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Learning prediction error neurons in a canonical interneuron circuit

Loreen Hertäg, Henning Sprekeler

Abstract

Sensory systems constantly compare external sensory information with internally generated predictions. While neural

hallmarks of prediction errors have been found throughout the brain, the circuit-level mechanisms that underlie their

computation are still largely unknown. Here, we show that a well-orchestrated interplay of three interneuron types

shapes the development and re�nement of negative prediction-error neurons in a computational model of mouse primary

visual cortex. By balancing excitation and inhibition in multiple pathways, experience-dependent inhibitory plasticity

can generate di�erent variants of prediction-error circuits, which can be distinguished by simulated optogenetic

experiments. The experience-dependence of the model circuit is consistent with that of negative prediction-error

circuits in layer 2/3 of mouse primary visual cortex. Our model makes a range of testable predictions that may shed

light on the circuitry underlying the neural computation of prediction errors.

Introduction

Changes in sensory inputs can arise from changes in our environment, but also from our own movements. When you

walk through a room full of people, your perspective changes over time, and you will experience a global visual �ow.

Superimposed on this global change are local changes generated by the movements of the people around you. An

essential task of sensory perception is to disentangle these di�erent origins of sensory inputs, because the appropriate

behavioral responses to environmental and to self-generated changes are often di�erent. Am I approaching a person

or is she approaching me?

A common assumption is that perceptual systems subtract from the sensory data an internal prediction1�6, which

is calculated from an e�erence copy of the motor signals our brain has issued. Changes in the external world then take

the form of mismatches � or prediction errors � between internal predictions and sensory data? . This comparison

requires an accurate prediction system that adapts to ongoing changes in the environment or in behavior. An e�cient

way to ensure a �exible adaptation is to render the prediction circuits experience-dependent by minimizing prediction

errors? .

Neural hallmarks of prediction errors are found throughout the brain. Dopaminergic neurons in the basal ganglia

and the striatum7 encode a reward prediction error (mismatch between expected and received reward), and subsets

of neurons in visual cortex8,9, auditory cortex10,11 and barrel cortex12 code for a mismatch between feedback and
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feedforward information.

While neural correlates of prediction errors have been found broadly, the circuit level mechanisms that underlie

their computation are poorly understood. Given that prediction errors involve a subtraction of expectations from

sensory data, the relevant circuits likely involve both excitatory and inhibitory pathways9. Negative prediction-

error (nPE) neurons, which are activated only when sensory signals are weaker than predicted, are likely to receive

excitatory predictions counterbalanced by inhibitory sensory signals. Conversely, positive prediction-error (pPE)

neurons, which respond only when sensory signals exceed the internal prediction, could receive excitatory sensory

signals counterbalanced by inhibitory predictions. How the complex inhibitory circuits of the cortex13�16 support the

computations of these prediction errors is not resolved and neither are the activity-dependent forms of plasticity that

would allow these circuits to re�ne the prediction machine.

For prediction-error neurons, fully predicted sensory signals should cancel with the internal prediction and hence

trigger no response. We therefore hypothesized that an experience-dependent formation and re�nement of prediction-

error circuits can be achieved by balancing excitation and inhibition in an activity-dependent way. Using a computational

model comprised of excitatory pyramidal cells and three types of inhibitory interneurons, we show that nPE neurons can

be learned by inhibitory synaptic plasticity rules that balance excitation and inhibition in principal cells. We �nd that

the circuit shows a similar experience dependence as observed in V19. Depending on which interneuron classes receive

motor predictions and which receive sensory signals, the plasticity rules shape di�erent, fully functional variants of the

prediction circuit. Using simulated optogenetic experiments, we show that these variants have identi�able �ngerprints

in their reaction to optogenetic activation or inactivation of di�erent interneuron classes. Finally, we demonstrate

that the inhibitory prediction circuits can be learned by biologically plausible forms of homeostatic inhibitory synaptic

plasticity, which only rely on local information available at the synapses.

Results

We studied a rate-based network model of layer 2/3 of rodent V1 to investigate how negative prediction-error (nPE)

neurons develop. The model includes excitatory pyramidal cells (PCs) as well as inhibitory parvalbumin-expressing

(PV), somatostatin-expressing (SOM) and vasoactive intestinal peptide-expressing (VIP) interneurons (Fig. 1 a). All

neurons in the model receive excitatory background input that ensures reasonable baseline activities in the absence of

visual input and motor-related internal predictions ("baseline"). A subset of inhibitory synapses � chosen based on a

mathematical analysis � are subject to experience-dependent plasticity, which homeostatically controls the �ring rate

of PCs by balancing excitation and inhibition17(see Methods and Fig. 1 a). We stimulated the network with time-

varying external inputs that represent visual stimuli and motor-related internal predictions (Fig. 1 a,b). We reasoned
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Figure 1
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Figure 1. Balancing excitation and inhibition gives rise to negative prediction-error neurons. (a) Network model
with excitatory PCs and inhibitory PV, SOM and VIP neurons. Connections from PCs onto inhibitory neurons not
shown for the sake of clarity. Somatic compartment of PCs, SOM and PV neurons receive visual input, apical
dendrites of PCs and VIP neurons receive a motor-related prediction thereof. Connections marked with an asterisk
undergo experience-dependent plasticity. (b) During plasticity, the network is exposed to a sequence of feedback
(coupled sensorimotor experience) and playback phases (black square, visual input not predicted by motor
commands). Stimuli last for 1 second and are alternated with baseline phases (absence of visual input and motor
predictions). (c) Left: Before plasticity, somatic excitation (light red) and inhibition (light blue) in PCs are not
balanced. Excitatory and inhibitory currents shifted by ± 20 pA for visualization. The varying net excitatory
current (gray) causes the PC population rate to deviate from baseline. Right: Response relative to baseline (∆R/R)
of all PCs in feedback (FB), mismatch (MM) and playback (PB) phase, sorted by amplitude of mismatch response.
None of the PCs are classi�ed as nPE neurons (indicated by gray shading to the right). (d) Same as in (c) after
plasticity. Somatic excitation and inhibition are balanced. PC population rate remains at baseline. All PCs classi�ed
as nPE neurons (also indicated by black shading to the right).

that during natural conditions, movements lead to sensory inputs that are fully predicted by internal motor commands

("feedback phase"9), while unexpected external changes in the environment should generate unpredicted sensory

signals ("playback phase"9). Situations in which internal motor commands are not accompanied by corresponding

sensory signals should be rare ("feedback mismatch phase"9). During plasticity, we therefore stimulated the circuit

with a sequence consisting of feedback and playback phases ("quasi-natural training", Fig. 1 b).
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Negative prediction-error neurons emerge by balancing excitation and inhibition

Before the onset of plasticity, synaptic connections were randomly initialized, so PCs receive unbalanced excitation and

inhibition. Therefore, all PCs change their �ring rate in response to both feedback and playback stimuli, indicating the

absence of nPE neurons (Fig. 1 c). During quasi-natural sensorimotor experience, inhibitory plasticity strengthens or

weakens inhibitory synapses to diminish the �ring rate deviations of PCs from their baseline �ring rate (Supplementary

Fig. S1). At the same time, dendritic inhibition mediated by SOM interneurons was su�ciently strengthened

to suppress the motor prediction arriving at the apical dendrite. After synaptic plasticity, somatic excitation and

inhibition are balanced on a stimulus-by-stimulus basis (Fig. 1 d). PCs merely show small and transient onset/o�set

responses to feedback and playback stimuli. In contrast, all PCs show an increase in activity for feedback mismatch

stimuli (Fig. 1 d). Hence, inhibitory synaptic plasticity generates nPE neurons by balancing excitation and inhibition

in PCs for quasi-natural conditions.

Balance of excitation, inhibition and disinhibition in di�erent functional prediction

circuits

It is not fully resolved which interneuron types receive sensory inputs, motor signals or both. The circuit we studied so

far was motivated by the widely accepted view that PCs and SOM and PV interneurons show visual responses9,18�23,

while long-range (motor) predictions arrive in the super�cial layers of V1 and target VIP neurons9,14,22,24 and the

apical and distal compartments of PCs9,21. Because this view is not uncontested24, we systematically varied the inputs

to the di�erent neuron classes. We �rst studied circuit variations in which PCs and PV neurons receive visual and/or

motor signals (Fig. 2, see also Supplementary Fig. S2).

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 28, 2020. ; https://doi.org/10.1101/2020.02.27.968776doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.27.968776
http://creativecommons.org/licenses/by-nc-nd/4.0/


5

VIP→PV→PC
SOM→PV→PC
PV→PC
SOM→VIP→PV→PC
VIP→SOM→PV→PC

Input pathway

Figure 2

a

Visual input (V)

Motor input (M)
?

??

PC PV

SOM

VIP

Ex
ci

ta
tio

n
In

hi
bi

tio
n

Ex
c

In
h

Visual input (V)

Motor input (M)
?

??

PC PV

SOM

VIP

Visual input (V)

Motor input (M)
?

??

PC PV

SOM

VIP

MV

PC PV

MV

PC PV

MV

PC PV

MV

PC PV

MV

PC PV

b

Figure 2. Multi-pathway balance of excitation and inhibition in di�erent nPE neuron circuits. (a) Excitatory,
inhibitory, disinhibitory and dis-disinhibitory pathways onto PCs that need to be balanced in nPE neuron circuits.
Input to the soma of PCs and PV neurons is varied (c-f). SOM neurons receive visual input, VIP neurons receive a
motor-related prediction. (b) Test stimuli: Feedback (FB), mismatch (MM) and playback (PB) phases of 1 second
each. (c) PCs and PV neurons receive visual input (left, top). When all visual (V) and motor (M) pathways are
balanced (left, bottom), PCs act as nPE neurons (right). PV neuron activity increases in both feedback and playback
phases. Responses normalized between -1 and 1 such that baseline is zero. (d) Same as in (c) but PV neurons
receive motor predictions. (e) Same as in (c) but PC s receive no visual input. PV neurons remain at baseline in the
absence of visual input to the soma of PCs. (f) Same as in (c) but PCs receive no visual input and PV neurons
receive motor predictions. PV neurons remain at baseline in the absence of visual input to the soma of PCs.

We found that inhibitory plasticity establishes nPE neurons independent of the input con�guration onto PCs and

PV neurons (Fig. 2 b-e, right). The emerging connectivity of the interneuron circuits varied, however. For PCs
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not to respond above baseline in feedback and playback phase, various excitatory, inhibitory, disinhibitory and dis-

disinhibitory pathways need to be balanced. An informative example is the input con�guation in which PCs receive

visual input and PV neurons receive motor predictions (Fig. 2 c). In this case, visual inputs arrive at the PCs

as direct excitation, as disinhibition through the SOM-PV pathway, and as dis-disinhibition via the SOM-VIP-PV

pathway (Fig. 2 a). To keep the PCs at their baseline during the playback phase, these three pathways need to be

balanced (Fig. 2 c, left). Similarly, motor signals arrive at the PCs as inhibition from PV neurons, dis-inhibition via

the VIP-PV pathway, dis-dis-inhibition via the VIP-SOM-PV pathway and as direct excitation to the dendrite that is

canceled by SOM-mediated inhibition. Again, all these pathways need to be balanced to keep the PCs at their baseline

for fully predicted visual stimuli (Fig. 2 c, left). Analog balancing arguments hold for other input con�gurations ((Fig.

2 b-e, left).

While the �ow of visual and motor information in the learned inhibitory microcircuit is di�erent for di�erent input

con�gurations, the neural responses of the di�erent interneuron classes provide limited information about the input

con�guration. PV neuron activity re�ects whether PCs receive visual input: If PCs receive visual input, PV responses

increase during feedback and playback phases to balance the sensory input at the soma of PCs (Fig. 2 b-c, right).

If PCs receive no visual input, PV neurons remain at their baseline �ring rate (Fig. 2 d-e, right). The activity

of SOM and VIP neurons varies between playback, feedback and mismatch phases, but is independent of the input

con�guration for PCs and PV interneurons (Fig. 2 b-e, right).

In summary, inhibitory plasticity can establish functional nPE circuits irrespective of the inputs onto the soma of

PCs and PV neurons. Although the underlying circuits vary substantially in the speci�c balance of pathways, the

neural activity patterns only weakly re�ect the underlying information �ow.

Simulated optogenetic manipulations disambiguate prediction circuits

We hypothesized that the need to simultaneously balance several pathways o�ers a way to disambiguate the di�erent

prediction circuits by optogenetic manipulations. To test this, we systematically suppressed or activated PV, SOM

and VIP interneurons in each input con�guration after inhibitory plasticity had established the respective nPE circuit.

We found that in our model, such simulated optogenetic experiments are highly informative about the underlying

input con�guration (Fig. 3). For example, PV neuron inactivation changes the response of nPE neurons during

feedback, playback and mismatch phases if and only if the PCs receive visual inputs. VIP inactivation renders nPE

neurons silent unless PV neurons receive motor predictions, in which case they are transformed into positive prediction-

error (pPE) neurons. Since SOM and VIP neurons are mutually inhibiting, the same information can be gained by an

over-activation of SOM neurons that e�ectively silences VIP neurons.
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In summary, our model predicts that optogenetic experiments unveil a unique �ngerprint for nPE circuits that

di�er in their inputs onto PCs and PV neurons.

Figure 3
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Figure 3. Simulated optogenetic manipulations of PV, SOM and VIP neurons disambiguate prediction-error
circuits. (a) Left: nPE neuron circuit in which PCs and PV neurons receive visual input. Inactivation (middle) or
activation (right) of PV (�rst row), SOM (second row) or VIP neurons (third row). Optogenetic manipulations
change responses of nPE neurons (Ctrl) in feedback, mismatch and playback phases. Responses normalized between
-1 and 1 such that baseline is zero. Inactivation input is -8s−1. Activation input is 5s−1. (b) Same as in (a) but PV
neurons receive motor-related prediction. (c) Same as in (a) but PCs receive no visual input. (d) Same as in (a) but
PCs receive no visual input and PV neurons receive a motor-related prediction.

Fraction of nPE neurons is modulated by inputs to SOM and VIP interneurons

In the model considered so far, all PCs developed into nPE neurons during learning, irrespective of the inputs to PCs

and PV interneurons. However, nPE neurons represent only a small fraction of neurons in mouse V18,9. Given that

in our model, motor predictions arriving at the apical dendrites are canceled by SOM neuron-mediated inhibition, we

hypothesized that the fraction of PCs that develop into nPE neurons depends on the distribution of visual and motor
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Figure 4 
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Figure 4. Fraction of nPE neurons depends on SOM and VIP neuron inputs. (a) Somatic compartment of PCs, PV
neurons, a fraction f of SOM neurons and a fraction (1− f) of VIP neurons receive visual input. The remaining
SOM and VIP neurons receive motor predictions. (b) Response relative to baseline (∆R/R) of all PCs in feedback,
mismatch and playback phases, sorted by amplitude of mismatch response. The fraction of nPE neurons that
develop during learning decreases with f (also indicated by black and gray shading to the right). The increasing
fraction of non-nPE neurons comprises neurons that remain at their baseline in all three phases, show a suppression
during mismatch or develop into positive prediction-error neurons that respond only during playback.

input onto SOM and VIP neurons.

To test this, we allow neurons of both SOM and VIP populations to receive either visual input or a motor prediction

thereof. A fraction f of SOM neurons and a fraction (1 − f) of VIP neurons receive visual input. The remaining

SOM and VIP neurons receive motor input (Fig. 4 a). When the majority of SOM neurons receive visual inputs and

the majority of VIP neurons receive motor predictions (f ≈ 1), all PCs develop into nPE neurons (Fig. 4 b, left).

Reducing the proportion of SOM neurons that receive visual input (and, equivalently, the proportion of VIP neurons

that receive the motor prediction), the fraction of nPE neurons decreases (Fig. 4 b, middle). Non-nPE neurons remain

at their baseline in all three phases, show a suppression during mismatch or develop into pPE neurons that respond

only during playback. pPE neurons only emerge when the inputs to SOM and VIP neurons are reversed such that

most SOM neurons receive motor predictions (Fig. 4 b, right).

In summary, the fraction of nPE neurons that develop during learning depends on the distribution of visual input

and motor predictions onto both SOM and VIP neurons.

Experience-dependence of mismatch and interneuron responses

Attinger et al.9 showed that the number of nPE neurons and the strength of their mismatch responses decrease when

mice are trained in arti�cial conditions, in which motor predictions and visual �ow were uncorrelated ("non-coupled

training"). To test whether the model shows the same experience-dependence, we generated a modi�ed training phase,

in which visual inputs and motor-related predictions were statistically independent (Fig. 5 a). We found that the

number of nPE neurons and their mismatch responses also decrease for non-coupled trained relative to quasi-natural
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trained networks (Fig. 5 b). This decrease is primarily due to changes in PCs and PV neurons, while the responses of

SOM and VIP neurons during the mismatch phase are largely independent of the training paradigm (Fig. 5 c). Hence,

the experience-dependence of the model circuit is in line with that of nPE neurons in rodent V19.

Figure 5. Experience-dependence of nPE and PV neurons. (a) The network is either exposed to a sequence of
feedback and playback phases (quasi-natural training, QT) or to decoupled sensorimotor experience (non-coupled
training, NT). (b) The number of nPE neurons that develop during learning (left) and their mismatch responses
(right) are smaller for NT than for QT networks. (c) Population response (∆R/R) of PCs, PV, SOM and VIP
neurons during mismatch phase. SOM and VIP neurons show the same mismatch response for QT and NT, PCs and
PV neurons show stronger responses in QT than in NT. Fraction of SOM neurons that receive visual input is f=80%.

nPE circuits can also be learned by biologically plausible learning rules

In our model, nPE neurons developed though inhibitory plasticity that establishes an excitation-inhibition (E/I)

balance in PCs. So far, we used learning rules that approximate a backpropagation of error25, which changed SOM→PV

and VIP→PV connections such as to minimize the di�erence between the PC �ring rate and a baseline rate. The

biological plausibility of such backpropagation rules, which are broadly used in arti�cial intelligence, is still debated,

because they rely on information that is not locally available at the synapse in question26,27. We therefore wondered

whether prediction-error circuits can also be established by biologically plausible local learning rules.

We found that nPE neurons also emerged when the backpropagation rules were replaced by a form of plasticity

that changes SOM→PV and VIP→PV synapses in proportion to the di�erence between the excitatory recurrent drive

onto PV neurons and a target value (Fig. 6 a). This local form of learning also balanced excitation and inhibition

(Fig. 6 b,c) and all PCs develop into nPE neurons (Fig. 6 c).

The plasticity rules can be further simpli�ed when PCs do not receive visual information. In this case, the strength
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of SOM→PV and VIP→PV synapses can be learned according to a homeostatic rule17 that aims to sustain a target

rate in the PV neurons (Supplementary Fig. S3).

In summary, the backpropagation-like learning rules for the synapses onto PV neurons can be approximated by

biologically plausible rules that exploit local information available at the respective synapses.

Figure 6 
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Figure 6. Learning nPE neurons by biologically plausible learning rules. (a) Network model as in Fig 1.
Connections marked with symbols undergo experience-dependent plasticity. Connections onto PCs follow inhibitory
plasticity rule akin to Vogels et al.17 (triangle). SOM→PV and VIP→PV synapses change in proportion to the
di�erence between the excitatory recurrent drive onto PV neurons and a target value (square). (b) Left: Before
plasticity, somatic excitation (light red) and inhibition (light blue) in PCs are not balanced. Excitatory and
inhibitory currents shifted by ± 20 pA for visualization. The varying net excitatory current (gray) causes the PC
population rate to deviate from baseline. Right: Response relative to baseline (∆R/R) of all PCs in feedback,
mismatch and playback phases, sorted by amplitude of mismatch response. None of the PCs are classi�ed as nPE
neurons (indicated by gray shading to the right). (c) Same as in (b) after plasticity. Somatic excitation and
inhibition are balanced. PC population rate remains at baseline. All PCs classi�ed as nPE neurons (also indicated
by black shading to the right).

Discussion

How the nervous system disentangles self-generated and external sensory stimuli is a long-standing question1,2,6. Here,

we investigated the circuit level mechanisms that underlie the computation of prediction errors and how di�erent types

of inhibitory neurons shape these prediction circuits. We used computational modelling to show that nPE neurons can

be learned by balancing excitation and inhibition in cortical microcircuits with three types of interneurons. We show

that the required E/I balance can be achieved by biologically plausible forms of synaptic plasticity. Furthermore, the
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experience-dependence of the circuit is similar to that of nPE circuits in mouse V19.

Our model makes a number of predictions. Firstly, the multi-pathway balance of excitation and inhibition suggests

that the input con�guration of the prediction circuit could be disambiguated using cell type-speci�c modulations

of neural activity. This could be achieved by optogenetic or pharmacogenetic manipulations, or by exploiting the

di�erential sensitivity of interneuron classes to neuromodulators. The precarious nature of an exact multi-pathway

balance also suggests that nPE neurons might change their response characteristics in a context-dependent way, e.g.,

by neuromodulatory e�ects.

Secondly, the central assumption of the model is that nPE neurons emerge by a self-organized E/I balance during

sensorimotor experience. It therefore predicts that (i) sensorimotor experience that the animal is habituated to should

lead to balanced excitation and inhibition in PCs, (ii) E/I balance should break for sensorimotor experience the

animal has rarely encountered, e.g., for mismatches of sensory stimuli and motor predictions and (iii) during altered

sensorimotor experience in a virtual reality setting or when the excitability of speci�c interneuron types is altered,

interneuron circuits should gradually recon�gure to reestablish the E/I balance.

During learning, we exposed the network to sensory inputs and motor-related predictions designed to re�ect coupled

sensorimotor experience. To allow for changes in the external world that do not arise from the animal's own movements,

we included "playback" phases in which the visual input is stronger than predicted by the motor-related input.

Consistent with the experimental setup of Attinger et al.9, we deliberately excluded feedback mismatch phases. In the

model, the stimuli experienced during learning have a strong impact on the response structure of the PCs, because the

learning rules aim to keep the PCs at a given baseline rate at all times. The inclusion of feedback and playback phases

during learning therefore leads to neurons that remain at their baseline during those phases, in line with nPE neurons.

In mouse V1, nPE neurons exhibit an average rate decrease during playback when the animals were only exposed to

perfectly coupled sensorimotor experience9. When our network was trained in the same way, we also observed that

PCs reduced their �ring rate during playback phases (Supplementary Fig. S4). This can be a result of an excess of

somatic inhibition, dendritic inhibition or both. The model hence predicts that the rate reduction during playback

phases observed by Attinger et al.9 vanishes when playback phases are included during training.

The interneuron circuit in our model is motivated by the canonical circuit found in a variety of brain regions15,16,28.

In addition to the connections between interneuron classes that are frequently reported as strong and numerous, we

included VIP→PV synapses in the circuit, because a mathematical analysis reveals that they are required for a perfect

E/I balance during both feedback and playback phases (see Supplementary Notes). While VIP→PV synapses have

been found in visual15, auditory29, somatosensory28,30 and medial prefrontal cortex29, as well as amygdala31, they

are less prominent and often weaker than SOM→PV connections (but see Krabbe et al.31). VIP→PV synapses can
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be excluded when the conditions for nPE neurons during feedback and playback phases are mildly relaxed8,9,11 and

when PV neurons receive visual, but not motor inputs (Supplementary Fig. S5).

We used a mathematical analysis to identify a number of synapses in the circuit that undergo experience-dependent

changes. While the synapses from PV neurons onto PCs established a baseline �ring rate in the absence of visual

input and motor predictions, the synergy between the SOM→PV, VIP→PV and SOM→PC synapses guaranteed

that the baseline is retained in feedback and playback phase. Our mathematical analysis unveiled constraints for the

interneuron motif, that is, the relation between the strengths of a number of inhibitory synapses (see Methods, Eqs.

8, 9). The multi-pathway balance of excitation and inhibition could also be achieved by synaptic plasticity in other

inhibitory synapses � for example the mutual inhibition between SOM and VIP neurons. However, the assumption

that mainly the inhibitory synapses onto PV neurons are plastic is supported by the observation that PV neuron

activity � in contrast to SOM and VIP neuron activity � is experience-dependent9.

In the model, the plastic inhibitory synapses onto PV neurons change according to non-local information that might

not be directly available at the synapse. These synapses therefore implement an approximation of a backpropagation

of error, the biological plausibility of which is debated26. We showed that this plasticity rule can be approximated by

biologically plausible variants of the plasticity rules. If PCs do not receive direct visual input (Supplementary Fig. S3),

the backpropagation-like algorithm can be replaced by a simple homeostatic Hebbian plasticity rule in the synapses

onto the PV interneurons. Given that PCs in V1 are known to receive substantial visual drive19,20, this assumption

is unlikely to be valid. We therefore propose an alternative form of plasticity that changes SOM→PV and VIP→PV

synapses in proportion to the di�erence between the excitatory recurrent drive onto PV neurons and a target value

(Fig. 6). The underlying mechanism is similar to feedback alignment32 and requires su�cient overlap between the

set of postsynaptic PCs a PV neuron inhibits and the set of presynaptic PCs the same PV neuron receives excitation

from. This is likely, given the high connection probability between PCs and PV neurons15,16,33.

We modelled the apical dendrite of PCs as a single compartment that integrates excitatory and inhibitory input

currents and has the potential to produce calcium spike-like events34�37. Moreover, we assumed that an overshoot of

inhibition decouples the apical tuft of the PCs from their soma, by including a rectifying non-linearity that precludes

an excess of dendritic inhibition to in�uence somatic activity. However, the presence or nature of these dendritic

nonlinearities has a minor in�uence on the development of nPE neurons (Supplementary Fig. S6). When we allowed

dendritic inhibition to in�uence the soma, inhibitory plasticity still established nPE neurons, although the learned

interneuron circuit di�ers with respect to the synaptic strengths. The additional dendritic inhibition reduces the

required amount of somatic, PV-mediated inhibition. This is primarily the case during playback phases, when the

excitatory motor input to the apical dendrite is absent. PV neurons are therefore less active during the playback phase
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than during the feedback phase (Supplementary Fig. S6), consistent with recordings in mouse V19.

By modelling the apical dendrite as a single compartment, we also neglected the possibility that dendritic branches

process distinct information. However, we expect that the suggested framework of generating predictive signals by a

compartment-speci�c E/I balance generalizes to more complex dendritic con�gurations, in which local inhibition could

contribute by gating di�erent dendritic inputs38.

Cortical circuits are complex and contain a large variety of interneuron classes13,14,16. We restricted the model

to three of these classes: PV, SOM and VIP neurons. It is conceivable that several other interneuron types can play

a pivotal role in prediction-error circuits. The dendrites of layer 2/3 neurons reach out to layer 1, the major target

for feedback connections21,39,40 and home to a number of distinct interneuron types41,42, which may contribute to

associative learning43,44. In particular, NDNF neurons unspeci�cally inhibit apical dendrites located in the super�cial

layers, and at the same time receive strong inhibition from SOM neurons43. Hence, it is possible that these interneurons

also shape the processing of feedback information, including the computation of prediction errors.

PCs in L2/3 of V1 have very low spontaneous �ring rates20,45. A potential rate decrease during feedback and

playback could hence be hard to detect. Whether the low response of nPE neurons during feedback and playback

phases are due to an E/I balance � as suggested here � or due to an excess of inhibition may hence be di�cult to

decide, and could for example be resolved by intracellular recordings.

Our model suggests a well-orchestrated division of labor of PV, SOM and VIP interneurons that is shaped by

experience: While PV neurons balance the sensory input at the somatic compartment of PCs, SOM neurons cancel

feedback signals at the apical dendrites. VIP neurons ensure su�ciently large mismatch responses by amplifying small

di�erences between feedforward and feedback inputs9,37. Given the relative uniformity of cortex in its appearance,

structure and cell types46,47, it is conceivable that the same principles also hold for other regions of the cortex beyond

V1. Shedding light on the mechanisms that constitute the predictive power of neuronal circuits may in the long run

contribute to an understanding of psychiatric disorders that have long been associated with a malfunction of the brain's

prediction machinery48�50 and speci�c types of interneurons51�53.

Methods

Network model

We simulated a rate-based network model of excitatory pyramidal cells (NPC = 70) and inhibitory PV, SOM and

VIP neurons (NPV = NSOM = NVIP = 10). All neurons are randomly connected with connection strengths and

probabilities given below (see "Connectivity").
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The excitatory pyramidal cells are described by a two-compartment rate model that was introduced by Murayama

et al.36. The dynamics of the �ring rate rE,i of the somatic compartment of neuron i obeys

τE
drE,i

dt
= −rE,i + [Ii −Θ] , (1)

where τE denotes the excitatory rate time constant (τE=60 ms), Θ terms the rheobase of the neuron (Θ = 14 s−1).

Firing rates are recti�ed to ensure positivity. Ii is the total somatic input generated by somatic and dendritic synaptic

events and potential dendritic calcium spikes:

Ii = λD

[
IsynD,i + ci

]
+

+ (1− λE)IsynE,i . (2)

Here, the function [x]+ = max(x, 0) is a rectifying nonlinearity that prohibits an excess of inhibition at the apical

dendrite to reach the soma. IsynD,i and IsynE,i are the total synaptic inputs into dendrite and soma, respectively, and ci

denotes a dendritic calcium event. λD and λE are the fraction of "currents" leaking away from dendrites and soma,

respectively (λD=0.27, λE=0.31). The synaptic input to the soma I
syn
E,i is given by the sum of external sensory inputs

xE and PV neuron-induced (P) inhibition,

IsynE,i = xE −
NPV∑
j=1

wEP,ij · rP,j . (3)

The dendritic input IsynD,i is the sum of motor-related predictions xD, the recurrent, excitatory connections from other

PCs and SOM neuron-induced (S) inhibition:

IsynD,i = xD −
NSOM∑
j=1

wDS,ij · rS,j +

NPC∑
j=1

wDE,ij · rE,j . (4)

The weight matrices wEP, wDS and wDE denote the strength of connection between PV neurons and the soma of PCs

(wEP), SOM neurons and the dendrites of PCs (wDS) and the recurrence between PCs (wDE), respectively. The input

generated by a calcium spike is given by

ci = c ·H(I0D,i −Θc), (5)

where c scales the amount of current produced (c = 7 s−1), H is the Heaviside step function, Θc represents a threshold

that describes the minimal input needed to produce a Ca2+-spike (Θc = 28 s−1) and I0D,i denotes the total, synaptically
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generated input in the dendrites,

I0D,i = λEI
syn
E,i + (1− λD)IsynD,i . (6)

Note that we incorporated the gain factor present in Murayama et al.36 into the parameters to achieve unit consistency

for all neuron types.

The �ring rate dynamics of each interneuron is modeled by a recti�ed, linear di�erential equation54,

τi
drX,i

dt
= −rX,i +

NPC∑
j=1

wXE,ij · rE,j −
NPV∑
j=1

wXP,ij · rP,j −
NSOM∑
j=1

wXS,ij · rS,j −
NVIP∑
j=1

wXV,ij · rV,j + xi, (7)

where rX,i denotes the �ring rate of neuron i from neuron type X (X ∈ {P, S, V }) and xi represents external inputs.

The weight matrices wXY denote the strength of connection between the presynaptic neuron population Y and the

postsynaptic neuron population X. The rate time constant τi was chosen to resemble a fast GABAA time constant,

and set to 2 ms for all interneuron types included.

Negative prediction-error neurons

We de�ne PCs as nPE neurons when they exclusively increase their �ring rate during feedback mismatch (visual

input smaller than predicted), while remaining at their baseline during feedback and playback phases. In a linearized,

homogeneous network and under the assumption that the apical dendrites are su�ciently inhibited during feedback and

playback phase, this de�nition is equivalent to two constraints on the interneuron network (see Supporting Information

for a detailed analysis and derivation):

wPS = VP + wVSMP −
(1 + wPP)

wEP
VE, (8)

wPV = MP + wSV VP − wSV
(1 + wPP)

wEP
VE

= wSVwPS + (1− wSVwVS)MP . (9)

The parameters VX ,MX ∈ {0, 1} indicate whether neuron typeX receives visual and motor-related inputs, respectively,

and control the di�erent input con�gurations. In addition to the conditions Eqs. 8 and 9, the synapses from SOM

neurons onto the apical dendrites must be su�ciently strong to cancel potential excitatory inputs during feedback and

playback phase.

In practice, we classify PCs as nPE neurons when ∆R/R is larger than 20% in the mismatch phase and less than
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±10% elsewhere (∆R/R = (r − rBL)/rBL, rBL: baseline �ring rate). Tolerating small deviations in feedback and

playback phase is more in line with experimental approaches. The results do not rely on the precise thresholds used

for the classi�cation.

Connectivity

All neurons are randomly connected with connection probabilities motivated by the experimental literature15,16,28,29,33,55�57,

p =



pEE pEP pES pEV

pDE pDP pDS pDV

pPE pPP pPS pPV

pSE pSP pSS pSV

pVE pVP pVS pVV


=



− 0.6 − −

0.1 − 0.55 −

0.45 0.5 0.6 0.5

0.35 − − 0.5

0.1 − 0.45 −


. (10)

All cells of the same neuron type have the same number of incoming connections. The mean connection strengths are

given by

w =



wEE wEP wES wEV

wDE wDP wDS wDV

wPE wPP wPS wPV

wSE wSP wSS wSV

wVE wVP wVS wVV


=



− ∗ − −

0.42 − ∗ −

∗ ∗ ∗ ∗

1 − − 0.6

1 − 0.5 −


(11)

where the symbol * denotes weights that vary between simulations (e.g., subject to plasticity or computed from the

equations (8) and (9)). For non-plastic networks, these synaptic strengths are given by wEP = 2.8, wDS = 3.5,

wPE = 1.5, wPP = 0.1 (if PCs receive visual input) or wPP = 1.5 (if PCs receive no visual input), wPS and wPV are

computed from the equations (8) and (9).

For plastic networks, the initial connections between neurons are drawn from uniform distributions winitial
ij ∈

U (0.5 w, 1.5 w) where w denotes the mean connection strengths given in (11) and wEP = 1.75, wEP = 0.35, wPE = 2.5

(if PCs receive visual input) or wPE = 1.2 (if PCs receive no visual input), wPP = 0.5 (if PCs receive visual input) or

wPP = 1.5 (if PCs receive no visual input), wPS = 0.3 and wPV = 0.6. Please note that the system is robust to the

choice of connections strengths. The connection strengths are merely chosen such that the solutions of Eqs. 8 and 9

comply with Dale's principle.

All weights are scaled in proportion to the number of existing connections (i.e., the product of the number of
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presynaptic neurons and the connection probability), so that the results are independent of the population size.

Inputs

All neurons receive constant, external background input that ensures reasonable baseline �ring rates in the absence of

visual and motor-related input. In the case of non-plastic networks, these inputs were set such that the baseline �ring

rates are rE = 1s−1, rP = 2s−1, rS = 2s−1 and rV = 4s−1. In the case of plastic networks, we set the external inputs

to xE = 28s−1, xD = 0s−1, xP = 2s−1, xS = 2s−1 and xV = 2s−1 (if not stated otherwise). In addition to the external

background inputs, the neurons receive either visual input (v), a motor-related prediction thereof (m) or both.

In line with the experimental setup of Attinger et al.9, we distinguish between baseline (m = v = 0), feedback

(m = v > 0), feedback mismatch (m > v) and playback (m < v) phases. During training, the network is exposed

to feedback and playback phases with stimuli drawn from a uniform distribution from the interval [0, 7s−1]. After

learning, the strength of stimuli is set to 7s−1 (plastic networks) or 3.5s−1 (non-plastic networks).

Plasticity

In plastic networks, a number of connections between neurons are subject to experience-dependent changes in order

to establish an E/I balance for PCs. PV→PC and the PC→PV synapses establish the target �ring rates for PCs and

PV neurons, respectively. VIP→PV and SOM→PV synapses and the synapses from SOM neurons onto the apical

dendrites of PCs ensure that PCs remain at their baseline during feedback and playback phase. The corresponding

plasticity rules are of the form

∆w ∝ ±(post− baseline) · pre (12)

In detail, the connections from PV and SOM neurons onto the soma and the apical dendrites, respectively, obey

inhibitory Hebbian plasticity rules akin to Vogels et al.17

∆wEP,ij ∝ (rpostE,i − ρ
post
E,0 ) · rpreP,j , (13)

∆wDS,ij ∝ (Apost
i − ε) · rpreS,j . (14)

The parameter ρpostE,0 denotes the baseline �ring rate of the postsynaptic PC, and the dendritic activity Apost
i is given
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by the recti�ed synaptic events at the dendrites

Apost
i =

[
IsynD,i + ci

]
+
. (15)

The small "correction" term ε eases the e�ect of strong onset responses (here, we used ε = 0.1s−1).

The connections from both SOM and VIP neurons onto PV neurons implement an approximation of a backpropagation

of error

∆wij ∝
1

NE,i

∑
k∈Spost

i

(rpostE,k − ρ
post
E,0 ) · rprej . (16)

Spost
i denotes the set of postsynaptic PCs a particular PV neuron is connected to, and NE,i is the number of excitatory

neurons in Spost
i .

When the connection probability between PCs and PV neurons is large, this backpropagation of error can be

replaced by a biologically plausible learning rule that only relies on local information available in the PV neurons.

∆wij ∝ ∆Erec,i · rprej , (17)

where ∆Erec,i denotes the di�erence between the excitatory recurrent drive onto PV neuron i and a target value

Erec,i =
∑

k∈Spre
i

wPE,ik · (rpostE,k − ρ
post
E,0 ). (18)

Spre
i denotes the set of presynaptic PCs a particular PV neuron receives excitation from.

When nPE neurons do not receive direct visual input, the backpropagation rules can be simpli�ed even further.

The synapses onto PV neurons can be learned according to a Hebbian inhibitory plasticity rule17 that aims to sustain

a baseline rate in the PV neurons

∆wPX,ij ∝ (rpostP,i − ρ
post
P,0 ) · rpreX,j (19)

with X ∈ {S, V }. This baseline rate is established by modifying the connections from PCs onto PV neurons according

to an anti-Hebbian plasticity rule

∆wPE,ij ∝ (ρpostP,0 − r
post
P,i ) · rpreE,j . (20)
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Simulation

All simulations were performed in customized Python code written by LH. Di�erential equations were numerically

integrated using a 2nd-order Runge-Kutta method with time steps between 0.05 and 2 ms. Neurons were initialized

with ri(0) = 0. Source code will be made publicly available upon publication.
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Supplementary Information

Supplementary Notes

We performed a mathematical analysis of a simpli�ed model to identify the constraints that are imposed on the

interneuron circuit by the presence of nPE neurons. We �rst describe the assumptions made and the de�nition of nPE

neurons. We then derive the constraints for a simpli�ed network with canonical interneuron connectivity including

VIP-to-PV synapses. The solutions provide the relationship for the strength of synapses between di�erent neuron

types that must be satis�ed for nPE neurons to emerge. We then show that the same network without VIP-to-PV

synapses can only produce nPE neurons under very restrictive assumptions.
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Constraints for the interneuron circuit

To derive the constraints for the interneuron network that are imposed by the presence of nPE neurons, we performed

a mathematical analysis of a simpli�ed network model, in which the nonlinearity of the dendritic compartment and

the rectifying nonlinearities are neglected. This reduces the network to an analytically tractable linear system. The

simpli�cations rely on the following assumptions:

1. During baseline, feedback and playback phases, SOM interneuron-mediated inhibition exceeds excitatory motor

predictions arriving at the apical dendrites of PCs.

2. Any excess of inhibition in the dendrite does not a�ect the the soma of PCs.

3. During baseline, feedback and playback phases, all neuron types have positive �ring rates, such that the rate

recti�cation can be neglected.

These assumptions allow us to omit the dendritic compartment of PCs and consequently all synapses thereto. The

remaining system of linear equations describes the activity of all neuron types during baseline, feedback and playback

phase. For the subsequent analysis, we furthermore consider a homogeneous network, that is, all weights, neuronal

properties and the number of incoming connections for cells of the same type are the same. As a result, we can reduce

the high-dimensional system to 4 equations, each describing the dynamics of one representative �ring rate per neuron

type:

τ
dr

dt
= −r + Ω r + X , (21)

where τ denotes the rate time constant, r = [rE, rP, rS, rV]T (subscripts refer to the di�erent neuron types; E: soma

of PC, P: PV, S: SOM, V: VIP), Ω is the weight matrix and X denotes the external inputs. In the steady state, the

�ring rates are given by

r = −(Ω− 1)−1X = W−1X (22)

with the e�ective connectivity matrix W that includes the leak:

W =



−1 −wEP 0 0

wPE −1− wPP −wPS −wPV

wSE −wSP −1− wSS −wSV

wVE −wVP −wVS −1− wVV


. (23)
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The weight parameters wXY between neuron types are strictly positive to maintain the excitatory/inhibitory nature

of the various neuron types.

In our model, an excitatory neuron is classi�ed as a perfect nPE neuron, if

r
(feedback)
E = r

(playback)
E = r

(baseline)
E , (24)

r
(mismatch)
E > r

(baseline)
E . (25)

During feedback mismatch, the PC �ring rate increases with respect to the baseline as long as the motor-related

excitatory inputs exceed the somatic inhibition mediated by PV neurons. The conditions according to which no change

in activity occurs in either feedback or playback phase (see Eq. 24) impose constraints on the weight con�guration

that need to be satis�ed. These can be summarized by

0 = W−1Xfb, (26)

0 = W−1Xpb, (27)

where Xfb and Xpb denote the excess external inputs above baseline during feedback and playback phase, respectively,

Xfb = [VE, VP +MP, 1, 1]T · s, (28)

Xpb = [VE, VP, 1, 0]T · s, (29)

with s representing a varying excitatory stimulus strength. The parameters VX ,MX ∈ {0, 1} indicate whether neuron

type X receives visual and motor-related inputs, respectively, and control the di�erent input con�gurations.

Canonical interneuron connectivity with VIP-to-PV synapses: We start with the connectivity motif

proposed by Pfe�er et al.15. We also allow for connections from VIP to PV neurons. Although they are considered

to be less prominent and weaker than connections from VIP to SOM neurons and are therefore often neglected in

diagrams and computational models, those synapses have been observed in various brain regions15,28�31. To this end,
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the respective connectivity matrix is given by

W =



−1 −wEP 0 0

wPE −1− wPP −wPS −wPV

wSE 0 −1 −wSV

wVE 0 −wVS −1


. (30)

The constraints (26) and (27) de�ning nPE neurons are then given by

0 =(1− wSVwVS)(1 + wPP)VE − wEP(1− wSVwVS)(VP +MP)

+ wEPwPS(1− wSV) + wEPwPV(1− wVS), (31)

0 =(1− wSVwVS)(1 + wPP)VE − wEP(1− wSVwVS)VP + wEP(wPS − wPVwVS). (32)

These two equations yield

wPS = VP + wVSMP −
(1 + wPP)

wEP
VE, (33)

wPV = MP + wSV VP − wSV
(1 + wPP)

wEP
VE

= wSVwPS + (1− wSVwVS)MP. (34)

Eq. 33 and 34 are the mathematical formulation of the E/I balance of multiple pathways shown in Fig. 2 and

Supplementary Fig. S2.

For the derivation above, we have assumed that the motor-related input is switched o� during the playback phase.

This assumption, however, can be relaxed. When motor predictions are merely smaller than the actual sensory input

but non-zero during playback, analogous calculations yield the same constraints.

Canonical interneuron connectivity without VIP-to-PV synapses: Without connections from VIP onto

PV neurons, the constraints (26) and (27) yield

0 = (1− wSVwVS)(1 + wPP)VE − wEP(1− wSVwVS)(VP +MP) + wEPwPS(1− wSV), (35)

0 = (1− wSVwVS)(1 + wPP)VE − wEP(1− wSVwVS)VP + wEPwPS. (36)
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These two equations simplify to

wPS =
(wSVwVS − 1)

wSV
MP. (37)

As the weight wPS is strictly positive (see de�nition of weight matrix above), the product wSVwVS must be larger than

1. This, however, indicates that networks with rate recti�cation exceed a bifurcation point and run into a winner-take-

all (WTA) regime, in which either VIP or SOM neurons are silent37.

With VIP neurons being silent in all phases but during feedback mismatch phases, the constraint on wPS can be

recalculated from Eqs. 22 and 24 while neglecting VIP neurons:

wPS = VP −
(1 + wPP)

wEP
VE. (38)

This equation reveals that PV neurons must receive visual input to ensure wPS > 0.

In summary, this mathematical analysis shows that perfect nPE neurons can only emerge when VIP neurons are

silent during all phases but the feedback mismatch phase.

Please note that the same results are obtained even if connections from PV to both SOM and VIP neurons are

included.
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Supplementary Figures

Figure S1 
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Figure S1. Learning of prediction-error circuits with di�erent forms of homeostatic plasticity. (a) Network model
as in Fig 1. Connections colored and marked with an asterisk undergo experience-dependent plasticity. b PCs receive
visual input. Connections onto PCs follow an inhibitory plasticity rule akin to Vogels et al.17 (triangle). SOM→PV
and VIP→PV synapses approximate a back-propagation of error (diamond). The averaged weights converge to a
steady-state. Weights are normalized to the theoretically derived values for nPE neurons (see Methods). (c) Same as
in (b) but SOM→PV and VIP→PV synapses change in proportion to the di�erence between the excitatory recurrent
drive onto PV neurons and a target value (square). (d) Same as in (b) but visual drive onto PCs is absent.
SOM→PV and VIP→PV synapses follow an inhibitory plasticity rule akin to Vogels et al.17 (triangle). Connections
from PCs onto PV neurons establish a baseline for PV neurons by an anti-Hebbian plasticity rule (inverted triangle).
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Figure S2. Multi-pathway balance of excitation and inhibition in di�erent nPE neuron circuits with visual and
motor input onto PV neurons. a Excitatory, inhibitory, disinhibitory and dis-disinhibitory pathways onto PCs that
need to be balanced in nPE neuron circuits. Input to the soma of PCs and PV neurons is varied (b-c). SOM neurons
receive visual input, VIP neurons receive a motor-related prediction. (b) Test stimuli: Feedback (FB), mismatch
(MM) and playback (PB) phases of 1 second each. c PCs receive visual input (left, top). When all visual (V) and
motor (M) pathways are balanced (left, bottom), PCs act as nPE neurons (right). PV neuron activity increases in
both feedback and playback phases. Responses normalized between -1 and 1 such that baseline is zero. d Same as in
(c) but PC receive no visual input. PV neurons remain at baseline in the absence of visual input to the soma of PCs.
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Figure S3 
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Figure S3. Learning nPE neurons by biologically plausible learning rules in networks without visual input at the
soma of PCs. a Network model as in Fig 1. Connections marked with symbols undergo experience-dependent
plasticity. Inhibitory connections onto PCs and PV neurons follow inhibitory plasticity rule akin to Vogels et al.17

(triangle). Synapses from PCs onto PV neurons follow an anti-Hebbian plasticity rule (inverted triangle). b Left:
Before plasticity, somatic excitation (light red) and inhibition (light blue) at PCs are not balanced. Excitatory and
inhibitory currents are shifted by ± 20 pA for visualization. The varying net excitatory current (gray) causes the PC
population rate to deviate from baseline. Right: Response relative to baseline (∆R/R) of all PCs in feedback,
mismatch and playback phase, sorted by amplitude of mismatch response. None of the PCs are classi�ed as nPE
neurons (indicated by gray shading to the right). c Same as in (b) after plasticity. Somatic excitation and inhibition
are balanced. PC population rate remains at baseline. All PCs classi�ed as nPE neurons (also indicated by black
shading to the right).
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Figure S4. Coupled-trained networks can produce nPE neurons that decrease their activity in playback phase. (a)
During plasticity, the network is exposed to a sequence of feedback phases only, representing perfectly coupled
sensorimotor experience. Network model shown in Fig. 1. Connections from VIP to PV neurons are non-plastic.
(b-c) Model in which an excess of dendritic inhibition does not a�ect the soma of PCs. Connection strength from
VIP to PV neurons �xed to -0.3. (b) Response (∆R/R) of all PCs in feedback, mismatch and playback phase, sorted
by amplitude of mismatch response. All PCs increase their activity during mismatch phase but decrease their �ring
rate during playback phase. The decrease of PC activity during playback is a result of an excess of somatic inhibition
mediated by PV neurons. (c) Population responses of PV, SOM and VIP neurons in all phases. Responses
normalized between -1 and 1 such that baseline is zero. (d-e) Model in which an excess of dendritic inhibition is
forwarded to the soma of PCs. Connections from VIP to PV neurons �xed at a value that ensures a balance of
somatic excitation and somatic inhibition (see Eq. 34 in Methods). (d) Same as in (b). The decrease of PC activity
during playback is a result of an excess of dendritic inhibition mediated by SOM neurons. (e) Same as in (c). PV
neurons are less active during the playback phase than during the feedback phase.
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Figure S5
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Figure S5. VIP→PV synapses are not required for the formation of nPE neurons. (a) Network model as in Fig. 1
but without VIP→PV synapses. PV neurons receive visual input. (b) Population response (∆R/R) of PCs in
feedback (dark gray) and playback phase (light gray) for varying SOM→PV (top), SOM→VIP (middle) and
VIP→SOM (bottom) connections. For all values tested, �ring rate during feedback and playback deviates from
baseline. (c) Response (∆R/R) of all PCs in feedback, mismatch and playback phase, sorted by amplitude of
mismatch response. Most PCs change their �ring rate only mildly in feedback and/or playback phase. As indicated
by the gray/black shading to the right, many of the PCs are classi�ed as nPE neurons. (d) Same as in (a) but PV
neurons receive motor predictions. (e) Same as in (b) but PV neurons receive motor predictions. (f) Same as in (c)
but PV neurons receive motor predictions. All PCs change their �ring rate in response to all stimulation patterns.
None of the PCs are classi�ed as nPE neurons (indicated by gray shading to the right).
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Figure S6. Balancing excitation, somatic and dendritic inhibition gives rise to nPE neurons in a model in which an
excess of dendritic inhibition is forwarded to the soma. Network model, its inputs and the training set are shown in
Fig. 1. Model setup modi�ed to enable the presence of nPE neurons while abiding to Dale's law: PCs receive 0.5 x
visual input. External excitatory input onto the dendrites is set such that it balances inhibition mediated by SOM
neurons in the baseline phase. Additional non-linearity for synapses from SOM neurons onto the apical dendrites of
PCs: ∆wDS ∝ σ(AD) ·AD · rS, where AD denotes the total dendritic activity and σ is a sigmoid function. (a) Before
plasticity, somatic excitation (light red) and inhibition (light blue) in PCs are not balanced. Excitatory and
inhibitory currents are shifted by ± 20 pA for visualization. The varying net excitatory current (gray) causes the PC
population rate to deviate from baseline. (b) Left: Response (∆R/R) of all PCs in feedback, mismatch and playback
phase, sorted by amplitude of mismatch response. All PCs change their �ring rate in response to all stimulation
patterns. None of the PCs are classi�ed as nPE neurons (indicated by gray shading to the right). Right: Population
responses of PV, SOM and VIP neurons in all phases. Responses are normalized between -1 and 1 such that baseline
is zero. (c) Same as in (a) after plasticity. Somatic excitation and inhibition are balanced. PC population rate
remains at baseline. (d) Same as in (b) after plasticity. Almost all PCs classi�ed as nPE neurons (indicated by
black/gray shading to the right). PV neurons are less active during the playback phase than during the feedback
phase.
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