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Abstract

In-vivo calcium imaging through microendoscopic lenses enables imaging of neuronal populations
deep within the brains of freely moving animals. Previously, a constrained matrix factorization
approach (CNMF-E) has been suggested to extract single-neuronal activity from microendoscopic
data. However, this approach relies on offline batch processing of the entire video data and is
demanding both in terms of computing and memory requirements. These drawbacks prevent its
applicability to the analysis of large datasets and closed-loop experimental settings. Here we
address both issues by introducing two different online algorithms for extracting neuronal activity
from streaming microendoscopic data. Our first algorithm presents an online adaptation of the
CNMF-E algorithm, which dramatically reduces its memory and computation requirements.
Our second algorithm proposes a convolution-based background model for microendoscopic data
that enables even faster (real time) processing on GPU hardware. Our approach is modular
and can be combined with existing online motion artifact correction and activity deconvolution
methods to provide a highly scalable pipeline for microendoscopic data analysis. We apply our
algorithms on two previously published typical experimental datasets and show that they yield
similar high-quality results as the popular offline approach, but outperform it with regard to
computing time and memory requirements.

Author summary

Calcium imaging methods enable researchers to measure the activity of genetically-targeted
large-scale neuronal subpopulations. Whereas previous methods required the specimen to be
stable, e.g. anesthetized or head-fixed, new brain imaging techniques using microendoscopic
lenses and miniaturized microscopes have enabled deep brain imaging in freely moving mice.

However, the very large background fluctuations, the inevitable movements and distortions
of imaging field, and the extensive spatial overlaps of fluorescent signals complicate the goal
of efficiently extracting accurate estimates of neural activity from the observed video data.
Further, current activity extraction methods are computationally expensive due to the complex
background model and are typically applied to imaging data after the experiment is complete.
Moreover, in some scenarios it is necessary to perform experiments in real-time and closed-loop
– analyzing data on-the-fly to guide the next experimental steps or to control feedback –, and
this calls for new methods for accurate real-time processing. Here we address both issues by
adapting a popular extraction method to operate online and extend it to utilize GPU hardware
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that enables real time processing. Our algorithms yield similar high-quality results as the original
offline approach, but outperform it with regard to computing time and memory requirements.
Our results enable faster and scalable analysis, and open the door to new closed-loop experiments
in deep brain areas and on freely-moving preparations.

Introduction

In vivo calcium imaging of activities from large neural populations at single cell resolution
has become a widely used technique among experimental neuroscientists. Recent advances in
optical imaging technology using a 1-photon-based miniscope and a microendoscopic lens have
enabled in vivo calcium imaging studies of neural activities in freely behaving animals [1–3].
However, this data typically displays large, blurry background fluctuations due to fluorescence
contributions from neurons outside the focal plane, arising from the large integration volume of
one photon microscopy. To obtain a robust approach for extracting single-neuronal signals from
microendoscopic data the constrained nonnegative matrix factorization (CNMF, [4]) approach
has been extended to leverage a more accurate and flexible spatio-temporal background model
able to capture the properties of the strong background signal (CNMF-E, [5]). This prevalent
algorithm (see [6] for an alternative proposal) has been widely used to study neural circuits in
cortical and subcortical brain areas, e.g. prefrontal cortex (PFC) and hippocampus [5], as well as
previously inaccessible deep brain areas, such as striatum [7], amygdala [8], substantia nigra pars
compacta (SNc) [9], nucleus accumbens [10], dorsolateral septum [11], parabrachial nucleus [12],
and other brain regions.

A concomitant feature of the refined background model in CNMF-E is its high computational
and memory cost. Although the data can be processed by splitting and processing the FOV in
smaller patches to exploit a time/memory tradeoff [13], this strategy requires significant time
resources, does not scale to longer recordings, and introduces border effects among patches when
estimating the background. Further, CNMF-E is applied to imaging data after the experiment is
complete. However, in many cases we would prefer to run closed-loop experiments – analyzing
data on-the-fly to guide the next experimental steps or to control feedback [14–16] – and this
requires new methods for accurate real-time processing.

Online (and real time) analysis of calcium imaging data has been proposed with the OnACID
algorithm [17]. The algorithm combines the online NMF algorithm of [18], the CNMF source
extraction algorithm of [4], and the near-online deconvolution algorithm of [19], to provide an
automated pipeline that can discover and track the activity of hundreds of cells in real time,
albeit only for 2-photon or light-sheet imaging data.

In this paper, we present two algorithms for the online analysis of microendoscopic 1-photon
calcium imaging data streams. Our first algorithm (OnACID-E), extends [17] by incorporating
the background model and neuron detection method of CNMF-E [5] and adapting them to
an online setup. Our second approach proposes a lower dimensional background model by
introducing parameter sharing through a convolutional structure and combines it with the online
2-photon processing of [17]. In either approach, every frame is processed in four sequential steps:
i) The frame is registered against the previous background-corrected denoised frame to correct
for motion artifacts. ii) The fluorescence activity of the already detected sources is tracked. iii)
Newly appearing neurons and processes are detected and incorporated to the set of existing
sources. iv) The fluorescence trace of each source is denoised and deconvolved to provide an
estimate of the underlying spiking activity.

Our resulting framework is highly scalable with minimal memory requirements, as it processes
the data in streaming mode (one frame at a time), while keeping in memory a set of low dimensional
sufficient statistics and a small minibatch of the most recent data frames. Moreover, it results in
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faster processing that can reach real time speeds for common experimental scenarios when utilizing
GPU hardware. We apply our framework to typical mouse in vivo microendoscopic 1p datasets;
our algorithm can find and track hundreds of neurons faster than real-time, and outperforms
the CNMF-E algorithm of [5] with regard to computing time and memory requirements while
maintaining the same high quality of the results. We also provide a Python implementation of
our methods as part of the CaImAn package [13].

Methods

This section is organized as follows. The first subsection briefly reviews the modeling assumptions
of CNMF-E for microendoscope data. In the second subsection, we derive an online method to
fit this model, thus enabling the processing of 1-photon endoscopic data streams (OnACID-
E). In the third subsection, we modify the background modeling assumptions to introduce a
convolutional structure and describe how to utilize this to derive an alternative fast online
algorithm. Finally, we describe how motion correction, which is typically done as preprocessing
step, can not only be performed online as well, but even profit from stream processing.

CNMF for microendoscopic data (CNMF-E)

The recorded video data can be represented by a matrix Y ∈ Rd×T
+ , where d is the number of

imaged pixels and T is the number of frames observed. Following [4], we model Y as

Y = AC +B + E, (1)

where A ∈ Rd×K
+ is a spatial matrix that encodes the location and shape of each neuron (spatial

footrpint), C ∈ RK×T
+ is a temporal matrix that characterizes the fluorescence of each neuron

over time, matrix B represents background fluctuations and E is additive Gaussian noise with
mean zero and diagonal covariance.

The CNMF framework of [4] incorporates further constraints beyond non-negativity. Each
spatial footprint ai is constrained to be spatially localized and hence sparse. Similarly, the
temporal components ci are highly structured, as they represent the cells’ fluorescence responses
to typically sparse, nonnegative trains of action potentials. Following [19, 20], we model the
calcium dynamics of each neuron ci with a stable autoregressive process of order p,

ci(t) =

p∑
j=1

γjci(t− j) + si(t), (2)

where si(t) ≥ 0 is the number of spikes that neuron i fired at the t-th frame, and γj , j = 1, . . . , p
correspond to the discrete time constants of the dynamics that depend on the kinematic properties
of the used indicator.

For the case of microendoscopic data the background is modeled as [5]

B = b̄1>T +W (Y −AC − b̄1>T ), (3)

where 1T denotes a vector of T ones, b̄ = 1
T (Y − AC)1T models constant baselines and the

second term fluctuating activity. W is an appropriate sparse weight matrix, where Wij models
the influence of the neuropil signal of pixel j to the neuropil signal at pixel i. It is constrained
to Wij = 0 if dist(xi,xj) /∈ [l, l + 1[, thus we model the background at one pixel as a linear
combination of the background fluorescence in pixels which are chosen to be on a ring with radius
l. Typically, l is chosen to be ∼ 1.5× the radius of an average neuron, to exclude contributions
that might be affected from the activity of an underlying neuron.
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Fitting the CNMF-E model

We first recap the offline approach for fitting the CNMF-E model [5], and then show how it can
be adapted to an online setup.

Offline

The estimation of all model variables can be formulated as a single optimization problem

minimize
A,C,B ‖Y −AC −B‖2F subject to constraints (4)

The CNMF-E algorithm of [5] divides the nonconvex problem (4) into three simpler subproblems
that are solved iteratively: Estimating A given estimates C and B, estimating C given A and B,
and estimating B given A and C.
A and C are estimated using a modified version of “fast hierarchical alternating least

squares” [21] that includes sparsity and localization constraints [22]. The update of A con-
sists of block-coordinate decent steps iterating over neurons i,

Ap(i),i ←

⌊
Ap(i),i +

((Y −B)C>)p(i),i − (ACC>)p(i),i

(CC>)ii

⌋
+

, (5)

where p(i) specifies the pixel indices where A:,i can take non-zero values, i.e. where neuron i is
located. For computational efficiency the sufficient statistics L = (Y − B)C> and M = CC>

are computed only once initially and cached.
Similarly, the block-coordinate decent steps for updating C are

Ci,: ← Ci,: +
(A>(Y −B))i,: − (A>AC)i,:

(A>A)ii
, (6)

with sufficient statistics A>(Y −B) and A>A computed only once initially. C should not merely
be constrained to non-negative values but follow the dynamics of the calcium indicator, thus to
further denoise and deconvolve the neural activity from the dynamics of the indicator the OASIS
algorithm [19] is used. OASIS solves a modified LASSO problem

minimize
ĉ,ŝ

1
2‖ĉ− y‖2 + λ‖ŝ‖1 subject to ŝt = ĉt −

p∑
j=1

γj ĉt−j ≥ smin or ŝt = 0, (7)

where y denotes a noisy neural calcium trace obtained as result of Eq (6). The `1 penalty on ŝ
or the minimal spike size smin can be used to enforce sparsity of the neural activity.

The spatiotemporal background is estimated from the linear regression problem

minimize
W ‖X −WX‖2F subject to Wij = 0 if dist(xi,xj) /∈ [l, l + 1[, (8)

where X = Y −AC− b̄1>T and b̄ = 1
T (Y −AC)1T . The solution is given by the normal equations

for each pixel i,
Wi,rl(i) = (XX>)i,rl(i)(XX

>)−1rl(i),rl(i)
, (9)

where rl(i) = {j|dist(xi,xj) ∈ [l, l + 1[} specifies the pixel indices where Wi,: can take non-
zero values. Given the optimized W , the whole background signal is B = WX + b̄1>T . More
information can be found in [5].
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Online

The offline framework presented above can be adapted to a data streaming setup by appropriately
modifying the online NMF algorithm of [18], and the online algorithm for analyzing 2-photon
calcium imaging data [17]. Using Eq (1), the observed fluorescence at time t can be written as

yt = Act + bt + εt. (10)

The (non-deconvolved) activity of all neurons at time t, ct, is obtained by iteratively evaluating
Eq (6) given raw frame data yt, spatial footprints A, and background parameters W, b̄. The
activity is further denoised and deconvolved by running OASIS [19], which is not only a very
fast algorithm, but crucially progresses through each time series sequentially from beginning
to end and is thus directly applicable to stream processing. The background term in Eq (6)
evaluates to A>bt = A>Wyt −A>WAct −A>W b̄ +A>b̄ and for computational efficiency the
terms A>W , A>WA and A>(W b̄− b̄) are maintained in memory and updated incrementally,
cf. Alg S1 in Supplementary Material. Warm starts are exploited by initializing ct with the
value at the previous frame ct−1, since the calcium traces C are continuous and typically change
slowly. Moreover, the temporal traces of components that do not spatially overlap with each
other can be updated simultaneously in vector form; we use a simple greedy scheme to partition
the components into spatially non-overlapping groups [17].

The spatial footprints A are obtained by iteratively evaluating Eq (5) and can be estimated
efficiently as in [18] by only keeping in memory the sufficient statistics

Lt = t−1
t Lt−1 + 1

t (yt − bt)c
>
t , Mt = t−1

t Mt−1 + 1
t ctc

>
t . (11)

Since neurons’ shapes are not expected to change at a fast timescale, updating A is actually not
required at every timepoint; in practice we update every 200 time steps, again warm started
at the value from the previous iteration, cf. Alg 1. Additionally, the sufficient statistics Lt,Mt

are only needed for updating the estimates of A so they can be updated only when required.
Further, Eq (5) accesses only elements p(i) in column i of L, hence only those entries of L need
to be updated, cf. Algs S2 and S3 in Supplementary Material.

To update the background components W, b̄, we keep track of the constant baselines b̄ and
the sufficient statistics χ = XX> that is needed to compute W using Eq (9)

b̄t ← t−1
t b̄t−1 + 1

t (yt −Act), χt = t−1
t χt−1 + 1

txtx
>
t , (12)

where xt = yt −Act − b̄t. As is the case with the spatial footprints, updating the background
is actually not required at every timepoint and in practice we update every 200 time steps, cf.
Alg 1 and Alg S2 in Supplementary Material. Processing pixel i according to Eq (9) (see also
Alg S4 in Supplementary Material) accesses only vector χi,rl(i) and sub-matrix χrl(i),rl(i). Some
elements of χ are not part of any sub-matrix or vector for any i and thus are never accessed. In
practice we therefore update and store only these vectors and sub-matrices for computational
and memory efficiency. Because the background has no high spatial frequency components, it
can be spatially decimated to further speed up processing [19] without compromising the quality
of the results. E.g. downscaling by a factor of 2 reduces the number of pixels by a factor of 4 and
the number of elements in W and χ by a factor of 16. Less and smaller least squares problems
(Eq 9) need to be solved, which drastically reduces processing time and memory consumption.

Note that updating the background components and all the spatial footprints at a given frame
results in a computational bottleneck for that specific frame. While on average, this effect is
minimal (cf. Results section and Fig 4) a temporary slowdown can have an adverse effect on
a real-time closed loop setup. This restriction can be lifted by holding the background model
fixed and updating the spatial footprints in a distributed manner across all frames. As described
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Algorithm 1 OnACID-E

Require: Data matrix Y , initial estimates A,C, S,W, b̄, current number of components K,
current time step t′, rest of parameters.

1: X = Y [:, 1 : t′]−AC − b̄1>t′
2: Rbuf = (X −WX)[:, t′ − lb + 1 : t′] . Initialize residual buffer
3: χ = XX> . Initialize sufficient statistics
4: L = Y [:, 1 : t′]C>/t′

5: M = CC>/t′

6: G = DetermineGroups(A,K) . [17]
7: t = t′

8: while there is more data do
9: t← t+ 1

10: yt ← AlignFrame(yt, Act−1) . Alg S6
11: ct ← UpdateTraces(A, ct−1,yt,W, b̄,G) . Alg S1
12: C, S ← OASIS(C, γ, smin, λ) . [19]
13: b̄← t−1

t b̄ + 1
t (yt −Act)

14: A,C,K,G, Rbuf ←
15: DetectNewComponents(A,C,W, b̄,K,G, Rbuf,yt) . Alg S5
16: if mod (t− t′, Tp) = 0 then . Update χ,L,M,W,A every Tp time steps
17: χ,L,M ← UpdateSuffStatistics(Y [:, t − Tp + 1 : t], C[:, t − Tp + 1 :

t],W, b̄, A, χ, L,M) . Alg S2
18: W ← UpdateBackground(χ) . Alg S4
19: A← UpdateShapes(L,M,A) . Alg S3
20: return A,C, S,W, b̄

later, using a lower dimensional background model can achieve that and enable fast real time
processing with balanced workload across all frames.

To initialize our algorithm we use the CNMF-E algorithm on a short initial batch of data of
length Tb, (e.g., Tb = 200). The sufficient statistics are initialized from the components that the
offline algorithm finds according to Eqs (11, 12).

Detecting new components

The approach explained above enables tracking the activity of a fixed number of sources, and
will ignore neurons that become active later in the experiment. Following [17], we approach
the problem by introducing a buffer that contains the last lb instances of the residual signal
rt = yt − Act − bt, where lb is a reasonably small number, e.g., lb = 100. From this buffer we
compute a summary image (as detailed later we actually update the summary image instead
of computing it afresh) and then search for the local maxima of the image to determine new
candidate neurons.

One option for the summary image e is to proceed along the lines of [4], i.e. to perform
spatial smoothing with a Gaussian kernel with radius similar to the expected neuron radius, and
then calculate the energy for each pixel i, e[i] = 1

lb

∑
t filt(Rbuf[i, t])

2, where filt() refers to the
smoothing operation. Another option is to follow [5] and calculate the peak-to-noise ratio (PNR),

ipnr[i] =
maxtRbuf[i, t]

σi
, (13)
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as well as the local cross-correlation image,

icorr[i] =
1

|N (i)|
∑

j∈N (i)

corr(Rbuf[i, :], Rbuf[j, :]), (14)

where N (i) specifies the neighboring pixels of pixel i and the function corr() refers to Pearson
correlation. Their pixel-wise product e = ipnr� icorr is used as summary image. We use the latter
throughout the Results section, if not explicitly stated otherwise. New candidate components
anew, and cnew are estimated by performing a local rank-1 NMF of the residual matrix restricted
to a fixed neighborhood around the point of maximal variance, or maximal product of PNR and
cross-correlation, respectively.

To limit false positives, the candidate component is screened for quality. Similarly to [17], to
prevent noise overfitting, the shape anew must be significantly correlated (e.g., r ∼ 0.5) to the
residual buffer averaged over time and restricted to the spatial extent of anew. Moreover, if anew
significantly overlaps with any of the existing components, then its temporal component cnew
must not be highly correlated with the corresponding temporal components; otherwise we reject
it as a possible duplicate of an existing component. Once a new component is accepted, A,C are
augmented with anew and cnew respectively, the quantities A>W , A>WA and A>(W b̄− b̄) are
updated via augmentation, and the sufficient statistics are updated as follows:

Lt =

[
Lt,

1

t
(Ybuf −Bbuf)c

>
new

]
, Mt =

1

t

[
tMt Cbufc

>
new

cnewC
>
buf ‖cnew‖2

]
, (15)

where Ybuf, Cbuf, Bbuf = b̄1>lb +W (Ybuf −ACbuf − b̄1>lb) denote the matrices Y,C,B, restricted
to the last lb frames that the buffer stores. This process is repeated until no new components are
accepted, at which point the next frame is read and processed.

Updating the summary image

For computational efficiency we avoid repeated computations and perform incremental updates
of the summary image instead of computing it afresh. If the variance image is used, it is updated
according to e← e + 1

lb
(filt(rt)

2 − filt(rt−lb)
2) when the next frame is processed. When a new

component with footprint a is added the residual changes at the component’s location and we
update the variance image accordingly locally only for pixels i where the smoothed component is
positive (filt(a)[i] > 0) according to e[i]← 1

lb

∑
t filt(Rbuf[i, t])

2.
Next we consider the case that the product of cross-correlation image and PNR image is used

as summary image. We keep track of the first and second order statistics

µi =
1

lb

∑
t

Rbuf[i, t] and νij =
1

lb

∑
t

Rbuf[i, t]Rbuf[j, t], (16)

the latter only for pixels j ∈ {i} ∪ N (i). These statistics are updated according to

µ← µ+ 1
lb

(rt − rt−lb) (17)

νij ← νij + 1
lb

(rtr
>
t − rt−lbr

>
t−lb)ij (18)

when the next frame is processed. The cross-correlation values are computed from these statistics
as

corr(Rbuf[i, :], Rbuf[j, :]) =
νij − µiµj√

(νii − µ2i )(νjj − µ2j )
, (19)

and the correlation image is obtained according to Eq (14). For computing the PNR image
we use the noise level σi estimated on the small initial batch for the denominator in Eq (13)
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and keep track of the maximum image imax ← max(imax, rt) for the nominator. When a new
component with foot print a and time series c̃ is added we set imax[i] to zeros if ai > 0. The
statistics for the cross-correlation are updated as

µi ← µi − 1
lb

∑
t c̃tai (20)

νij ← νij + 1
lb

∑
t(c̃

2
taiaj −Rbuf[j, t]c̃tai −Rbuf[i, t]c̃taj). (21)

The whole online procedure of OnACID-E is described in Algorithm 1; Supplementary
Material includes pseudocode description of the referenced routines.

Background modeling using convolutional neural networks

The background model used in the CNMF-E algorithm (Eq (8)) assumes that the value of the
background signal at a given point in space is given by a linear combination of the background
values from the points in a ring centered around that pixel with width 1 and radius l, where l is
larger than the radius of the typical neuron in the dataset by a small factor (e.g. 1.5) plus a pixel
dependent scalar [5]. While powerful in practice, this model does not assume any dependence
between the linear combination weights of all the different pixels, and results in a model with
a very large number of parameters to be estimated. Ignoring pixels near the boundary, each
row of the matrix W which represents the linear combination weights will have approximately
[2πl] non-zero entries (where [·] denotes the integer part), giving a total number of d([2πl] + 1)
parameters to be estimated. While this estimation can be done efficiently in parallel as discussed
above, and the overall number of parameters can be reduced through spatial downsampling, we
expect that the overall number of degrees of freedom in such a model is much lower. The reason
is that the "ring" model aims to capture aspects of the point spread function which is largely
invariant with respect to the location within the FOV.

To test this hypothesis we used a very simple convolutional neural network (CNN) with ring
shaped kernels to capture the background structure. The intuition behind the convolution is
straightforward: if all the rows of theW matrix had the same non-zero entries (but centered around
different points) then the application of W would correspond to a simple spatial convolution with
the common "ring" as the filter. In our case this is not sufficient and therefore we investigated
parametrizing the background model with a slightly more complex model, which we refer to as
"Ring-CNN".

Let fθ : Rd 7→ Rd be a function that models the autoregressive nature of the background. In
the CNMF-E case this simply corresponds to fθ(y) = W (y − b̄) + b̄. In the linear model we
parametrize the function as

fθ(y) =

K∑
k=1

wk � (hk ∗ y) + b̄, (22)

where b,wk ∈ Rd, k = 1, . . . ,K, and �, ∗ refer to pointwise multiplication and spatial convolution,
respectively (with slight abuse of notation we assume that y has been reshaped back to 2d
image to perform the convolution and the result of the convolution is again vectorized). Finally,
hk, k = 1, . . . ,K is a ring shaped convolutional kernel which takes non-zero values only at a
specified annulus around its center. Note that this corresponds to parametrizing directly W as

W =
K∑
k=1

wk �Hk, (23)

where Hk ∈ Rd×d is the matrix induced by the convolutional kernel hk. Intuitively this model
corresponds to using a pixel dependent linear combination of K ring basis functions, and results
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in a total K(d+ [2πl]) + d parameters to be estimated. Compared to the d([2πl] + 1) number of
parameters for the CNMF-E model, this can result in a significant reduction when K < [2πl].

Note that decoupling the number of different "rings" from the total number of pixels, enables
the consideration of wider "rings" that integrate over a larger area of the FOV and can potentially
provide more accurate estimates, without a dramatic increase on the number of parameters to be
learned. For example, a "ring" with inner radius l and width w would require approximately
[πw(2l+w−1)] parameters and the total number of parameters would be K([πw(2l+w−1)]+d)
as opposed to d([πw(2l + w − 1)] + 1) for the standard CNMF-E model.

Unsupervised training on the raw data

To estimate the autoregressive background model in the CNMF-E algorithm, we want to operate
on the data after the spatiotemporal activity of all detected neurons has been removed (Eq (8)).
For the CNN model this would translate into the optimization problem

θ̂ = arg min
θ

L(Y −AC, fθ(Y −AC)), (24)

where L(·, ·) : Rd×T × Rd×T 7→ R+ is an appropriate loss function (e.g. the Frobenius norm).
For the CNMF-E algorithm, operating on Y −AC is necessary because each "ring" has its

own independent weights whose estimation can be biased from the activity of nearby neurons. In
the CNN case however, the background model assumes a significant amount of weight sharing
between the different "rings" which makes the estimation more robust to the underlying neural
activity. Therefore we can estimate the background model by solving directly

θ̂ = arg min
θ

L(Y, fθ(Y )), (25)

meaning that the solution of Eq (25) should satisfy fθ̂(Y ) ≈ Y − AC. This approximation is
based on the assumption that the activity of neurons is sparse so the product AC will be much
smaller than fθ(Y ) most of the time. To promote this we can use the L1 norm of the difference
as the loss function L. Furthermore, since AC is nonnegative we seek to under-approximate Y
with the background fθ(Y ). To encode that in the objective function we can consider a quantile
loss function [23] that penalizes over-approximation more than under-approximation:

lq(x, y) =

{
q(x− y), x ≥ y

(1− q)(y − x), x < y
, (26)

For some q ∈ (0, 1] and take L(X,Y ) = 2
∑

i,j lq(Xij − Yij). For example, for q = 0.5 Eq (26)
corresponds to the L1 norm of the difference, and to promote the under-approximation property
we use q < 0.5. Since the models are differentiable and the objective function is additive, Eq (25)
can be optimized in an online mode using stochastic gradient descent.

Online Processing

In practice, we found that by using rings of increased width (e.g. 5 pixels), training the model
only during the initialization process on a small batch frames, leads to convergence due to the
large amount of weight sharing that reduces the number of parameters. Once the model has been
trained, it can be used to remove the background from the data (after motion correction). To
reduce the effect of active neurons on the inferred background we can approximate the activity at
time t, with the activity at time t− 1, and subtract that from the data frame prior to computing
the background. In other words, we can use the approximation

bt ' fθ̂(yt −Act−1). (27)
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Algorithm 2 Online processing with a Ring-CNN background model
Require: Data matrix Y , number of initial timesteps Tinit, rest of parameters.
1: X = MotionCorrect(Y [:, 1 : Tinit]) . [24]
2: θ̂ ← arg minθ L(X, fθ(X)) . Estimate ring CNN (25)
3: X ← X − fθ̂(X) . Filter Background
4: A,C, S,b, f ,= InitializeOnline2P(X) . Initialize online algorithm [13]
5: t = Tinit
6: while there is more data do
7: t← t+ 1
8: yt ← AlignFrame(yt,bt−1 +Act−1) . Alg S6
9: xt = yt − fθ̂(yt −Act−1) . Remove background from current frame

10: [ct; ft]← UpdateTraces2P(A, [ct−1; ft−1],xt,b, f) . [17, Alg S3]
11: C, S ← OASIS(C, γ, smin, λ) . [19]
12: A,C,K,Rbuf ← DetectNewComponents2P(A,C,Rbuf,xt) . [17, Alg S4]
13: [A,b]← UpdateShapes2P(L,M, [A,b]) . [17, Alg S5]
14: if mod (t− Tinit, Tp) = 0 then . Update L,M every Tp time steps
15: L,M ← UpdateSuffStatistics2P(Y,C,A,L,M) . [17]
16: return A,C, S,b, f , θ̂

Once the background has been removed, online processing can be done using the standard online
algorithm for two-photon data [17]. The process is summarized in Alg 2, where the suffix "2P"
has been added to some routines to indicate their differences compared to the routines used in
OnACID-E that are slightly more complicated due to their additional background treatment
step. Note that although the focus of this paper is on online processing, the ring-CNN background
model can also be used to derive an offline algorithm for microendoscopic 1p data.

Online motion correction

Similarly to [17], online motion correction can be achieved by using the previously denoised frame
bt−1+Act−1 to derive a template for registering yt. In practice, we observed that this registration
process is more robust to drift introduced by corrupt frames when an average of the past N
denoised frames is used as a frame, with N ∼ 50. As proposed in [13], passing both the template
and the frame through a high pass spatial filter can suppress the strong background signal present
in microendoscopic 1-photon data, and lead to more accurate computation of the alignment
transformation. Rigid or piecewise rigid translations can be estimated as described in [24]. The
inferred transformation is then applied to original frame yt. The process is summarized in Alg S6.

Results

Online analysis of 1p microendoscopic data using OnACID-E

We tested the online CNMF-E implementation of OnACID-E on in vivo microendosopic data
from mouse dorsal striatum, with neurons expressing GCaMP6f. The data was acquired while
the mouse was freely moving in an open field arena. The dataset consisted of 6000 frames at
10 Hz resolution (for further details refer to [5], for a second dataset see Fig S1). We initialized
the online algorithm by running CNMF-E on the first 200 frames.

We illustrate OnACID-E in process in Fig 1. At the beginning of the experiment (Fig 1 left),
only some components are active, as shown in panel A by the correlation image computed using
the spatially filtered data [5], and most of these are detected by the algorithm (Fig 1B). As the
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Fig 1. Illustration of the online data analysis process. Snapshots of the online analysis
after processing 200 frames (left), 1000 frames (middle), and 6000 frames (right). (A) Contours
of the components (neurons and processes) found by OnACID-E up to each snapshot point,
overlaid over the local cross-correlation image of the spatially filtered data [5] at that point. (B)
Examples of neuron activity traces (marked by corresponding colors in panel A). As the
experiment proceeds, OnACID-E detects newly active neurons and tracks their activity.

experiment proceeds more neurons activate and are subsequently detected by OnACID-E (Fig 1
middle, right) which also tracks their activity across time (Fig 1C). See also Supplementary
Video for further illustration.

Comparison of OnACID-E with CNMF-E

In Fig 2 we report the results of the analysis using OnACID-E and compare to the results of
CNMF-E with patches, i.e. the field of view (FOV) is split into smaller overlapping patches that
are processed in parallel and combined at the end [13]. Both implementations detect similar
components (Fig 2A) with an F1-score of 0.891 (0.875 if the variance summary image was used
to detect new components). 506 components were found in common by both implementations.
48 and 76 additional components were detected by OnACID-E and CNMF-E respectively. Ten
example temporal traces are plotted in Fig 2B. The first five are from neurons that have been
detected in the initialization phase, the last five during online processing. While the neuron
corresponding to the last trace was detected immediately once it became active, this wasn’t the
case for the others (green traces). Low activity events can be too weak to trigger detection as
new component, but are accurately captured once the existence of the neuron has already been
established. Hence, performing a second online pass over the dataset recovers the entire activity
traces (purple). The median correlation between the temporal traces of neurons detected by
both implementations was 0.852.

We repeated the analysis on in-vivo microendosopic data from prefrontal cortex of a freely
behaving mouse. This second dataset consisted of 9000 frames at 15 Hz resolution (for further
details refer to [5]). Analogous results to Fig 2 are presented in Fig S1. The F1-score between
components detected by OnACID-E and CNMF-E was 0.895.

We also performed the comparison on the simulated data from [5], in order to compare not
only the offline and online method with each other but both with underlying ground truth,
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Fig 2. Comparison of OnACID-E with CNMF-E when analyzing
microendoscopic 1-photon data. (A) Contour plots of all neurons detected by CNMF-E
using patches (white) and OnACID-E (red), overlaid over the local cross-correlation image.
Colors match the example traces shown in (B), which illustrate the temporal components of ten
example neurons detected by both implementations. The first five have been detected in the
initialization phase, the last five during online processing.
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see Fig 3. Both implementations detect all components (Fig 2A) with a perfect F1-score of 1.
We again show ten example temporal traces in Fig 3B. The overlaps a>a∗

‖a‖‖a∗‖ between true (a∗)
and inferred (a) neural shape are reported in Fig 3C. While CNMF-E tends to capture the
neural footprints more accurately, the inferred temporal components (that would be used in the
subsequent analysis and are hence more important) are of similar quality, as the correlations with
ground truth reveal (Fig 3D). The median correlation between the temporal traces of neurons
detected by CNMF-E and ground truth was 0.996, for OnACID-E it was 0.993.

Computational performance of OnACID-E

We examined the performance of OnACID-E in terms of processing time and memory re-
quirements for the analyzed dataset presented above (Fig 4). The processing time discussed
here excludes motion correction (which is highly efficient [24]), because the data was already
motion corrected before hand. For the batch as well as the online algorithm we used the Python
implementations provided by or added to CaImAn [13], respectively. The dataset was analyzed
using a single node of a linux-based (CentOS) cluster with Intel Xeon Platinum 8168 CPU at
2.7 GHz (24 cores) and 768 GB of RAM. The same analysis was performed using merely a laptop
(MacBook Pro 13”) with Intel Core i7-7567U CPU at 3.5 GHz (2 cores) and 16 GB of RAM.

The processing time of OnACID-E depends primarily on (i) the computational cost of tracking
the temporal activity of discovered neurons, (ii) the cost of detecting and incorporating new
neurons, and (iii) the cost of periodic updates of spatial footprints and background. Additionally,
there is the one-time cost incurred for initialization. Fig 4A shows the cost of each of these steps
for one epoch of processing. Initialization was performed by running CNMF-E on the first 200
frames, hence the sudden jump at 200 processed frames in Fig 4A. The cost of detecting and
incorporating new components remains approximately constant across time and is dependent
on the number of candidate components at each time step. In this example three candidate
components were used per frame. As noted in [13], a higher number of candidate components
can lead to higher recall in shorter datasets at a moderate additional computational cost.

The cost of tracking components can be kept low due to simultaneous vectorized updates,
and increases only mildly over time as more components are found by the algorithm, cf. Fig 4B.
Finally, it is particularly noteworthy that the total processing time was smaller than the duration
of the recording. Processing times are slightly smaller when the variance summary image is used
(Fig S1), but at the expense of the reported smaller, albeit similar, F1 score.

Fig 4C shows the memory usage as function of processing time and compares to CNMF-E with
or without splitting the FOV into patches. Sixteen patches of size 96x96 were used and processed
simultaneously in parallel. OnACID-E does not only use less memory but is even faster than
CNMF-E without patches. Processing can be faster using patches, however, this gain comes at
the cost of enormous memory requirements and necessitates a powerful computing environment,
such as for example the cluster node we used. These requirement can be mitigated at the expense
of longer processing times by processing not all patches in parallel, as the additional orange
markers in Fig 4C for 8, 6, 4, 3, 2 and 1 parallel processes show.

When the analysis was performed on a laptop (with four threads) not all, but merely up
to four of the total sixteen patches, could be processed simultaneously in parallel. Fig 4C
shows that whereas processing in patches was marginally faster and less memory consuming
than processing the entire FOV, both are clearly outperformed with regard to computing time
and memory requirements by OnACID-E. It required less memory than the size of the whole
data, here 1.5 GB (for single-precision float), and about an order of magnitude less memory
than CNMF-E. These results would be even more pronounced for longer datasets because the
memory consumption remains nearly constant as time progresses and is thus independent of the
number of recorded frames. Online processing on the laptop took about the same time as on the
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Fig 3. Comparison of OnACID-E with CNMF-E when analyzing simulated data.
(A) Contour plots of all neurons detected by CNMF-E using patches (white) and OnACID-E
(red), overlaid over the true neural shapes. Colors match the example traces shown in (B),
which illustrate the temporal components of ten example neurons detected by both
implementations. The first five have been detected in the initialization phase, the last five
during online processing. (C) Histogram of the overlaps between inferred and true neural
shapes. (D) Histogram of the correlations between inferred and true neural fluorescence traces.
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Fig 4. Computing resources of OnACID-E. (A) Cumulative processing time, separated
by time for initialization (occurred only at the beginning), tracking existing activity, detecting
new neurons, and updating spatial footprints as well as background. (B) Cost of tracking
neurons’ activity. (C) Memory consumption of OnACID-E and CNMF-E. Markers and dashed
lines indicate peak memory and overall processing time, whereas solid lines show memory as
function of time. Offline processing using CNMF-E was performed with or without patches,
online processing using OnACID-E with variance or corr�pnr summary image, cf. Methods.
The orange markers show peak memory and overall processing time when the number of parallel
processes is varied (16, 8, 6, 4, 3, 2 and 1), illustrating the time-memory trade off when
processing in patches (more processes can lead to faster processing at the expense of additional
memory requirements). (D) Analogous results as in (C) when using a laptop. The dataset
consisted of 6000 frames with a 256×256 FOV.

cluster node. OnACID-E strikes the best balance between memory consumption and processing
time, making it in particular suitable for processing of long datasets without the need for high
performance hardware.

Performance of the Ring CNN approach

For comparison purposes we also tried the online analysis of the same dorsal striatum dataset,
using the Ring-CNN background model (Eq (22)) with two kernels of width 5 pixels. The model
was trained on the first 500 frames (400 frames for training and 100 for validation) using a
quantile loss function (Eq (26)) with q = 0.02, using stochastic gradient descent with the ADAM
optimizer. After initialization every frame was passed through the learned model to remove
its background and was subsequently processed using the CaImAn Online algorithm [13] with
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a rank-2 background. During this phase, the background model was kept constant with no
additional training, which resulted in faster processing. This was possible because the background
model had already converged to a stable value during initialization because of the smaller number
of parameters needed to be learned due to the large level of weight sharing. Moreover, the
increased width of the filter increased the statistical power of the model making it less sensitive to
outliers, and thus aiding faster convergence. Three epochs were used to process the dataset, with
the third epoch being used only to track the activity of the existing neurons (and not to detect
new components). After the online processing was done, the identified components were merged,
and then screened for false positive using the tests employed in the CaImAn package [13].

Lacking a "ground truth" benchmark we compared its performance against the CNMF-E
algorithm [5]. The results of the analysis are summarized in Fig 5. The algorithms displayed a
high level of agreement (black contours in Fig 5A) with F1-score 0.848 (precision 0.81 and recall
0.888 treating the CNMF-E predictions as "ground truth"). While the agreement between the
ring CNN appoach and CNMF-E was lower compared to the agreement between OnACID-E
and CNMF-E, this cannot be readily interpreted as underperformance of the ring CNN approach.
For example, the ring CNN approach identified several components that have a clear spatial
footprint in the correlation image of the spatially filtered data (some examples are highlighted
by the orange arrows).

The computational performance of the ring CNN approach is shown in Fig 5B-C. In addition
to a computing cluster node, an NVIDIA Tesla V100 SXM2 32GB GPU was deployed to estimate
the background model and subsequently apply it. Overall initialization on the 500 frames required
around 53s, roughly equally split between estimating and applying the background model, and
performing "bare initialization" [13] on the background extracted to find 50 components and
initialize the rank-2 background. After that processing was very fast for every frame (Fig 5B)
with no computational bottlenecks (as opposed to OnACID-E where updating the background
can take significant resources). Overall, the first epoch of processing was completed in 210s
(Fig 5C), a factor of 2 improvement over OnACID-E (even without background updating for
OnACID-E). A closer comparison between Fig 4A and Fig 5C indicates that the ring CNN
approach is faster than OnACID-E for detecting new components, but slower during "tracking".
The reason for that, is that "tracking" in the ring CNN approach includes the background
removing step (which requires data transfer to and from the GPU). However, once this step
is done, no additional background treatment is required, which speeds up the detection step
significantly. More importantly, this allowed a distributed update of shapes amongst all frames
(Fig 5B) which kept the processing speed for each frame above the acquisition rate of 10Hz, thus
achieving real time processing. Since the initialization step can be performed in mini-batches the
GPU memory requirements remain limited. After that, online processing is deployed on a frame
by frame basis which keep the memory requirements at similar levels compared to OnACID-E
(data not shown).

Discussion

We presented an online method to process 1-photon microendoscopic video data. Our modeling
assumptions are the same as in the popular offline method CNMF-E; however, our online
formulation yields a more efficient yet similarly accurate method for the extraction of in vivo
calcium signals. A major bottleneck for processing microendoscopic data has been the amount of
memory required by CNMF-E. Our online approach solves this issue since it reduces the memory
footprint from scaling linearly with the duration of the recording to being constant. We also
provided an additional variant that uses a convolutional based background model that aims to
exploit the location invariant properties of the point spread function. This approach enables the
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Fig 5. Performance of online approach using a ring CNN background model. (A)
Contour plots of all neurons detected by the ring CNN approach and CNMF-E using patches
overlaid over the local cross-correlation image. The two approaches have a high level of
similarity (black contours, F1-score 0.845), with several components identified only by one
algorithm (red contours, CNMF-E only, white contours ring, CNN only). At least some of the
contours identified only by the ring CNN model appear to correspond to actual neurons (orange
arrows). Processing speed per frame (B) and cumulatively (C) for the ring CNN approach. By
reducing the background extraction to a simple, GPU-implementable, filtering operation and
estimating it only during initialization, the ring CNN approach can achieve high processing
speeds for every frame (B), and run a complete epoch on the data faster than OnACID-E (C).
Moreover, it can distribute the computational load evenly amongst all frames making it useful
for real time applications.
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estimation of a stable background model by using just an initial portion of the data. As a result,
it can lead to faster processing and also be coupled to 2-photon processing algorithms by using
this model to remove the background from each frame as a preprocessing step.

For detecting centroids of new sources OnACID-E examines a static image. Following [17],
such an image can be obtained by computing the variance across time of the spatially smoothed
residual buffer. As an additional option to obtain a static summary image we added the
computation of peak-to-noise ratio and local cross correlation across time of the residual buffer,
following the proposal of [5]. For efficiency, this computation is performed online using incremental
updates. While both work very well in practice, different approaches for detecting neurons in
static images or in a short residual buffer could potentially be employed here, e.g. dictionary
learning [25], combinatorial clustering [26] or deep neural networks [27, 28]. However, these
approaches likely come with higher computational cost, and – having been developed for offline
processing – would probably need to be modified for data streams, and in the case of neural
networks be retrained.

Similarly to [17], our current implementation screens the candidate components for quality
using some quantitative measures and thresholds. For 2-photon data [13] suggested to use a
neural net classifier instead for better accuracy. Training a neural network requires labelled data,
which is currently not publicly available for 1-photon microendoscopic video data. Once labelled
ground truth data is available, a neural network could be trained on it and OnACID-E be
readily augmented to use this classifier. Such ground truth data would also enable to thoroughly
benchmark different source extraction algorithms and their implementations.

Apart from enabling rapid and memory efficient analysis of microendoscopic 1-photon data,
our online pipeline also facilitates closed-loop behavioral experiments that analyze data on-the-fly
to guide the next experimental steps or to control feedback. The current implementation of
OnACID-E is already faster than real time on average. On a per-frame basis the processing
speed exceeds the data rate for the majority of frames, and only when the periodic updates of
sufficient statistics, shapes, and background are performed can the speed drop below the data
rate. This can be ameliorated by using a larger initialization batch for OnACID-E. Once enough
initial data has been seen and processed, the computationally expensive search for components
as well as the spatial footprint and background updates can be turned off, because all regions
of interest have been detected and their shapes as well as the background converged to stable
values. Further, as presented, this compromise can be avoided altogether by endowing the
background with a convolutional structure that enables faster convergence in the background
estimation. This subsequently enables updating of spatial footprints in a distributed sense, while
maintaining faster than real time processing rates at every frame by keeping the ability to detect
and incorporate new components.

Availability

We provide a Python implementation of our algorithm online within CaImAn, an open-source
library for calcium imaging data analysis (https://github.com/flatironinstitute/CaImAn) [13].
Our work extends the library to enable online processing of microendoscopic 1-photon data.
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Supplementary Material

Here we present in pseudocode the various steps of the online processing pipeline. For ease
of exposition, some details and speedup tricks used in the actual implementation have been
omitted, such as the online update of the summary image used for neuron detection or the spatial
decimation of the background.

Algorithm S1 UpdateTraces
Require: Spatial footprints matrix A, current value of temporal traces c, current data frame

y, groups G, tolerance level ε, precomputed V = A>A, b1 = A>(W b̄ − b̄), B2 = A>W ,
B3 = A>WA.

1: u = A>y
2: v = diag{V }
3: b4 = B2y − b1

4: cold ← 0
5: while ‖c− cold‖ ≥ ε‖cold‖ do
6: cold ← c
7: b5 = b4 −B3c . A>B:,t

8: for i = 1→ |G| do
9: c[Gi]←

⌊
c[Gi] + u[Gi]−V [Gi,:]c−b5[Gi]

v[Gi]

⌋
+

. (Division is pointwise)

10: return c

Algorithm S2 UpdateSuffStatistics

Require: buffer of data Ỹ , buffer of denoised traces C̃, background weights W , constant
background b̄, spatial footprints A, sufficient statistics χ, L, M , buffer length Tp, time step t

1: X̃ = Ỹ −AC̃ − b̄1>Tp

2: χ← χ+ X̃X̃> . Update only χ[i, rl(i)] and χ[rl(i), rl(i)] ∀i where rl(i) are pixels on ring
around i with radius l

3: Ŷ = Ỹ −WX̃ − b̄1>Tp

4: L← t−Tp

t L+ 1
t Ŷ C̃

> . Update only L[p(i), i] ∀i where p(i) is the ‘support’ of A[:, i]

5: M ← t−Tp

t M + 1
t C̃C̃

>

6: return χ, L, M

Algorithm S3 UpdateShapes

Require: Sufficient statistics L = (Y −B)C>,M = CC>, current value of spatial footprints A,
maximum number of iterations miter, number of components K

1: for iter = 1→ miter do
2: for i = 1→ K do
3: p = find(A[:, i] > 0) . Find the pixels where component i can be non-zero

4: A[p, i]←
⌊
A[p, i] +

L[p, i]−A[p, :]M [:, i]

M [i, i]

⌋
+

5: return A
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Algorithm S4 UpdateBackground

Require: Sufficient statistics χ = XX>, ring radius l, number of pixels d
1: for i = 1→ d do
2: rl(i) = ring(i, l) . Get pixels on ring around i with radius l
3: W [i, rl(i)] = χ[i, rl(i)]χ[rl(i), rl(i)]

−1

4: return W

Algorithm S5 DetectNewComponents
Require: Spatial footprints matrix A, temporal traces matrix C, background weights W ,

constant background b̄, current number of components K, current state of groups G, current
residual buffer Rbuf , current data frame y. Parameters: neuron size τ , threshold for correlation
in space rs, threshold for correlation in time rt.

1: repeat = True
2: x = y −AC[:, end]− b̄
3: Rbuf ← [Rbuf [:, 2 : lb],x−Wx] . Update residual buffer
4: while repeat do
5: e← ComputeSummaryImage(Rbuf)
6: (ix, iy) = arg max e . Find the point of maximal value
7: N(ix,iy) = {(x, y) : |x− ix| ≤ τ, |y − iy| ≤ τ} . Define a neighborhood around (ix, iy)
8: [anew, cnew] = NMF(Rbuf [N(ix,iy), :], 1) . Perform a local rank-1 NMF
9: r = Corr(anew,Mean(Rbuf)) . Compute correlation coefficient in space

10: o = Find(a>newA[N(ix,iy), :] > 0) . Find components that overlap
11: if ∃j ∈ o : Corr(cnew, C[j, t− lb + 1 : t]) > rt then
12: r ← 0 . Detect possible duplicates and stop procedure
13: if r > rs then . New component is accepted
14: Zero-pad anew and cnew to match dimensionality
15: K ← K + 1
16: G ← JoinGroups(A,G,anew)
17: A← [A,anew]
18: C ← [C; cnew]
19: Rbuf ← Rbuf − anewcnew
20: else
21: repeat = False

22: return A,C,K,G, Rbuf

Algorithm S6 AlignFrame

Require: Current data frame yt, rolling buffer of background and trace values bs, cs, s =
t−N, . . . , t− 1 spatial footprints A, high pass spatial filter H, rest of parameters.

1: yf
t = h ∗ yt . High pass filtering of data

2: m = h ∗
(

1
N

∑t−1
s=t−N (bs +Acs)

)
. Template construction

3: T = NoRMCorre(yf
t ,m) . Find alignment [24]

4: yt ← T (yt) . Tranformation application
5: return yt
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Fig S1. Comparison of OnACID-E with CNMF-E on data from prefrontal cortex.
Analogous plots to Fig 2 for in-vivo microendosopic data from prefrontal cortex of a freely
behaving mouse.
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Fig S2. Processing time of OnACID-E using the variance summary image.
Analogous plots to Fig 4A and B.

Supplementary Video

Depiction of OnACID-E. Top left: Raw data. Top right: Inferred activity (without back-
ground). Bottom left: Corr*PNR summary image (see Methods) and accepted regions for new
components (magenta squares). Bottom right: Reconstructed activity.
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