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Abstract 

Approximately 30% of patients who have a Clostridioides difficile infection (CDI) will suffer at 

least one incident of reinfection. While the underlying causes of CDI recurrence are poorly 

understood, interactions between C. difficile and other commensal gut bacteria are thought to play 

an important role. In this study, an in silico metagenomics pipeline was used to process taxa 

abundance data from 225 CDI patient stool samples into sample-specific models of bacterial 

community metabolism. The predicted metabolite production capabilities of each community were 

shown to provide improved recurrence prediction compared to direct use of taxa abundance data. 

More specifically, clustered metabolite synthesis rates generated from post-diagnosis samples 

produced a high Enterobacteriaceae cluster with disproportionate numbers of recurrent samples 

and patients. This cluster was predicted to have significantly reduced capabilities for secondary 

bile acid synthesis but elevated capabilities for aromatic amino acid catabolism. When applied to 

40 samples from fecal microbiota transplantation (FMT) patients and their donors, community 

modeling generated a high Enterobacteriaceae cluster with a disproportionate number of pre-FMT 

samples. This cluster also was predicted to exhibit reduced secondary bile acid synthesis and 

elevated aromatic amino acid catabolism. Because clustering of CDI and FMT samples did not 

identify statistical differences in C. difficile abundances, these model predictions support the 

hypothesis that Enterobacteriaceae may create a gut environment favorable for C. difficile spore 

germination and toxin synthesis. 

Importance 

Clostridioides difficile is an opportunistic human pathogen responsible for acute and sometimes 

chronic infections of the colon. Elderly individuals who are immunocompromised, frequently 

hospitalized and recipients of antibiotics are particular susceptible to infection. Approximately 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 12, 2020. ; https://doi.org/10.1101/2020.04.10.036111doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.10.036111
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 
 

30% of treated patients will suffer at least one episode of reinfection, commonly termed recurrence. 

The objective of the current study was to utilize computational metabolic modeling to investigate 

the hypothesis that recurrent infections are related to the composition of the gut bacterial 

community within each patient. Our model predictions suggest that patients who have high 

compositions of the bacterial family Enterobacteriaceae during antibiotic treatment are more 

likely to develop recurrent infections due to a metabolically-disrupted gut environment. Successful 

treatment of recurrent patients with transplanted fecal matter is predicted to correct this metabolic 

disruption, suggesting that interactions between C. difficile and Enterobacteriaceae are worthy of 

additional study.  
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Introduction 

The anaerobic bacterium Clostridioides difficile is an opportunistic pathogen responsible for 

infections, primarily in the human colon (1). C. difficile infection (CDI) is most common in elderly 

patients previously treated with broad spectrum antibiotics that disrupt the healthy gut microbiota 

and produce a dysbiotic environment conducive to C. difficile germination, expansion and 

pathogenicity (2, 3). CDI has become particularly common in hospital settings due to the ability 

of C. difficile to form spores that adhere to surfaces and resist common disinfectant protocols. 

Some C. difficile strains have developed resistance to common antibiotics while also exhibiting 

more severe pathogenicity (4). Studies estimate that 500,000 CDI cases occur in the U.S. annually 

(5), resulting in 29,000 deaths and over $4.8 billion in associated costs in acute care facilities alone 

(6). 

Approximately 10% of healthy adults are asymptomatically colonized with C. difficile (7-

9). Commensal species in the healthy gut can provide resistance against C. difficile pathogenic 

colonization through a variety of metabolic mechanisms, including competition for dietary 

nutrients such as carbohydrates and amino acids (10) and conversion of host-derived primary bile 

acids that promote C. difficile spore germination to secondary bile acids that inhibit germination 

and growth (11). Recurrence is a major challenge associated with CDI treatment, as approximately 

30% of patients develop a least one occurrence of reinfection (12). The host-microbiota 

mechanisms underlying recurrence are not well understood, as microbiota composition alone is a 

poor predictor of patient recovery versus recurrence (13-15). For patients who suffer from repeated 

episodes of recurrence, fecal microbiota transplantation (FMT) is the last resort treatment. Despite 

its remarkable success rate approaching 90% (16), FMT remains controversial (17) as the donor 
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microbiota confer poorly understood functions to the endogenous community (18) and may 

contain pathogenic strains not recognized during screening of donor stool (19). 

The advent of metagenomic technologies such as 16S rRNA-encoding gene sequencing 

has yielded unprecedent insights into the composition of in vivo bacterial communities (20-22). 

Despite numerous metagenomics-based studies that attempt to correlate CDI disease state to 

bacterial composition (13, 23-26), we still do not understand why some exposed individuals 

develop CDI while other individuals are asymptomatic (9, 27, 28) and why some infections 

become recurrent while other infections are effectively treated with antibiotics (29-32). 

Furthermore, the microbial community being transplanted with FMT is poorly understood both 

with regard to its composition and the health-promoting metabolic functions being introduced (33-

35). Uncertainty at this level can decrease therapeutic efficacy and increase the risk of adverse 

events (19, 36). 

Translating composition data derived from 16S sequencing into an understanding of 

community function is a challenging problem. Gut bacteria often possess overlapping metabolic 

functions, such as their ability to synthesize secondary bile acids (37-39) and short-chain fatty 

acids like butyrate and propionate (40, 41). Furthermore, numerous studies (42-47) have 

demonstrated that microbiota taxonomic composition is an individual characteristic and usually an 

inadequate measure for assessing disease states. These critical gaps in knowledge exist because 

bacterial composition data alone is insufficient to characterize the metabolic state of the diseased 

gut and nutritional environments that are protective against CDI. The next step in metagenomic 

applications to microbiome research needs to be the translation of taxa composition data into 

quantitative information about bacterial community dynamics and function (48-50). In this study, 

a recently developed in silico metagenomics pipeline (mgPipe; 51) was applied to the problem of 
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identifying microbiota-based determinants of recurrent CDI. The pipeline was used to translate 

16S-derived taxa abundances from stool samples of CDI and FMT patients into sample-specific 

models to quantify the metabolic capabilities of the modeled communities, which have been shown 

to correlate with clinical states in other microbiota-based disease processes (52, 53). 

Materials and Methods 

Patient Data 

Gut microbiota composition data were obtained from two published studies (13, 54) in which 

patient stool samples were subjected to 16S rRNA gene amplicon library sequencing. The first 

study (13) included 225 longitudinal samples from 93 CDI patients ranging in age from 18 to 89 

years. Each patient was characterized as either: nonrecurrent if a non-reinfected sample was 

collected >14 days after a previous C. difficile positive sample; recurrent if a positive sample was 

collected 15–56 days after a previous positive sample; and reinfected if a positive sample was 

collected  >56 days after a previous positive sample (Table 1). Because patients in both groups 

were ultimately reinfected, the recurrent and reinfected patients were lumped together in this study 

and termed recurrent. The sample was defined as an index sample if it returned the first C. difficile 

positive for that patient, a pre-index sample if it was collected before the index sample, and post-

index sample if it was collected after the index sample. The second study (54) included 40 samples 

from 14 FMT patients and 10 of their stool donors (Table 1). 

The 16S rRNA OTU reads available in the two original studies were generally at the genus 

and family taxonomic levels. These reads were mapped into taxa abundances for development of 

sample-specific community metabolic models. Using the 100 most abundant OTUs across the 

samples in each study, taxa abundances were derived as follows: (1) all OTUs belonging to the 

same taxonomic group were combined; (2) OTUs belonging to higher taxonomic groups (i.e. order 
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and above) were eliminated to maintain modeling at the genus and family levels; and (3) the 

reduced set of OTUs was normalized such that the abundances of each sample summed to unity. 

To quantify the effect of eliminating higher-order taxa, the total reads in (3) were divided by the 

total reads in (2) to generate an unnormalized total abundance for each sample. For the CDI dataset, 

this procedure resulted in 48 taxa (40 genera, 8 families) that accounted from an average of 97.7% 

of the top 100 OTU reads across the 225 samples (Table S1). Due to the non-negligible level of 

the class Gammaproteobacteria in the FMT dataset (average abundance of 3.4%), this class was 

retained to generate 39 taxa (30 genera, 8 families, 1 class) that accounted for an average of 99.3% 

of the top 100 OTU reads across the 40 samples (Table S2). 

Community Metabolic Modeling 

Taxa represented in the normalized CDI and FMT samples were modeled using genome-scale 

metabolic reconstructions from the Virtual Metabolic Human (VMH) database (55; 

www.vmh.life; Figure S1). The function createPanModels within the metagenomics pipeline 

(mgPipe; 51) of the MATLAB Constraint-Based Reconstruction and Analysis (COBRA) Toolbox 

(56) was used to create higher taxa models from the 818 strain models available in the VMH 

database. The sample taxa were mapped to these pan-genome models according to their taxonomy 

(e.g. Clostridium cluster XI containing C. difficile was mapped to the family 

Peptostreptococcaceae). The function initMgPipe was used to construct a community metabolic 

model for each of the 225 CDI and 40 FMT samples. Model construction required specification of 

taxa abundances for each sample and maximum uptake rates of dietary nutrients, which was 

specified according to an average European diet (53; Table S3). The community models contained 

an average of 33,773 reactions (minimum 8,302; maximum 59,923) for the CDI samples and 

36,278 reactions (minimum 26,466; maximum 46,179) for the FMT samples. mgPipe also 
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performed flux variability analysis (FVA) for each model with respect to each of the 411 

metabolites assumed to be exchanged between the microbiota and the lumen and fecal 

compartments. The FVA results were used to compute the net maximal production capability 

(NMPC; 51) of each metabolite by each model (Table S4 for CDI; Table S5 for FMT) as a measure 

of community metabolic capability. 

Data analysis 

Patient data consisted of normalized taxa abundances and model data consisted of calculated 

NMPCs, both of which could be connected to associated metadata on a sample-by-sample basis 

(Tables S1 and S2). Both types of data were subjected to unsupervised learning techniques 

including kmeans clustering and principal component analysis (PCA) to extract relationships 

between partitioned samples/patients and clinical parameters such as recurrence. Statistical 

significance of associations between categorial variables (e.g. recurrent/nonrecurrent) across 

samples/patient groups were assessed using Fisher’s exact test. Correlations between taxa based 

on their abundances across samples/patients were calculated using the proportionality coefficient 

(57), which accounts for the effects of data normalization. Statistically significant differences 

between metabolite NMPCs across samples/patients were assessed using the Wilcoxon rank-sum 

test.  

Results 

Clustered index samples were not predictive of recurrence 

The 90 index samples remaining after removal of 3 samples containing less than 90% of modeled 

taxa were clustered using their normalized taxa abundances. The Davies-Bouldin criterion (58) 

indicated the optimal number of clusters to be 3, and the abundance data were clustered using the 
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kmeans method. The index samples were clustered into 20 samples with elevated 

Enterobactericeae and Enterococcus, 33 samples dominated by Bacteroides, and 37 samples with 

elevated Escherichia and Akkermansia (Figure 1A). While the Enterobactericeae/Enterococcus 

cluster exhibited a higher proportion of recurrent samples than the other two clusters and the entire 

index dataset (Figure 1B), none of these differences were significant (Fisher’s exact test, p > 0.5). 

When the index samples were analyzed with PCA, the abundance data showed structure with 

respect to the three clusters but not with respect to recurrent/nonrecurrent samples (Figure 1C).  

 Similar analyses were applied to NMPCs calculated for the 90 index samples to determine 

if the metabolic capability of each community would be more predictive of recurrence than 

community composition. The index samples were clustered into 25 samples with elevated 

Enterobactericeae and Escherichia, 30 samples with elevated Enterococcus and Akkermansia, and 

35 samples dominated by Bacteroides (Figure S1A), demonstrating that the abundance data and 

the model-processed abundance data produced different clustering results (Figure S1B). None of 

the clusters exhibited a higher proportion of recurrent samples (p > 0.25; Figure S1C), and PCA 

showed no distinct structure with respect to recurrent/nonrecurrent samples (Figure S1D). 

Therefore, the index samples, which were collected prior to antibiotic treatment, were deemed to 

have little predictive value with respect to CDI recurrence.  

Post-index samples clustered by metabolic capability were predictive of recurrence 

The 119 post-index samples remaining after removal of samples containing less than 90% of 

modeled taxa were clustered by their taxa abundances to produce 15 samples dominated by 

Enterobactericeae with low abundances of Bacteroides, Enterococcus and Escherichia, 18 

samples dominated by Enterococcus with low abundances of Bacteroides, Escherichia and 

Enterobactericeae, and 86 samples more diversely distributed (inverse Simpson index of 12.4 
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versus 2.2 and 1.9, respectively, for the other two clusters) and not dominated by a single taxa 

(Figure S2A). The high Enterobactericeae cluster contained a disproportionate number of 

recurrent samples (14/15) compared to the high Enterococcus cluster (9/18; Fisher’s exact test, p 

= 0.009; Figure S2B). The recurrent samples in the high Enterobactericeae cluster were clearly 

distinguishable in a PCA plot of the post-index abundance data (Figure S2C).  

 NMPCs calculated for the 119 post-index samples were clustered to explore the hypothesis 

that metabolic outputs of the community models would allow superior recurrence prediction than 

was possible with community compositions alone. These model-processed sample abundances 

were clustered into 28 samples with elevated Enterobactericeae and Escherichia, 28 samples with 

elevated Enterococcus and Lactobacillus, and 63 samples with elevated Bacteroides and more 

diversely distributed (inverse Simpson index of 11.6 versus 4.3 and 3.2, respectively, for the other 

two clusters; Figure 2A). The high Enterobactericeae cluster contained a disproportionate number 

of recurrent samples (25/28) compared to the high Enterococcus cluster (14/28; p = 0.003) and the 

entire post-index dataset (83/119; p = 0.035; Figure 2B). Therefore, the metabolic model generated 

a larger cluster of high recurrent samples compared to the abundance data (28 samples from 22 

patients versus 15 samples from 11 patients) at a higher level of statistical significance. The high 

recurrence Enterobactericeae cluster was distinguishable in the upper left quadrant of a PCA plot 

of the model-processed abundance data due to the unique metabolic capabilities of these clustered 

samples (Figure 2C), an issue explored below in detail. Despite having 411 possible PCA 

components compared to the abundance data with 48 possible components, the model output data 

was more efficiently compressed with a small number of principal components (e.g. 58.2% versus 

48.0% variance captured for 2 components; Figure 2D). Collectively, these results demonstrate the 
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potential benefit of model-based processed abundance data to quantify metabolic functions of 

sampled communities rather than relying on sample compositions alone.  

 The number of clusters was varied to further explore partitioning of the 119 model-

processed post-index samples. Interestingly, 2 clusters also produced a relatively small group with 

elevated Enterobactericeae and Escherichia (34 samples) as well as generating a second larger 

group with elevated Enterococcus, Bacteroides and Lactobacillus (85 samples; Figure 3A). As the 

number of clusters was increased, the Enterobactericeae/Escherichia group split into two separate 

clusters and the Enterococcus/Bacteroides/Lactobacillus group split into three separate clusters 

(Figure 3B-E). The high Enterobactericeae clusters retained their property of disproportionate 

recurrence compared to the high Enterococcus-elevated clusters for all cases (p < 0.04; Figure 3F), 

suggesting a possible supportive role for Enterobactericeae with respect to CDI recurrence during 

antibiotic treatment. 

Clustered post-index samples exhibited distinct bile acid and aromatic amino acid metabolism 

NMPCs of the 119 post-index samples with respect to each of the 411 exchanged metabolites were 

statistically analyzed to assess metabolic differences between the 3 clusters. For each pair of 

clustered samples, the Wilcoxon rank sum test was applied to the NMPCs on a metabolite-by-

metabolite basis. To reduce the number of  reported metabolites, statistically different metabolite 

NMPCs (p < 0.05) also were required to have an average NMPC > 50 mmol/day in at least one 

cluster and average NMPC that differed between the clusters by at least 100%. A comparison of 

the high Enterobactericeae cluster (HEb, 28 samples) and the high Enterococcus cluster (HEc, 28 

samples) generated 44 differentially produced metabolites (Figure S5, Table S6), with 19 

metabolites associated with aromatic amino acid (AAA), bile acid (BA) and butanoate metabolism. 

The HEb cluster and the high Bacteroides cluster (HBo, 63 samples) had 47 differentially produced 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 12, 2020. ; https://doi.org/10.1101/2020.04.10.036111doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.10.036111
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 
 

metabolites (Figure S6, Table S6), including 7 metabolites associated with AAA degradation 

elevated in the HEb cluster. Interestingly, 11 secondary BA metabolites were elevated in the HEc 

cluster compared to the HBo cluster, accounting for 25% of the differentially produced metabolites 

(Figure S7, Table S6).  

 Due to their differential utilization across the 3 clusters, the BA and AAA pathways were 

examined more carefully by collecting all metabolites belonging to these pathways that were 

allowed to be exchanged according to the metabolic models. The HEb cluster had the highest 

production capabilities for the two unconjugated primary BAs (Figure 3A), which have been 

reported to either promote (cholate) or inhibit (chenodeoxyholate, C02528) C. difficile germination 

(59, 60). By contrast, the HBo cluster generated the highest production of most secondary BAs, 

which are known to be generally protective against CDI  (2, 61, 62). Interestingly, the HEc cluster 

had much lower production capabilities for secondary BAs. The HEb cluster consistently 

generated higher production of metabolites involved in AAA catabolism but not significantly 

higher production of the AAAs themselves (Figure 3B, Table S6). This predicted AAA 

degradation ability was decreased in the HBo cluster and substantially lower in the HEc cluster, 

with the notable exceptions of the tyrosine degradation product tyramine (tyr) and the tryptophan-

derived metabolite tryptamine (trypta). Interestingly, the key AAA precursor chorismite (chor) 

was significantly elevated in the HEc cluster, yet the production capabilities of the AAA 

themselves were reduced in this cluster. Since the HEb cluster contained a disproportionate 

number of recurrent samples compared to the other 2 clusters, these predictions suggest a possible 

role for AAA metabolism in CDI recurrence. 

Transient presence in the high Enterobactericeae cluster was sufficient for elevated patient 

recurrence 
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The HEb cluster contained a disproportionate number of recurrent samples (25/28). To investigate 

the transient bacterial communities of the 22 patients from which these samples were collected, all 

post-index samples from these patients were grouped to generate an enlarged dataset of 55 

samples. Similarly, all post-index samples from the 46 patients in the HBo cluster and the 21 

patients in the HEc cluster were grouped to generates datasets containing 87 and 47 samples, 

respectively. The 66 total patients represented by these samples were allowed to reside in multiple 

datasets referred to as the HEb, HBo and HEc groups. The HEb group contained a disproportionate 

number of recurrent patients (19/22) compared to the HEc group (12/21; p = 0.045) and all grouped 

patients (41/66; p = 0.038; Figure 4A). Within the HEb group, Enterobacteriaceae was most 

negatively correlated with Escherichia and Bacteroides (proportionality coefficient  = -0.18 for 

both pairs; Figure 4B). In addition to health-promoting Bacteroides (63), Enterobacteriaceae was 

negatively correlated with other taxa including Lachnospiraceae (64), Lactobacillus (65) 

Akkermansia (66) and Alistipes (65) reported to be protective against CDI. 

Taxa abundances from the HEb group showed considerable dissimilarity between samples 

from an individual patient (Yue and Clayton dissimilarity index  = 0.35 across the 22 patients; 

Figure S8), with the only consistent feature among the 22 patients being at least one sample 

contained in the HEb cluster (Figure 4C). The first 3 patients (113, 114, 255) were nonrecurrent 

despite having a sample in the HEb cluster. Of the remaining 19 recurrent patients, 10 patients also 

had a sample in the HBo cluster and 4 patients also had a sample in the HEc cluster. Moreover, 7 

of the 19 recurrent patients had final samples contained in either the HBo or HEc cluster. Given 

the irregular sampling frequency reported in the original clinical study (13), this analysis suggests 

that transient presence in the HEb cluster was sufficient to have an elevated risk of recurrence.  
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To investigate if the bacterial community within an individual patient showed distinct 

trends once the HEb cluster was entered, the HEb group was expanded to contain index samples 

and partitioned into 35 samples prior to patients entering the HEb cluster, 28 samples during patient 

presence in the HEb cluster and 15 samples after patients left the HEb cluster. For each patient, 

the Yue and Clayton dissimilarity index  was calculated using taxa abundances in the last sample 

before entering the HEb cluster, the first sample in the cluster and the first sample after leaving the 

cluster (if such a sample existed). Samples showed more dissimilarity when leaving the cluster ( 

= 0.11; Figure 4C) than when entering the cluster ( = 0.27). Interestingly, samples entering and 

leaving the clusters were the most similar ( = 0.35), suggesting partial community restoration 

following transient presence in the cluster. Within the HEb group, the only significant taxa 

abundance changes upon entering the HEb cluster were a large drop in Bacteroides (Wilcoxon 

rank sum test, p < 0.006) and the expected large increase in Enterobacteriaceae (p < 0.004). The 

abundances of these taxa subsequently returned to near pre-HEb values upon leaving the cluster. 

Collectively, these analyses suggest a possible role for Bacteroides in opposing recurrent infection.  

Transient presence in the HEb cluster was not associated with a concurrent or future 

increase in the abundance of Peptostreptococcaceae (Figure 4D), the family containing C. difficile. 

In fact, Enterobacteriaceae and Peptostreptococcaceae abundances were only weakly correlated 

within the entire HEb group ( = -0.01). Therefore, transient presence in the HEb cluster was 

hypothesized to temporarily create a metabolic environment that promoted CDI recurrence through 

an increase in C. difficile toxicity rather than C. difficile expansion. To explore this hypothesis, the 

metabolite production capabilities of the HEb, HBo and HEc groups were compared. The 

metabolic signature of the HEb group (Figure S9) was similar to that predicted when the HEb and 
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HEc clusters were compared (Figure S6, Table S6) and included elevated synthesis of metabolites 

known to induce (e.g. butyrate) and suppress (e.g. cysteine) the toxicity of C. difficile (67, 68). 

FMT patient samples clustered by metabolic capability were predictive of sample type 

Taxa abundance data derived from 40 stool samples representing 14 recurrent CDI patients 

undergoing FMT and from their donors (54) were modeled and to investigate the community 

metabolic changes taking place upon FMT treatment. Model-processed abundance data were 

clustered to generate one small cluster with elevated Cronobacter, Enterobacteriaceae and 

Gammaproteobacteria (averaged 67.9% across the 11 samples) and a second larger cluster with 

elevated Bacteroides and Lachnospiraceae (averaged 43.6% across the 29 samples; Figure 5A). 

Since Cronobacter belongs to the family Enterobacteriaceae and these two taxa averaged 56.4% 

across the 11 samples, the small cluster was considered to be dominated by Enterobacteriaceae. 

Consistent with these results, Cronobacter was most positively correlated with 

Enterobacteriaceae (proportionality coefficient  = +0.12) but negatively correlated with 

Bacteroides ( = -0.29) and several other taxa (e.g. Lachnospiraceae; Figure 5B) often reported to 

be CDI protective (64, 65). Similarly, Bacteroides was negatively correlated with 

Enterobacteriaceae ( = -0.21), Gammaproteobacteria and Clostridiaceae (Figure S10B), taxa 

which have been reported to be elevated in CDI (64, 65, 69).  

When PCA was performed on the model-processed abundance data, the 

Enterobacteriaceae-dominated cluster was clearly distinguishable and appeared to have an 

overrepresentation of pre-FMT patient samples (Figure 5C). In fact, this cluster contained a 

disproportionately large number of pre-FMT samples (10/11) compared to both the Bacteroides-

elevated cluster (4/29; p < 0.0001) and the entire sample set (14/40; p = 0.0014; Figure 5D). 

Additionally, the Enterobacteriaceae-dominated cluster had a disproportionately small number of 
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donor samples (0/11) and post-FMT patient samples (1/11) compared to the Bacteroides-elevated 

cluster (p = 0.038 and 0.027, respectively). The findings that the high Enterobacteriaceae (HEb) 

cluster studied earlier contained a disproportionately large number of recurrent CDI samples (see 

Figure 2) and the high Enterobacteriaceae cluster found here contained a disproportionately large 

number of pre-FMT samples provide additional support for the hypothesis that elevated 

Enterobacteriaceae is associated with recurrent CDI.  

When similar analyses were applied directly to the abundance data, the dataset was split 

equally into one cluster with elevated Cronobacter and Enterobacteriaceae (averaged 35.9% 

across the 20 samples) and a second cluster with elevated Bacteroides and Lachnospiraceae 

(averaged 55.5% across the 20 samples; Figure S10A,C). The Enterobacteriaceae-elevated cluster 

contained all the pre-FMT samples (14/20), representing large statistical differences with the 

Bacteroides-elevated cluster (0/20; p < 0.00001 ) and the entire dataset (14/40; p = 0.0014; Figure 

S10D). By contrast, the Bacteroides-elevated cluster contained a disproportionally large number 

of donor samples (9/20) compared to the Enterobacteriaceae-elevated cluster (1/20). These results 

are consistent with those obtained from the model-processed abundance data and collectively 

identified the pre-FMT samples as compositionally and functionally distinct from the donor and 

post-FMT samples. 

High Enterobactericeae FMT cluster exhibited distinct bile acid and aromatic amino acid 

metabolism 

Predicted NMPCs of 411 exchanged metabolites were statistically analyzed to assess metabolic 

differences between the 40 samples clustered based on model-processed abundance data. A 

comparison of the high Enterobactericeae cluster (HEb-FMT, 11 samples) and the high 

Bacteroides cluster (HBo-FMT, 29 samples) generated 60 differentially produced metabolites 
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(Figure S11). Only 23 of these 60 metabolites were identified as being differentially produced 

between the HEb and HBo clusters defined from model processing of CDI post-index samples 

(Figure S5; Table S6). Interestingly, 10 secondary BA metabolites and 4 AAA catabolic products 

were among the 37 newly identified metabolites. Therefore, BA and AAA metabolism in the HEb-

FMT and HBo-FMT clusters were examined more carefully by comparing all secreted metabolites 

belonging to these pathways. The HEb-FMT cluster had decreased production of all 17 BA 

metabolites  (Figure 6A), including significantly reduced synthesis of 10 secondary BAs generally 

correlated with recurrent CDI (59, 70, 71). By contrast, the HEb-FMT cluster had enhanced AAA 

metabolism as evidenced by elevated production of all 3 AAAs and 15 AAA degradation products, 

including significantly increased synthesis of 8 degradation products (Figure 6B). Given that the 

HEb-FMT cluster was overrepresented in pre-FMT samples and underrepresented in donor and 

post-FMT samples, these predictions provide additional support for the hypothesis that BA and 

AAA community metabolism may play key roles in CDI recurrence and treatment. 

 When the same analysis procedure was applied to NMPCs clustered according to 16S-

derived abundance data, 46 metabolites differentially produced between the Enterobactericeae-

elevated and Bacteroides-elevated clusters were identified (Figure S12). Overproduction of AAA 

catabolic products in the Enterobactericeae-elevated cluster continued to be pronounced, but 

differences in secondary BAs between the two clusters were no longer evident. The inability of 

the clustered abundance data to generate differential predictions of BA metabolism was attributed 

to the Enterobactericeae-elevated cluster containing 1 donor and 5 post-FMT samples in addition 

to all 14 pre-FMT samples. Therefore, clustering the samples according to model-processed 

abundance data appeared to offer advantages for understanding community metabolic changes 

resulting from FMT.  
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Discussion 

An in silico metagenomics pipeline was used to translate 16S-derived abundance data into sample-

specific community models for investigating the metabolic determinants of recurrent CDI. The 

models allowed sample-by-sample predictions of metabolite production rates that were used both 

to cluster samples according to their functional metabolic capabilities and to provide mechanistic 

insights into clusters exhibiting high recurrence. Community model predictions were dependent 

both on the taxonomic groups represented in the 16S data and the fidelity of individual taxa 

metabolic models. The CDI (PMC4847246) and FMT (54) datasets used in this study captured 

taxonomic differences primary at the genus and family levels and therefore precluded modeling 

metabolism at the strain and species levels (53). Despite this limitation, the pan-genome metabolic 

models used for community modeling allowed substantial differentiation of samples according to 

their functional capabilities. 

Taxa abundance data and model-processed abundance data were clustered to determine if 

the resulting clusters exhibited statistically significant differences between the number of recurrent 

CDI samples. No significant differences were observed when only index samples were tested, 

suggesting that community composition prior to CDI treatment may provide limited information 

about recurrence. By contrast, both abundance data and model-processed abundance data derived 

from post-index samples identified high Enterobacteriaceae, low Bacteroides clusters as having 

disproportionate numbers of recurrent samples. Numerous studies have identified 

Enterobacteriaceae as positively associated and Bacteroides as negatively associated with primary 

CDI (63-65) and to a lesser extent with subsequent reinfection (72, 73). The analyses presented 

here suggest CDI recurrence is more dependent on community response to antibiotic therapy than 

on the community composition entering therapy. Indeed, first-line antibiotics for CDI treatment 
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including metronidazole and vancomycin are known to collaterally target Bacteroides (74, 75) 

while having little efficacy against Enterobacteriaceae  (76-78). Unfortunately, the metadata 

available for these samples only reported if the patient received antibiotic therapy prior to CDI 

diagnosis. Since next generation antibiotics such as fidaxomicin used for recurrent CDI are more 

specific for C. difficile and are known to spare Bacteroides (79, 80), knowledge of which 

antibiotics were used to treat the patients represented in the high Enterobacteriaceae clusters 

would enable additional analysis. 

As compared to direct use of abundance data, an advantage of utilizing predicted 

metabolite production rates for sample clustering was that the high Enterobacteriaceae (HEb) 

cluster contained more samples (28 vs. 15) representing more patients (22 vs. 11). The model-

based cluster included samples with a high combination of Enterobacteriaceae and Escherichia, 

which have similar metabolic capabilities since Escherichia is a genus within Enterobacteriaceae. 

The capability to collapse samples with different compositions but similar metabolic features is 

useful when dealing with 16S-derived abundance data at several taxonomic levels, a common 

situation in human microbiome research. 

Another benefit of quantifying metabolic capabilities through modeling was the ability to 

predict differentially synthesized metabolites across sample groups. When compared to a more 

taxonomically diverse cluster with elevated Bacteroides (HBo cluster) and no statistical difference 

in recurrence, the HEb cluster was predicted to have significantly reduced capabilities for 

secondary bile acid (BA) synthesis. These predictions were generally consistent with the 

established role of BA metabolism in recurrent CDI, as elevated primary BA and reduced 

secondary BA levels are known to be a disease signature (59, 70, 71). The specific effects of 

individual BA metabolites are more nuanced, as the primary BA cholate is known to induce 
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germination of C. difficile spores, the primary BA chenodeoxycholate suppresses both germination 

and vegetative growth and the secondary BA deoxycholate induces germination but suppresses 

growth (64, 81). To achieve prediction at this level of granularity, the metabolic models would 

need to be constructed with 16S-derived abundance data at lower taxonomic levels since individual 

species and strains are known to have distinct BA metabolism (53). 

Despite having no statistical difference in recurrence, a third cluster elevated in 

Enterococcus and to a lesser extent Lactobacillus (HEc cluster) had significantly reduced 

capabilities for secondary BA synthesis compared to both the HEb and HBo clusters. These 

predictions underscore the fact that recurrent CDI is a complex disease and not likely to be 

completely explained by a single factor such as community BA metabolism (54, 65). Interestingly, 

model-based analysis revealed aromatic amino acid (AAA) metabolism as a second putative 

mechanism underlying increased recurrence in the HEb cluster. More specifically, this cluster was 

predicted to have significantly increased synthesis of numerous AAA degradation products 

compared to the two lower recurrence clusters. Enterobacteriaceae is thought to be largely 

responsible for AAA catabolism in the gut (41, 82), and AAA synthesis has been implicated as a 

metabolic function protective against CDI (83). C. difficile isolates have been shown to have highly 

variable AAA metabolisms (84), opening the possibility that Enterobacteriaceae interactions with 

C. difficile are isolate dependent. However, the 22 patients represented in the HEb cluster were 

reported to have been infected with at least 9 different C. difficile ribotypes. While evidence 

directly linking AAA metabolism and CDI is currently lacking, the modeling work presented here 

suggests that this putative connection could be a fruitful area for future experimental studies. 

All samples from each patient with at least one sample in the HEb cluster were collected 

to allow longitudinal analysis of individual patients. This HEb group had a disproportionate 
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number of recurrent patients (19/22) compared to the larger patient population. HEb group patients 

exhibited compositionally variable communities that routinely switched between clusters, 

suggesting that transient presence in the HEb cluster could be sufficient for CDI recurrence. Since 

Enterobacteriaceae and C. difficile abundances had a very weak negative correlation within the 

HEb group, Enterobacteriaceae did not seem to support C. difficile vegetative growth but may 

have induced spore germination and/or enhanced toxicity of vegetative cells. As discussed above, 

the BA metabolite profile predicted for the HEb cluster was consistent with enhanced germination. 

C. difficile toxicity is thought to be regulated by a number of metabolites (67, 68, 85). Two of the 

most potent regulators are toxicity-inducing butyrate and toxicity-suppressing cysteine, both of 

which were predicted to be elevated in the HEb cluster so as to have opposing effects. An intriguing 

but entirely speculative possibility is that AAA degradation products from Enterobacteriaceae 

induced C. difficile toxicity. 

To test consistency of model predictions derived from the CDI dataset, the in silico 

metagenomics pipeline was applied to 40 samples obtained from FMT patients and their stool 

donors (54). Clustering of model-processed abundance data generated a cluster with a 

disproportionate number of pre-FMT samples, suggesting distinct metabolic function compared to 

donor and post-FMT communities as has been reported (70, 86, 87). This cluster had elevated 

Cronobacter and Enterobacteriaceae with very low Bacteroides. Because Cronobacter is a 

member of Enterobacteriaceae, this cluster was identified as high Enterobacteriaceae and was 

compositionally similar with the high recurrence HEb cluster found in the CDI dataset. A second 

cluster comprised mainly of donor and post-FMT samples was elevated in Bacteroides and 

Lachnospiraceae and compositionally similar to the HBo cluster identified from CDI samples. 

Consistent with these results, Cronobacter was found to be strongly positively correlated with 
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Enterobacteriaceae and strongly negatively correlated with Bacteroides across the FMT dataset. 

These predictions agreed with observations that FMT tends to decrease the abundances of 

Enterobacteriaceae and other Proteobacteria (54, 73, 88) while increasing the abundances of 

Bacteroides and other health-promoting taxa such as Lachnospiraceae, Blautia and Alistipes (35, 

89, 90). 

The HEb cluster identified from FMT samples (HEb-FMT) was predicted to have reduced 

capabilities for synthesis of both primary and secondary BAs, while the HEb cluster derived from 

CDI samples (HEb-CDI) exhibited only reduced secondary BA synthesis. Unlike the pan-genome 

model of the family Enterobacteriaceae, the Cronobacter genus model lacked BA metabolic 

pathways because the necessary deconjugation and transformation genes have not been identified 

in Cronobacter sakazakii, the only member of this genus contained in the VMH database. The 

predicted difference in primary BA synthesis capabilities between Enterobacteriaceae in the CDI 

samples and Cronobacter/Enterobacteriaceae in the FMT samples demonstrate possible 

limitations of metabolic modeling at higher taxonomic levels and the potential value of more 

resolved 16S rRNA sequence data. Despite these differences, the HEb-FMT cluster still exhibited 

reduced secondary BA levels observed in recurrent CDI (59, 70, 71) and resolved through FMT 

(70, 71, 91). The HEb-FMT cluster also was predicted to have the capability for elevated AAA 

degradation including increased synthesis of the catabolic products phenylpyruvic acid, tyramine 

and tryptamine derived from phenylalanine, tryrosine and tryptophan, respectively. Because they 

also were elevated in the HEb-CDI cluster compared to high Bacteroides (HBo-CDI) cluster, these 

3 metabolites might make interesting experimental targets for their ability to induce germination 

and/or enhance toxicity of C. difficile clinical isolates. 
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Despite the ability of the proposed in silico workflow to identify high Enterobacteriaceae-

containing communities as disproportionally recurrent and pre-FMT, model-based clustering did 

not result in idealized partitioning of patient samples. For example, the HEb-CDI cluster contained 

3 nonrecurrent patients along with 19 recurrent patients, and the HEb-FMT cluster contained 1 

post-FMT sample along with 10 pre-FMT samples. Similarly, the HEb clusters contained only 

subsets of all recurrent patients (22/66) and all pre-FMT samples (10/14). One possible explanation 

was that the likelihood of recurrence was dependent on the duration the transient community had 

an HEb cluster-like composition, as Enterobacteriaceae would require sufficient time to establish 

favorable metabolic conditions for C. difficile pathogenicity. While intriguing, such speculation 

was impossible to test with the available dataset due to infrequent and irregular sampling. The 

most obvious explanation for the observed discrepancies is that recurrent CDI has a very complex 

disease etiology that depends on host-microbiota-environment interactions, both metabolic and 

non-metabolic. Therefore, the inability to fully predict patient recurrence based only on model-

processed 16S-derived abundance was hardly surprising. However, the hypotheses that high 

Enterobacteriaceae-containing communities are more prone to recurrence and that recurrence may 

be partially attributable to the combination of disrupted BA and AAA metabolism seems worthy 

of further investigation through the type of integrated metagenomics-modeling framework utilized 

in this study.  
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Tables 

Table 1. Summary of CDI patient data (PMC4847246) and FMT patient data (PMC4068257). 

CDI patient data FMT patient data 

 Nonrecurrent Recurrent Total  Total 

Patients 42 51 93 Patients 14 

Pre-index samples 1 5 6 Pre-FMT samples 14 

Index sample 42 51 93 Donor samples 10 

Post-index samples 37 89 126 Post-FMT samples 26 

Total samples 80 145 225 Total samples 40 
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Figure Legends 

1. Clustering of 90 index samples using 16S-derived abundance data. (A) Average taxa 

abundances across the samples in each cluster for taxa which averaged at least 5% of the total 

abundance. (B) Number of recurrent, nonrecurrent and total samples in each cluster and all 90 

index samples. None of the clusters contained a disproportionate number of recurrent samples 

(Fisher’s exact test, p > 0.5). (C) PCA plot of the abundance data with each recurrent and 

nonrecurrent sample labeled by its associated cluster number. 

2. Clustering of 119 post-index samples using model-processed abundance data. (A) 

Average taxa abundances across the samples in each cluster for taxa which averaged at least 

5% of the total abundance. (B) Number of recurrent, nonrecurrent and total samples in each 

cluster and all 119 post-index samples. Cluster 2 contained a disproportionate number of 

recurrent samples (25/28) compared to the cluster 1 (14/28; p = 0.003) and the entire post-

index dataset (83/119; p = 0.035). (C) PCA plot of model-processed abundance data with each 

recurrent and nonrecurrent sample labeled by its associated cluster number. (D) Variance 

explained by PCA of 16S-derived abundance data and model-processed abundance data. The 

total number of components for each dataset shown in the legend was determined by the 

MATLAB function pca. 

3. Net maximal production rates of bile acid and aromatic amino acid metabolites in the 

high Enterobacteriaceae, high Bacteroides and high Enterococcus clusters generated from 

119 model-processed post-index samples. (A) Bile acid metabolites in which the average 

production rate was non-zero in at least one cluster. (B) Aromatic amino acid metabolites in 

which the average production rate was non-zero in at least one cluster. Metabolites 

abbreviations are taken from the VMH database (www.vmh.life). Full metabolite names, their 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 12, 2020. ; https://doi.org/10.1101/2020.04.10.036111doi: bioRxiv preprint 

http://www.vmh.life/
https://doi.org/10.1101/2020.04.10.036111
http://creativecommons.org/licenses/by-nc-nd/4.0/


39 
 

associated metabolic pathways and numeric values for their average production rates in each 

cluster are given in Table S6. 

4. Figure 4. Analysis of patient samples in the high Enterobacteriaceae (HEb) group. All 

post-index samples from the 22 patients with at least one sample in the high 

Enterobacteriaceae (HEb) cluster were grouped to generate the enlarged HEb group of 55 

samples. (A) The number of recurrent, nonrecurrent and total patients in the HEb group 

compared to those in the HBo and HEc groups. All post-index samples of the 46 patients 

represented in the HBo cluster and the 21 patients represented in the HEc cluster were grouped 

to produce the 87 and 47 samples, respectively, in the HBo and HEc groups. The 66 total 

patients represented by these samples were allowed to reside in multiple groups. (B) 

Correlation between Enterobacteriaceae and other taxa in the HEb group calculated from the 

55 post-index samples as measured by the proportionality coefficient  (PMC4361748). The 7 

taxa with the largest || values are shown. (C) Transient progression of samples from the 22 

patients in the HEB group with samples denoted as 1 if contained in the HEb cluster, 2 if 

contained in the HBo cluster, 3 if contained in the HEc cluster and 4 if not clustered due to low 

abundance of modeled taxa (see Methods). (D) Average taxa abundances for an expanded HEb 

group that also contained pre-index and index samples to generate a dataset of 78 samples. 

These samples were partitioned into 35 samples prior to patients entering the HEb cluster, 28 

samples during patient presence in the HEb cluster and 15 samples after patients left the HEb 

cluster. 

5. Clustering of 40 FMT samples using model-processed abundance data. (A) Average taxa 

abundances across the samples in each cluster for taxa which averaged at least 5% in at least 

one cluster. (B) Correlations between Cronobacter and other taxa calculated from all 40 
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samples as measured by the proportionality coefficient . The 8 taxa with the largest || values 

are shown. (C) PCA plot of the model-processed abundance data with each pre-FMT, donor 

and post-FMT sample labeled by its associated cluster number. (D) Number of pre-FMT, donor 

and post-FMT samples in each cluster and all 40 samples. Cluster 2 contained a 

disproportionately large number of pre-FMT samples (10/11) compared to the cluster 1 (4/29; 

p < 0.0001) and the entire FMT dataset (14/40; p = 0.0014). 

6. Net maximal production rates of bile acid and aromatic amino acid metabolites in the 

high Enterobacteriaceae and high Bacteroides clusters generated from 40 model-

processed FMT samples. (A) Bile acid metabolites in which the average production rate was 

non-zero in at least one cluster. (B) Aromatic amino acid metabolites in which the average 

production rate was non-zero in at least one cluster. Metabolite abbreviations are taken from 

the VMH database (www.vmh.life). Full metabolite names, their associated metabolic 

pathways and numeric values for their average production rates in each cluster are given in 

Table S7. 
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Figures 

 

Figure 1. Clustering of 90 index samples using 16S-derived abundance data. 
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Figure 2. Clustering of 119 post-index samples using model-processed abundance data. 
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Figure 3. Net maximal production rates of bile acid and aromatic amino acid metabolites in 

the high Enterobacteriaceae, high Bacteroides and high Enterococcus clusters generated from 

119 model-processed post-index samples. 
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Figure 4. Analysis of patient samples in the high Enterobacteriaceae (HEb) group.  
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Figure 5. Clustering of 40 FMT samples using model-processed abundance data.  
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Figure 6. Net maximal production rates of bile acid and aromatic amino acid metabolites in 

the high Enterobacteriaceae and high Bacteroides clusters generated from 40 model-

processed FMT samples. 
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