(t) # 0(t) where 0(t) = fttors(t')dt’ . Further-
more, the true eye position produced by the abducens
neurons (Methods) was incorrect, (Fig. 7B), and the
VPNI and AN position-to-rate transfer functions were
distorted (Fig. 7C insets ‘Before’).
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With ongoing saccadic stimulation and plasticity
at the various synapses, however, the network learned
to properly integrate, and the produced and desired
eye positions eventually matched across the full range,
04N =~ ¢ (Fig. 7B). In doing so, the position-to-rate
transfer function of the CE became linear, consistent
with the idea that the CE represents an internal model
of how the abducens and plant transforms input signals
to eye position (Fig. 7C). The position-to-rate transfer
functions of the AN neurons, 71 (¢), and VPNI neurons,
rY(0), developed a positive threshold slope correlation
(‘After’ in Fig. 7D,E) as observed in the real prepara-
tion (Pastor, Torres, et al. 1991; Aksay, Baker, et al.
2000).

Simultaneously, a highly structured VPNI connec-
tivity matrix developed out of the originally random
connection strengths (Fig. 7F and Supp. Fig. S6). Gen-
erally, VPNI neurons became strongly excited by ipsi-
lateral VPNI that had a lower recruitment threshold as
a function of 84Y, and became weakly excited or even
inhibited by ipsilateral VPNI neurons with a higher re-
cruitment threshold. Inputs from contralateral VPNI
neurons, on the other hand, typically were inhibitory.
Together, the pattern that emerged from the bootstrap
learning procedure largely reflected the push-pull or-
ganization of the oculomotor integrator evidenced by
earlier work (Fisher et al. 2013).

~
~

3 Discussion

We have experimentally shown that the eye position
integrator in zebrafish larvae develop equally well in
dark-reared animals without any visual feedback and
in particular without exploiting retinal slip (Murakami
and Cavanagh 1998). We explained this phenomenon
by a general model that autonomously learns to tem-
porally integrate. For the example of the oculomotor
system in the zebrafish we showed how the cerebellum
may act as an intrinsic feedback control for learning
the integrator dynamics and for adapting the motor
commands.

Learning based on dendritic predictions We
have proposed a model for integrator learning that
takes advantage of the spatial extent of integrator
neurons. Previous models of integrator learning, and
the great majority of learning models in general, as-
sume single-compartment neurons for convenience and
tractability. However, such models ignore the very real
possibility that the signals driving learning and the sig-
nals being modified arrive at or are present on differ-
ent parts of the neuron, be it proximal vs distal den-
drites, or different dendritic branches (Urbanczik and
Senn 2014). We argue that this heterogeneity should
be viewed as a feature that can be exploited for learn-
ing, and propose a scheme wherein cerebellar teaching
signals arriving at or near the soma can drive the plas-
ticity of recurrent integrator signals arriving at more
distal dendritic regions. Potential heterogeneity in in-
puts is hinted at in a recent ultrastructural study of
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identified integrator neurons, which suggested differ-
ing spatial distributions for local feedback from inte-
grator neurons vs global input from other sites (Vish-
wanathan et al. 2017). Future studies may consider
the precise distribution of cerebellar inputs (through
vestibular nuclei) onto integrator neurons, and the po-
tential for independence in the plasticity of different
input streams via segregation of those streams onto
differing dendritic locations.

Cerebellar control We propose that the cerebellum
generates the teaching signal necessary to drive plas-
ticity at the level of the integrator and the abducens.
Such a role seems plausible given the involvement of
the cerebellum in a wide range of oculomotor learning
behaviors, the presence of connections from integrator
neurons to the cerebellum (Lee, Arrenberg, and Aksay
2015; Kolkman, McElvain, and Lac 2011; McCrea and
Horn 2006; Brodal 1954), and the presence of connec-
tions from the cerebellum to the integrator both di-
rectly and via the vestibular nuclei (McCrea and Horn
2006; Straka et al. 2006). Unlike many other cerebellar-
mediated learning tasks, in the current proposal there
is no role for olivary inputs and visual signals. Instead,
the proposed teaching signal is created by appropriate
filtering of burst and integrator signals through cere-
bellar dynamics such that the signal output of the cere-
bellum eventually equals the real eye position.

In the current instantiation, the form of the adapted
teaching signals and the values of the key parameters
were built in (i.e. the scaling of the saccade command
driving the internal cerebellar activity, @, and the
scaling that transforms the maximal VPNI firing rates
into a maximal eye angle or muscle force, ¥ .. /T max)-
In future variants, we anticipate that the cerebellar
model could itself be calibrated through propriocep-
tive signals that are present beginning early in de-
velopment (Graves, Trotter, and Frégnac 1987) and
provide information on oculomotor muscle tension (A.
Fuchs and Kornhuber 1969; Donaldson 2000), even
though these proprioceptive signals are not involved
in the moment-to-moment stabilization of eye position
(Guthrie, Porter, and Sparks 1983; Lewis et al. 2001).
Furthermore, future variants will also need to allow for
potential differences in the role of cerebellar feedback
during development and in the adult, at which state
cerebellar output signals are largely velocity dominated
(Pastor, Cruz, et al. 1997; Lisberger and A. F. Fuchs
1978).

Cerebellum as an inverse model In line with re-
cent cerebellar theories (Kawato 1999; Wolpert, Miall,
and Mitsuo 1998) we suggest that the cerebellum is in-
volved in an inverse model of the plant, with the plant
acting forward by converting the abducens output to
the muscle force that generates the true saccade and
holds the eye position. Inverting the plant implies pro-
ducing from the desired saccade the appropriate ab-
ducens activities via a distributed VPNI code. The
cerebellum delivers the teaching and correcting signals
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for the VPNI, the abducens and for itself to produce
the correct input to the plant. Sequentially execut-
ing the inverse model followed by the forward action of
the plant generates from the desired saccade the plant
command and out of this the true saccade while sup-
pressing inappropriate eye movements. The cerebellum
together with the brainstem nuclei, including the deep
cerebellar output nuclei, form an exact inverse model
of the plant if the true saccade is identical the desired
saccade expressed in terms of the saccade command.
The cerebellum, having phylo- and onto-genetic
knowledge of the plant and an appropriate internal
scaling of the saccade command, can teach the ab-
ducens neurons to produce the correct motor inputs,
and the VPNI neurons to produce a robust integrator
code that drives the AN neurons. Due to the nonlin-
earity of the plant, these teaching signals must depend
on the eye position that, intriguingly, is estimated by
the cerebellum based on the VPNI activities. To judge
whether the CE correctly estimates the eye position,
and whether the VPNI correctly integrates the sac-
cade commands, the CE compares the own VPNI- and
Saccade-driven activity (r¢) with its low-pass filtered
version (7¢). Deviations from this cerebellum-intrinsic
comparison adapt the incoming synapses (from VPNI
and Sacc) to improve the cerebellar estimate. A bet-
ter cerebellar estimate in turn improves the teaching
of the brainstem integrator circuits and the plant com-
mand (i.e. the VPNI-to-VPNI, the VPNI-to-AN, the
Sacc-to-VPNI and Sacc-to-AN synapses, see Fig. 7TA).

Learning with robustness Our developmental
model also incorporates two robustness mechanisms
that have been considered important for integrator
function. A well-known challenge faced by integra-
tor circuits and related analog memory networks is
the problem of fine tuning — small variations in synap-
tic or cellular parameters can lead to severe changes
in the integration or memory time scale. To over-
come this challenge, various mechanisms for increas-
ing robustness have been proposed including synaptic
facilitation, dendritic bistability, and negative deriva-
tive feedback (Seung 1996; Koulakov, Raghavachari,
et al. 2002; Goldman et al. 2003; Loewenstein and
Sompolinsky 2003; Lim and Goldman 2013; Sanders
et al. 2013). The current model naturally incorporates
negative derivate feedback via a conductance-based so-
matic teaching input that represents a low-pass filtered
version of an integrator cell’s own activity. Since the
low-pass filtering smooths out the activity peaks, com-
bining the currents induced by cerebellar input with
those from local recurrent input provides a corrective
difference signal that immediately dampens any drift.
We also introduced synaptic depression that stabilizes
population activity when stronger saccadic inputs re-
cruits further excitatory interneurons that push the In-
tegrator neurons to a higher sustained activity level.
This synaptic depression can again be viewed as a dy-
namic negative derivative feedback. The developmen-
tal model learns to appropriately recruit individual in-
tegrator neurons such that, due to the synaptic depres-
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sion, the sustained population activity stabilizes at a 4 Methods

fixed set of activities, even if the teaching feedback has
a systematic bias. We expect that our learning scheme
is general enough to incorporate additional robustness
mechanisms as well.

Emergence from a minimal set of assumptions
The patterns of connectivity and the realistic tuning
curves of the different neuronal classes emerged during
learning guided by a minimal set of assumptions. A
first assumption is that the cerebellar teaching signal
to the AN compensates the muscle nonlinearities such
that the effective eye position is eventually linearly en-
coded in the cerebellar teaching activity. The cerebel-
lar teaching signal to the VPNI in turn should provide
enough variability in the distribution of the thresh-
olds and slopes of the integrator neurons such that the
VPNI neurons themselves can learn to select the ap-
propriate feedback signal to sustain their activity, and
the AN neurons can learn the appropriate weighting
to produce the required nonlinear muscle force for the
linearly encoded left and right eye position. A second
assumption is that the cerebellum has an internal (in-
verse) model of the oculomotor plant through which
the signals from the integrator get filtered. This model
could presumably be calibrated through proprioceptive
inputs from the oculomotor muscles (Donaldson 2000).

Bootstrapping in motor learning Bootstrap
learning may more generally underly motor learning
when internal feedback is produced, as here by the
cerebellum and more generally by a predictive forward
model of the motor output, that helps to improve the
inverse model (Kawato 1999; Wolpert, Miall, and Mit-
suo 1998). Such feedback signals provide information
about a given motor command and its induced mo-
tor state, and the comparison between the effective
and desired state allows for improving both the in-
verse model and the internal feedback. We have shown
how such a scheme can work for the learning of an in-
verse model that produces an appropriate motor code
for the eye position out of a saccade command. More
generally, learning an inverse model based on internal
or external feedback to set a target for the upcom-
ing motor state is a strategy that may also underly
imitation learning (Giret et al. 2014). Internal feed-
back may also be provided by the recall of past er-
rors from an error memory that helps to quicker adapt
to motor perturbations (Herzfeld et al. 2014). De-
lays in the prediction of the feedback may be over-
come by a prospective code of the cerebellar activi-
ties that can also be expressed in terms of dendritic
predictive learning (Brea et al. 2016). The suggested
bootstrap learning may further inspire the learning of
position or movement self-stabilization in the field of
robotics, where a greater need for biologically-inspired
algorithms has been noted (Pfeifer, Lungarella, and
Tida 2007).
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Learning to integrate using feedback

Here we formally construct the recurrent integrator
network with activity rV that integrates saccade com-
mands 7°. The basic idea is to consider a low-pass fil-
tered version ¢ of rV that also receives the saccade
inputs, and to adapt the various synaptic strengths
such that eventually ¥ = r°. Being equal to its low
pass-filtered version is only possible if 7V is constant in
between the pulse-like saccade inputs.

The general form of the recurrent integrator dy-
namics is (Fig. 2A)

TVT',V — _7,,V + wVV,,,V + w:ii}(,rc _ ,rV) + 'LUVSTS + wVee’
(7)
TC,,',C — 77,0 + ,,,,V + U)CSTS, (8)

with some unbiased, quickly changing noise e (see
Supp. Information). The time constants were set to
7V = 10ms and 7¢ = 50ms. As r° and rV represent
firing rates, we truncated them at 0 so that they stay
non-negative and we also truncated them at a maxi-
mal value (7., = 150Hz) to prevent running-away for
initial feedback weight w"V > 1.

The dynamics of the synaptic strengths is defined
to descend the error function E = £(r® — rV)? that
eventually leads to ¥ = r°. As according to Eqs 7
and 8 the activities depend linearly on the synaptic
weights, the gradient ascent for the recurrent weight,
for instance, leads to the dynamics

oF

- awvv

With the corresponding gradient calculation for the
synaptic weights mediating the saccade inputs (and be-
low also for the other synaptic weights) we obtain the
downhill (and here even gradient) dynamics

V'V

0 = =r¥)rY.

X
)

9)

with presynaptic identity X € {V,S}, a small learn-
ing rate n = 0.5 (and an update every Euler step, with
dt =1 for the one-compartmental neuron simulations).
We set w® = 7€ to fix the scale of the external input
and also fixed w) = 0.1. While ¥ — r° the plastic
weights converge to wYY — 1 and wY® — 7V respec-
tively. This is because the steady state wVY = wV® =0
requires ¥ = r°, and this implies that also the dy-
namics of ¥V and r°, i.e. Eqs 7 and 8, are identical.
We conclude that wYY = 1 and w¥® = 7V. In this case,
Eqgs 7 and 8 reduce to the single integrator dynamics
7V = 1% (see Supplementary Information S1.1).

W= —1r")r

Multistability through nonlinear feed-
back

To improve the stability of the integrator we consider
a nonlinear feedback 1 (rY), extending Eq. 7 to

+ wVC

ViV = —pV VY +1/}(TV) ve (TC _ TV) +wVSyS,

(10)
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After learning one has wV* = 0 and hence r° = rV.
Correct temporal integration of r° is obtained when
(after learning) w¥® = 7¥ and when

Y+ WYV v+w( )
Strict equality dictates that the feedback function
should be linear, ¥(rV) = rV(1 — w"Y), but this yields
a line attractor that is again sensitive to the mistuning

of the recurrent feedback. Stability in turn requires the
condition

(11)

Vv i v
“L W'Y+ () < 0. (12)

to be satisfied at least at a few rates. As a compro-
mise between Eqs 11 and 12 we may choose ¢ (rY) =
ysin(wrY) with v = .01 and w = 7/3, see Fig. 4B,C.
We next show that such a nonlinearity can be learned
by the same learning rule as before and further im-
proves stability.

Nonlinear feedback through recruitment

To learn the nonlinear feedback we consider a popu-
lation of N; = 200 interneurons (putatively excitatory
or inhibitory, see also Fig. 5E) that project through
short-term depressing synapses onto the principal neu-
rons Ny, = 2. The variable 7V is now expressed as the
population rate r¥ = 1/N VrY, where each of the
r, follows the dynamics in Eq. 10. The total interneu-
ron feedback becomes

Y(rY) = Z@ZI% (13)
VI
with @) = % (14)
1+utery
r, = |wyrY — 19J+ i (15)

Here, r}, is the firing rate of the k’th interneuron, using
|z]T = 2z for x > 0 and [z]T = 0 else, ¥ = .15 is
the activation threshold, and w)' is the non-depressed
synaptic weight to be learned. Synaptic depression is
quantified by the recovery time constant 7., = 0.1s
and the ‘use’ parameter u = .2, giving the effective
weights @' of Eq. 14 (Tsodyks and Markram 1997).
The synaptlc release rate becomes wy'ry.(r") that is a
saturating function of rV (Figs 5C and 6).

A learning rule for the weights from the inter-to-
principal neurons that also descends the error function
E is obtained as the ones for the other weights (Eq. 9),

=n'(r =)y, (16)

here with the learning rate n' = 0.1/N;. Without con-
straining the sign of the weights some become excita-
tory and some inhibitory in order to generate the ap-
propriate nonlinearity (cf. Fig. 5D). The weights from
the principal to the interneurons, w;’, are fixed and
sampled from the distribution (Fig. 5B)

pluw™) = —

(WY)2 Ty
evaluated for w > 9/rY. .. As shown in the Supp.
Information S1.2, this weight distribution supports a
linear recruitment of the N, interneurons.

(17)

)

13

Two-compartment neuron model

We next interpret Y = ¢(U;) as instantaneous Pois-
son firing rates of 2-compartment VPNI principle neu-
ron, with U; being the somatic voltage and a threshold-
linear transfer function ¢(U) = [yU]" for some con-
stant v >0. The somatic compartment receives a teach-
ing current I, ; from the cerebellum. The dendritic
compartment with voltage V; is driven by recurrent
feedback from the principal- and interneurons and by
the external stimulus (Fig. 5A). As we will show, the
neuronal dynamics in Eqs 8 and 10 can be obtained
from the coupled dynamics of a population of VPNI
neurons and the cerebellar activity,

VU = ~U; + go (Vi = Us) + Lens (18)
1 X
7C = —r° 4+ — ry 4+ wesrs, 19
3 (1)
with
Itch,i = gE (EE - U’) + gI (EI - Ui) (20)
K=Dup S X i
le{e,1}
+
Ty, = \‘Zw}c\; ;= J , ) =o(Uj). (22)

The effective weights ;! from the interneurons to
the principle neurons are deﬁned as in Eq. 14 and in-
clude synaptic depression. The interneuron transfer
function is threshold-linear (Aksay, Baker, et al. 2000),
with the same threshold as in Eq. 15 and the distribu-
tion of w}, as described above. The dendritic transfer
conductance and the inhibitory conductances are fixed
to gp = gy = 20 and the excitatory and inhibitory re-
versal potential were set to Ey = 42/3 and E, = —1/3.
The excitatory and inhibitory conductances gz and ¢;
together define the target (‘matching’) potential Uy, for
the somatic potential U;, where

gEEE + QIEI

U =
Y gs + G

(23)

Adapting the weights on the dendritic compartment
will push the somatic potential towards its target such
that eventually U; = Uy, or in terms of spike rates,
rY = ¢(Uy). To ensure that these rates also match the
cerebellar teaching rate, r° = ¢(Uy), we plug (23) into
this last equation and solve for gy,

¢~ (r°) — E

et (24)

g = 01

As required by the biology, gy is a non-negative, mon-
tonically increasing function of the presynaptic firing
rate r°. The analogy of the somatic teaching current
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in Eq. 18 to the teaching signal wY$ (r® —rV) in Eq.
10 becomes apparent by rewriting (20) as
Itch,i = (QE + 91) (UM - Ui) . (25)

To map the dynamics for r¥ = 1/Ny vav rY and
r© obtained from the 2-compartment model (Egs 18
— 22) to the dynamics of the simplified model (Egs 8
and 10) we first consider the case of one single VPNI
principal neuron (Ny = 1) for which 7€ is identical in
both models (Egs 8 and 19). Since we are interested
in the stabilization of the dynamics between saccades
we also assume r° = 0. The first steady state condi-
tion, ¢ = 0, is then reached if and only if ¢ = rV.
Since ¥ = ¢(U) and r° = ¢(Uy) we conclude that
U = Uy, and hence I, = 0 (Eq. 25). With this, the
second steady state condition, U=0 (Eq. 18, again
for a single neuron, hence droping the index ), yields
(also using Eqgs 21 and 13)

1+gv

—=U=V=w"VrY+(r
gv

Y). (26)
The above Eq. 26 is the condition for the steady
state in the simplified model (Eq. 11) if we identify
rV = 1+ng To do this we note that by construc-
tion of the VPNI and interneuron feedback the term

w¥VrY +4(rY) is close to r¥ and hence always positive
(see Fig. 5F). We can therefore safely truncate the left-
hand-side in Eq. 26 at 0 by applying |.|™. Hence, the
transform (U, Uy) — (rY,r¢) defined by

1+ gy
gv

7,,V

—ow) - | Uf =60, (@7)

maps the steady states of the dynamics (U ,7°) from
Egs 18 and 19 to the steady states of the dynamics
(7V,7°) from Eqgs 10 and 8, and vice verse (setting
v= (14 gv)/gv). By mapping the steady states we
have shown that the dynamics of the 2-compartment
model is topologically equivalent to the one of the sim-
plified model. For Ny, >1 the topological equivalence is
shown by the same fixed point mapping (Eq. 27), but
applied to the averaged population dynamics for the
simplified and the 2-compartment model, respectively.

Dendritic predictive plasticity

Learning adjusts the synaptic weights on the dendritic
compartments such that somatic potential U;, driven
by the dendritic potential V;, converges to the target
potential, U; — U,;. The attenuated dendritic voltage
that drives the neuron in the absence of teaching input
is Vi* = gp/(1 + gp)V;. The downhill synaptic learn-
ing rules for the 3 types of synapses projecting to the
principal neurons, Eq. 9, become

V(i = o(Vir))ry

Jo
where X € {V,I,S} is the identity of the presynaptic
neuron. We chose ¥ = 0.1/N;. Crucially, for U; = Uy,
the somatic current vanishes (Eq. 25), and because the

VX

(28)

14

somatic potential becomes the attenuated dendritic po-
tential U; = V*, the plasticity signal also vanishes (Ur-
banczik and Senn 2014), rY —¢(V;*) = 0. In the spiking
version (Fig. 6) the presynaptic rates r were replaced
by a train of postsynaptic potentials elicited by presy-
naptic spike trains generated with the corresponding
Poisson rates. Similarly, the postsynaptic rates r) were
replaced by a spike train generated from that Poisson
rate. For details to Figs 5 and 6 see Supp. Info. S1.5.

Cerebellum learning an internal model

To model the complete VPNI we consider 2N, neurons,
with the first Ny (= 100) being the ipsi and the second
Ny the contralateral neurons. We also consider an in-
ternal CE variable (7°) that represents the low-pass
filtering of the cerebellar activity r© plus the saccade

input. Eq. 8 is then replaced by the two dynamical
equations
2Nv
=—r4 Z wVrY 4w (7€ — r°) + wr®
TOFC = —FC 4 7° 4+ @S (29)

with the cerebellar self-teaching weight fixed to wS
0.01.
The weights mediating the VPNI and saccade in-

tch -

puts, wi" and w®®, are adapted such that r° closes up
to 7°,

*=n(FC —r9)r’, (30)
with X € {V,S} and learning rate n° = 0.1/N,. In

the presence of VPNI input, CE-learning pushes r°
towards 7°. After learning, the cerebellar activity is
equal to its low-pass filtered version, 7 = 7°, and ac-
cording to Eq. 29 the CE, in the presence of the VPNI
input, also integrates the saccadic inputs, 7O =S (pro-
vided that w®® = 7¢ and the coefficient in front of r°
is 1). Hence, after learning the CE extracts the desired
eye position 0(t) = tt rS(t ) d¢’ from the VPNI activity
and the saccadic inputs, r° = 6. Note that the CE is
not an integrator when decoupled from the VPNI.

Adaptive CE teaches VPNI

To obtain the fully self-organizing integrator circuitry
we consider the adaptive cerebellum that teaches AN
and VPNI neurons. The VPNI neurons are recurrently
connected within and between the ipsi- and contralat-
eral pool and receive the CE teaching signal and the
saccade commands,

2Nv

—r _’_E:wvvrv_’_w Vo _ .

g

XS =)

(31)
where W}’ represents the depressed weight analogously
defined as @) in Eq. 14 but for the presynaptic (princi-
ple) neuron w1th rate rY. The threshold-linear transfer
function is imposed by clipping the rates at 0, ensuring

that ¥ > 0 (see Supp. Fig. S4B, applied also to the
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CE and AN neurons). Initially, all these weights are
randomly chosen from a Gaussian around 0 with vari-
ance of 0.01 (except for a non-adaptive teaching weight
that is fixed to w)$ = 0.1, Eq. 31), as are all the other
plastic weights governed by Eq. 30 (and 39 below).
The teaching signal from the cerebellum to both
pools is each composed of an ‘ipsilateral’ contribu-
tion (threshold-linearly increasing with r¢, i = 1...Ny/)
and ‘contralateral’ cerebellar contribution (threshold-

linearly decreasing in ¢, i = Ny + 1,...,2Ny),
7,.VC — ch - wzyc<rmax - TC)JJ’_, 1 S 'L S NV
C [ =) —wiCy ), Ny <@ < 2N
(32)
with wi® = j/(2Ny — j) (33)

and r,,,. = 150 Hz. Note that for the ipsilateral VPNI
pool (i = 1...) the excitatory teaching signal r© can be
interpreted as an ‘ipsilateral’ cerebellar contribution,
and the inhibitory signal proportional to (7., — 7<)
as a contralateral contribution, with the symmetrical
interpretation for the contralateral VPNI pool. The
synaptic weights within and onto the VPNI adapt ac-
cording to the standard predictive plasticity,

- VX

(1

=0 (" =r)ry, (34)
with X € {V,S}. For more simulation details to Fig. 7
see Supp. Info. S1.5.

The teaching signal in Eq. 32 is constructed such
that during learning (where r©¢ — 6) the VPNI trans-

fer functions converge towards ry = rY° with

tmax |0 —9; |7, 1<i< Ny
(o) = | T -
g [0 —0]7, Ny <i< 2Ny
0
d 191 — 4 max
o "2N,
Here, .. = 7mu (= 150Hz).  These functions

roughly match the experimental ones reported in (Ak-
say, Baker, et al. 2000), see also Figs 7F and S2. In
these figures the eye position 6 is mapped to an eye
angle via § — 15° (26/0 1).

max -

Adaptive CE teaches AN

We next introduce a (ipsilateral) population of N, (=
20) abducens neurons that receive (ipsilateral) VPNI
inputs, teaching input from the CE and saccade inputs,

Nv
- A A AV 'V AC AC AS S
Talh = —Th + g Wi T+ Wy (rp® —rp) + wp'r
i=1
(36)

with k =1...N,. To obtain a positive threshold-slope
correlation, the teaching input to the k’th AN neuron is
composed of a common excitation (proportional to the
‘ipsilateral’ CE activity r°) and an individualized inhi-
bition (proportional to the ‘contralateral’ CE activity

15

Tmax = T),
O = = w0 (1 — )T (37)
k
with wp® = ——— 38
f Nk o
and ¢,., = 135Hz. The weights in Eq. 38 are cho-

sen such that the recruitment thresholds of the teacher
neurons are uniformly distributed. The synapses pro-
jecting from VPNI and Sacc to AN are adapted by

wpy =0t (rg” =)y (39)
with X € {V, S}, learning rate n* = 0.1/N,x and
teacher signal 7;;¢ given by Eq. 37. Learning of these
synapses 1mphes that 7 — 3¢ (Figs 7E and S3).

The AN neurons are assumed to elicit a total
muscle force 7, of the lateral eye muscle that is a
welghted sum of the individual AN firing rates, 7,
Zk L wirr | with weights w{* that increase w1th k
and thus with the recruitment threshold as described
by the size principle (McFarland and Albert F. Fuchs
1992), see Supplementary Information S1.3. The pro-
duced eye position as a function of the total muscle
force is set to

AN (A _ 4/..3 A
9 (rtot) - T max ot *

This function was derived such that, after learning, the
produced eye position fits its cerebellar representation,
0N ~ r°. Because the latter also matches the desired
eye position, r° ~ 6, we eventually get 4~ ~ 6.

(40)

Animal rearing

All experiments were approved by Weill Cornell Med-
ical College Institutional Animal Care and Use Com-
mittee. Wild-type larval zebrafish (Danio rerio) em-
bryos from the same clutch were separated into two
groups at 1-4 hours post fertilization. Omne group
(n=13) was reared under a 12 hour light/12 hour dark
cycle while the other (n=18) was reared in an opaque
encasing under a 24 hour dark cycle. All larvae were
kept at 28° C in a thermostat-controlled incubator.

Preparation and eye movement record-
ings

5 day post fertilization larvae were anesthetized in a
200 ng/p L solution of MS-222 and embedded in 1.2%
low melting-point agarose (Sigma-Aldrich, A0701-
100G). Agarose was removed from around the eyes to
allow for undamped eye movements. Animal mount-
ing and agarose removal were carried out in less than
5 minutes to minimize exposure to light in dark reared
animals. Animals were given two hours to wake up
from anesthesia (dark reared animals were kept in the
dark during this time) and then placed in the record-
ing chamber. Animals were illuminated using infrared
LEDs (850 nm, ThorLabs) not visible to the zebrafish
in order to record eye movements made in the dark.
Animals were given five minutes to acclimate to the
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recording chamber. Since adult zebrafish sometimes
show reduced spontaneous behavior after being in the
dark for too long (Mensh et al. 2004), we exposed all
animals to one minute of visible light prior to record-
ing. Spontaneous eye movements were recorded in
the dark for five minutes at 25 Hz using a sub-stage
infrared CMOS camera (Allied Vision Technologies,
Guppy FireWire camera). Eye position was extracted
from recordings by fitting an ellipse (using the Matlab
command regionprops) to contrast-thresholded images
as described in (Beck et al. 2004).

Data Analysis

We only analyzed data from animals that showed
healthy eye movement development as measured by
saccade frequency and amplitude. We did not include
data from animals that made fewer than six saccades

made saccades in one direction (each animal needed to
make at least two saccades in both directions over a
five minute interval). Each inter-saccade interval was
required to be less than 100 seconds for the dataset to
be included. In addition, we did not include data from
animals that showed a restricted range of movement
(amplitudes less than 10 degrees). Ocular drift during
fixations was measured by binning eye position into
500 ms segments and calculating the best fit slope de-
scribing eye position versus time within each bin. PV
plots were generated by plotting best fit slopes versus
average eye position within bins (Major et al. 2004).
We excluded the first second following each saccade
from our analyses to avoid transient eye movement dy-
namics such as post-saccade slide that do not solely
reflect neural integrator output. We also excluded fix-
ations following swim-like movements and eye move-
ment twitches.

over a five minute interval or from animals that only
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S1 Supplemental Information

S1.1 Solving the 2-dimensional integrator system

In the absence of external input, Eqs 7 and 8 form a linear homogeneous system that has the solution

r

re /7 /T
v (t) = c1e /et Eq + cge” /ety (Sl)

with constants ¢; and ¢y depending on the initial values, and network time constants 7=, specified by

1 —bE+iac—1?

T)fle:t 2a

and a =77, b=7"+ 7wl +¢), c=1—w"". (S2)

tch

YV — 1, the long time constant tends to infinity 7, — oo

When the recurrent weight converges to unit, w w
and the corresponding eigenvector Eo converges to the unit vector. In this case, assuming initial conditions

r° =1V = ¢y (implying ¢; = 0), the inhomogeneuous system becomes a perfect integrator,

t
V() = / dt'rs ().
0
The slow time const 7.F, is shown in Figs 2E and 3B.

S1.2 Heavy-tail weight distribution providing linear recruitment

Since the synaptic release rate is saturating with increasing presynaptic rate ¥ due to synaptic depression (cf.
Fig. 5C), the relevant quantity is the number of interneurons n(r") that crossed the threshold ¢ at a certain
rate v of the population rate of the principal neurons. A neuron becomes active as soon as its total synaptic
drive crosses threshold, w;YrY > . If p(w) and P(w) denote the density and cumulative density of the V—I
weights w;”, respectively, we get

n(r¥) = N /p(w) dw = N, (1 — P(9/r)) = ar", (S3)

where the lower limit of the integral, ©/rV, represents the minimal total weight w needed to activate a first
interneuron given the presynaptic rate rV.
Assuming that at the maximal presynaptic firing rate (rY = = 150Hz) all interneurons are recruited,

n(ry.g) = Ni = ary.., we infer that o = N,/rY From Eq. S3 we then get the self-consistency relation

max max’ max*

1—P@/rY) =rY/ry, . that, substituting J/r¥V = w, leads to P(w) =1 —9¢/(rY, . w). Hence, the density that

max
leads to a linear recruitment (Fig. 5B) is

0 v

pu) = 5o Put) = (54

that is evaluated for values w' > 9/rY .. according to Eq. S3. For each interneuron k& we sampled the total

excitatory weight w;’ = w" according to the density in Eq. 17 and randomly split up this total weight into N,
individual weights wj}] constrained to ZZVV wyy = w)’ . Remarkably, the statistics of the individual weights wj}
across ¢ and k nicely fits a log-normal distribution (Fig. 5B), in agreement with experimental studies (Koulakov,
Hroméadka, and Zador 2009). Simulations with a population of such interneurons shows enhanced stability after

learning, even in absence of the stabilizing delayed feedback (Fig. 4F).

S1.3 Eye position produced by AN that matches CE activity
Setting N = x—a;NA and plugging the weights from Eq. 38 into Eq. 37 we obtain

1 k *
rpc = & {rc — Nrme . (S5)

N

After successful learning, the firing rate of the AN neuron driven by the VPNI input becomes equal to the
teaching signal from the CE to that same AN neuron, r; = ri®. Choosing the weight that specifies the
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contribution of the k’th AN neuron to the total muscle force as wf* = 12#11 (1 - %) for k=1...N, and

n > 0 we then calculate,

Na
rh () = Y witrp
k=1
Ymax N
12 e (k)" { .k J+
= —_ Z —_= T — =Thax
N — \N N
Ymax
Tmax
~ 12/ dr "™ |7 — 27T
0
min{rC, 9 max}
Tmax
= 12 dz ™ (r° — 2r.)
0

r° N\
. C
N " < Tmax ) ’ (SG)

where the approximation is valid for large N, and where in the last step we set n = 2 and assumed r° < 9,
Solving this relation for the cerebellar activity yields ¢ = +/r3_r2 . Hence, defining the eye position produced

by the total muscle force 2 (r°) as
O (ris) = Vrdarl, (S7)

gives an eye position that matches the cerebellar activity, 04~ = r©, for r¢ < 9,.., (see Fig. S3D).

Note that the readout weight sz defined above are maximal for kp.x = nL_HN . The choice of n = 2 with
the given values of r,,., (= 150Hz) and ¥,,., (= 135Hz) is motivated by fact that the maximum is reached for
kmax = %N A, and hence the weights are growing with £k = 1... N, up to the highest indices. Put in other
words, with the final distribution of AN firing properties (see Fig. S3D and (Pastor, Torres, et al. 1991)) and
a force-to-position function 4N (r2 ) that shows at least a 4’th square root saturation, the size principle must
emerge to compensate for the overall nonlinearities from the cerebellar input to the eye position (McFarland
and Albert F. Fuchs 1992). In the cat, the muscle force as a function of the eye eccentricity (the analog to Eq.
S6) was in fact measured to be exponential (Carrizosa et al. 2011), favoring the size principle (Carrascal et al.
2011).

S1.4 Simulation details for Figures 2, 3 and 4

Figure 2 We modified the coupled differential equations by adding a noise term e to the integrator neuron "

TV ==V +wVrY +w S (rC = V) + wVr® +wVe, (S8)

7% = —r® + 1V + wSrS, (S9)

where the noise variable ¢ is sampled from an Ornstein-Uhlenbeck process with 1/ = 5ms, 4 =0, 0 = 1 and
with weight wve = 0.005 was chosen such that the noise was approximately 5% of the signal amplitude. The
plastic weights (w"V, wV®) were initially drawn from a normal distribution N(0,0.01) in order to remove initial
setup bias (w® = 7¢). Time courses were averaged across 20 trials (standard deviation as light green shaded
area). In all the Figures the saccades r° were modeled as jumps at random times with uniformly sampled
amplitudes from a discrete set of values (typically 10), with exponential decay with time constant 10 ms. The
amplitudes were chosen such that the eye position 64 (Eq. S7) roughly lies between 0 and 150 (with cutoff at
0). Other parameter values: 7¥ = 10ms, 7¢ = w® = 50 ms.

Figure 3 Simulation of the same equations as in Figure 2 was used with the same parameters for the noise
and the same value for the other parameters, unless indicated differently. The effective time constant of the
system was derived analytically (Sec. S1.1) by looking at the eigenvalues of the coupled dynamical equations
(see Eq. S2).

Figure 4 We simulated the dynamical equations 5 & 6 with an additional noise term weighted as in Equation
S8. All plastic weights were initially drawn from a normal distribution A(0,0.01) in order to remove initial
setup bias. A simulation timestep of 1ms was sufficiently small for the given dynamics.
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S1.5 Simulation details for Figures 5, 6 and 7

Figure 5 After learning, in the absence of teaching and saccadic input, the steady state of the somatic
compartment (Eq. 18, —U; + gp(V; — U;) = 0) arises due to the balance of excitatory and inhibitory in- and

outflux,
Ny 1
D_wii+ wxérzz(wg) Uim Y @, (S10)
: D
J

k,w¥l>0 kawl<0

where the left-hand-side of the equation contains the recurrent excitation and the excitatory portion of the
interneuron input (red trace in Fig. 5D). The right-hand-side represents the inhibitory contribution (with
negative weights from interneurons to principal neurons), together with the effective leak (blue trace in Fig.
5D) of the equation. This equality needs to hold to keep the temporal integral of the external inputs between
saccade commands.

Figure 6 For the spiking implementation we mimicked a 10 times larger population of principal neurons by
stretching the instantaneous (Poisson) rates ry = ¢(U;) with a factor of 10 and sampled from these higher
rates (while reducing the outgoing weights by the same factor). The synaptic releases train of synapse k is
obtained from the filtered presynaptic spike train with release probability pre1 = w)*, such that eventually the
synaptic releases become a (inhomogenuous) Poisson train with rate w)'r} (r), see Eqs 13-15. The simulation
time step was dt= 0.1 ms. The spike-triggered postsynaptic potentials summing up the to dendritic voltage
Vi(t) = 0wy 3 PSP (t— 1), Eq. 20, have the form PSP;(t) = O (o=t/m — ¢=1/75) with 7, = 10 ms,

i=1 TL—Ts
Ts = 3ms and © the unit step function. In the plasticity rule (Eq. 28) the presynaptic rates (r},) and the
postsynaptic rates (r¥) were replaced by spikes sampled from the corresponding instantaneous Poisson rates,
while the dendritic estimate, ¢(V;*), of the postsynaptic spike rate, Y = ¢(U;), remained analogue, see also

(Urbanczik and Senn 2014).

Figure 7 The whole network of CE, AN and VPNI was simulated by running the neuronal (Egs 29, 36, 31)
and synaptic (Egs 30, 39, 34) dynamics, driven by random saccade inputs r° (see below). In simulations of the
full model the inputs were truncated when [ dtr*(¢) would have escaped the interval [0.1,0.9]0,.... The same
interval was also imposed for the CE-internal teaching signal 7°.

Two different teaching protocols were applied. Continuous eye movement commands (e.g. sine-wave) were
used to pre-tune the network to a line-attractor dynamics. To obtain a discrete set of stable fixed points,
saccade pulses () were randomly applied each 200 ms or 400 ms with exponential decay (7 = 10 ms) and such
that the integrated value (the desired eye position) (t) = fot dt'rS(¢') jumps to a randomly selected level out of
{0,000 /10y ..., (n = 1)0,..../n} for a fixed n =5, 10, 15 or 20, see Supplementary Fig. S5).

S1.6 Further analysis figures
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Figure S1: Tradeoff between capacity and robustness. The performance of the integrator depends on
the stimulation protocol during learning. A) Performance after learning when the input r°(t) was chosen to be
continuous followed by saccade pulses with 8 integration values (cf. Fig. S5). Left: stable response to saccade
inputs. Right: response to mized saccade and continuous input. The high stability of the fixed points learned
from the saccade stimulation prevents the continuous integration of ongoing signals. B) Performance when the
saccade inputs after the continuous stimulation was omitted. The integration of discrete pulses is not as stable
as before (left), but continuous inputs with only short pauses are integrated more reliably (right).
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C) Transfer functions in VPNI
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Figure S2: The cerebellum aligns VPNI input to its internal model of the eye. A) The CE and
the VPNI receive common saccade commands as before, but the VPNI-to-CE connections are now also plastic.
B) The cerebellar signal r adjusts itself to a fixed internal representation 7 (purple) of the eye position (6)
through bootstrap learning (Egs 29,30). C) Typical firing rates r} from VPNI neurons as a function of
(transformed to degrees, see Eq. 35 and thereafter). These transfer functions are explicitly set here to have the
shape as in the adult zebrafish, but are jointly learned in Fig. 7 via cerebellar teaching signal that recurrently
builds up. D) During learning, the CE activity r° (black) converges to the internal target 7© (purple) that
itself converges to the integral of the saccade inputs 6 (dotted blue line). E) The CE activity ¢ aligns to the
eye position 6.
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Figure S3: The cerebellum teaches motor neurons to produce correct eye positions from VPNI
input. A) The cerebellar teaching signal r© (that is matched via 7© to the desired eye position 6, see Fig. S2)
generates appropriate targets for the AN neurons. Inset: force-to-position transfer function (Eq. 40). B) AN
neuron k receives teaching signal rp° (grey) from the CE and learns to reproduce that signal out of the VPNI
activity rY (green). C) The AN-produced eye position (6*", blue dashed), the CE-internal estimate (r°, grey)
and the saccade integral (8, black dots) initially differ, but match after learning (simulation of Eqs 36-40). D)
The position-to-rate transfer functions for the AN neurons develop through learning to the ones experimentally
observed (cf. (Pastor, Torres, et al. 1991)).
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Figure S4: Repair after neuronal damage in VPNI. A) Neuronal damage within the VPNI evokes an error
signal that repairs the damage based on a smaller number of neurons. B) With 15% fall out of the N = 100
VPNI neurons (red flash) the integration property is transiently lost and the teaching feedback immediately sets in
as a correction signal (solid versus dashed). C) Even with 50% damage, the VPNI regains full performance after
only 5 minutes. This reparation time is considerably faster than the learning from a random weight initialization
that lasted more than 1 hour.

S6


https://doi.org/10.1101/2019.12.29.890509
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.29.890509; this version posted December 30, 2019. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

A) —o B)
Desired position
Lo
I
§e)
fy =
8 o
S o
()
>
Ll_l o
Lo
N
» T
o %%évé
Lo

T " v \a r r
500 ms

0 # Interneuron

——

0| # Interneuron

VYA

L4
N ;

|
|
|
|
|
|
|
|
|
|
, I .
|
|
I
|
I
|
I
|

weight w"!

Figure S5: Stimulation protocol for integrator learning. Our stimulation protocol consisted of a period
with continuous inputs r5(t) (30 min, A) followed by an equally long period with discrete saccade inputs (B, cf.
Methods). This protocol mimics the natural eye movements of zebrafish larvae during the first postnatal days
(Easter and Nicola 1997). Bottom row: The corresponding readout weights wy" from inter-to-principle neurons
in the VPNI reflects the line-attractor dynamics for the continuous input scenario (A), while it reflects the stable
integration property for the saccade input scenario (B).
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Figure S6: Recurrent synaptic weight structure within VPNI after learning. A) Recurrent weights
from a presynaptic neuron (x-axis) to a postsynaptic neuron (y-axis), labeled by the eye position (0) at which that
neuron starts firing (and thus has recruitment threshold ¥ = 6 ). Example weight vector for postsynaptic neuron
1 =21 (left) and j = 45 (right). Neurons on the ipsilateral side that have been activated before (‘lower’, with
recruitment threshold ¥ < v;,;) excite the postsynaptic newron i/j. Ipsilateral neurons that are immediately
recruited at increased eye positions (‘higher’, with recruitment threshold ¥ > 10;/;) inhibit neuron i/j, while
ipsilateral neurons that are recruited later may become again moderately excitatory. Neurons on the contralateral
side of i/j are typically inhibitory, up to a few neurons that are activated at very peripheral eye positions. (B)
The intrinsic input-output transfer function (middle, with input expressed as weighted presynaptic rates, see
Eq. 31) is threshold-linear and identical for all VPNI neurons (implemented by clipping the output rates at 0
to ensure ;> 0). The effective transfer function as a function of the eye position is determined by the weight
structure. Neuron j (right) that is recruited after neuron i (9; > ;) has a steeper slope (a; > a;) than neuron
i (left), as experimentally observed (Aksay, Baker, et al. 2000). In the model this structure emerges from the
cerebellar ipsi- and contra-lateral teaching signal that is excitatory and inhibitory, respectively (Eq. 32).
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