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The spatiotemporal structure of activity in populations of neurons is critical for accurate perception 12 
and behavior. Experimental and theoretical studies have focused on “noise” correlations – trial-to-13 
trial covariations in neural activity for a given stimulus – as a key feature of population activity 14 
structure. Much work has shown that these correlations limit the stimulus information encoded by a 15 
population of neurons, leading to the widely-held prediction that correlations are detrimental for 16 
perceptual discrimination behaviors. However, this prediction relies on an untested assumption: that 17 
the neural mechanisms that read out sensory information to inform behavior depend only on a 18 
population’s total stimulus information independently of how correlations constrain this information 19 
across neurons or time. Here we make the critical advance of simultaneously studying how 20 
correlations affect both the encoding and the readout of sensory information. We analyzed calcium 21 
imaging data from mouse posterior parietal cortex during two perceptual discrimination tasks. 22 
Correlations limited the ability to encode stimulus information, but (seemingly paradoxically) 23 
correlations were higher when mice made correct choices than when they made errors. On a single-24 
trial basis, a mouse’s behavioral choice depended not only on the stimulus information in the activity 25 
of the population as a whole, but unexpectedly also on the consistency of information across neurons 26 
and time. Because correlations increased information consistency, sensory information was more 27 
efficiently converted into a behavioral choice in the presence of correlations. Given this enhanced-28 
by-consistency readout, we estimated that correlations produced a behavioral benefit that 29 
compensated or overcame their detrimental information-limiting effects. These results call for a re-30 
evaluation of the role of correlated neural activity, and suggest that correlations in association cortex 31 
can benefit task performance even if they decrease sensory information. 32 
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Introduction 41 
The collective activity of a population of neurons, beyond properties of individual cells, is thought to 42 
be critical for perceptual discrimination behaviors1,2. A fundamental question is how functional 43 
interactions in a population impact both the encoding of sensory information and how this information 44 
is read out downstream to guide behavioral choices3. A commonly studied feature of coding in neural 45 
populations is noise correlations, that is correlated trial-to-trial variability during repeated 46 
presentations of the same stimulus4,5. These correlations can take the form of correlations between 47 
the spike rates of two individual cells, which we call across-neuron noise correlations. Similarly, 48 
neural population activity at a given time in response to a stimulus is often correlated with the activity 49 
of the same population at other times, which we refer to as across-time noise correlations.  50 
 51 
The impact of across-neuron and across-time correlations has been long debated. Much experimental 52 
and theoretical work has proposed that correlations limit the information capacity of a neural 53 
population6–9. Because these correlations reflect trial-to-trial variability that is shared across neurons 54 
or time, the detrimental effect of variability on stimulus decoding cannot be eliminated by averaging 55 
the activity of neurons or time points. Noise correlations are therefore proposed to fundamentally 56 
constrain what neural networks can compute, and limit the accuracy by which subjects can judge 57 
differences between stimuli6,7. A reason to suspect that the effect of noise correlations may be more 58 
nuanced, however, comes from a separate stream of biophysical and theoretical studies. This line of 59 
work has shown that spatially and temporally correlated spiking can more strongly and more reliably 60 
propagate signals and drive responses in postsynaptic neural populations10–14. However, it remains 61 
poorly tested if and how enhanced signal propagation may have a beneficial impact on behavioral 62 
discrimination performance.  63 
 64 
We reasoned that we could investigate how noise correlations shape behavioral performance in 65 
perceptual discrimination by studying at the same time not only how correlations impact the encoding 66 
of sensory information, as has been emphasized frequently, but critically also how they impact the 67 
reading out of this information by downstream neural circuits to guide behavioral choices.  68 
 69 
Correlations of PPC activity limit sensory coding during perceptual discrimination 70 
To examine how noise correlations affect both stimulus coding at the population level and behavioral 71 
discrimination performance, we focused on the mouse posterior parietal cortex (PPC). PPC is thought 72 
to participate in transforming multisensory signals into behavioral outputs and is thus likely at the 73 
interface of encoding and reading out stimulus information. Furthermore, PPC is essential for 74 
perceptual discrimination tasks during virtual-navigation15,16, and its activity has been shown to 75 
contain stimulus information that relates to an animal’s choices16–22. It is thus a relevant area to study 76 
the impact of correlated neural activity on behavior.  77 
 78 
We examined across-time and across-neuron correlations in PPC population activity using previously 79 
published calcium imaging datasets. To study across-time correlations, we used calcium imaging data 80 
from a sound localization task17 in which mice reported perceptual decisions about the location of an 81 
auditory stimulus by navigating through a visual virtual reality T-maze (Fig. 1a). As mice ran down 82 
the T-stem, a sound cue was played from one of eight possible locations in head-centered, real-world 83 
coordinates. Mice reported whether the sound originated from their left or right by turning in that 84 
direction at the T-intersection (78.0 ± 0.5% correct). During each session, the activity of ~50 layer 85 
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2/3 neurons was imaged simultaneously. This task had the same stimulus category (sound location) 86 
presented throughout the trial and thus was well suited to probe across-time correlations in neural 87 
activity. To study across-neuron correlations, we used calcium imaging data from an evidence 88 
accumulation task19 in which ~350 layer 2/3 neurons were imaged simultaneously per session, thus 89 
providing a large population size to test across-neuron correlations. In the evidence accumulation 90 
task, during virtual navigation, mice were presented with six temporally separate visual cues on the 91 
left or right walls of a T-maze (Fig. 1f). Mice reported which side had more cues by turning in that 92 
direction at the T-intersection (84.5 ± 1.6% correct). We categorized the visual stimuli as having more 93 
total left or right cues. For all analyses, we focused on the period toward the end of the T-stem before 94 
the mouse had reported its choice and after it had received sensory information; this is a window in 95 
which neural activity may carry sensory information that is used to inform the choice (Methods). 96 
 97 
We tested how noise correlations impacted the encoding of sensory information in population 98 
activity. For the sound localization task, we quantified across-time correlations by computing the 99 
Pearson correlation between the activity of one neuron at one time point and the activity of another 100 
neuron at another time point, for each pair of neurons during trials with the same sound location 101 
category. Consistent with previous reports17,19,23, noise correlations were present even at lags longer 102 
than 1 s (Fig. 1b). Since many neurons exhibited activity selective for distinct trial types, with 103 
different neurons active at distinct time points in the trial (Fig. 1c), we were able to decode the 104 
stimulus category (left vs. right sound location) significantly above chance from pairs of temporally 105 
offset instantaneous population activity vectors (Methods; Fig. 1d). To evaluate how across-time 106 
correlations affected the encoding of stimulus category information, we shuffled instantaneous 107 
population activity vectors across trials of the same stimulus category, independently at each time 108 
point. This shuffle destroyed within-trial temporal relationships between population vectors while 109 
preserving instantaneous population activity (Methods). Importantly, stimulus decoding performance 110 
was higher when correlations were disrupted by shuffling, indicating that across-time correlations 111 
limited sound category information in neural activity (Fig. 1d). Similarly, for the evidence 112 
accumulation task, we computed across-neuron Pearson correlations between the activity of a pair of 113 
neurons in a given time window for trials with the same stimulus category (Fig. 1g). Because neurons 114 
exhibited activity selective to the stimulus category (more left or right cues) (Fig. 1h), we were able 115 
to decode the stimulus category from the population activity vector (Fig. 1i). We disrupted across-116 
neuron correlations by dividing the neural population into two non-overlapping randomly-chosen 117 
pools of neurons of equal size and shuffling the trial labels separately for each pool within trials of 118 
the same stimulus category. This shuffle scrambled within-trial relationships between pools and thus 119 
removed correlations between pools (Methods). Importantly, decoding accuracy was higher when 120 
correlations were disrupted by shuffling than in the unshuffled data with correlations intact, showing 121 
that across-neuron correlations were also information limiting (Fig. 1i).  122 
 123 
Whether noise correlations limit the information encoded by a neural population depends on how 124 
they relate to signal correlations (the correlations between trial-averaged responses to individual 125 
stimuli). We parametrized the relationship between signal and noise correlations in our data by 126 
computing the angle24,25, which we termed 𝛾, between the axis of largest variation of neural responses 127 
at fixed stimulus (noise correlations axis) and the axis of largest stimulus-related variation (signal 128 
correlations axis) (Methods and Fig. 1e-j, inset). This angle was variable, but small on average 129 
(γ=0.111p ± 0.001p and 0.098p ± 0.001p for the sound localization and evidence accumulation 130 
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datasets respectively, Fig. 1e, j). The smaller γ, the more noise correlations made the discrimination 131 
of different stimuli more difficult by increasing the overlap between the stimulus-specific response 132 
distributions to different stimuli (Fig. 1e, j, and Extended Data Fig. 2a, b). High γ values, 133 
corresponding to information-enhancing correlations reported in some previous studies26,27, were 134 
present also in our dataset, but were not predominant (Fig. 1e, j). 135 
 136 
Often it has been assumed that perceptual discrimination performance increases proportionally with 137 
the amount of sensory information encoded in neural activity28. Accordingly, the fact that correlations 138 
limit sensory information has been interpreted to imply that correlations hinder the ability to 139 
discriminate sensory stimuli6,29. Specifically, across-time correlations have been proposed to limit the 140 
benefit of integrating noisy information over time as is commonly considered for a speed-accuracy 141 
tradeoff30,31. Further, across-neuron correlations are thought to lessen the benefit of averaging noisy 142 
information across populations of neurons6,7,9. If correlations are detrimental to perceptual behaviors, 143 
one would intuitively expect noise correlations to be lower when animals make correct choices and 144 
higher when animals make errors. Contrary to this expectation, both across-time and across-neuron 145 
correlations were higher in correct trials than in error trials (Fig. 1b, g), despite limiting information 146 
in population activity. This finding leads to the paradoxical suggestion that correlations limit 147 
information encoded by a neural population but at the same time may be beneficial for making 148 
accurate choices.  149 
 150 
A simple model of encoding and readout to test how correlations affect task performance  151 
To reconcile the observations of correlations being information limiting, but at the same time being 152 
higher in correct trials, we developed a simple mathematical model that incorporated both the 153 
encoding of stimulus information and the readout of this information to form a choice. We compared 154 
two alternative views of how information in population activity may be used to perform a stimulus 155 
discrimination task. In the traditional view, the accuracy of a choice is proportional to the amount of 156 
information in a neural population, and thus information-limiting correlations constrain task 157 
performance. Alternatively, we considered that a choice could depend on both stimulus information 158 
and features of neural activity that emerge from correlations, in particular the consistency of 159 
information across time and neurons in a population.  160 
 161 
We simulated a perceptual discrimination task with two possible stimuli that had to be converted into 162 
two possible corresponding choices (c = 1 for s = 1 and c = -1 for s = -1) (Fig. 2a). We simulated 163 
neural activity generically for two features r1 and r2, which could represent neural activity at different 164 
points in time (i.e. for across-time correlations) or activity of different neurons (i.e. for across-neuron 165 
correlations) (Fig. 2c). For each feature alone, higher-than-average values were simulated to indicate 166 
one sensory stimulus (s = 1), and lower-than-average values were simulated to indicate the opposite 167 
sensory stimulus (s = -1), meaning that the two features showed positive signal correlations. In 168 
addition, we simulated noise correlations between r1 and r2, such that the noise axis was closely 169 
aligned to the signal axis (g = 0.08p, close to the mean values of both experimental datasets). Because 170 
of the close signal-noise alignment, noise correlations increased the overlap between the stimulus-171 
specific response distributions (cf. blue and green ellipses in Fig. 2c, left panel vs right panel) and 172 
decreased the stimulus information encoded by the two features jointly (Fig. 2d).  173 
 174 
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We then considered the readout stage of our model. Commonly, the choice is expected to follow the 175 
decoded stimulus. However, because of the apparent importance of correlations for accurate choices 176 
in our experimental data, we hypothesized that the readout of stimulus information to inform choices 177 
might utilize particular aspects of population activity imposed by correlations1. Intuitively, 178 
correlations imply that there is greater consistency in the neural population representations (Fig. 2e). 179 
In our model, we defined consistency as a single-trial measure of similarity between the stimuli that 180 
are decoded from features r1 and r2 separately. In our simulations, a stimulus representation in a trial 181 
was classified as consistent when features r1 and r2 both signaled the same stimulus (i.e. both features 182 
higher than average and thus both signaling s = 1, top right quadrant of panels in Fig. 2c; or both 183 
lower than average and both signaling s = -1, bottom left quadrant of panels in Fig. 2c). 184 
 185 
We simulated binary task discrimination choices with two alternative readout models, formulated as 186 
logistic models of the dependence of choice on several features of stimulus encoding. In the first 187 
model, that we termed the consistency-independent readout, the simulated choice in each trial 188 
depended only on the stimulus decoded from the two features jointly (Fig. 2f, right panel). This case 189 
followed the traditional assumption29 that the choice reflects the stimulus decoded from the full 190 
population activity (Fig. 2f, readout map superimposed to left and middle panels). Note that, in our 191 
experimental data, we did not observe a perfect correspondence between the stimulus decoded from 192 
neural activity and the choice of the mouse (the fraction of times the mouse’s choice matched the 193 
decoded stimulus was 61.0% ± 0.2% in the sound localization dataset and 91.1% ± 0.1% in the 194 
evidence accumulation dataset; Supplemental Information S7). Therefore, in the model, we set the 195 
average probability that, in a given trial, the choice matched the decoded stimulus, which we termed 196 
“readout efficacy”, to a value smaller than 100%. 197 
 198 
In the second readout model, which we termed the enhanced-by-consistency readout, the choice in 199 
each trial depended not only on the stimulus decoded from both features jointly, but also on the 200 
consistency of the stimulus decoded from the features separately (Methods) (Fig. 2i, right panel). If 201 
r1 and r2 reported consistent information about the stimulus, this readout was more likely to use the 202 
stimulus encoded in neural activity to inform the choice. This effect resulted from positive 203 
coefficients assigned to the interaction terms between the decoded stimulus and consistency (see 204 
Methods and Fig. 2i, right panel). In other words, the readout efficacy was higher when the two 205 
features were consistent (Fig. 2i, readout map superimposed to left and middle panel). Importantly, 206 
the average readout efficacy of this model was also smaller than 100%, in agreement with 207 
experimental data, and was matched to the readout efficacy of the consistency-independent readout 208 
model. 209 
 210 
For the consistency-independent readout, correlated activity resulted in worse task performance 211 
compared to activity in which correlations were absent (Fig. 2h). This was expected because with this 212 
readout task performance is directly proportional to the level of stimulus information, with higher 213 
information resulting in higher performance. Further, noise correlations were slightly higher on 214 
simulated error trials than on correct trials (Fig. 2g), which was notably inconsistent with our 215 
experimental observations (Fig.1b, g). When considering the enhanced-by-consistency readout, noise 216 
correlations were higher in correct trials than error trials (Fig. 2j), matching our experimental 217 
findings. This readout also resulted in higher task performance in the presence of noise correlations 218 
than in the absence of correlations (Fig. 2k). Critically, this result shows that the enhanced-by-219 
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consistency readout mechanism can reconcile our experimental observations by providing a scenario 220 
in which correlations limit information, thus producing more decoding errors, while at the same time 221 
providing a benefit to task performance.  222 
 223 
The ability of the enhanced-by-consistency readout to generate a task performance that overturns 224 
information encoding deficits was affected by how noise correlations both create consistency and 225 
limit information, which are in turn determined by the strength and structure of correlations. We 226 
explored the model parameters in depth (Extended Data Fig. 2, Supplementary Information) and 227 
found a range of parameters in which the enhanced-by-consistency readout produced higher task 228 
performance with correlations even when they limit information. This happened when correlations 229 
increased the proportion of trials with correctly decoded and consistent information more than they 230 
increased the proportion of trials with incorrectly decoded and consistent information, with respect 231 
to uncorrelated data. This condition was met when the angle between signal and noise was small but 232 
non-null, as in our experimental data (Extended Data Fig. 2b-e, Supplementary Information, Fig. 1e, 233 
j).  234 
 235 
Correlations and consistency in population activity contribute to behavioral choices 236 
Together, our model results highlight the critical importance of estimating the effect of correlations 237 
not only on stimulus encoding, but also on the readout of single-trial activity to inform a choice. We 238 
therefore used our experimental measurements of neural activity to test for signatures of an enhanced-239 
by-consistency readout. A key prediction of this readout is that the mouse’s performance should 240 
depend not only on whether stimulus encoding is correct or incorrect but also on the consistency of 241 
stimulus information across neurons and across time. In our experimental data, we defined 242 
consistency as the single-trial similarity between the stimuli that are decoded from population activity 243 
at different points in time (across-time consistency) or between the stimuli that are decoded from 244 
separate neuronal pools in the same time window (across-neuron consistency). For example, across-245 
time consistency would be present in a trial if the population activity at time point 1 signaled the same 246 
stimulus category (e.g. s = 1) as the population activity at time point 2. We calculated the mouse’s 247 
performance for four subclasses of trials, defined by correctness and consistency of the stimulus 248 
encoded in neural activity in a given trial. In both experimental datasets, the mouse’s task 249 
performance was higher for trials with correct stimulus decoding than for incorrectly decoded trials, 250 
suggesting that the stimulus information carried by PPC neurons was used to inform behavioral 251 
choices (Fig. 3a, d, right panels). Also, the mouse’s task performance was higher for trials with 252 
consistent information across time or across neurons, supporting the idea that the consistency of 253 
neural population information was critical for accurate choices (Fig. 3a, d, left panels). Critically, in 254 
trials with correctly decoded stimulus information, the mouse’s task performance was higher when 255 
information was consistent than when it was inconsistent, both across neurons and across time. 256 
Further, in trials with incorrectly decoded stimulus information, task performance was lower on 257 
consistent trials than on inconsistent trials (Fig. 3a, d, right panels). These findings indicate that the 258 
stimulus information encoded in PPC was read out in a manner that amplified the effect of the 259 
encoded stimulus information on choice in consistent trials, both when the information was correct 260 
or incorrect.  261 
 262 
To rule out that differences in a mouse’s task performance between consistent and inconsistent trials 263 
might be due to higher stimulus information in consistent trials, we sorted trials according to the 264 
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stimulus information level and verified that performance in correctly (respectively incorrectly) 265 
decoded trials was still higher (respectively lower) when information was consistent across neurons 266 
or across time (Methods, Supplementary Information, and Extended Data Fig. 4c-e, g-i). 267 
 268 
We further examined the possibility of an enhanced-by-consistency readout by developing an 269 
analytical understanding of how choices were made by the mouse. We used logistic regression to 270 
relate PPC activity to the mouse’s choices. We expressed a mouse’s choice on a given trial as a 271 
function of features of the recorded neural activity: the stimulus decoded from the full PPC population 272 
activity and its interaction with the across-time or across-neuron consistency (Methods). In addition, 273 
in the choice regression, we included a predictor for the experimenter-defined stimulus presented to 274 
the mouse and a bias term. These two terms accounted for the stimulus-related and stimulus-unrelated 275 
information carried by sources other than the recorded neurons, such as non-recorded neurons. The 276 
inclusion of these terms therefore allowed us to test how much the stimulus information in the 277 
recorded neural activity explained the mouse’s choice beyond what could be explained by other 278 
sources. 279 
 280 
The average regression coefficients for the stimulus decoded from neural activity and the consistency-281 
dependent interaction terms were positive (Fig. 3c, f, left), indicating that the stimulus information in 282 
neural activity, including its consistency, impacted the mouse’s choice. Positive coefficients for the 283 
consistency-dependent terms indicates that the readout of PPC activity performed similarly to the 284 
enhanced-by-consistency readout model from Figure 2: that is, the probability that the choice matched 285 
the stimulus decoded from neural activity was higher in the presence of consistency (Fig. 3c, f, right). 286 
We tested the specific contribution of the neural-based predictors in explaining the mouse’s choices 287 
by fitting the logistic regression after shuffling the values of these predictors across trials (Fig. 3b, e). 288 
Shuffling all neural-based predictors (“No Neural” choice regression in Fig. 3b, e) made it harder to 289 
predict a mouse’s choice, again demonstrating that neural activity contributed to choices. Moreover, 290 
shuffling only the neural consistency values (“No Cons” choice regression in Fig. 3b, e), while 291 
leaving intact the stimulus decoded from neural activity and the experimenter-determined stimulus, 292 
resulted in worse predictions of a mouse’s choices. Neural consistency thus seemingly contributed to 293 
the mouse’s choice.  294 
 295 
To rule out that the modulation of the readout by consistency might just reflect differences in overall 296 
stimulus information levels between consistent and inconsistent trials, we verified that consistency 297 
provided a similar contribution to predicting a mouse’s choices when we used a more sophisticated 298 
logistic regression in which we included the magnitude of the stimulus information, instead of only 299 
the identity of the decoded stimulus (Supplementary Information and Extended Data Fig. 4b, f). 300 
Further, to control for and discount potential contributions from running-related neural activity, we 301 
verified that neural consistency also contributed to predicting choices when adding to the regression 302 
the consistency of the mouse’s running speed and direction (Supplementary Information and 303 
Extended Data Fig. 5c-e).  304 
 305 
The enhanced-by-consistency readout of PPC activity can overturn the information-limiting 306 
effect of correlations 307 
Thus far, our results show that across-time and across-neuron consistency in the experimental data 308 
have an impact on a mouse’s choices. We next examined the implications of this finding for mouse 309 
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task performance, in the presence or absence of experimentally-measured information-limiting 310 
correlations. Because correlations cannot be removed with current experimental approaches, we 311 
instead created a set of simulated choices using the experimentally-fit logistic choice regression from 312 
Figure 3 (Methods). We used either trials with real neural activity or trials with neural activity 313 
shuffled to disrupt across-time or across-neuron correlations as input to the experimentally-fit choice 314 
regression. As a reminder, shuffled activity had higher stimulus information (Fig. 1d, i and Fig. 4b, 315 
d, left) and lower across-time and across-neuron consistency (Fig. 4b, d, right). We used the simulated 316 
choices to provide an estimate of how well the mouse would have performed on the task with and 317 
without correlations present (Fig. 4a). 318 
 319 
We focused on the contribution of the recorded neural population to task performance. This 320 
contribution was isolated by computing task performance from choices simulated using all predictors 321 
extracted from experimental data, and then subtracting the task performance computed from choices 322 
simulated after shuffling neural predictors values across trials (Methods). In the sound localization 323 
dataset, we estimated that the recorded ~50 neurons increased task performance by ~3.5% (Fig. 4c). 324 
Strikingly, the amount the recorded neurons increased task performance was greater when 325 
correlations were intact than when correlations were removed by shuffling (Fig. 4c). This is especially 326 
of note because stimulus information in the recorded neurons was lower with correlations intact (Fig. 327 
4b, left), indicating that the enhanced-by-consistency feature of the experimentally-fit readout was 328 
able to overcome the information-limiting effect of across-time correlations and improve task 329 
performance. In the evidence accumulation data, the ~350 recorded neurons contributed ~25% of task 330 
performance (Fig. 4e). This estimate was similar when correlations were intact or disrupted (Fig. 4e), 331 
even though the stimulus information was lower when correlations were intact (Fig. 4d, left). This 332 
result suggests that across-neuron correlations did not hinder task performance despite having an 333 
information-limiting effect. Together, our results strongly indicate that correlations had an advantage 334 
in the readout of stimulus information that overcame or compensated for their information-limiting 335 
effects.  336 
 337 
These results incorporate the overall impact of correlations on task performance by combining the 338 
effects of the encoding and readout stages. To analyze the specific contribution of the readout, we 339 
again simulated choices from the experimentally-fit choice regression, except we equalized the 340 
stimulus information in the correlated and shuffled populations by selecting subsets of trials having 341 
the same fraction of correctly decoded stimuli. With such matching, the correlated and shuffled trials 342 
differed only in their neural consistency (Fig. 4f, h). For both datasets, the estimated contribution to 343 
task performance of the recorded neurons was higher when correlations were intact than when they 344 
were disrupted (Fig. 4g, i). This result shows that the readout of PPC activity was more efficient in 345 
extracting information from correlated data and can thus improve task performance. 346 
 347 
It is interesting to note that our results here indicate that the readout of stimulus information from 348 
PPC activity is suboptimal. From the ~50 neurons recorded in the sound localization task, we were 349 
able to decode the stimulus at ~60% correct (Fig. 4b, left). This population therefore could have 350 
increased task performance by ~10% above chance if this stimulus information were read out 351 
optimally. However, this population only increased task performance by ~3.5% (Fig. 4c). Similarly, 352 
for the ~350 neurons recorded during the evidence accumulation task, we were able to decode the 353 
stimulus at ~80% correct (Fig. 4d, left), and thus these neurons could have increased task performance 354 
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by ~30% above chance if all their stimulus information was read out. However, we estimated that 355 
these neurons only increased task performance by ~25% (Fig. 4e). Therefore, in both datasets, the 356 
recorded neurons apparently increased task performance by a smaller amount than would have been 357 
possible if all their stimulus information was converted into choice. This result indicates that stimulus 358 
information in PPC is read out for behavior, but not optimally or entirely.  359 
 360 
We further considered whether the experimentally-fit choice readout, which shows characteristics 361 
compatible with our enhanced-by-consistency readout model, is particularly well suited for reading 362 
out the information contained in the recorded PPC activity, or if an alternative consistency-363 
independent readout would yield more correct choices. Our comparison was similar in spirit to that 364 
of Figure 2f-k, except using experimental data. We first generated a simulated set of choices by 365 
feeding real neural activity to the experimentally-fit regression that incorporated across-time and 366 
across-neuron consistency. We also generated a second set of simulated choices using an alternative 367 
choice regression that included only the decoded stimulus predictor, regardless of its consistency 368 
(Fig. 4j, k, m). For fairness of comparison, the coefficients for this second choice regression were 369 
selected to yield the same readout efficacy as for the experimentally-fit regression (Methods). The 370 
estimated contribution of the recorded neurons to task performance was higher with the 371 
experimentally-fit choice regression that used consistency than with the consistency-independent 372 
choice regression with matched readout efficacy (Fig. 4l, n). These experimental findings, in 373 
agreement with model predictions (Extended Data Fig. 3 and Supplementary Information), suggest 374 
that the enhanced-by-consistency readout is well suited for forming behavioral choices in the 375 
presence of information-limiting noise correlations, such as those found in PPC.   376 
 377 
We replicated all analyses of across-neuron correlations in the sound localization dataset, that had 378 
smaller numbers of neurons per session than the evidence accumulation dataset. We found that 379 
across-neuron correlations enhanced the readout of stimulus information and task performance, even 380 
though these correlations limited information (Supplementary Information, and Extended Data Fig. 381 
6). We could not test the effect of the across-time correlations in the evidence accumulation dataset 382 
because of challenges in dealing with time-varying stimulus evidence in that task. 383 
 384 
Finally, in the sound localization experiments, we also had experimental data from auditory cortex. 385 
Interestingly, in auditory cortex, relative to PPC, we observed weaker noise correlations, a smaller 386 
information-limiting effect of correlations, and a lower impact of consistency on the reading out of 387 
information (Supplementary Information and Extended Data Fig. 6, 7). Therefore, sensory and 388 
association areas may differ in their levels of correlations, as we reported previously17, such that an 389 
enhanced-by-consistency readout may be most beneficial for reading out PPC activity and less 390 
beneficial for reading out auditory cortex activity. 391 
 392 
Discussion 393 
Our results show that noise correlations limit information at the encoding stage, but surprisingly they 394 
also enhance consistency in neural codes, which improves the readout stage. The trade-off of these 395 
two effects defines the overall impact of correlations on task performance. We found that, strikingly, 396 
noise correlations can enhance task performance despite limiting the information capacity of a neural 397 
population.  398 
 399 
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Much work has emphasized that the information limiting effect of correlations in sensory areas may 400 
be a major bottleneck for behavioral performance1,6,7, even if the information-limiting effects of 401 
correlations that inevitably arise from common inputs may be partly reduced by anti-correlated 402 
fluctuations of excitatory and inhibitory synaptic conductances32,33. A largely separate set of 403 
theoretical and biophysical work has alternatively proposed that correlations improve the propagation 404 
of neural activity by mechanisms at the single neuron and network levels10–12. However, empirical 405 
support for a role of correlations in facilitating the readout of population information to aid behavior 406 
has been limited thus far34,35. First, biophysical work on signal propagation has not been connected 407 
to information coding, as it has not specified whether the transmitted activity is informative and has 408 
not distinguished between propagation of correct or incorrect information13, and it has been seldom 409 
connected to behavior. Second, although some studies have suggested a beneficial role of correlations 410 
by reporting higher correlation levels during correct behaviors34,36, these effects have not been 411 
reported when correlations limit information encoding. Further, in the analysis of our model we 412 
occasionally found conditions in which information-limiting noise correlations were stronger in 413 
correct trials, without them having a positive effect on behavioral performance, suggesting that 414 
reports of higher correlations in correct trials is indicative that consistency affects readout, but it is 415 
not sufficient to imply a behavioral performance advantage of correlations (see Extended Data Figure 416 
2 and Supplemental Information S8). Thus, from previous work it may be challenging to conclude 417 
whether the advantages of correlations for signal propagation can overturn their information-limiting 418 
effect.  419 
 420 
Here we developed a formalism that bridges between the two separate research streams of information 421 
encoding and signal propagation, to address how the negative encoding effects and the positive 422 
readout effects of correlations intersect. Remarkably, in our data the advantages of correlations for 423 
signal propagation were large enough to compensate and even overcome the negative encoding 424 
effects. We unraveled a readout computation that could not be inferred from previous biophysical 425 
activity propagation studies: that when correlations are information limiting the interaction between 426 
the readout and encoding of stimulus information is such that it amplifies correctly decoded sensory 427 
information more than incorrectly decoded information.   428 
 429 
Our approach provides a novel and generally applicable framework to parametrically dissect the 430 
contribution of correlated neural activity to perceptual behaviors. We anticipate that this approach 431 
can be applied to different tasks and brain areas. Our initial observations comparing primary sensory 432 
and association cortices suggests that the best trade-off between the effect of correlations on encoding 433 
and readout may vary depending on the area. In sensory cortices, low correlations and a readout 434 
insensitive to consistency may be advantageous to encode rapidly changing and high dimensional 435 
sensory features, in order to represent many features of the sensory environment regardless of if they 436 
are used for the immediate behavior at hand. This view is compatible with reciprocal relationships 437 
between noise correlation levels and behavioral performance in sensory cortices1. In contrast, 438 
association cortices that are closer to behavioral output may only need to encode a moderate amount 439 
of behaviorally relevant sensory information but this information should have a strong impact on 440 
behavior. In these areas, the price to be paid for reducing encoded information is smaller and the price 441 
to be paid for losing signal in the propagation to behavior is higher. Thus, in association areas, the 442 
best tradeoff may be to have some redundancy in the neural representation coupled with a readout 443 
mechanism that uses this redundancy to enhance signal propagation to inform choice, as we found 444 
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here. Further, we anticipate that our general formalism will allow us to design direct causal tests of 445 
the actual readout used in the brain during perceptual discrimination tasks. We propose that our 446 
formalism together with holographic perturbations37 will allow us to test the behavioral role of 447 
correlations and consistency across neurons and across time. 448 
 449 
Noise correlations can reflect interactions between cells, shared covariations due to common inputs, 450 
general fluctuations in behavioral state or network excitability, or even variations with stimuli within 451 
the same category2. This shared variability, independently of its origin, acts as noise (that cannot be 452 
reduced by integrating information over more cells or longer times) from the decoding point of view, 453 
but helps signal propagation by generating more consistent neural representations. Thus, our 454 
conclusions hold independently of the specific biophysical origins of the observed noise correlations. 455 
 456 
Most studies of neural coding implicitly or explicitly assume that the readout of sensory information 457 
is optimal and interpret neural codes with higher sensory information as being more relevant for 458 
perception6,28,29. Part of the reason for this assumption is that the presence and shape of non-optimality 459 
are unknown. If the readout is not optimal, then neural codes with higher information are not 460 
necessarily the most relevant ones for perception. Our study suggests (see Supplemental Information) 461 
that a sub-optimality in the readout of our PPC data exists, because stimulus information in neural 462 
activity seems not to be used in its entirety to produce accurate behavioral choices, as also predicted 463 
by other studies38,39. Our work provides a measure of both the nature of readout non-optimality and 464 
its implication for the behavioral relevance of a neural code. Previous work on the optimality of 465 
readouts has examined whether a decoder of correlated population activity could be trained sub-466 
optimally to decode separately single-cell data and then join together their evidence40–42. Several of 467 
these studies have shown that even relatively simple decoders trained on single cells can decode 468 
stimulus information from population activity, so that correlations among cells do not greatly 469 
complicate the extraction of information. However, unlike ours, these previous studies did not 470 
examine the effect of correlations on determining behavioral choices. Taken together, emerging 471 
evidence suggests that correlations do not necessarily greatly complicate the decoding of sensory 472 
information and may offer advantages for turning sensory information into appropriate behavioral 473 
choices.      474 
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 583 

 584 
Figure 1: Across-time and across-neuron correlations in PPC responses limit sensory coding during 585 
perceptual discrimination tasks. a, Schematic of the sound localization task. Left/right sound category 586 
(speaker symbols) indicate the rewarded side of the maze (checkmark). b, Pearson’s correlations in time-587 
lagged activity of all simultaneously-recorded pairs of PPC cells at fixed stimulus, computed separately for 588 
correct and error trials. Results are averaged across all time point pairs separated by a given lag. Data are mean 589 
± s.e.m. across all imaged cell pairs. ***P<0.001; *P<0.05, two-sided permutation test. c, Normalized mean 590 
estimated spike rate traces for all the PPC cells imaged during the sound localization task, divided by left-591 
preferring (n=212) and right preferring (n=172) cells, aligned to the turn frame. Traces were normalized to the 592 
peak of each cell’s mean estimated spike rate on preferred trials and sorted by peak time. d, Performance of a 593 
decoder of stimulus identity applied to joint population activity at two different time points, separately for real 594 
recorded (black) or trial-shuffled (gray) population vectors. Data are mean ± s.e.m. across sessions and time 595 
point pairs. ***P<0.001; **P<0.01; *P<0.05, two-sided permutation test. e, Correlation between difference in 596 
stimulus decoder performance from real and shuffled population vectors and misalignment angle 𝛾 between 597 
signal and noise. The inset shows an example of 𝛾 computation in the reduced 2D space of projected population 598 
activity vectors (see Methods). Ellipses indicate 90% confidence interval for best-fit bivariate Gaussian. 599 
***P<0.001, circular-linear correlation43. f, Schematic of the evidence accumulation task. The rewarded side 600 
of the maze (checkmark) is the one identified by the most numerous visual cues (wall segments with black 601 
dots patterns). g, Pearson’s correlations in time-averaged activity of all simultaneously-recorded pairs of PPC 602 
cells, computed separately for correct and error trials. Data are mean ± s.e.m. across all imaged cell pairs. 603 
***P<0.001, two-sided permutation test. h, As in b, for all cells (left-preferring, n=1840; right-preferring: 604 
n=2000) imaged during the evidence accumulation task. Note that activity traces are averaged over spatial 605 
bins. Red rectangles indicate the trial epochs selected for analyses (Early delay, Late delay). i, Performance of 606 
a decoder of stimulus identity applied to joint population activity of two randomly-defined non-overlapping 607 
neuronal pools, separately for real recorded (black) or within-pool trial-shuffled (gray) population vectors. 608 
Data are mean ± s.e.m. across sessions and 100 pairs of neuronal pools. ***P<0.001, two-sided permutation 609 
test. j, As in e. For panels d-e, i-j, data are first averaged across trial splits. 610 
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 612 
 613 
Figure 2: A simple encoding-readout model of stimulus information shows that different readouts 614 
determine different impacts of correlations on task performance. a, Schematic showing the two 615 
fundamental stages in the information processing chain for sensory perception, which are the constituting parts 616 
of the simple model that we propose: sensory coding and information readout. Sensory coding refers to the 617 
mapping from external stimuli (Stimulus 1, green; Stimulus 2, blue) to neural activity; information readout 618 
refers to the mapping from neural activity to a behavioral choice (Choice 1, turn right; Choice 2, turn left). 619 
Note that task-relevant neural activity is here recapitulated by two selected features, being the stimulus 620 
predicted when observing a given population activity (�̂�) and its consistency (𝑐𝑜𝑛) (see Methods). b, Schematic 621 
of the readout model that was used to generate synthetic choices from the simulated neural activity patterns 622 
(see Methods). Task predictors extracted from simulated neural activity are weighted by corresponding model 623 
coefficients, summed and transformed non-linearly through a sigmoid function that outputs the probability of 624 
making a given binary choice. The actual choice is generated by randomly drawing from a binomial 625 
distribution with probability of single experiment success matching the output of the sigmoid function. c, 626 
Example of simulated response distributions along two neural features (r1, r2) to two stimuli (s=1, s=-1), 627 
modelled as bivariate Gaussians with different degree of correlation (correlated: ρ=.8, uncorrelated: ρ=0). For 628 
the correlated example, noise correlations axis and signal correlations axis are closely but not perfectly aligned 629 
(γ=0.08π). Ellipses indicate 95% confidence intervals. The dashed black line indicates the optimal stimulus 630 
decoding boundary. Purple squares indicate regions of the 2D response space in which r1 and r2 encode 631 
consistent stimulus information, i.e. they both code for the same stimulus (see Methods). Marginal response 632 
distributions along r1 and r2 and the corresponding decoding boundaries are shown on the sides. d, Fraction 633 
correct of a linear decoder of stimulus identity applied to simulated bivariate responses as in c (nr. trials = 634 
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1000, nr. simulations = 1000) is higher for uncorrelated responses (correlations limit the encoded stimulus 635 
information). e, The fraction of trials in which r1 and r2 encode consistent stimulus information is higher for 636 
correlated responses (correlations increase consistency). f, Consistency-independent readout represented as a 637 
grayscale map in the r1-r2 response space is superimposed to the distributions in a. The shade of gray represents 638 
the readout efficacy of transformation from encoded stimulus into choice (see Methods), which is the same for 639 
consistent and inconsistent trials (𝑝(𝑐 = �̂�|�̂�, 𝑐𝑜𝑛 = 1) 	= 	𝑝(𝑐 = �̂�|�̂�, 𝑐𝑜𝑛 = 0) 	= 	 .89). The corresponding 640 
readout model coefficients are shown on the right. g, Pearson correlation coefficient of neural responses at 641 
fixed stimulus is slightly higher in trials with incorrect choice than in correct trials, when readout is 642 
consistency-independent and correlations are as in c. h, Task performance resulting from the consistency-643 
independent readout of simulated neural activity is higher for uncorrelated responses, thus reflecting the impact 644 
of correlations on stimulus coding. i, Same as f, for enhanced-by-consistency readout (consistency modulation 645 
index 𝜂 = 0.9, see Methods). The readout efficacy differs between consistent and inconsistent trials (𝑝(𝑐 =646 
�̂�|�̂�, 𝑐𝑜𝑛 = 1) = .97; 𝑝(𝑐 = �̂�|�̂�, 𝑐𝑜𝑛 = 0) = .53). j, Pearson correlation coefficient is higher in trials with 647 
correct choice than in error trials, when readout is enhanced-by-consistency and correlations are as in c. k, 648 
Task performance resulting from the enhanced-by-consistency readout of simulated neural activity is higher 649 
for correlated than for uncorrelated responses, thus reversing the impact of correlations on stimulus coding. 650 
Note that in the examples of this figure, model parameters did not match real data and were purely illustrative.  651 
 652 
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 654 
 655 
Figure 3: Across-time and across-neuron consistency of PPC activity influence mouse’s choices. a, Left: 656 
Mouse’s performance in the sound localization task is higher when neural population vectors at two different 657 
times encode the same stimulus (consistent population vectors) than when they encode different stimuli 658 
(inconsistent population vectors). Right: Mouse’s performance in the sound localization task is higher when 659 
population vectors encode the presented stimulus correctly. Furthermore, consistent population vectors are 660 
associated to average higher task performance when jointly encoding the presented stimulus correctly (left 661 
bars), and average lower task performance when jointly encoding the presented stimulus incorrectly (right 662 
bars), reflecting a consistency-dependent modulation of the animal’s readout which enhances the likelihood of 663 
encoded stimuli being converted into choices. ***P<0.001, two-sided permutation test. b, The readout 664 
underlying the behavioral choices of the animal is best explained by a logistic regression of choice whose 665 
predictors include, in addition to the identity of the stimulus decoded from joint PPC population vectors, its 666 
consistency across-time (Full: all predictors values extracted from recorded data; No Cons: consistency values 667 
shuffled across trials; No Neural: decoded stimulus and consistency values shuffled across trials). ***P<0.001, 668 
one-sided permutation test. c, Left: Best-fit coefficients of the L1-regularized full logistic regression of the 669 
mouse’s choices in the sound localization task. Right: Readout efficacy estimated from the best-fit coefficients 670 
of the full logistic regression, above and beyond the stimulus-driven baseline, for consistent and inconsistent 671 
population vectors, represented schematically as a readout map in the 2D space of population activity at two 672 
different times (see Methods). Data are mean ± s.e.m. across sessions and time point pairs with a lag difference 673 
of max 0.96 s in a-c. d, Left: Mouse’s performance in the evidence accumulation task is higher when neural 674 
population vectors of two randomly-selected non-overlapping neural subpopulations amongst the recorded 675 
neurons encode the same stimulus (consistent population vectors) or different stimuli (inconsistent population 676 
vectors). Right: As in a, for the evidence accumulation task. e, The readout underlying the behavioral choices 677 
of the animal is best explained by a logistic regression which predictors include, in addition to the identity of 678 
the stimulus extracted from joint PPC population vectors of non-overlapping neuronal pools, its consistency 679 
across pools. ***P<0.001, one-sided permutation test. f, As in c, for the evidence accumulation task. Data are 680 
mean ± s.e.m. across sessions, delay epochs, and 100 randomly-selected pairs of neuronal pools in d-f. For all 681 
panels, data are first averaged across trial splits. 682 
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 685 
 686 
Figure 4: Simulated mouse’s choices show that the experimentally-fit enhanced-by-consistency readout 687 
improves task performance in the presence of information-limiting correlations in PPC. a, To study the 688 
impact on task performance of across-time and across-neuron noise correlations, the best-fit logistic choice 689 
regression was fed with patterns of neural activity containing the original correlations, and with artificial neural 690 
activity patterns where correlations were removed by shuffling. b, Left: Performance of a decoder of stimulus 691 
identity applied to joint pairs of time-lagged real recorded population activity vectors (black) and artificial 692 
shuffled population activity vectors (grey). Right: Fraction of consistent stimuli decoded separately from  real 693 
and artificial pairs of time-lagged population activity vectors. c, Task performance attributable to the recorded 694 
neural activity, computed from choices simulated through the best-fit logistic choice regression (see Methods). 695 
Task performance was computed in the presence (black) or absence (grey) of across-time correlations between 696 
time-lagged population activity vectors. d-e, As in b-c, for across-neuron correlations. f-g, As in b-c, after 697 
subsampling trials to equalize stimulus decoder performance between real and shuffled population activity 698 
vectors. h-i, As in f-g, for across-neuron correlations. j, To study the impact on task performance of the 699 
consistency-dependent predictors coefficients of the best-fit choice logistic regression, the real patterns of 700 
neural activity were fed to a consistency-independent logistic regression of choice which was matched for 701 
readout efficacy with the best-fit choice regression (see Methods). k, Coefficients of the best-fit enhanced-by-702 
consistency choice regression (black) and the consistency-independent choice regression (green). The latter 703 
coefficients are obtained after appropriate manipulations of the best-fit coefficients (see Methods). l, Task 704 
performance attributable to the recorded neural activity, computed from choices simulated through the best-fit 705 
logistic choice regression (black) or through the consistency-independent choice regression (green), in the 706 
presence of across-time correlations. m-n, As in k-l, for across-neuron correlations. Data are mean ± s.e.m. 707 
across sessions and time point pairs with a lag difference of max 0.96 s in b-c, f-g and k-l. Data are mean ± 708 
s.e.m. across sessions, delay epochs, and 100 randomly-selected pairs of neuronal pools in d-e, h-i and m-n. 709 
***P<0.001; *P<0.05; n.s. (no statistical significance), two-sided permutation test. For all panels, data are first 710 
averaged across trial splits. 711 
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 715 
 716 
Extended Data Figure 1: Task performance as a sum of encoding-by-readout terms depending on 717 
correctness and consistency of encoded stimulus information. a. Probabilities for a set of n=200 trials 718 
drawn separately from the correlated (dark colors) and uncorrelated (light colors) distributions sketched in Fig. 719 
2c to belong to one of the four trial classes defined by correctness of decoded stimulus and consistency. 720 
Correlations overall decrease the fraction of correctly decoded trials (red + orange bars). At the same time, 721 
correlations increase the fraction of consistent trials which encode the correct stimulus identity (red), but also 722 
the fraction of consistent trials which encode the incorrect stimulus identity (blue). b, Average task 723 
performance for each of the four classes of trials in a, determined by the enhanced-by-consistency readout 724 
model coefficients sketched in Fig. 2i. The enhanced-by-consistency readout is characterized by close-to-725 
random task performance for inconsistent trials, close-to-totally-correct choices for correctly decoded 726 
consistent trials and close-to-totally-wrong choices for incorrectly decoded consistent trials. c, Overall task 727 
performance depends on both on the stimulus decoding correctness and consistency of trials characterized by 728 
a given correlation structure and on the class-conditional task performance imposed by the readout model. 729 
Note that under hypothesis of enhanced-by-consistency readout it is possible for correlations that decrease the 730 
overall fraction of correctly decoded trials to increase the overall fraction of correct choice trials (with respect 731 
to the uncorrelated equivalent). 732 
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 735 
 736 
Extended Data Figure 2: Exploration of the parameter space of the two-feature encoding readout model, 737 
to investigate the conditions in which an enhanced-by-consistency readout produces an advantage for 738 
task performance for data characterized by information-limiting correlations. a, Example Gaussian 739 
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response distributions along two neural features (r1,r2) to two stimuli (s=1: blue, s=-1: green) at different 740 
degrees of alignment between signal and noise (γ) for correlated features (top, 𝜌 = 0.8), and the corresponding 741 
shuffled distributions (bottom, 𝜌 = 0). Ellipses indicate 95% confidence intervals. The dashed black line 742 
indicates the optimal decoding boundary. Note how, when increasing γ, the correlated response distributions 743 
to the two stimuli become less overlapped. b, Top: Performance of a linear decoder of stimulus identity applied 744 
to correlated (black) and uncorrelated (grey) responses for a range of γ values. The shaded grey region indicates 745 
values of γ for which correlations are information limiting. c, Top: The fraction of trials being correctly 746 
decoded and carrying consistent stimulus information increases at increasing γ for correlated but not for 747 
uncorrelated responses. d, Top: The fraction of trials being incorrectly decoded and carrying consistent 748 
stimulus information decreases at increasing γ for correlated but not for uncorrelated responses.  e, Top: Task 749 
performance predicted by applying the enhanced-by-consistency readout model in Fig. 2i to correlated and 750 
uncorrelated responses for a range of γ values. The dashed red rectangle indicates values of γ for which 751 
information limiting correlations are advantageous for task performance. b-e, Bottom: Difference between 752 
correlated and uncorrelated responses, for the quantities shown in the top panels. f, Difference between 753 
stimulus decoding performance from correlated and uncorrelated responses for different combinations of 754 
model parameters values (γ: alignment between signal and noise. 𝜂: strength of consistency modulation in the 755 
readout. 𝜌: noise correlations strength). g, Difference between task performance predicted by applying the 756 
enhanced-by-consistency readout model in Fig. 2i to correlated and uncorrelated responses for different 757 
combinations of model parameters values. Note that there exist a range of model parameters for which 758 
correlations at the same time decrease decoding performance and improve task performance. h, Difference in 759 
Pearson correlation between correct choice and incorrect choice trials from correlated responses for different 760 
combinations of model parameters values. Where not otherwise specified, 𝜌 = 0.8 and 𝜂 = 0.7 in b-h. 761 
 762 
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 764 
 765 
Extended Data Figure 3: Exploration of the parameter space of the two-feature encoding readout model, 766 
to investigate the conditions in which an enhanced-by-consistency readout produces an advantage for 767 
task performance over a consistency-independent readout with matched readout efficacy. a, Task 768 
performance predicted by applying the enhanced-by-consistency readout in Fig. 2i (black) or a consistency-769 
independent readout with matched readout efficacy (green, see Methods) to simulated correlated responses (as 770 
in Extended Data Fig. 2a, top), for different degrees of alignment between signal and noise (γ). The shaded 771 
grey region indicates values of γ for which correlations are information limiting. b, Difference between task 772 
performance predicted by applying the enhanced-by-consistency readout and the one predicted by applying 773 
the consistency-independent readout to correlated responses for different combinations of model parameters 774 
values (γ: alignment between signal and noise. 𝜂: strength of consistency modulation in the readout. 𝜌: noise 775 
correlations strength). Where not otherwise specified, 𝜌 = 0.8 and 𝜂 = 0.7 in a-b. 776 
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 779 
 780 
Extended Data Figure 4: The effect of neural consistency on the mouse’s single trial choices cannot be 781 
explained by higher stimulus information associated to consistent neural representations. a, Schematic 782 
example showing response distributions along two neural features (r1, r2) to two stimuli (𝑠 = −1: green, 𝑠 =783 
1: blue), which are best separated by the black dashed line, which represents the decoding boundary of a linear 784 
decoder trained on the observed responses. The background color encodes the linear decoder posterior 785 
probability that stimulus s=1 has occurred given the observation of the neural response r = (r1, r2). Intuitively, 786 
the farther neural response 𝒓 is from the decoding boundary, the farther 𝑝(𝑠 = 1|𝒓) is from 0.5, the more 787 
“informative” 𝒓 is about the stimulus. Note that, in the depicted example, consistent trials have on average 788 
higher posterior probability than inconsistent trials, which might represent a confounder for the effect of 789 
consistency on mouse’s choices. b, The readout underlying the choices of the animal is best explained by a 790 
choice regression that includes, in addition to the posterior probability of the stimulus extracted from joint PPC 791 
population vectors, its consistency across-time (Full: all predictors values, including stimulus posterior 792 
probability and posterior probability consistency, extracted from recorded data; No Cons: posterior probability 793 
consistency values shuffled across trials). ***P<0.001, one-sided permutation test. c-e, In order to control for 794 
possible confounding effects of the posterior probability in determining the behavioral relevance of across-795 
time consistency, the computation in Fig 3b-c was repeated considering only subsets of trials having low 796 
(|𝑝(𝑠 = 1|𝒓) − 0.5| < 0.16), medium (|𝑝(𝑠 = 1|𝒓) − 0.5| > 0.16	⋀	|𝑝(𝑠 = 1|𝒓) − 0.5| < 0.32	) or high 797 
(|𝑝(𝑠 = 1|𝒓) − 0.5| > 0.32) posterior. Consistent population vectors result in average higher task 798 
performance when jointly encoding the presented stimulus correctly (left bars), and average lower task 799 
performance when jointly encoding the presented stimulus incorrectly (right bars), even when subsets of trials 800 
having approximately the same posterior are used. ***P<0.001, two-sided permutation test. f-i, as b-e, for 801 
across-neuron correlations. Data are plotted as mean ± s.e.m. across sessions and time point pairs with a lag 802 
difference of max 0.96 s in b-e. Data are plotted as mean ± s.e.m. across sessions, delay epochs, and 100 803 
randomly-selected pairs of neuronal pools in f-i. For panels b-i, data are first averaged across trial splits. 804 
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 807 
 808 
Extended Data Figure 5: The role of neural consistency in the readout of PPC activity is not due to the 809 
consistency of measured behavioral parameters. a, The across-time evolution of the decoder posterior 810 
probability of left stimulus presentation given the recorded PPC population activity (sound localization task 811 
dataset) is shown along with the corresponding across-time evolution of a selection of three concurrently-812 
measured behavioral parameters (lateral position, lateral velocity, view angle), for an example left (blue) and 813 
right (green) cue trial. Example time point pairs with consistent (t1-t2, dark purple) or inconsistent (t3-t4, light 814 
purple) neural information are highlighted. Neural consistency is not necessarily associated to behavioral 815 
consistency (e.g. when considering lateral running speed, t1-t2 are behaviorally inconsistent while t3-t4 are 816 
behaviorally consistent). b, Schematic representation of the virtual T-maze with corresponding x-y coordinates 817 
labelling and mouse’s view angle (for a mouse oriented along the y axis). c-e, The readout underlying the 818 
mouse’s choices is best explained by a choice regression that includes, in addition to the consistency of 819 
measured behavioral parameters (c: lateral position, d: lateral velocity, e: view angle), the consistency of the 820 
stimulus identity extracted from neural activity (Full: all predictors values, including neural and behavioral 821 
consistency, extracted from recorded data; No Cons: neural consistency values shuffled across trials). For 822 
panels c-e: data are plotted as mean ± s.e.m. across sessions and time point pairs with a lag difference of max 823 
0.96 s; data are first averaged across trial splits; ***P<0.001, one-sided permutation test. 824 
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 827 
 828 
Extended Data Figure 6: Across-time consistency of stimulus information in AC does not benefit task 829 
performance as it does in PPC. a-f, Summary of the main results of the analysis of across-time correlations 830 
in PPC activity (sound localization task dataset), reported in Fig. 3, 4, useful for comparison with the 831 
corresponding results of analysis of across-time correlations in AC activity (sound localization task dataset), 832 
reported in g-h. g, Performance of a decoder of stimulus identity applied to joint population activity at two 833 
different time points is higher in AC than in PPC. Across-time correlations limit the encoding of stimulus 834 
information in AC just like in PPC. h, Across-time correlations in AC increase the consistency of encoded 835 
stimulus information less than across-time correlations in PPC. ***P<0.001, two-sided permutation test. i, 836 
Across-time consistency of stimulus information encoded in AC does not improve substantially the 837 
performance of the logistic regression in predicting the animal’s choices. ***P<0.001; *P<0.05, one-sided 838 
permutation test. j, Best-fit beta coefficients of the full choice regression, showing that AC neural predictors 839 
are assigned very low weights in the readout. k, Task performance that can be attributed to the recorded 840 
neurons is much lower in AC than in PPC (~1% in AC, ~3.5% in PPC). Correlations in AC activity happen to 841 
enhance task performance, but the effect is very small. l, Task performance which is attributable to the recorded 842 
AC neural activity would not be substantially different if the behavioral readout was consistency-independent. 843 
*P<0.05; n.s. (no statistical significance), two-sided permutation test. Data are mean ± s.e.m. across sessions 844 
and time point pairs with a lag difference of max 0.96 s. Data are first averaged across trial splits. 845 
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 848 
 849 
Extended Data Figure 7: In the sound localization dataset, across-neuron correlations in PPC are 850 
information limiting and provide an advantage for task performance. a, Across-neuron correlations in 851 
PPC limit the encoding of stimulus information during the sound localization task. b, Across-neuron 852 
correlations increase the consistency of encoded stimulus identity across neuronal subpopulations; however, 853 
the effect is less strong than that of across-time correlations (compare with Extended Data Fig. 6b). 854 
***P<0.001, two-sided permutation test. c, The readout underlying the behavioral choices of the animal in the 855 
sound localization task is best explained by a choice regression that includes, in addition to the identity of the 856 
stimulus decoded from joint PPC population vectors, its consistency across neurons. ***P<0.001, one-sided 857 
permutation test. d, Best-fit beta coefficients of the full regression (which best explains the behavioral choices 858 
of the animal), showing that the across-neuron consistency plays a relevant role in the readout. e, Task 859 
performance in the sound localization task that can be attributed to the recorded neurons benefits from the 860 
presence of correlations across neurons in PPC. f, Task performance in the sound localization task that can be 861 
attributed to the recorded neurons would be lower if the readout of PPC activity was independent from 862 
consistency across-neurons. ***P<0.001, two-sided permutation test. g-l, Similarly to the case of across-time 863 
correlations (see Extended Data Fig. 6g-l), across-neuron correlations in AC are weak and so is their effect on 864 
stimulus information encoding (g, h) and predicted task performance (k). Across-neuron consistency seem to 865 
play a more important role in readout than across-time consistency in AC (i, j, l).  Data are mean ± s.e.m. 866 
across sessions, time windows with a max duration of 0.96 s and 100 randomly-selected pairs of neuronal 867 
pools. Data are first averaged across trial splits. 868 
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 870 
Methods 871 
No statistical methods were used to predetermine sample size. The experiments were not randomized. 872 
The investigators were not blinded to allocation during experiments and outcome assessment. 873 
 874 
Note on present study  875 
This study represents an independent analysis of experiments described previously17,19. Although the 876 
raw data are the same, the questions investigated and analytical tools are different, focusing here on 877 
the analysis of the role of across-time and across-neuron correlations on information coding and 878 
perceptual discrimination performance. 879 
 880 
Subjects, behavioral task and two-photon imaging 881 
A brief summary of the experimental procedures is provided here. A more detailed description can 882 
be found in the original works17,19. All experimental procedures were approved by the Harvard 883 
Medical School Institutional Animal Care and Use Committee. 884 
 885 
Both experiments made use of a modified version of a visual virtual reality system that has been 886 
described previously44. Head-restrained mice ran on a spherical treadmill, while images of a virtual 887 
maze were projected on a half-cylindrical screen. Forward/backward translation in the maze was 888 
controlled by treadmill changes in pitch, and rotation in the virtual environment was controlled by 889 
roll of the treadmill. The virtual maze was constructed using the Virtual Reality Mouse Engine 890 
(VirMEn) in MATLAB45. 891 
 892 
Sound localization task dataset  893 
Imaging data were acquired from five male C57BL/6J mice (The Jackson Laboratory), aged 6-8 894 
weeks at the initiation of behavioral task training. Imaging began 4-6 weeks after viral injection and 895 
was continued for 4-12 weeks. 896 
 897 
In the final version of the task that was used during imaging, mice ran down the stem of the virtual 898 
T-maze, while sound stimuli were delivered from 8 possible locations (-90°, -60°, -30°, -15°, +15°, 899 
+30°, +60°, +90°) using four electrostatic speakers positioned in a semicircular array, centered on the 900 
mouse’s head. The sound stimulus was activated when the mouse passed an invisible spatial threshold 901 
at ~10 cm into the T-stem and originated from one of eight possible locations. The stimulus was 902 
repeated after a 100 ms gap; repeats continued until the mouse reached the T-stem. Task difficulty 903 
was modulated by the direction of the incoming stimulus, with the -90°/+90° trials being the easiest 904 
ones and the -15°/+15° trials being the most difficult ones. In order to receive a reward (4 µl water), 905 
mice had to judge the location of sound stimuli to be either on the left or right, and to report their 906 
decisions by turning left or right at the T-intersection. A “reward tone” was played as the water reward 907 
was delivered on correct trials (when the mouse had reached ~10 cm into the correct arm of the T-908 
maze), and a “no reward tone” was played when the mouse reached ~10 cm into the incorrect arm on 909 
error trials. The inter-trial interval was 3 s on correct trials and 5 s on error trials. Mice performed 910 
~200 trials (range, 125–251) in a typical session over approximately 45–60 minutes.  911 
 912 
Imaging was performed on alternating days from AC and PPC on the left hemisphere (PPC centered 913 
at 2 mm posterior and 1.75 mm lateral to bregma; AC centered at 3.0 mm posterior and 4.3 mm lateral 914 
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to bregma). In a given session, ~50 neurons (range, 37-69) were simultaneously imaged using a two-915 
photon microscope (Sutter MOM) operating at 15.6 Hz frame rate and at 256 × 64 pixel resolution 916 
(~ 250 µm × 100 µm). Imaging data were acquired at depths between 150 and 300 µm, corresponding 917 
to layers 2/3. Seven AC fields of view and seven PPC fields of view from five mice were used for 918 
analysis. 919 
 920 
Evidence accumulation task dataset 921 
Imaging data were acquired from five male C57BL/6J mice (The Jackson Laboratory), aged 8–10 922 
weeks at the at the initiation of behavioral task training. Imaging began at least 4 weeks after viral 923 
injection and was continued for up to 12 weeks. 924 
 925 
In the final version of the task that was used during imaging, mice run down the stem of a virtual T-926 
maze with predominantly gray walls, encountering six visual cues (white wall segments with black 927 
dots) at fixed locations. Each cue could appear on either the left or right wall, and only one cue was 928 
visible at a time. To receive a reward (4 µl 10% sweetened condensed milk), mice had to determine 929 
whether more cues were presented on the left or the right and, after a short stretch of maze without 930 
additional cues (90 cm), turn at the T-intersection toward the direction that had more cues (left for 6-931 
0, 5-1, 4-2 trials; right for 2-4, 1-5, 0-6 trials). Task difficulty was modulated by varying the difference 932 
between the number of left and right cues (net evidence). The sequence of cues was determined 933 
randomly for each trial of a given net evidence. On trials having zero net evidence (3-3 trials), the 934 
rewarded location was selected randomly. Following the completion of the trial, the screen changed 935 
to black for the duration of the inter-trial interval (2 s for correct choice and 4 s for incorrect choice). 936 
Mice performed ~300 trials (range, 231–414) in a typical session over approximately 45–60 minutes. 937 
 938 
Imaging data were acquired from the left PPC (PPC centered at 2 mm posterior and 1.75 mm lateral 939 
to bregma). In a given session, ~350 neurons (range, 188-648) were simultaneously imaged using a 940 
custom-built two-photon microscope operating at ~30 Hz frame rate and at 512 × 512 pixel resolution 941 
(~700 µm × 700 µm). Imaging data were acquired at depths between 100 and 200 µm below the dura. 942 
Eleven fields of view from five mice were used for analysis. 943 
 944 
Imaging data processing  945 
Imaging frames were concatenated for motion correction, cell body identification, extraction of 946 
fluorescence traces and estimation of relative spike rates. In brief, after motion correction46, 947 
correlations in fluorescence time series between pixels within ~60 µm were calculated. Fluorescence 948 
sources (putative cells) were identified by applying a continuous-valued eigenvector-based 949 
approximation of the normalized cuts objective47 to the correlation matrix, followed by k-means 950 
clustering segmentation, yielding binary masks for all identifiable fluorescence sources. To estimate 951 
potential neuropil contamination, the cell body fluorescence signal was regressed against the signal 952 
from surrounding pixels during the imaging frames when the cell of interest was not active, and then 953 
neuropil contamination was removed during the ΔF/F calculation by subtracting a scaled version of 954 
the neuropil signal from the cell body signal. All fluorescence traces were deconvolved to estimate 955 
the relative spike rate in each imaging frame, which was expressed in arbitrary units given that the 956 
estimate is relative to baseline activity without perfect knowledge of the fluorescence change 957 
associated with a single spike48. 958 
 959 
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Data inclusion and task epoch selection for encoding and readout analyses  960 
Sound localization task dataset 961 
Population activity data from the sound localization task dataset were used for the analysis of across-962 
time correlations in PPC reported in the main text and for additional analyses of across-time 963 
correlations in AC and across-neuron correlations in PPC and AC reported in Supplementary 964 
Information. 965 
 966 
For the analysis of across-time correlations in PPC, population activity data were temporally aligned 967 
to the imaging time frame of the turn, defined as the frame in which the mouse entered the short arm 968 
of the maze.  Since it is reasonable to assume that the animal computes its choice after the stimulus 969 
presentation but before the turn, the analysis focused on the 39 frames preceding the turn frame (this 970 
number of frames was chosen because it covered the maximum portion of the pre-turn period that 971 
was commonly available across all recording sessions). One of the seven PPC recording sessions used 972 
in our previous published work17 was excluded due to the large unbalance of left/right stimuli that 973 
were presented to the mouse across trials in that session, which would result in too few trials available 974 
for following analyses (see “Analysis of stimulus encoding and consistency”).  975 
 976 
For the analysis of across-time correlations in AC, population activity data were temporally aligned 977 
to the imaging time frame of the first auditory stimulus presentation, and the analysis focused on the 978 
50 frames after that frame (this number of frames was chosen because it covered the maximum 979 
portion of the post-stimulus period that was commonly available across all recording sessions). AC 980 
neural data aligned to the turn did not encode a sufficient amount of stimulus information for 981 
following analyses. One of the seven AC sessions used in our previous published work17 was 982 
excluded due to the large unbalance of left/right stimuli that were presented to the mouse across trials 983 
in that session. 984 
 985 
For the analysis of across-neuron correlations in PPC, population activity data were temporally 986 
aligned to the imaging time frame of the turn and averaged over ten turn-aligned time windows of 987 
increasing length, comprising the {4:8: ... :36:39} frames preceding the turn imaging frame. The same 988 
six sessions used for the analysis of across-time correlations in PPC were used. 989 
 990 
Evidence accumulation task dataset 991 
Population activity data from the evidence accumulation task dataset were used for the analysis of 992 
across-neuron correlations in PPC reported in the main text. PPC population activity data were first 993 
grouped into spatial bins (3.75 cm/bin) covering the whole length of the T-maze (long and short arm) 994 
by averaging population activity in each bin (2 or 3 imaging frames per bin per trial). Population 995 
activity data were then further averaged over epochs of 4 spatial bins each (about 200 ms). We 996 
considered the same 10 epochs that were defined in the original work19. We plotted results 997 
corresponding to the population activity data recorded in the Early Delay and Late Delay epochs. 998 
During the delay epochs, the cue presentation was completed but the animal had not yet committed 999 
to a final turn (more precisely, these epochs correspond to the four spatial bins beginning respectively 1000 
15 and 37.5 cm after the offset of the final cue). Therefore, it is reasonable to assume that these epochs 1001 
are involved in the formation of the animal’s decision. All 11 sessions in the original work19 were 1002 
used. We discarded trials with zero net evidence (<10% trials in 2/11 sessions). 1003 
 1004 
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Selectivity of single cells to stimulus category 1005 
For Fig. 1c, h, we computed the selectivity of single cells to stimulus category. Stimulus category 1006 
was defined as a binary variable (left/right). For the sound localization task, stimulus category 1007 
corresponds to the direction of incoming auditory stimuli. Each stimulus category comprises four 1008 
different sound locations (left: -90°, -60°, -30°, -15°; right: +15°, +30°, +60°, +90°). For the evidence 1009 
accumulation task, stimulus category corresponds to the side of the maze where the majority of the 1010 
visual cues were presented (left: 6-0, 5-1, 4-2 trials; right: 2-4, 1-5, 0-6 trials).  1011 
 1012 
The selectivity index15 (SI) was quantified as∶ 1013 
 1014 

𝑆𝐼 =
BCDE	FG G⁄ IJKLM	MIJNOP	–	BCDE	FG G⁄ ORSM	MIJNOP

BCDE	FG G⁄ IJKLM	MIJNOPT	BCDE	FG G⁄ ORSM	MIJNOP
 . (1) 

 1015 
Cells that had a selectivity index greater than zero were considered right-preferring cells and those 1016 
that had a selectivity index less than zero were considered left-preferring cells. 1017 
 1018 
Pairwise noise correlations  1019 
We quantified across-time and across-neuron pairwise noise correlations separately for trials in which 1020 
mice made correct or error choices. In order to discount possible differences in correlation related to 1021 
trials numerosity, we subsampled trials to equalize the number of correct and error trials in each 1022 
recorded session. The subsampling procedure was repeated 20 times, and results were averaged over 1023 
the 20 subsamples. 1024 
 1025 
Across-time correlations 1026 
We quantified across-time pairwise correlations by computing, for each pair of recorded neurons and 1027 
for each pair of time points in the trial epoch selected for analyses (see “Data inclusion and task epoch 1028 
selection for encoding and readout analyses”), the Pearson correlation between the activity of neuron 1029 
1 at time t1 and the activity of neuron 2 at time t2 across trials sharing the same stimulus category. 1030 
Results were averaged first across all time point pairs sharing the same lag between each other, then 1031 
across stimuli and finally across trials subsamples. 1032 
 1033 
Across-neuron correlations 1034 
We quantified across-neuron pairwise correlations by computing the Pearson correlation for each pair 1035 
of neurons recorded in a single session, across trials sharing the same stimulus category. Results were 1036 
averaged first across stimuli and then across trials subsamples. 1037 
 1038 
Analysis of stimulus encoding and consistency 1039 
For encoding and consistency analyses, we considered information about stimulus category (see 1040 
“Selectivity of single cells to stimulus category”).  1041 
 1042 
Information about stimulus category carried by population activity was extracted by decoding the 1043 
most likely stimulus category presented to the animal in each trial using a C-support vector classifier 1044 
(C-SVC) with a linear basis function kernel49,50. The C-SVC was implemented with custom 1045 
MATLAB software, by building on the libsvm library51. For each imaging session, we first 1046 
subsampled trials randomly such that the left/right stimulus categories were equally represented in 1047 
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the data (sound localization task dataset: no more than 13% of removed trials per session; evidence 1048 
accumulation task dataset: no more than 15% of removed trials per session). Then, we randomly split 1049 
the remaining trials 10 times into 50/50 training/testing sets, such that left and right stimulus 1050 
categories were equally represented in both training and testing sets. For each trial split, we trained 1051 
the C-SVC on the training set and we tested on the test set, which was left out of the fitting procedure. 1052 
The regularization hyperparameter (C) was selected by maximizing the 3-fold cross-validated 1053 
decoding accuracy in the training set. For the analyses that required computing a posterior probability 1054 
of the decoded stimulus given the observed population activity, we used Platt scaling to calibrate 1055 
posterior probabilities on the binary outputs of the C-SVC52. 1056 
 1057 
Across-time consistency  1058 
For the across-time correlations analysis, we decoded the most likely stimulus from the population 1059 
activity at each time point in the trial epoch selected for analyses (see “Data inclusion and task epoch 1060 
selection for encoding and readout analyses”) and from the concatenated population activity of every 1061 
pair of time points. Any two time points were defined to be consistent if the stimuli decoded from the 1062 
two time points individually coincided.  1063 
 1064 
Across-neuron consistency  1065 
For the across-neuron correlations analysis, we first split the neuronal population recorded in each 1066 
session into two randomly-selected, equally-sized, disjoint pools of neurons. We then decoded the 1067 
most likely stimulus from the population activity of each pool individually and from the concatenated 1068 
population activity of both pools (note that this corresponds to the activity of the whole recorded 1069 
neuronal population). Two pools were defined to be consistent if the stimuli decoded from the two 1070 
pools individually coincided. The random assignment of the neurons to the two pools was repeated 1071 
100 times. 1072 
 1073 
Quantifying the angle between the signal and noise axes 1074 
We quantified, in the neural population response space, the angle 𝛾 between the direction of 1075 
maximum stimulus variation (signal correlations axis) and the direction of maximum noise variation 1076 
(noise correlations axis)24,25. The signal correlations axis was computed as the slope of the linear 1077 
regression of the trial-averaged responses at fixed stimulus. The noise correlations axis was computed 1078 
as the slope of the linear regression of the trial-by-trial neural responses at fixed stimulus, averaged 1079 
across stimuli. 𝛾 takes values between 0 and 𝜋/2.  1080 
 1081 
Across-time correlations 1082 
For across-time correlations, multidimensional population responses at a given time point were first 1083 
reduced to scalars by computing the projection along the direction of maximum stimulus variation in 1084 
the space spanned by the population responses at the selected time point. Then, for each pair of time 1085 
points in the trial epoch selected for analyses (see “Data inclusion and task epoch selection for 1086 
encoding and readout analyses”), 𝛾 was computed in the 2D space defined by the projections of the 1087 
population responses at the two time points.   1088 
 1089 
Across-neurons correlations 1090 
For across-neuron correlations, we considered the same 100 randomly-defined pairs of neuronal pools 1091 
that were used for encoding and consistency analysis (see “Analysis of stimulus encoding and 1092 
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consistency”). Multidimensional population responses of a given neuronal pool were first reduced to 1093 
scalars by computing the projection along the direction of maximum stimulus variation in the space 1094 
spanned by the population responses of the selected neuronal pool. Then, for each randomly-defined 1095 
pair of disjoint pools, 𝛾 was computed in the 2D space defined by the projections of the population 1096 
responses of the two pools.  1097 
 1098 
Mathematical model of encoding and readout with two neural features 1099 
We developed a simple two-features mathematical model of encoding and readout in a simulated 1100 
stimulus discrimination task, to explore how possibly distinct roles of correlations in information 1101 
encoding and information readout interact and impact task performance. 1102 
 1103 
Neural encoding (stimulus-response) model 1104 
As far as the encoding model is concerned, we simulated the response of two generic features of 1105 
neural activity (r1, r2) to two stimuli (s = -1, s = 1). Neural response distributions for a given stimulus 1106 
are modelled as bivariate Gaussians 𝑁(𝝁Y, 𝚺[), with mean and covariance matrix given by:  1107 
 1108 

𝝁Y = 𝑠𝑖𝑔𝑛(𝑠) ∗ 𝑑 ∗ `
cos	(𝛾 +

𝜋
4)

sin	(𝛾 +
𝜋
4)
h 

 

𝚺[ = i 𝜎kl 𝜌𝜎k𝜎l
𝜌𝜎k𝜎l 𝜎ll

m, 

(2) 

 1109 
where 𝜎kl and 𝜎ll represent the variance of the neural responses along r1 and r2 respectively, while 𝜌 1110 
determines the correlation between r1 and r2. For simplicity, in our simulations we chose 𝜎k = 𝜎l =1111 
𝜎 and 𝚺[k = 𝚺[l. We selected the means of the two response distributions (𝝁Yk, 𝝁Yl)  to be 1112 
symmetrically located around the origin in the 2D space defined by r1 and r2, at a distance 𝑑. Taken 1113 
together, 𝑑 and 𝜎 control the overlap between the two response distributions (in all our simulations 1114 
we arbitrarily set 𝑑 = √0.02 and 𝜎 = 0.3). The parameter 𝛾 controls the alignment between the signal 1115 
correlations axis and the noise correlations axis, which are defined as the axis of maximum variability 1116 
of trial-averaged responses at fixed stimulus and the axis of maximum trial-by-trial variability at fixed 1117 
stimulus, averaged across stimuli, respectively. In our simulations, we varied 𝛾 by varying the signal 1118 
correlations axis orientation (see Extended Data Fig. 2 and Supplementary Information): for 𝛾 = 0, 1119 
𝝁Ykand 𝝁Yl are located on the bisector of the first and third quadrants, resulting in perfect alignment 1120 
between signal and noise; at increasing values of 𝛾, the signal correlations axis direction is 1121 
progressively rotated counterclockwise, resulting in more and more misalignment with the noise 1122 
correlations axis; the maximum misalignment is reached when 𝛾 = o

p
 and signal and noise directions 1123 

are orthogonal. We quantified the amount of stimulus information carried by the simulated neural 1124 
responses as the fraction correct predictions of a linear decoder of stimulus identity applied to the 1125 
simulated (r1, r2) responses. We further applied the same linear decoder to the responses along r1 and  1126 
r2 separately for the computation of consistency. For the simulations in Fig. 2, Extended Data Fig. 2 1127 
and Extended Data Fig. 3 we performed, for a given choice of model parameters, 1000 simulations 1128 
with 500 trials per stimulus. 1129 
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 1130 
Behavioral decision model 1131 
As far as the readout model is concerned, we simulated the process of generating a binary choice in 1132 
each trial from neural activity through a logistic regression model: 1133 
 1134 

𝑙𝑜𝑔𝑖𝑡s𝑝(𝑐 = 1|	𝐱)u = 𝛽w +	𝛽Ŷ�̂� +
𝛽xk
2
(�̂� + 1)𝑐𝑜𝑛 +

𝛽xl
2
(�̂� − 1)𝑐𝑜𝑛 (3) 

 1135 
where: 1136 

• �̂� is a binary variable (�̂� = −1, �̂� = 1) which encodes the stimulus decoded from the 1137 
concatenated activity of the two neural features; 1138 

• 𝑐𝑜𝑛 is a binary variable that is 1 if the stimuli decoded individually from each neural feature 1139 
are the same, and 0 otherwise; 1140 

• x indicates the entire set of predictors (�̂�, 𝑐𝑜𝑛). 1141 
 1142 
The model coefficients 𝛽w, 𝛽Ŷ, 𝛽xk and 𝛽xl control the relative impact of the different model predictors 1143 
on the simulated choice. The values for the model coefficients were set as follows. We first defined 1144 
a consistency modulation index 𝜂, ranging from 0 to 1, to control the relative strength of neural 1145 
consistency in the readout. We then derived the readout efficacy, which we defined as the probability 1146 
of conversion from �̂� to 𝑐, for each of the four possible combinations of predictors values, from the 1147 
modulation index 𝜂 and a reference readout efficacy 𝛼(�̂�) as:  1148 
 1149 

𝑝(𝑐 = �̂�|[�̂�, 𝑐𝑜𝑛]) = |𝛼
(�̂�) + 𝜂s1 − 𝛼(�̂�)u	,								𝑐𝑜𝑛 = 1
𝛼(�̂�) − 𝜂(𝛼(�̂�) − 0.5)	,					𝑐𝑜𝑛 = 0

 (4) 

 1150 
where 𝛼(�̂�) takes values between .5 and 1. For the simulations in Fig. 2, Extended Data Fig. 2 and 1151 
Extended Data Fig. 3, we arbitrarily set 𝛼(0) = 𝛼(1) = 0.75. Given the readout efficacy values from 1152 
equation (4), we used equation (3) to compute the model coefficients corresponding to the chosen 1153 
modulation index 𝜂.  1154 
 1155 
Logistic regression of the mouse’s choice 1156 
To study the relevance of selected features of recorded neural population activity on the mouse’s 1157 
choices, we fit to the recorded neural activity a logistic regression of the choice made by the animal 1158 
in each trial (left/right turns). For each trial, we considered the choice c made by the mouse (c = 1159 
left/right), the presented stimulus s (s = left/right), and the neural population activity for each pair of 1160 
time points (across-time correlations analysis) or for each pair of randomly-selected neuronal pools 1161 
(across-neuron correlations analysis) that were used for encoding and consistency analyses (see 1162 
“Analysis of stimulus encoding and consistency”). For each session, trial split, and pair of time points 1163 
or neuronal pools, we fitted the following logistic regression:   1164 
 1165 

𝑙𝑜𝑔𝑖𝑡s𝑝(𝑐 = 𝑙𝑒𝑓𝑡|	𝐱)u = 𝛽w + 𝛽[𝑠 +	𝛽Ŷ�̂� +
𝛽xk
2
(�̂� + 1)𝑐𝑜𝑛 +

𝛽xl
2
(�̂� − 1)𝑐𝑜𝑛	 (5) 

 1166 
where  1167 
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• �̂�  is a binary variable (�̂� = left/right) that encodes the most likely stimulus decoded from the 1168 
concatenated activity of two time points or neuronal pools; 1169 

• 𝑐𝑜𝑛 is a binary variable that is 1 if the stimuli decoded individually from each time point or 1170 
neuronal pool are the same, and 0 otherwise; 1171 

• x indicates the entire set of neural (�̂�, 𝑐𝑜𝑛) and non-neural (𝑠) predictors. 1172 
 1173 

Logistic regression fitting was implemented with custom Python software, by building on the 1174 
statsmodel module53. Note that we used the convention (left = 1, right = -1) to map the categorical 1175 
variables 𝑠, �̂�, 𝑐 to numerical variables suitable for logistic fitting. For each trial split defined for 1176 
encoding and consistency analyses (see “Analysis of stimulus encoding and consistency”), the 1177 
logistic regression was fit on trials belonging to the testing set, for which there exists a prediction of 1178 
the most likely stimulus from population activity for each individual and pair of time points or 1179 
neuronal pools. The logistic regression was fit using L1-regularized maximum likelihood, for a 1180 
conservative selection of the predictors of the mouse’s choice. The regularization hyperparameter (𝜆) 1181 
was selected by maximizing 3-fold cross-validated fraction of deviance explained (FDE, see 1182 
“Predictive performance and cross validation”). The few instances where the maximum-likelihood 1183 
optimization did not converge numerically were not considered for further analyses. 1184 
 1185 
For control analyses, we fitted mouse’s choices with more complex choice regressions that included 1186 
other predictors on top of those described in equation (5).  1187 
 1188 
In order to discern the genuine role of across-time neural consistency (𝑐𝑜𝑛) in explaining the mouse’s 1189 
choices from that of across-time behavioral consistency (𝑐𝑜𝑛�), we fitted a logistic regression which 1190 
included additional behavioral consistency-dependent predictors: 1191 
 1192 
𝑙𝑜𝑔𝑖𝑡s𝑝(𝑐 = 𝑙𝑒𝑓𝑡|	𝐱)u

= 𝛽w + 𝛽[𝑠 +	𝛽Ŷ�̂� +
𝛽xk
2
(�̂� + 1)𝑐𝑜𝑛 +

𝛽xl
2
(�̂� − 1)𝑐𝑜𝑛 +

𝛽x�
2
(�̂� + 1)𝑐𝑜𝑛�

+
𝛽xp
2
(�̂� − 1)𝑐𝑜𝑛� 

(6) 

 1193 
We performed this control analysis for three behavioral parameters of interest that were measured 1194 
during the experiments: the lateral running velocity, lateral position and view angle of the mouse in 1195 
the virtual environment (see Extended Data Fig. 5 and Supplementary Information). Two values of 1196 
lateral running velocity or lateral position taken at two different time points were defined to be 1197 
consistent whenever their sign was the same; two values of view angle at two different time points 1198 
were defined to be consistent whenever they were both higher or both lower than 90°.  1199 
 1200 
In order to resolve the genuine role of across-time or across-neurons consistency in explaining the 1201 
mouse’s choices, above and beyond the overall level of stimulus information encoded in neural 1202 
activity, we fitted mouse’s choices with a logistic regression where the discrete binary variable �̂� in 1203 
equation (5) was replaced with the corresponding continuous value of the decoder stimulus posterior 1204 
probability 𝑝(𝑠 = 𝑙𝑒𝑓𝑡|𝒓) (see “Analysis of stimulus encoding and consistency”). This choice 1205 
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regression, differently from the one of equation (5), also accounts for the confidence associated to a 1206 
given stimulus decoded from the concatenated activity of two time points or two neuronal pools. 1207 
 1208 
Predictive performance and cross validation 1209 
To test for the significance of the contribution of a predictor (or set of predictors) in explaining the 1210 
mouse’s choices, we compared the predictive performance of the regression fitted (and tested) on 1211 
predictors values extracted from the recorded data with the predictive performance of a regression 1212 
fitted (and tested) on artificial data in which the values of the predictor (or set of predictors) of interest 1213 
were shuffled across trials. Predictive performance was quantified as the cross-validated fraction of 1214 
deviance explained (FDE). FDE was evaluated with 3-fold cross validation, thus addressing concerns 1215 
of overfitting. For each fold, we computed the log-likelihood l of the test data given the values of the 1216 
𝛽 coefficients of the regression fit on the training data. To calculate a reference null value for the log-1217 
likelihood, we computed the log-likelihood 𝑙w of the test data given the value of the coefficient 𝛽w of 1218 
an intercept-only regression fit on the training data. The FDE was then defined as: 1219 
 1220 

𝐹𝐷𝐸 = 1 − 𝑙/𝑙w (7) 
 1221 
Estimating the impact of across-time and across-neuron correlations on task performance 1222 
To estimate the impact of across-time and across-neuron correlations on mouse’s task performance, 1223 
we generated synthetic choices using the experimentally-fit choice regression of equation (5). As 1224 
input to the regression, we provided either predictors extracted from the real recorded neural data, 1225 
which included across-time and across-neuron correlations, or predictors extracted from hypothetical 1226 
neural data where correlations of interest were artificially removed by shuffling (see “Removing 1227 
across-time or across-neuron noise correlations by shuffling”). We used this analytic approach 1228 
because current experimental methods cannot remove correlations online during task performance, 1229 
and thus we had to estimate effects with post-hoc removal of correlations. 1230 
 1231 
Technically, given the discrete nature of the predictors used in the choice regression of equation (5), 1232 
we did not need to generate synthetic choices for the computation of the task performance 𝑝(𝑐 = 𝑠), 1233 
which is the probability that the choice c matches the presented stimulus s. Rather, we simply 1234 
computed the probabilities 𝑝(𝐱) for all possible combination of predictors values X, we multiplied 1235 
them with the corresponding readout probabilities 𝑝(𝑐 = 𝑠|𝐱)	obtained from the logistic choice 1236 
regression, and then summed over all possible combinations of predictors values X as follows (see 1237 
Extended Data Fig. 1 for a schematic representation of this operation): 1238 
 1239 

𝑝(𝑐 = 𝑠) =�𝑝(𝑐 = 𝑠|𝐱) ∗ 	𝑝(𝐱)
𝐱∈�

.							 (8) 

 1240 
Note that the same readout probabilities 𝑝(𝑐 = 𝑠|𝐱)	were used for the computation of task 1241 
performance from both real and shuffled neural data.  1242 
 1243 
We further isolated the part of task performance that can be attributed to the (real or shuffled) neural 1244 
activity, by subtracting from the total estimated task performance a baseline non-neural estimated 1245 
task performance. The non-neural task performance was computed by generating choices (or applying 1246 
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equation (8)) after shuffling the values of neural predictors (i.e. predictors defined from features of 1247 
neural activity) across trials, while keeping the relationship between non-neural predictors (i.e. 1248 
predictors that did not depend on neural activity) and mouse’s choices fixed. Note that the shuffling 1249 
procedure allowed to discard uninteresting differences between task performance from real neural 1250 
data and that from shuffled neural data that are due to intrinsic differences between the marginal 1251 
distributions of the neural predictors. The estimated value of task performance due to the recorded 1252 
neurons is by definition non-negative and it is identically zero when the coefficients associated to 1253 
neural predictors are zero, as we intuitively require to a measure of the behavioral impact of the neural 1254 
predictors. 1255 
 1256 
Computation of readout efficacy of the transformation from stimulus information to choice 1257 
We termed “readout efficacy” 𝑝(𝑐 = �̂�) the probability of conversion from stimulus encoded in 1258 
neural activity to choice associated to a given readout. Given the discrete nature of the predictors used 1259 
in the choice regression of equation (5), similarly to what we did for the estimation of task 1260 
performance (see “Estimating the impact of across-time and across-neuron correlations on task 1261 
performance”), we computed the efficacy of the enhanced-by-consistency readout as: 1262 
 1263 

𝑝(𝑐 = �̂�) =�𝑝(𝑐 = �̂�|𝐱) ∗ 	𝑝(𝐱)
𝐱∈𝐗

,							 (9) 

 1264 
where 𝑋 represents the set of all possible combinations of predictors values and 𝑝(𝑐 = �̂�|𝐱) are 1265 
obtained from the logistic choice regression.  1266 
 1267 
To generate the readout maps in Fig. 3c, f we computed, separately for consistent and inconsistent 1268 
trials, readout efficacy as a deviation from a stimulus-driven baseline, which is the average probability 1269 
of choice being left or right when the presented stimulus is left or right, as: 1270 
 1271 

Δp(c = �̂�|𝑐𝑜𝑛) =�Δ𝑝(𝑐 = �̂�|[𝐱, 𝑐𝑜𝑛]) ∗ 	𝑝(𝐱|𝑐𝑜𝑛)
𝐱∈�

. (10) 

 1272 
In equation (10), 𝑋 represents the set of all possible combinations of [𝑠, �̂�]	predictors values and 1273 
𝛥𝑝(𝑐 = �̂�|[𝐱, 𝑐𝑜𝑛]) = 𝑝(𝑐 = �̂�|[𝑠, �̂�, 𝑐𝑜𝑛]) − 𝑝(𝑐 = �̂�|𝑠). 1274 
 1275 
Matching enhanced-by-consistency and consistency-independent readouts in terms of efficacy 1276 
To quantify the impact on task performance of the enhanced-by-consistency experimentally-1277 
measured readout, we compared the task performance predicted by the experimentally-fit choice 1278 
regression to the one predicted by a consistency-independent choice regression of the form: 1279 

 1280 
For a fair comparison, the values of the coefficients 𝛽w� , 𝛽[′ and 𝛽Ŷ′ were chosen so that the two 1281 
readouts were matched in terms of readout efficacy (see “Computation of readout efficacy in the 1282 
transformation from stimulus information to choice”). Note how the readout efficacy 𝑝(c = �̂�) in 1283 

𝑙𝑜𝑔𝑖𝑡s𝑝(𝑐 = 𝑙𝑒𝑓𝑡|	𝐱)u = 𝛽w′ + 𝛽[′𝑠 +	𝛽Ŷ′�̂�. (11) 
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equation (9) depends on both the readout probabilities 𝑝(𝑐 = �̂�|𝐱) and the predictors probabilities 1284 
𝑝(𝐱). Thus, the condition of matched readout efficacy is specific for a given input to the regressions.  1285 
 1286 
Concretely, in order to compute the values of the coefficient of the consistency-independent choice 1287 
regression in (11), we imposed the following conditions: 1288 
 1289 

�
𝑝��EY.��E�C�.(c = 0, �̂� = 0) = 𝑝CE�DE�C�������EY.(c = 0, �̂� = 0)
𝑝��EY.��E�C�.(c = 1, �̂� = 1) = 𝑝CE�DE�C�������EY.(c = 1, �̂� = 1)
𝛽Y� = 𝛽Y																																																																																																						

		 
(12a) 
(12b) 
(12c) 

 1290 
then appropriately plugged equations (5) and (11) into (12a) and (12b), and solved for 𝛽w�  and 𝛽Ŷ′. 1291 
 1292 
Removing across-time or across-neuron noise correlations by shuffling 1293 
To study the role of across-time and across-neuron correlations on stimulus encoding and task 1294 
performance, we generated artificial neural population vectors in which we removed correlations by 1295 
a shuffling procedure. 1296 
 1297 
Across-time correlations analysis  1298 
Across-time correlations between population vectors at different time points were removed by 1299 
shuffling trial identities independently for each of the two population vectors within subsets of trials 1300 
of the same stimulus category. This procedure ensured that “across-time signal correlations” were 1301 
maintained, while “across-time noise correlations” were disrupted. Note that single-cell 1302 
autocorrelations were also disrupted with this shuffling procedure. 1303 
 1304 
Across-neuron correlations analysis  1305 
Across-neuron correlations between two neuronal pools were removed by shuffling trial identities 1306 
independently for each pool within subsets of trials of the same stimulus category. This procedure 1307 
ensured that “across-neuron signal correlations” were maintained, while “across-neuron noise 1308 
correlations” were disrupted. Note that classical signal correlations between any pairs of neurons 1309 
from the two disjoint pools were thus maintained, while classical noise correlations between any pairs 1310 
of neurons from the two disjoint pools were disrupted.  1311 
 1312 
Shuffling was performed separately within trials of the training and the testing set.  1313 
 1314 
Data and code availability 1315 
The data and code that support the findings of this study are available from the corresponding authors 1316 
upon reasonable request.  1317 
 1318 
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