

Probing the structure-function relationship with neural

networks constructed by solving a system of linear

equations

Camilo J. Mininni1,2* B. Silvano Zanutto1,2

1. Instituto de Biología y Medicina Experimental – Consejo Nacional de

Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.

2. Instituto de Ingeniería Biomédica – Universidad de Buenos Aires, Buenos

Aires, Argentina.

*Corresponding author

mininni@dna.uba.ar (CJM)

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 23, 2020. ; https://doi.org/10.1101/2020.04.20.051565doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.20.051565
http://creativecommons.org/licenses/by-nc/4.0/

2

Abstract: 1

Neural network models are an invaluable tool to understand brain function, since they allow to 2

connect the cellular and circuit levels with behaviour. Neural networks usually comprise a huge 3

number of parameters, which must be chosen carefully such that networks reproduce anatomical, 4

behavioural and neurophysiological data. These parameters are usually fitted with off-the-shelf 5

optimization algorithms that iteratively change network parameters and simulate the network to 6

evaluate the changes and improve fitting. Here we propose to invert the fitting process by 7

proceeding from the network dynamics towards network parameters. Firing state transitions are 8

chosen according to the transition graph followed by an agent when solving a given behavioural 9

task. Then, a system of linear equations is constructed from the network firing states and 10

membrane potentials, in such a way that system consistency in guarantee. This allows to 11

uncouple the activity features of the model, like its neurons firing rate and correlation, from the 12

connectivity features and from the task-solving algorithm implemented by the network, allowing 13

to fit these three levels separately. We employed the method to probe the structure-function 14

relationship in a stimuli sequence memory task, finding solution networks where commonly 15

employed optimization algorithms failed. The constructed networks showed reciprocity and 16

correlated firing patterns that recapitulated experimental observations. We argue that the 17

proposed method is a complementary and needed alternative to the way neural networks are 18

constructed to model brain function. 19

 20

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 23, 2020. ; https://doi.org/10.1101/2020.04.20.051565doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.20.051565
http://creativecommons.org/licenses/by-nc/4.0/

3

Introduction: 21

Understanding brain function requires construction of physiological models that explain 22

experimental data, which encompass behavioural outcome, anatomical features, neurons 23

biophysics and coding properties, among others1,2. Many kinds of physiological models have been 24

proposed along history, each one with their own merits. Among them, neural network models are 25

well poised to connect all levels of analysis, from the behavioural to the molecular level, being a 26

natural choice as neurons are the functional units of the brain. Yet, constructing neural networks 27

that are suitable models is not an easy task. Neural networks can be hand-designed, setting 28

network parameters following experimental data, or randomly chosen when experimental data is 29

not available or as a mean of attaining more general conclusions. However, this approach may 30

fall short given the complexity of the nervous systems. To tackle this issue, theorist have 31

employed optimization methods to define the network parameters in such a way that a loss 32

function is minimized. The loss function must encompass relevant aspects of the model, like its 33

performance in one or several tasks, structural constrains such as the Dale’s principle, or a 34

connectivity with a certain degree of sparseness 3. Optimization methods are widely used in 35

artificial intelligence (AI), and the ongoing deep learning revolution has prompted an explosion of 36

fitting algorithms, and the eagerness of taking advantage of them to build models of brain 37

function4,5. However, AI needs are different from the theoretical neuroscience needs. Artificial 38

intelligence deals with constructing systems capable of solving difficult tasks, employing very 39

general optimization algorithms parameter fitting6. On the other hand, models in neuroscience are 40

expected to explain how animals behave in simple tasks, yet with biologically plausible neural 41

networks. Simple tasks are desired because behavioural outcome is easier to interpret, and 42

mechanistic explanations easer to envisage. Thus, in AI the difficulty strives in the task, while in 43

theoretical neuroscience it strives in the restrictions in network design that are imposed by biology. 44

Therefore, methods for parameter fitting in theoretical neuroscience can take leverage from this 45

point – the simplicity of the task – to solve problems that could be too hard to solve with generic 46

optimization methods. 47

One approximation that has been overlooked consists in finding the synaptic weights of a 48

network as the solution of a system of equations. For many commonly employed neural network 49

models, neurons perform a weighted sum of their inputs, followed by a non-linear transformation. 50

For these models, if neurons firing and their added postsynaptic potential are known, the synaptic 51

weights can be readily found by solving a linear system of equations in which the neurons firing 52

constitute the coefficient matrix and the added postsynaptic potentials are the dependent 53

variables. Thus, the problem of finding the network parameters is replaced by the problem of 54

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 23, 2020. ; https://doi.org/10.1101/2020.04.20.051565doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.20.051565
http://creativecommons.org/licenses/by-nc/4.0/

4

finding sequences of valid network states that are consistent with solving the task. Although this 55

problem might seem as hard as the former, we show in this work that viable network dynamics 56

can easily be found by taking into account the transition graph associated with solving the task. 57

By doing so, we were able to construct networks with millions of parameters extremely fast, 58

without inefficient searches in parameter space. Moreover, optimization algorithms may have 59

biases for a subset of all possible solutions7. These biases depend on the algorithms employed, 60

the hyperparameters and the regularizations, and the relation between biases and its causes 61

might be difficult to understand or control8. In contrast, our method allows to construct networks 62

by sampling from a desired distribution of network dynamics, while further structural constrains 63

on solutions can be easily imposed. Since the method proceeds from the network firing states to 64

the network parameters, we call it the Firing to Parameter (FTP) method. 65

In this work we test the FTP method in a sequence memory task, and compare the method 66

performance against an off-the-shelf optimization algorithm. Then, we show how to construct 67

networks with certain activity and structural constrains, and analyse the relationship between 68

structure and function. 69

 70

 71

 72

 73

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 23, 2020. ; https://doi.org/10.1101/2020.04.20.051565doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.20.051565
http://creativecommons.org/licenses/by-nc/4.0/

5

Results: 74

Neural networks that follow a predefined transition graph: 75

We will consider an agent that interacts with its environment. At each time step t the agent is 76

at one of M possible states m . Conversely, the environment adopts one of L possible states 77

e . Agent and environment transitions can be expressed as: 78

 79

1 1[,] [E(,),A(E(,),)]t t t t t t te m e m e m m+ + = (1)80

 81

where E and A are the transition functions that take the agent and environment states and give 82

the agent and environment states in the subsequent time step. The agent state m may codify 83

several sub-states related to a biological agent, such as the behavioural response, reward signals, 84

etc. Equation (1) thus describes a state machine which can model animal behaviour and 85

neurophysiology. In particular, a behavioural task in which the agent must interact with the 86

environment in a certain way to obtain reward can be codified in the E and A functions. Hence, 87

any agent that solves a given behavioural task must follow the transition graph associated with 88

solving that task. This includes agents controlled by recurrent neural networks, which are the main 89

focus in this paper. We will work with networks of binary (McCulloch-Pitts) neurons composed of 90

zN recurrently connected integration neurons. Information about the environment is carried by a 91

set of yN sensory neurons (Fig. 1a). The temporal evolution of the network is dictated by: 92

 93

H()

y zu yw zw

z u

= +

= −
 94

 95

where yw and rw are synaptic weights matrices of sensory and integration neurons, vector y 96

contains firing states of sensory neurons, is a vector of neuron thresholds, and H stands for 97

the Heaviside function. Vector u contains the neurons activation states, akin of membrane 98

potentials, and vector z contains the neurons firing states. We will call mz the vector of firing 99

states of all integration neurons associated with population state m , and ey the vector of firing 100

states of sensory neurons associated with environment state e . Since we want our network to 101

follow the state transitions depicted in eq. (1), the next equation must hold: 102

 103

 (,) ,H()A e m e mz c w = − (2) 104

 105

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 23, 2020. ; https://doi.org/10.1101/2020.04.20.051565doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.20.051565
http://creativecommons.org/licenses/by-nc/4.0/

6

where , [,]e m e mc y z= is the concatenation of sensory and integration neurons firing states, and 106

[,]y zw w w= is the concatenation of the synaptic weight matrices. Equation (2) says that 107

transitions in network states as ruled by the weight matrix w must be consistent with transitions 108

in the transition graph that solves the target task. 109

 110

Linear system construction: 111

Figure 1. Constructing recurrent networks that follow a predefined transition graph. a, networks are composed of

binary McCulloch & Pitts neurons. Sensory neurons codify external stimuli and project to the integration neurons

through synaptic weights yw . Integration neurons are recurrently connected through synaptic weights
rw . In the

s-task, the population of integration neurons must codify in its firing state the sequence of the last stimuli

presented. b, transition graph showing transitions between network states during execution of the s-task, for 3 =
. Each node in the graph is a network state, and arrows depict transitions between nodes after stimuli presentation.

Each possible sequence of 3 stimuli in length is codified by exactly one network state. Nodes are numbered such

that transitions can be represented in a simple transition matrix. c, transition matrix associated with the transition

graph in panel (b). It shows the activation states u that are reached when recurrent neurons are in a population

firing state z , and
1s (blue) or

2s (red) are presented. d, same transitions depicted in panels (b) and (c), but

explicitly showing vectors
iu and vectors

ic , which are the concatenation of one y and one z . The index i is

such that
iz and

iu are the firing state and activity vectors corresponding to agent state
im .

a b

c

m1 m8

m7m5

m6m3

m4m2

Sensory

neurons

Integration

neurons

u
1

u
2

u3

u4

u
5

u
6

u
7

u8

z1 z3z2 z4 z5 z6 z7 z8

Firing state (t)

A
c
ti
v
a

ti
o

n
 s

ta
te

 (
t+

1
)

[y
1
,z

5
]

[y
2
,z

5
]

[y
1
,z

6
]

[y
2
,z

6
]

[y
1
,z

7
]

[y
2
,z

7
]

[y
1
,z

8
]

[y
2
,z

8
]

u
1

u
2

u
3

u
4

u
5

u
6

u
7

u
8

[y
1,

z
1
] u

1
[y

2
,z

1
]

[y
1
,z

2
]

[y
2
,z

2
]

[y
1
,z

3
]

[y
2
,z

3
]

[y
1
,z

4
]

[y
2
,z

4
]

u
3

u
4

u
5

u
6

u
7

u
8

u
2

d

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 23, 2020. ; https://doi.org/10.1101/2020.04.20.051565doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.20.051565
http://creativecommons.org/licenses/by-nc/4.0/

7

We are interested in constructing a recurrent network of neurons by solving a system of linear 112

equations built from the set of neurons firing states. To this end we first define a coefficient matrix 113

C , whose rows result from the concatenation of one ey vector and one
mz vector, for all 114

combinations of environment state e and agent state m : 115

 116

1 1

1

1

L

M

L M

e m

e m

e m

e m

y z

y z

C

y z

y z

=

 117

 118

Then we define a matrix U , such that its ith row vector iu is such that H()iu − gives the z 119

associated with the state m that should follow from the e state and m state of row i in C , 120

according to the desired transition graph. Thus, matrix C and U condense all the transitions 121

required to solve the target task. It follows that: 122

 123

 Cw U= (3) 124

 125

The matrix w can be found by computing: 126

 127

 w C U+= (4) 128

 129

where C+
 stands for the pseudoinverse of C . Thus, the connectivity matrix w can be obtained 130

by solving the linear system with coefficient matrix C and dependent variable matrix U . Since 131

we are using the pseudoinverse to solve the system, the solution is the one with minimum 132

Frobenius norm9. 133

We want to sample from the set of matrixes w that accomplish the task constrain, i.e. networks 134

constructed with the sole constrain of solving the target task. A naïve approximation to this 135

problem would be to pick the iu vectors at random, threshold them to obtain the associated iz 136

vectors, and construct matrices C and U by following the desired transition graph. However, by 137

doing so it is very likely that we end up by having an inconsistent system of equations, meaning 138

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 23, 2020. ; https://doi.org/10.1101/2020.04.20.051565doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.20.051565
http://creativecommons.org/licenses/by-nc/4.0/

8

that there is no network of neurons that can follow those state transitions. This is because matrix 139

C is not full rank, but its rows are linearly dependent. If we consider the case of two stimuli 1s 140

and 2s , codified by vectors 1y and
2y , then each vector 1[,]my z can be expressed as a linear 141

combination of
2[,]my z and vectors 1[,]Py z and

2[,]Py z , where vector
Pz can be any vector 142

taken from the set of all firing states the network can adopt: 143

 144

2 1 1 2[,] [,] [,] [,]m m P Py z y z y z y z= − + (5) 145

 146

Thus, rank() 1C M= + . Following the Rouché-Capelli theorem10, eq. (3) has a solution if and 147

only if rank() rank([,])C C U= , being [,]C U the augmented matrix. Yet, if we choose vectors 148

u randomly, when adjoined to matrix C the linear dependencies expressed in eq. (5) will be 149

broken, and the resulting augmented matrix will have rank above 1M + . However, consistency 150

can be enforced if initial randomly generated vectors u are linearly combined following linear 151

dependencies in C , such that the same linear dependencies in C are conserved in the 152

augmented matrix. 153

 154

The s-task: 155

In the following we will consider a sequence memory task: the environment consists of two 156

stimuli 1s and 2s , which are sequentially presented at each time step, chosen randomly with 157

equal probability. To obtain reward at time step t the agent has to recall the stimulus presented 158

at time step t t− . Successful behaviour thus requires to have a memory of stimuli sequences 159

of length 1t = + , starting from t t− . The constant defines the memory requirements of 160

the task. Figure 1b shows an agent’s states and the transitions gated by the stimuli when solving 161

the s-task for 3 = . 162

To solve the task the agent needs at least 2M = states, meaning that complexity grows 163

exponentially. This would suggest that the task is a complex one. However, it can be seen that 164

the transition matrix has a stereotyped form if nodes are numbered properly (Fig. 1c). The 165

transition graph in Fig. 1b shows the state transitions any agent that solves the s-task should 166

follow. With the transition matrix structure at hand we can construct matrices C and U . We will 167

define a neural network with two sensory neurons such that
1

(1,0)sy = and
2

(0,1)sy = . If we 168

order the transitions as in Fig. 1b-d, we have that, if eq. (3) has a solution, rows in the augmented 169

matrix should satisfy: 170

 171

 2 1 1 1 1 2 1 1[, ,] [, ,] [, ,] [, ,]T T T T P P P Py z u y z u y z u y z u+ + + += − + (6) 172

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 23, 2020. ; https://doi.org/10.1101/2020.04.20.051565doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.20.051565
http://creativecommons.org/licenses/by-nc/4.0/

9

 173

where T are indexes over the rows of C and U , which are odd numbers between 1 and M . 174

The row index P is and odd number between 1 and M , different from all T . Note that
1T Tz z += 175

and
1P Pz z += , but

1T Tu u + and 1P Pu u + . Equation (6) shows us how row vectors in matrix U 176

should be linearly combined such that eq. (3) has a solution. We have that: 177

 178

1 1T T P Pu u u u+ += − + (7) 179

 180

This means that the number of linear combinations in U is 2 / 2 1R = − , and 181

rank() 2 / 2 1U = + . Note that rewriting eq. (7) we have: 182

 183

2 1, ,s i s i iu u− = (8) 184

 185

where
1 ,s iu and

2 ,s iu are the activation that neuron i adopts after presentation of 1s and 2s , 186

respectively. In words, eq. (8) tells that the difference in effects provoked by the stimuli is a 187

constant for each neuron, regardless of which network state or transition we are dealing with. This 188

fact is not surprising, since synaptic weights are held fixed, so each stimulus has the same effect 189

at any time, which is specific for each neuron. Thus, making the system of equations in (3) 190

consistent is equivalent to guarantee that activation values are chosen so that the effect of each 191

stimulus is consistent. 192

We proceeded by generating a vector of thresholds , with 3 51
2 2 2, ,i . Then, we 193

constructed base matrix baseU with 2 / 2 1baseM = + row vectors such that: 194

 195

1

(,) (,)
2

base iU m i r m i= + + 196

 197

where (,)r m i is an integer uniformly sampled from the [-5,5] interval. We added the term 1
2 to 198

avoid fitting errors when numerically solving the system, otherwise the activation values could be 199

equal to the threshold values, which would result in erroneous firing states because of numeric 200

precision issues. This initial randomly generated matrix baseU has full rank. We computed the 201

vector of i elements as the difference between the first two rows of baseU . Next, we applied 202

eq. (8) to generate the remaining R rows as linear combinations of the third to the last row of 203

baseU , obtaining 2 row vectors which constitute the matrix
*U . Each row vector u in matrix

*U 204

has the neurons activations for one of the 2 network state. Applying eq. (8) creates a 205

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 23, 2020. ; https://doi.org/10.1101/2020.04.20.051565doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.20.051565
http://creativecommons.org/licenses/by-nc/4.0/

10

dependency between
1 ,s iu and

2 ,s iu . Hence, for each linear combination we chose at random 206

which activation value (the one associated with 1s or 2s) will be defined in terms of the other. 207

This is to ensure that u value distributions are equal between stimuli. We constructed matrix Z 208

by applying threshold to
*U , and then we followed the ordering depicted in Fig. 1b-d to 209

construct matrix U from
*U , and matrix C from Z and vectors 1y ,

2y . Finally, we employed 210

eq. (4) to obtain the synaptic weight matrix w . Since matrix w is the minimum Frobenius norm 211

solution to eq. (4) and defines a network that solves the s-task, we call it a T+F network. 212

We are assuming that two conditions are met after thresholding: 1) the resulting vectors c are 213

all different, and 2) they are linearly independent. If after thresholding any vector is repeated, this 214

would result in lower performance in the task, since not all sequences of length will be encoded. 215

On the other hand, if linear independency fails after thresholding, then matrix C will have more 216

linear combinations than the contemplated in eq. (5), meaning that combining the rows of U 217

following eq. (8) will not be enough, and some linear dependencies in C will be lost in the 218

augmented matrix, making the system inconsistent. In our implementation of the algorithm, if any 219

of these two conditions were not verified, then the algorithm was restarted from the beginning. 220

This occurred sometimes, for 5 . For higher , both conditions were always fulfilled in one 221

attempt. 222

In the above explanation we assumed that 2zN = , such that there is one neuron per sequence 223

of length . It was possible to fit networks with lower number of neurons, but undesired linear 224

dependencies in C after thresholding, or a number of network states bellow 2 occurred with 225

higher probability, especially for 3 . 226

We employed the FTP algorithm to construct networks of 2zN = neurons that solve the s-227

task (Fig. 2a,b). The resulting synaptic weight distribution had zero mean and resembled a normal 228

distribution, at least for the rw values (Fig. 2c). In fact, the synaptic weight distributions became 229

progressively closer to a normal distribution as more neurons were used in network construction 230

(Fig. 2d). We also noted that the absolute weight value decreased, especially for rw values (Fig. 231

2e), which can be explained by thinking that more neurons imply more parameters and hence 232

more degrees of freedom to reach a lower Frobenius norm. This observation will become 233

important later when imposing structural constrains to the network. 234

 235

Efficiency of the FTP algorithm: 236

We assessed the performance of the algorithm by measuring the time expended in finding 237

solutions for 1 = to 12 = , and comparing these times with the times required for a genetic 238

algorithm (GA) to find solutions for the same values and number of neurons. The FTP 239

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 23, 2020. ; https://doi.org/10.1101/2020.04.20.051565doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.20.051565
http://creativecommons.org/licenses/by-nc/4.0/

11

 240

 241

Figure 2. Solving the s-task with the FTP algorithm. a, raster plot showing the neurons firing states in a network

constructed to solve the s-task for 3 = . The network is composed of eight integration neurons and 2 sensory

neurons. Each possible sequence of 3 stimuli has a unique network firing state that codifies it. Therefore, the

network has 8 possible firing states. b, sensory and integration synaptic weights of the network. For this example (

1rf =) the range of weights is grater for sensory than for integration synapses. c, distribution of synaptic weights

for sensory (upper panel) and integration (lower panel) synaptic weights, for the same network as in (a, b).

Distributions are zero centred. d, Kolmogorov-Smirnov statistic between the distribution of synaptic weights and a

normal distribution of the same mean and variance. As the number of integration neurons increases, the distribution

of synaptic weights gets closer to a normal. Integration neurons weights are closer to a normal than sensory neurons

weights. Mean ± SD are shown for n = 100 networks that solves the s-task, with 3 = . e, absolute synaptic weight

values as a function of the number of integration neurons in the network. Absolute values are higher and of larger

variability when the neuron count is close to the number of coded stimuli sequences. As the number of integration

neurons increases the absolute mean value and dispersion decreases. Sensory neurons weights quickly reach a

minimum, while integration neurons weights decrease in the entire range of integration neurons. Mean ± SD are

shown for n = 100 networks that solves the s-task, with 3 = .

0 200
-6 14 -8 8Time step

4

3

2

1

#
 s

y
n

a
p

s
e

s
#

 s
y
n

a
p

s
e

s 16

-10 0 10

12

8

4

0

0
0 5 10-5

a b

d e

c

8 20 40 60 80 8 20 40 60 80
0

0.1

0.2

0.3

K
S

 s
ta

ti
s
ti
c

Nz

0

2

4

6

8

10

|w
|

Nz

z
y

wy

wr

wy

wr

wy

wr

8

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 23, 2020. ; https://doi.org/10.1101/2020.04.20.051565doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.20.051565
http://creativecommons.org/licenses/by-nc/4.0/

12

 242

outperformed the genetic algorithm by several orders of magnitude (Fig. 3a), and for 6 the 243

GA could not find a network with performance above 0.9. The result is not surprising, since the 244

time complexity of solving a linear system of equations is
3()O n 10, with n being the total number 245

of variables. As was increased, most of the GA running time was expended in the simulation 246

of the networks, while the fraction of time expended in evaluating network performance with the 247

classifier became smaller. 248

Given that performance of optimization algorithms is sensitive to several hyperparameters, 249

including initial conditions and mutation factor, we asked whether a GA that starts near a solution 250

network would stay around the solution or would it drift away. To that end we employed the FTP 251

to find a solution network, and set it as the individual from which the first population was built. 252

Then the GA was used to reduce fitness over 20 generations, such that the population became 253

20 generations apart from the solution (Fig. 3b). Next, the GA was run for another 20 generations 254

in the increasing fitness direction (Fig. 3c). In each generation, random mutations were applied, 255

with a mutation factor
* ()mut mutf f w= (see Methods). We run this experiment for several values 256

of and
*

mutf . It can be seen that up to 4 = performance dropped to chance level during the 257

fitness reduction phase, followed by a total or partial recovery during the fitness increment phase. 258

However, performance did not recover for higher values of . This suggests that, as increases, 259

Figure 3. Efficiency of the FTP algorithm. a, efficiency of FTP and GA, measured as the time expended in finding a

network solution for s-tasks of different . The time expended by the FTP algorithm is orders of magnitude lower

than the time expended by the GA. As increases, the time expended in network simulation (dashed blue line)

tends to match the total time expended by the GA (solid blue line). The FTP running time showed some variability

for 6 , in the range of tens of milliseconds. The absence of points in the GA curves for 6 means that this

algorithm could not find a solution within the limit of 1 hour of running time. The GA was run 1 time for each ,

while the FTP was run 30 times for each . b, fitness of solution networks found for different after their synaptic

weights were mutated for 20 generations with different mutation ratios
*

mutf , and selected to reduce their fitness.

Mutations reduced fitness to chance level for all
*

mutf values except for the lowest. For 5 even the lowest
*

mutf

had detrimental effects. c, fitness measured after networks in (b) where subjected to 20 generations of mutation

and selection to increase their fitness. Fitness could be restored when and
*

mutf values were low. If or
*

mutf

where higher, restoration was only partial or did not occurred.

0 2 4 6 8 10 12
-4

-3

-2

-1

0

1

2

3

4

1

0.001 0.1 0.2 0.3 0.4

2

3

4

5

6

0

1

0.001 0.1 0.2 0.3 0.4

s-task performance

(fitness reduction)

1

2

3

4

5

6

s-task performance

(fitness increment)

a b c

F
itn

e
ss

0

1

F
itn

e
ss

fmut

* fmut

*

lo
g

1
0
[r

u
n
n
in

g
 t
im

e
 (

s)
]

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 23, 2020. ; https://doi.org/10.1101/2020.04.20.051565doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.20.051565
http://creativecommons.org/licenses/by-nc/4.0/

13

the basin of attraction around the initial solution gets narrower, leading the GA to drift away from 260

the solution. Although these results cannot rule out that other optimization algorithms have better 261

performance, they do highlight how small the solution space is, and the huge gap between the 262

FTP and another, more generic fitting algorithm. 263

 264

Imposing activity constrains through U matrix initialization: 265

We want to construct neural network models that not only solve relevant tasks but do so under 266

desired firing constrains, as measured in real brains. Some of these constrains are low firing rates 267

(FR)11,12, or low correlation coefficient (CC)13. In regular optimization algorithms, these constrains 268

can be imposed to solution networks by introducing regularization terms in the loss function3. On 269

the other hand, in the FTP algorithm the activity states of the network are the result of linearly 270

combining the rows of an initial matrix baseU . Hence, we can apply firing constrains by 271

appropriately choosing this initial matrix. For example, to attain networks that solve the s-task with 272

low/high firing it suffices to choose an initial matrix baseU such that after thresholding the resulting 273

matrix C has few/many ones. Following this procedure, we constructed networks with average 274

FR within a wide range of target FR (Fig 4a, blue line). Shuffling the afferent synaptic weights of 275

each neuron produces only small changes to the average FRs (Fig. 4a, red line). This suggests 276

that it is the distribution of afferent synaptic weights the critical structural statistic that defines the 277

networks average FR, and not its precise connectivity. Solutions are harder to find for extreme 278

FR values, because thresholding gives C matrices with repeated rows, which translate in not 279

enough network states to codify all stimuli sequences. 280

On the other hand, we can construct networks with desired signal correlation, by multiplying 281

by a factor ccf , which results in stimuli inducing different firing rates (Fig. 4b). For networks shown 282

in Fig. 4 (4, 3rf = =) correlations could be modulated in a range between 0.25 and 0.5. 283

Although scaling of is expected to induce signal correlation, it can be seen that it is inducing 284

noise correlation as well, as a by-product (Fig. 4c). Correlations of networks solving the s-task are 285

significantly higher than correlations of their synaptic weights-shuffled counterparts (Fig 4b, blue 286

vs. red), which shows that pairwise correlations depend on the whole weight matrix and not only 287

on the distribution of the afferent weights, as is the case with FR. It also suggests that the set of 288

networks that solve the s-task necessarily have correlation above a minimum. On the other hand, 289

correlations also seem not to exceed a certain value: higher correlations would imply a reduced 290

number of network states, incompatible with the number of sequences required to codify. 291

Hand-based manipulation of baseU allows to generate solution networks in a wide range of FR 292

and CC (Fig. 4d, blue dots). An even better control of firing and correlation can be achieved by 293

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 23, 2020. ; https://doi.org/10.1101/2020.04.20.051565doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.20.051565
http://creativecommons.org/licenses/by-nc/4.0/

14

fitting baseU by means of a GA in which the fitness of baseU is a function of the FR and CC 294

computed over the population firing states of the network generated from that baseU . Fitting baseU 295

allows for more extreme values of FR and CC (Fig 4d, black dots), while keeping computational 296

Figure 4. Using FTP to construct networks subjected to task and activity constrains. a, real FR measured in networks

constructed to solve the s-task, as a function of the target FR. The FR of networks constructed with the FTP

algorithm are close to the target FR (blue line). There is a tendency to obtain lower firing rates for target FR values

above 0.5 spikes/ time step, and higher firing rates for target FR values bellow 0.5 spikes/time step (grey line is the

identity function). The same networks with their afferent synaptic weights shuffled (red line) show a similar

relationship between target FR and measured FR, albeit with a lower slope. A total of 30 networks were generated

for each target FR. Mean ± SD are shown, n = 30. b, correlation between pairs of integration neurons as a function

of the scaling factor
ccf . Pairwise correlation, computed over all time steps, increases with

ccf until it saturates at

CC = 0.48 for 5ccf (blue line). Networks with their afferent synaptic weights shuffled (red line) show low

correlation, invariant to
ccf . A total of 30 networks were constructed for each

ccf value, with target FR set to 0.1

spikes/time step. Mean ± SD are shown, n = 30. c, pairwise correlation computed separately for
1s and

2s (noise

correlation). The correlation coefficient increases with
ccf , similarly for both stimuli, and closely following correlation

values in (b). Mean ± SD are shown, n = 30. d, Measured FR as a function of pairwise correlation. Each blue dot

shows the FR and CC of one network constructed to solve the s-task with FR and correlation constrains imposed

by
baseU initialization. Values for 2700 networks are shown. Points form stripes pointing towards FR = 0.5

spikes/time step, each stripe corresponding to networks with the same target FR. As correlation increases, the

measured FR tends to 0.5 spikes/time step. Black dots show FR and correlation of 4 networks for which FR and

correlation constrains were imposed by evolution of a population of
baseU matrices.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Target FR (spikes/time step)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
e
a
s
u
re

d
 F

R

(s
p
ik

e
s
/t

im
e
 s

te
p
)

1 2 3 4 5 6 7 8 9 10

P
a
ir
w

is
e
 c

o
rr

e
la

ti
o
n

T+F
Shuffled

0.1

0.2

0.3

0.4

0.5

0.6
T+F
Shuffled

a b

c d

Measured FR

(spikes/time step)

P
a
ir
w

is
e
 c

o
rr

e
la

ti
o
n

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7 8 9 10

P
a
ir
w

is
e
 c

o
rr

e
la

ti
o
n

0.1

0.2

0.3

0.4

0.5

0.6
s1
s2

fcc

fcc

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 23, 2020. ; https://doi.org/10.1101/2020.04.20.051565doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.20.051565
http://creativecommons.org/licenses/by-nc/4.0/

15

cost low by computing FR and CC over the set of population firing vectors c instead of computing 297

the actual network activity by simulating the network. Altogether, both methods (baseU 298

manipulation, or its evolution with a GA) easily allow to generate networks that perfectly solve the 299

task, while imposing desired activity constrains at the same time. 300

 301

Applying structural constrains with projected gradient descend in isofunction weight 302

space: 303

Networks generated so far share one structural constrain: their synaptic weights matrix is the 304

one that minimizes the Frobenius norm. Other relevant structural constrains, such as the lack of 305

self-connections, Dale’s principle, or sparse connectivity are not satisfied. Since these structural 306

constrains are key experimentally observed features(Lefort et al. 2009; Seeman et al. 2018; Strata 307

and Harvey 1999) but see17,18, we were interested in imposing such constrains onto the w 308

obtained by the algorithm. To do this we followed a projected gradient descent (PGD) approach19, 309

taking advantage of the fact that the loss function , which encloses the structural constrains, is 310

a linear function with respect to the synaptic weights, and that the matrix w can be changed 311

without changing the stimulus-response mapping (see Methods). To exemplify the procedure we 312

constructed a network that solves the s-task for 4 = , with 3rf = (Fig. 5a), and then we 313

employed PGD to transform its matrix w to remove self-connections, enforce Dale’s principle 314

with a 4:1 Ex:In ratio, and set a sparsity 40%sp = (defined as the percentage of weights equal 315

to zero). The PGD reduced the loss function in a steady fashion, reaching a negligible error, 316

provided that the network had enough neurons (Fig. 5b). It is remarkable how such different 317

synaptic weight matrices, as the ones depicted in Fig. 5a,c,d, gave rise to exactly the same 318

stimulus-response mapping. 319

 We noted the that structural constrains could not be imposed to networks with low number of 320

neurons, i.e. y zN N N= + between M and 3M . This is not surprising, since it is expected that 321

imposing more constrains requires more parameters. To evaluate the efficiency of the PDG in 322

relation with the number of neurons, we imposed the above structural constrains for networks 323

solving the s-task with 3 = to 6 = , and zN between 32 and 256 neurons. Since matrix U 324

and vector were randomly chosen, it is expected that some of them result in matrices w for 325

which the structural constrains are impossible to apply. Consequently, we measured PDF 326

efficiency by computing # attempts, the number of networks that were required to generate until 327

obtaining the first successfully constrained network. It can be seen that # attempts decreased as 328

the number of neurons increased (Fig. 5e). Concordantly, the computing time required to obtain 329

a fitted network decreased as the number of neurons increased, because fewer fitting attempts 330

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 23, 2020. ; https://doi.org/10.1101/2020.04.20.051565doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.20.051565
http://creativecommons.org/licenses/by-nc/4.0/

16

 331

Figure 5. Applying structural constrains to networks. a, synaptic weight matrices yw and
rw of the network obtained

through FTP before structural constrains were imposed, The network was constructed to solve the s-task for 4 =

and 3rf = , with a target FR of 0.1 spikes/time step. b, Loss function as a function of the number of iterations

of the PGD algorithm. The loss function falls below the criterium
3

1 10e −= at iteration 121. c, d, synaptic weight

matrices yw and
rw for a network with the same stimulus-response mapping but after applying structural

constrains: (c) no self-connection, Dale’s principle, with 40 excitatory and 10 inhibitory neurons, and sparsity

40%sp = ; (d) no self-connections, Dale’s principle, with 26 excitatory and 24 inhibitory neurons, and sparsity

23%sp = . e, average number of attempts to obtain one network with successful structural fitting, as a function of

the number of integration neurons, and for different . The number of attempts is high when the neuron number is

low, but it decreases fast as the neuron number increases. From 60 neurons onwards, less than five attempts are

needed, on average, to obtain one network with the desired structural constrains. Mean ± SD are shown. f, total

running time to obtain one network with successful structural fitting, as a function of the number of integration

neurons, and for different (color code as in (g)). Running time decreases and then increases for 3 = and 4 =
. The case of 6 = is the one with more neurons and equations to solve, and present some of the highest running

times, even when the number of neurons is high. Nevertheless, all average running times are below the tens of

seconds.

c d

-12 -2 -10 10 0 9 -15 20

wy wr wy wr

-15 20-6 8

a b
wy wr

20 40 60 80 100 120

Iteration

0.2

0.4

0.6

0.8

1.0

3.5

Nz

2.0

1.0

2.5

3.0

3.5

4.0

4.5

5.0

e f

50 100 150 200 250

Nz

50 100 150 200 250
-0.5

0

0.5

1.0

1.5

2.0

2.5

3.0

lo
g

1
0
[#

 a
tt
e

m
p

ts
]

lo
g

1
0
[R

u
n

n
in

g
 t
im

e
 (

m
s
)]

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 23, 2020. ; https://doi.org/10.1101/2020.04.20.051565doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.20.051565
http://creativecommons.org/licenses/by-nc/4.0/

17

were required (Fig. 5f). The fitting time was somewhat higher for networks with the highest neuron 332

count, but always within the order of tens of seconds, even for 256zN = . 333

 334

Linking structure, function and activity: 335

Neural network structure determines its activity, which in turn translates into function. To 336

understand the relationships between these three network features we constructed networks with 337

different average firing rate and functionality and analysed their structure, more precisely, their 338

connectivity. One key aspect of connectivity is reciprocity, which has been observed 339

experimentally20 and its implications studied theoretically21. Here we chose the correlation 340

between weights of incoming and outgoing synapses as the measure of reciprocity22 (see 341

Methods). 342

We have already shown how the FTP algorithm can be employed to generate networks with 343

predefined activity features, namely, with desired firing rate and correlation. To compare networks 344

with different functionality we constructed networks which had the same number of neurons and 345

network states but for which the graph of transitions between network states was generated at 346

random (Fig. 6a,b). In this manner we can construct networks whose dynamics have complexity 347

similar to that of networks that solve the s-task, but which lack their function, i.e. to codify 348

sequences of stimuli of length . We screened networks with memory ranging from 2 = to 349

7 = , and FR from 0.1 spikes/time step to 0.9 spikes/time steps, and found that the reciprocity 350

varied with , FR and neuron number. In particular, we observed that, when 1rf = , reciprocity 351

was positive and of lower mean for networks that were the minimum Frobenius norm solution to 352

the s-task (T+F networks, Fig. 6c), in comparison with networks that were the minimum Frobenius 353

norm solution to a random transition graph (F networks, Fig. 6d). However, for bigger rf the 354

relationship was inverted, and T+F networks showed positive reciprocity (Fig. 6e) while F 355

networks showed negative reciprocity (Fig. 6f). 356

To further describe these relationships, we selected networks constructed for 7 = and 1rf = 357

(Fig. 7a-c) and 4rf = (Fig. 7d-f). Signal and noise correlation varied with FR following an inverted 358

U-shape relationship, with a maximum next to 0.5 spikes/time step (Fig. 7a,d). Note that, up to a 359

FR = 0.5 spikes/time step, CC increased with FR, as has been observed experimentally23,24. 360

Interestingly, the way CC changed with FR was similar for both T+F and F networks, with the 361

distinction that F networks had overall higher correlations than T+F networks. We computed the 362

CC after shuffling the inter-spike interval of each neuron and found that it remained practically 363

invariant with respect to FR. These CC values were also much smaller than the CC values of the 364

non-shuffled firings (CCshuffled = 0.0224 ± 1.10-4, mean ± SD, for n = 90 T+S networks pooled over 365

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 23, 2020. ; https://doi.org/10.1101/2020.04.20.051565doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.20.051565
http://creativecommons.org/licenses/by-nc/4.0/

18

366

Figure 6. Reciprocity as a function of , FR and the type of transition graph. a, transition graph for solving the s-

task with 7 = . Blue and red lines represent transitions gated by
1s and

2s , respectively. b, random transition

graph. Nodes (network states) may receive different number of incoming connections. There are 24 nodes that are

gated by both stimuli. c, reciprocity for T+F networks, with 1rf = , as a function of and target FR. Reciprocity

changes from slightly negative to slightly positive as increases. For 7 = , reciprocity is maximized around target

FR = 0.5 spikes/time step, and decreases for lower and higher values of target FR. d, F networks with 1rf = shows

increasing positive reciprocity as increases, maximized at target FR = 0.5 spikes/time step. e, when the number

of neurons is higher (4rf =), T+F networks show positive reciprocity that is minimal around target FR = 0.5, and

increases towards higher and lower target FR, reaching the highest reciprocity values among all networks screened.

f, reciprocity of F networks gets increasingly negative as increases, reaching the lowest reciprocity among all

networks screened, around target FR = 0.5 spikes/time step. For all panels, 30 networks were constructed for each

 and target FR combination. Normalized means (mean/SD) are shown. Positive and negative reciprocity values

were mapped separately to colours red and blue, respectively. Red tones go from 0 reciprocity (white) to maximal

positive reciprocity (pure red). Blue tones go from 0 reciprocity (white) to maximal (in absolute value) negative

reciprocity (pure blue). All random graphs were constructed with 0.5bcf = . Graphs were plotted with the Force-

directed layout

T+F fr=1 F fr=1

F fr=4T+F fr=4

0.1 0.3

FR (spikes/time step)

2

4

5

3

6

7

2

4

5

3

6

7

2

4

5

3

6

7

2

4

5

3

6

7

c

a

d

e f

b

0.7 0.90.5

0.1 0.3

FR (spikes/time step)

0.7 0.90.5 0.1 0.3

FR (spikes/time step)

0.7 0.90.5

0.1 0.3

FR (spikes/time step)

0.7 0.90.5

6.3

-5.7

6.3

-5.7

6.3

-5.7

6.3

-5.7

R
e
c
ip

ro
c
it
y

R
e
c
ip

ro
c
it
y

R
e
c
ip

ro
c
it
y

R
e
c
ip

ro
c
it
y

random transition graph

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 23, 2020. ; https://doi.org/10.1101/2020.04.20.051565doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.20.051565
http://creativecommons.org/licenses/by-nc/4.0/

19

all FR values). These results rule out the possibility that correlations were trivially increasing with 367

FR because of the higher number of spikes. We also found an inverted U-shape between 368

reciprocity and FR, and a linear relationship between reciprocity and CC. The parabolic 369

relationship is accentuated in networks with more neurons, the curve being more pronounce and 370

of lower dispersion. With 1rf = reciprocity tended to be maximized as FR approached 0.5 371

spikes/time step, with F networks showing higher (and positive) reciprocity (Fig. 7b). With 4rf =372

, reciprocity tended to increase as FR departed from 0.5 spikes/time step towards lower and 373

higher values, i.e., networks with lower correlation (Fig. 7e). Specially, F networks showed 374

negative reciprocity for all firing rates, except for the more extreme cases (0.1 and 0.9 spikes/time 375

step). Just as the reciprocity/FR relationship inverts with the number of neurons, so does the 376

reciprocity/CC relationship. Networks with higher reciprocity has higher correlation when the 377

Figure 7. Correlation and reciprocity differentiate networks with sequence memory from random transition networks.

a-c, networks constructed to solve the s-task with 7 = and 1rf = (T+F networks), their isofunction network (T

network), and networks with the same number of neurons and network states that follow a random transition graph

(F networks). (a), correlation increases as FR approaches 0.5 spikes/time step. F networks show a positive offset

with respect to T+F and T networks. (b), the dependency between reciprocity and FR is similar to the dependency

between CC and FR. Higher reciprocity values are found in F networks. (c) reciprocity grows linearly with correlation,

as expected from panels (a) and (b). d-f, idem a-c, but with 4rf = . (d), the CC/FR relationship is similar to the one

observed with lower neuron number (panel (a)). e, the reciprocity/FR relationship inverted as the neuron number

was increased. Reciprocity is minimized as FR approaches 0.5 spikes/time steps, and increases towards lower or

higher FR values. F networks show pronounced negative reciprocity. (f) reciprocity decreases linearly with

correlation, as expected from panels (d) and (e). Mean ± SD are shown; n = 10 networks were constructed for each

target FR and network type. All random graphs were constructed with 0.25bcf = .

a b c

d e f

F
T
T+F

0.1 0.3 0.5 0.7 0.9

FR (spikes/time step)

0.14

0.18

0.22

0.26

0.30

P
a

ir
w

is
e

 C
o

rr
e

la
ti
o

n

FR (spikes/time step)
0.1 0.3 0.5 0.7 0.9

-0.05

0.05

0.15

0.25
R

e
c
ip

ro
c
it
y

0.14 0.18 0.22 0.26 0.3

Pairwise correlation

-0.15

-0.05

0.05

0.15

0.25

R
e

c
ip

ro
c
it
y

0.14 0.18 0.22 0.26 0.3

Pairwise correlation

-0.15-0.15

-0.05

0.05

0.15

0.25

R
e

c
ip

ro
c
it
y

FR (spikes/time step)
0.1 0.3 0.5 0.7 0.9

-0.15

-0.05

0.05

0.15

0.25

R
e

c
ip

ro
c
it
y

0.1 0.3 0.5 0.7 0.9

FR (spikes/time step)

0.14

0.18

0.22

0.26

0.30

P
a

ir
w

is
e

 C
o

rr
e

la
ti
o

n

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 23, 2020. ; https://doi.org/10.1101/2020.04.20.051565doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.20.051565
http://creativecommons.org/licenses/by-nc/4.0/

20

number of neurons is low (Fig. 7c). However, and somewhat counterintuitive, when the number 378

of neurons is higher, more reciprocity implies lower correlation (Fig. 7f). Networks that solve the 379

s-task but do not minimize the Frobenius norm (T networks) showed almost zero reciprocity. This 380

implies that reciprocity is not a property of all networks that solve the s-task. On the contrary, most 381

networks that solve the s-task do not show significant reciprocity, unless other structural constrain, 382

such as Frobenius norm minimization, is imposed. However, Frobenius norm minimization alone 383

only produces negative reciprocity (in random graphs). For positive reciprocity to occur in 384

networks with high number of neurons, both high sequence memory and Frobenius norm 385

minimization is required. 386

We asked whether the results depicted in Fig. 7 also occur in networks which lack self-387

connections and comply with Dale’s principle. To that end we imposed these structural constrains 388

to networks constructed with 7 = and 4rf = , and found a reciprocity/FR relationship that 389

resembles the one observed in unconstrained networks, with F networks showing prominent 390

negative reciprocity and T+F networks showing increasing reciprocity as FR departs from 0.5 391

spikes/time step (Fig. 8a). Correlations increased as FR approached 0.5 spikes/time step, with F 392

networks showing more correlation than T+F networks (Fig. 8b,c). Correlation in T+F and F 393

networks were higher for pairs of inhibitory neurons than for pairs of excitatory neurons, as has 394

been observed experimentally25, while correlations between excitatory and inhibitory neurons laid 395

in the middle. It is interesting to note that the classification of neurons as excitatory or inhibitory 396

was not defined by design, but emerged during the enforcement of the structural constrains, when 397

the network firing states were already chosen. This suggests that it was the (predefined) firing 398

statistic of the neurons, specially the correlation among them, which ultimately defined which 399

neuron could become excitatory and which inhibitory. 400

In the F networks studied so far, each network state can be reached from either one of the two 401

stimuli, or from both stimuli. This is the case because the random transition graphs allow nodes 402

with incoming edges from both stimuli. Network states which can be reached from both stimuli 403

(bicoloured nodes, see Methods) codify stimuli in a relative manner, meaning that the identity of 404

the stimulus presented at time step t can be decoded if the network state at time step t and at 405

time step 1t + is known. On the other hand, network states which can be reached from 406

exclusively one of the two stimuli (monocoloured nodes), codify stimuli in an absolute manner, 407

since it is possible to know the identity of the presented stimuli at time step t by knowing the 408

network state at time step 1t + alone. We asked whether the proportion of relative coding states 409

and absolute coding states could explain the strong differences in correlation and reciprocity 410

found between T+F and F networks. To that end, we changed the fraction of nominal bicolored 411

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 23, 2020. ; https://doi.org/10.1101/2020.04.20.051565doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.20.051565
http://creativecommons.org/licenses/by-nc/4.0/

21

nodes
bcf and computed reciprocity for F networks of fixed , FR and rf (Fig. 9). We found that 412

negative reciprocity values are caused by relative coding network states, since reciprocity is 413

reduced as the fraction of these states is increased. When all network states are absolute coding 414

states (0bcf =), reciprocity is the lowest, as observed in T+F networks with the same FR and rf415

. This suggests that reciprocity differentiates networks by how their network states codify stimuli, 416

regardless of the capacity of the network for sequence coding. 417

 418

 419

Figure 8. Reciprocity and correlation of structurally constrained networks. a, reciprocity as a function of FR for

networks without self-connections and Dale’s principle with 1:1 Ex:In ratio. Reciprocity shows a parabolic

relationship with FR, decreasing as FR approaches 0.5 spikes/time step. F networks show strong negative

reciprocity, while T networks reciprocity is close to zero. b, pairwise correlation for T+F networks as a function of

firing rate. Correlation was computed over pairs of excitatory neurons (Ex-Ex), pairs of inhibitory neurons (In-In),

and pairs of one excitatory and one inhibitory neuron (Ex-In). Correlation has a maximum close to 0.5 spikes/time

step. The In-In pairs show the highest correlations, followed by the Ex-In pairs. The Ex-Ex pairs show the lowest

correlation. c, pairwise correlation for F networks as a function of firing rate. The CC/FR relationship is similar to

the one observed for T+F networks, although F networks correlation is displaced towards higher values. Mean ±

SD are shown; n = 20 networks were constructed for each target FR and network type. Firing rates of excitatory or

inhibitory neurons are displayed for Ex-Ex and In-In curves, respectively. For Ex-In curves the average FR over all

neurons is shown.

0.1 0.3 0.5 0.7 0.9

b

FR (spikes/time step)

0.14

0.18

0.22

0.26

0.30
P

a
ir
w

is
e
 C

o
rr

e
la

ti
o
n Ex-Ex

In-In
Ex-In

T+F networks
c

0.1 0.3 0.5 0.7 0.9

FR (spikes/time step)

0.14

0.18

0.22

0.26

0.30

P
a
ir
w

is
e
 C

o
rr

e
la

ti
o
n Ex-Ex

In-In
Ex-In

F networks

0.1 0.3 0.5 0.7 0.9

-0.06

-0.02

0.02

0.06

a

FR (spikes/time step)

R
e
c
ip

ro
c
it
y

F
T
T+F

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 23, 2020. ; https://doi.org/10.1101/2020.04.20.051565doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.20.051565
http://creativecommons.org/licenses/by-nc/4.0/

22

 420

 421

 422

Figure 9. Relative coding network states cause negative reciprocity. Reciprocity as a function of
bcf , the fraction

of nominal bicolored nodes, in networks that follow random transition graphs. Reciprocity decreases linearly with

bcf , approaching zero as
bcf approaches zero. Mean ± SD are shown, n = 30 networks for each

bcf . Networks

were constructed with target FR = 0.5 spikes/ time step, and with the same number of neurons and network firing

states as T+F networks constructed with 7 = and 4rf = .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
-0.40

-0.35

-0.3

-0.25

-0.2

-0.15

-0.10

-0.05

0

0.05

R
e

c
ip

ro
c
it
y

fbc

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 23, 2020. ; https://doi.org/10.1101/2020.04.20.051565doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.20.051565
http://creativecommons.org/licenses/by-nc/4.0/

23

Discussion: 423

We have presented a simple method to generate binary neural network models that accomplish 424

a desire task. Binary networks are computational inexpensive, and despite their simplicity many 425

neurophysiological and neuroanatomical observations have been recapitulated by means of 426

these networks21,26. Our key contribution is to note that, for networks in which neurons inputs are 427

linearly added, their synaptic weights can be found by solving a system of linear equations. In 428

turn, this system can be constructed from the transition graph associated with the solution of the 429

target task. System consistency is guarantee if the dependent variables of the system (the 430

neurons activations) are linearly combined following the linear dependences among the 431

independent variables (the firing states). We have shown how the FTP method works with the 432

simplest of networks. Yet, we think the same procedure can be implemented in networks built 433

from more complex neuron models, like the firing rate model or the leaky integrate-and-fire model, 434

provided that a system of linear equations can be constructed. 435

Current automated methods for constructing network models relay on off-the-shelf optimization 436

algorithms typically employed in the artificial intelligence field, like stochastic gradient descent3, 437

genetic algorithms27 or evolutionary strategies28. These optimization algorithms iteratively change 438

network parameters in a direction that minimizes a loss function, and have proved to be very 439

effective in finding networks that solve very complex tasks29,30. However, they require a 440

considerable amount of human design, and there are no guarantees that they can reach a 441

solution. Moreover, each optimization iteration requires the evaluation of the network, which is 442

time consuming, especially for a recurrent network performing in a multi-trial task. In contrast, the 443

FTP algorithm reduces the problem of finding a suitable network to a series of linear combinations 444

and the solution of a linear system, which can be solved in polynomial time. Most importantly, it 445

is guaranteed that the resulting network will solve the task perfectly. 446

When employing traditional optimization algorithms to fit neural networks, a loss function is 447

defined, taking into account all the required constrains, whether these are task related, activity 448

related, or structural. Then, the loss function is minimized and hence all constrains are enforced 449

at once. In this scenario the relationship between parameters and the loss function can be quite 450

complex, and some conflict between constrains may emerge. Conversely, one key advantage of 451

our method is that it allows to uncouple the dynamic and coding aspects of the network from the 452

structural aspects, giving the opportunity of sampling them independently. Since the method 453

proceeds from the firing states to the parameters, it allows to find networks with desired activity 454

profiles, and to study the resulting connectivity. Further structural constrains can be enforced in a 455

second stage, by projected gradient descent, or any other optimization algorithm. The fact that 456

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 23, 2020. ; https://doi.org/10.1101/2020.04.20.051565doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.20.051565
http://creativecommons.org/licenses/by-nc/4.0/

24

projected gradient descent worked so well suggests that structural constrains are easy to 457

implement once the connectivity required to solve the task is in place. This is probably because 458

structural measures such as sparsity, clustering, etc are a simple function of the synaptic weights. 459

On the contrary, the relationship between weights and network function or coding capabilities are 460

more complex. In this way, our method gives more control over each constrain type, making the 461

whole process simpler at the same time. 462

To show the applicability of the method we employed it to construct networks that solve a stimuli 463

sequence memory task (s-task) in which the network has to codify in its network firing states the 464

sequence of the last stimuli that were presented. This task is relevant in the broad sense of 465

working memory function. Although working memory is traditionally associated with maintaining 466

information about a single stimulus in the persistent activity of recurrently connected neurons31,32, 467

mounting evidence suggests that neuron populations code information in the form of highly 468

heterogenous firing sequences33,34. Sustained activity can be a suitable strategy when there is 469

one specific relevant stimulus to attend, whose identity has been already elucidated. However, 470

more complex scenarios require keeping track of sequences of stimuli. An example of this case 471

is the processing of language, in which the succession of utterances must be integrated over time, 472

from phonemes, to words, to phrases, so that the meaning of speech depends on the whole 473

sequence35. We explored the case of two stimuli presented with equal probability, but the analysis 474

could be extended to more realistic cases in which stimuli presentation probability is not uniform. 475

It is expected that statistical regularities in the input sequences are going to be exploited by the 476

network, resulting in more specialized connectivities. The relationship between sequence 477

statistics and network structure should be further studied. For example, it would be of interest the 478

case in which each stimulus lasts more than one time-step, and they are interleaved by neutral 479

stimuli, which could act as distractors. Then, the relationship between feedback and feedforward 480

connections could be studied, in relation with the duration of each stimulus presentation, and with 481

that of the distractors. 482

The structure-function relationship is central to neuroscience36–38. Connectivity at the macro 483

meso and micro scale, neurons biophysics, plasticity mechanisms, among other structural traits, 484

all act co-ordinately to give sophisticated adaptive behaviour. It is widely believed that structural 485

properties of networks have evolved over time to proficiently perform function, many times in an 486

optimal way39,40. However, brain structure could also be the result of other constrains, different 487

from those imposed by adaptive behaviour. For example, neural network modularity might have 488

emerged as a good structural trait for solving tasks which have a modular or hierarchical aspect41. 489

But it could also have emerged as a result of previously acquired structural traits such as 490

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 23, 2020. ; https://doi.org/10.1101/2020.04.20.051565doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.20.051565
http://creativecommons.org/licenses/by-nc/4.0/

25

constrains in the length of dendrites and axons, which precludes the possibility of a much wider 491

connectivity. Thus, determining how much of the structure observed in the brain comes from 492

task-related constrains and how much comes from other structural traits is central to 493

understanding the structure/function relationship. A theoretical approximation to this issue 494

consists in constructing neural network models that solve different kind of tasks under a variety 495

of structural constrains, and then study the pattern of connectivity that emerges and relate it to 496

the experimentally observed connectivity in real brains. This approximation requires to sample as 497

uniformly as possible from the set of networks that fit the task and structural constrains. However, 498

optimization methods commonly used in network parameter fitting may give a restricted set of 499

solutions, thus biasing any conclusion about the structure/function relationship. Another issue is 500

that some connectivity traits could emerge only in networks of certain size, and fitted to several 501

tasks. In this case, fitting large networks with complex cost functions could have a high 502

computational cost. Consequently, generating a relatively large sample of networks suitable for 503

statistical treatment of their connectivity would result unfeasible. In this aspect, the FTP algorithm 504

is very well suited for answering structure/function questions, since exact solutions can be 505

computed starting from an arbitrary set of population firing codes, as long as it defines a system 506

of equations that have a solution. 507

The FTP approach allows to test hypothesis linking structure and function by constructing 508

networks which follow transition graphs that instantiate some null hypothesis. Following this 509

approach, we constructed networks which had the same number of network states and neurons 510

required to solve the s-task, but whose state transitions were chosen at random. With this tool at 511

hand we were able to show that a structural feature emerges as and redundancy increase, 512

evidenced in the reciprocity of the network. The same procedure can be followed to build any 513

other set of networks in accordance with some relevant null hypothesis. Such networks can be 514

easily constructed with the FTP method, while they would be hard to construct with regular 515

optimization algorithms. 516

Evidence for high reciprocity has been found experimentally, by measuring excitatory 517

postsynaptic potentials of reciprocally connected neurons in vitro20. It has also been the centre of 518

theoretical analysis. For example, it has been shown that high reciprocity is recapitulated in 519

networks of binary neurons that have maximum number of attractors21. Interestingly, the same 520

work shows that reciprocity is lost when networks are optimized to remember sequences of 521

uncorrelated network states. However, we showed that, when networks are built to codify 522

sequences of stimuli, the network itself shows sequences of states that follow the sequences of 523

stimuli up to an arbitrary . 524

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 23, 2020. ; https://doi.org/10.1101/2020.04.20.051565doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.20.051565
http://creativecommons.org/licenses/by-nc/4.0/

26

Reciprocity was absent in networks taken at random from the set of all connectivities that give 525

the same dynamics. This implies that the observed reciprocity is the result of following a particular 526

transition graph with the additional constrain of weights minimizing the Frobenius norm, the latter 527

being explained biologically as an upper bound on the size of the synapses. Thus, to explain one 528

structural feature (reciprocity), a functional feature (solving the s-task) and another structural 529

feature (Frobenius norm minimization) were required. It would be interesting to study to what 530

extent other structural features encountered in biological neural networks, like modularity or 531

sparsity of connections, can be explained as the answer to some computational demand of 532

adaptive behaviour, or they are the result of another structural feature, or both factors interact, as 533

is the case of the s-task. 534

In conclusion, we have provided a method that inverts the usual process of constructing neural 535

network models. It allows to probe the dependency between the firing statistics, connectivity and 536

function of a network in a way that is not matched by current optimization algorithms. Moreover, 537

it is computationally inexpensive. Therefore, we consider the method to be a powerful alternative 538

to the way neural networks are constructed to model brain function. 539

 540

 541

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 23, 2020. ; https://doi.org/10.1101/2020.04.20.051565doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.20.051565
http://creativecommons.org/licenses/by-nc/4.0/

27

Methods: 542

Network simulation and synaptic weights statistics: 543

Networks were evaluated in the s-task during at least 10.2iterN = time steps, to gather enough 544

samples of each network state. To assess the similarity between the synaptic weight distribution 545

and a normal distribution we computed the Kolmogorov-Smirnov two samples statistic, between 546

the set of synaptic weights and a set of normally distributed values of the same mean, variance 547

and sample size than that of the synaptic weights. 548

Equation (4) gives the matrix w with lowest Frobenius norm10. Since we are considering 549

networks with 2 2N = + total neurons (including sensory and integration neurons), there are 550

infinite solution matrices w for the same system of equations defined by C and U . These 551

solutions lay in a subspace of
N

, of dimension rank()N C− . The set of all solutions can be 552

obtained by finding a matrix w such that: 553

 554

 0C w = (9)555

 556

 ker()w C = (10) 557

 558

where ker()C is an orthonormal basis of the null space of C of dimensions x(rank())zN N C−559

, 0 is a matrix of zeros, and M is a linear mapping of dimensions (rank())xz zN C N− . These 560

networks share the same stimulus-response mapping. We say they conform an isofunction space. 561

For several applications, networks with 2zN were desired. Hence, we defined 2z rN f= , 562

where rf stands for ‘redundancy factor’, as the network has rf - times more neurons than 563

required to solve the s-task with that specific . 564

 565

Computation of fitting times for FTP and a genetic algorithm: 566

We assessed the efficiency of the FTP algorithm by measuring the time expended in finding 567

networks that solve an s-task with 1 = to 12 = , and 1rf = . 568

We also computed the time expended by a genetic algorithm (GA) to obtain networks that solve 569

the s-task of 1 = to 10 = . We employed a population of 200pobN = individuals, each one 570

composed by one matrix yw , one matrix rw and one vector . Networks were evaluated in the 571

s-task for 10.2iterN = time steps, and its fitness F was defined as 1 minus the classification 572

loss of a support vector machine, trained to classify the stimulus presented at time step 1t − + 573

based on the population firing state at time step t . The classification model was cross-validated 574

with the holdout method, trained on 50% of the data and tested on the remaining 50%. We picked 575

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 23, 2020. ; https://doi.org/10.1101/2020.04.20.051565doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.20.051565
http://creativecommons.org/licenses/by-nc/4.0/

28

0.1 pobT N= individuals with the highest fitness as parents. Then, we picked parents at random 576

and built the next generation by mutating each synaptic weight with gaussian noise of zero mean 577

and standard deviation 0.1 ()mutf w= . The factor ()w is the standard deviation of the 578

synaptic weights in yw of networks generated with FTP if we are mutating yw , and the standard 579

deviation of synaptic weights in rw if we are mutating rw . We defined
mutf in this way to avoid 580

mutf values that are so big that a solution can not be reached, or so small that the solution will 581

not be reached in a reasonable amount of time. One of the individuals of each generation was an 582

unmutated copy of the best individual of the previous generation (elitism). Threshold vectors 583

were not mutated. The GA was run until the average fitness surpassed 0.9targetF = , or after 60 584

minutes of search. Once the stopping criterion was met, the elite individual was evaluated during 585

100.2 time steps to obtain the final fitness. 586

We also tested how stable was a solution obtained with FTP under evolution with a GA. We 587

employed FTP to construct networks of given and 1rf = . From this network a population of 588

100pobN = individuals was constructed by mutating the network with a mutation rate 589
* ()mut mutf f w= , where ()w is the standard deviation of the synaptic weights obtained with 590

FTP. As before, yw and rw has their own
mutf , according to their corresponding standard 591

deviation. Then, a GA was employed to reduce fitness during 20 generations, and then to 592

increment it for another 20 generations, employing the same
*

mutf . We followed the procedure for 593

 ranging from 1 = to 6 = , and
* 0.001mutf = to

* 0.4mutf = in steps of 0.1. We performed 10 594

repetitions for each and
*

mutf . combination. 595

 596

Imposing activity constrains: 597

To construct networks with desired FR we generated baseU as described in the Results Section, 598

but adjusted the sign of (,)r m i such that, after thresholding, matrix C had a fraction of ones 599

equals the target FR. To induce signal correlation, we scaled vector by a factor ccf . This 600

manipulation makes each neuron to have very different firing rates for 1s and 2s , which increases 601

the signal correlation. By following this procedure, we constructed networks in Fig. 4. The target 602

FR values were taken from the range between 0.1 to 0.9 spikes/time step, in steps of 0.1 603

spikes/time step. The ccf values were taken from the range between 1 and 10 in unitary steps. A 604

total of 30 networks were constructed for each combination of FR and ccf values within those 605

ranges. For each network the average FR was computed over the FR of all neurons in the 606

network. Similarly, the average correlation coefficient (CC) was computed from the Spearman 607

correlation coefficient computed for all neuron pairs. 608

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 23, 2020. ; https://doi.org/10.1101/2020.04.20.051565doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.20.051565
http://creativecommons.org/licenses/by-nc/4.0/

29

We also employed a GA to evolve a population of baseU matrices to fit their mean FR and 609

correlation. We employed a population of 200pobN = individuals, each one composed of one 610

matrix baseU and one vector . For each individual we constructed U and C matrices, and 611

computed an approximate value of FR and correlation, under the assumption that each network 612

firing state occurs with equal probability. The fitness F of an individual was computed as 613

 614

 1
2

target targetFR FR CC CC
F

− + −
= − 615

 616

where FR and CC are the firing rate and correlation values of the networks output, and targetFR 617

and targetCC are the firing rate and correlation values we want the networks to have. 618

If an individual produced an inconsistent system, or a system with not enough network states, 619

its fitness was set to zero. We chose 0.1 pobT N= and mutated baseU by adding gaussian noise 620

to each matrix element, of zero mean and standard deviation 0.1mutf = = . Threshold vectors 621

 were not mutated. Elitism was employed. The GA was run until the average fitness surpassed 622

0.95targetF = . Firing rates and correlations shown in Fig. 4d were computed by running the 623

network constructed from the elite baseU during 30.2 time steps. 624

 625

Imposing structural constrains: 626

Solving equation (4) gives networks with minimum Frobenius norm. These networks do not 627

suffice basic structural features observed experimentally, such as the lack of self-connections or 628

Dale’s principle. To impose such structural constrains we constructed a matrix dw such that 629

d dw w w= + . Matrix dw is a matrix which fulfils the desired structural constrains. Most probably 630

dw will not be within the null space of C , and thus dw will not be a solution to the system 631

defined by C and U . Hence, we defined a matrix: 632

 633

 ker() scw C = (11) 634

 635

where ker()sc dC w+= , and ker()C +
 is the Moore-Penrose pseudoinverse of ker()C . 636

Matrix sc is a linear mapping that incorporates the desired structural constrains, making w 637

the change in matrix w within the null space of C that is closest to dw , in the least squares 638

sense. 639

We imposed three structural constrains: no self-connections, Dale’s principle, and a certain 640

degree of sparsity. Thus: 641

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 23, 2020. ; https://doi.org/10.1101/2020.04.20.051565doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.20.051565
http://creativecommons.org/licenses/by-nc/4.0/

30

 642

 d self Dale spw w w w = + + 643

 644

The matrix selfw (which deletes self-connections in the integration neurons) has values: 645

 646

(,) 2

,()
0 2

self

w j i j i
w j i

j i

− = +
 =

 +
 647

 648

Matrix
dalew was defined as: 649

 650

1

0 ((,) 0) ((,) 0)
(,)

(,) ((,) 0) ((,) 0)

j j

Dale

c j j

Ex w i j Inh w i j
w i j

w i j Ex w i j Inh w i j

= =
 =

− = =
 651

 652

where
1c selfw w w= + and { , }jT Ex In indicates if neuron j was chosen to be excitatory 653

()Ex or inhibitory ()Inh . Matrix Dalew sets to zero the synaptic weights that violate Dale’s 654

principle. Neuron j was chosen to be excitatory if (,) 0j

i

w i j = . Otherwise, it was chosen 655

to be inhibitory. If more excitatory/inhibitory neurons were required, neurons with negative/positive 656

 closest to 0 were set as excitatory/inhibitory as needed. 657

Matrix spw to enforce sparsity was defined as: 658

 659

2 2
(,) (,) ()

(,)
0

c c

sp

w i j w i j sp
w i j

otherwise

−
 =

 660

 661

where
2 1c c Dalew w w= + . The value ()sp is the sp percentile of the absolute values in

2cw . 662

In this manner spw will set to zero the lowest weights such that a sparsity sp is enforced. 663

The loss function ()k at iteration k was defined as the average of the absolute (,)dw i j 664

values: 665

 666

,

() (,)d i j
k w i j= 667

 668

where
,i j

 stands for the average across indexes (,)i j . The structural constrains were 669

imposed through an iterative process, in which at each iteration the neurons were classified as 670

excitatory or inhibitory according to their , a matrix w was computed using eq. (11), and a 671

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 23, 2020. ; https://doi.org/10.1101/2020.04.20.051565doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.20.051565
http://creativecommons.org/licenses/by-nc/4.0/

31

new w was obtained. The process was stopped when the loss fell below a desired value 1e , in 672

which case the fitting process was considered successful. The process was also stopped if 673

2(() (1)) / ()L k L k L k e− − . When this latter condition was met, the fitting process was 674

considered unsuccessful, since the error was not decreasing fast enough and would probably 675

converge to an unacceptable value above zero. We used
3

1 10e −= and
4

2 10e −= . If the process 676

was successful, values that violated any of the constrains were clipped to zero. These values are 677

expected to be small enough since the error was small. We computed: 678

 679

,

(,) (,)clip sc i j
e U i j U i j= − 680

 681

where sc scU Cw= with
scw being the resulting synaptic weight matrix after the constraining 682

process, to verify that the deviation from the original U was negligible. If the process was 683

unsuccessful, or the clipping error
310clipe − , then the original w was considered not to be 684

suitable for the structural fitting. 685

We measured the efficiency of the process by computing the number of networks generated (# 686

attempts) and the running time t expended until reaching the first successfully constrained 687

network. We varied from 3 = to 6 = . For each we varied the number of integration 688

neurons in steps of 16 neurons, from a minimum number of 4.2 to the maximum value
62 . For 689

each combination of and neuron number we generated networks with the FTP algorithm, and 690

subjected them to structural constrain (no self-connections, 4:1 Ex:In ratio, and a minimum 691

sparsity 40%sp =). We obtained 10 measurements of # attempts and t , from which we 692

computed the mean and SD depicted in Fig. 5e,f. 693

 694

Network construction from random transition graphs: 695

To construct random transition graphs that have an associated consistent system, we first 696

constructed a matrix baseU , a vector , and a matrix
*U of 2M = rows such that the row 697

vectors
*

iU ,
*

1iU + and were linear combinations, with indexes i being odd numbers between 698

1 and M . Next, we constructed matrix U in a way that ensures that each node in the graph was 699

reachable, meaning that every node had to receive at least one edge. This is equivalent to say 700

that every row in
*U is found at least once in U . Therefore, we set the first M rows in U equal 701

to the
*U matrix. Then, to define the remaining rows in U , we chose / 2M pairs of indexes 702

, 1i i + , picking i values at random from the set of odd numbers between 1 and M . In this way, 703

and unlike the transition graphs that solve an s-task, nodes could receive just one edge, or more 704

than 2. 705

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 23, 2020. ; https://doi.org/10.1101/2020.04.20.051565doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.20.051565
http://creativecommons.org/licenses/by-nc/4.0/

32

So far, if a row vector
*

iU appeared in matrix U more than once, then it appeared only in odd 706

rows, or only in even rows, but not in both. This is because, indexes were ordered from 1 to M 707

in the first half of U , and ordered in pairs of , 1i i + indexes in the second half. The resulting 708

graph would be one in which any given node is reachable as the result of the presentation of 709

either 1s or 2s , but not from both. In other words, if node b is reachable from node a after
is 710

presentation, then node b is reachable from node c only after
is presentation, where c is any 711

other node from which b is reachable. Following the colour code of the graph in Fig. 1b, any node 712

receives arrows of the same colour. We wanted graphs as random as possible, so nodes 713

reachable thought different stimuli were desired. We define these nodes as bicoloured nodes. In 714

terms of indexes in matrix U , a bicolored node translates into a row vector
*

iU that appeared in 715

matrix U in both odd and even row. For example, if we had indexes (1,2,3,4) for the first 4 716

rows of U , with 1 2(, ,)U U and
3 4(, ,)U U each being linearly combined, then we wanted to 717

change this series to (1,2,2,4) , or (1,2,3,1) . This requires to generate new linear combinations, 718

in particular,
1 2 4(, , ,)U U U will be linearly combined, for the first example, and

1 2 3(, , ,)U U U 719

in the second example. Thus, we modified matrix U to generate / 4bcf M bicolored nodes, 720

where
bcf stands for ‘bicolored fraction’ and is a number between 0 and 1 . The (nominal) 721

maximum number of bicolored nodes is / 4M , since we generated one node for each series of 722

indexes i to 3i + . Finally, we constructed matrix Z by thresholding matrix
*U , and then matrix 723

C , which rows were in the form: 724

 725

1 (1)

2 (1)

1 ()

2 ()

k

k

k M

k M

y Z

y Z

y Z

y Z

 726

 727

where iZ is the ith row vector in matrix Z and vector k is a permutation of the list of integers 728

from 1 to M . 729

Following the above procedure, we constructed random transition graphs that respected the 730

linear combinations needed so that a consistent system of equations could be constructed. Given 731

that these networks do not solve the s-task but are the minimum Frobenius norm solution to a 732

random transition graph, we call them F networks. The procedure avoids index sequences like 733

(1221) , since this ordering gives a consistent system only if 0 = , in which case stimuli cannot 734

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 23, 2020. ; https://doi.org/10.1101/2020.04.20.051565doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.20.051565
http://creativecommons.org/licenses/by-nc/4.0/

33

be distinguished by the network. The procedure also avoids index sequences of the type (11) 735

(one node leads to another single node through both stimuli, 1s and 2s). If this were the case, 736

one possibility is that 1s and 2s produce the same u values. Therefore, is a vector of zeros 737

and stimuli cannot be discriminated. Another possibility is that stimuli lead to different vectors u , 738

but these vectors in turn lead to the same vector c after thresholding. This situation is possible, 739

but would require careful selection of u values in relation to , and for this it was avoided. 740

We constructed networks that follow random transition graphs and compared their properties 741

with the properties of networks that solve the s-task. In particular, we measured the reciprocity of 742

the network, defined as the Spearman correlation between weights of incoming and outgoing 743

synapses. Reciprocity was computed over matrix , a normalized version of the synaptic weights 744

constructed by taking the absolute values of w and scaling them between 0 and 1. Since 745

imposing structural constrains like Dale’s principle, or sparsity, may generate many zero-valued 746

weights, reciprocity was computed over values such that (,) 0i j and (,) 0j i for each 747

possible pair (,)i j . 748

For each network generated to solve the s-task we also picked a network from its isofunction 749

space, that is, from the set of all networks that has the same stimulus-response mapping (as 750

described above). We refer to these networks as T networks, since they solve the s-task but they 751

are not the minimum Frobenius norm solution. The linear mapping in eq. (10) has entries 752

,
,

(,) max((,))i j
i j

i j r w i j= , where ,i jr is a random number, different for each entry, sampled 753

uniformly from the [1,1]− interval, and w is the synaptic weight matrix from which an isofuntion 754

network is desired. We defined mapping in this way to obtain isofunction networks with 755

synaptic weight values within the range of the weights in the original network. 756

In addition, for each network that solves the s-task we constructed an isofunction network with 757

structural constrains: no self-connections and Dale’s principle with excitatory and inhibitory 758

neurons in equal numbers. 759

All the algorithms were implemented in Matlab. 760

. 761

 762

 763

 764

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 23, 2020. ; https://doi.org/10.1101/2020.04.20.051565doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.20.051565
http://creativecommons.org/licenses/by-nc/4.0/

34

References: 765

1. Kriegeskorte, N. & Douglas, P. K. Cognitive computational neuroscience. Nat. Neurosci. 766

21, 1148–1160 (2018). 767

2. Bassett, D. S., Zurn, P. & Gold, J. I. On the nature and use of models in network 768

neuroscience. Nat. Rev. Neurosci. 19, 566–578 (2018). 769

3. Song, H. F., Yang, G. R. & Wang, X. J. Training Excitatory-Inhibitory Recurrent Neural 770

Networks for Cognitive Tasks: A Simple and Flexible Framework. PLoS Comput. Biol. 12, 771

1–30 (2016). 772

4. Richards, B. A. et al. A deep learning framework for neuroscience. Nat. Neurosci. 22, 773

1761–1770 (2019). 774

5. Barrett, D. G., Morcos, A. S. & Macke, J. H. Analyzing biological and artificial neural 775

networks: challenges with opportunities for synergy? Curr. Opin. Neurobiol. 55, 55–64 776

(2019). 777

6. Bengio, Y. & LeCun, Y. Scaling Learning Algorithms Towards AI. in Large-Scale Kernel 778

Machines (eds. Bottou, L., Chapelle, O., DeCoste, D. & Weston, J.) 321–358 (The MIT 779

Press, 2007). 780

7. Sussillo, D., Churchland, M. M., Kaufman, M. T. & Shenoy, K. V. A neural network that 781

finds a naturalistic solution for the production of muscle activity. Nat. Neurosci. 18, 1025–782

1033 (2015). 783

8. Maheswaranathan, N., Williams, A. H., Golub, M. D., Ganguli, S. & Sussillo, D. Universality 784

and individuality in neural dynamics across large populations of recurrent networks. (2019). 785

9. Penrose, R. & Todd, J. A. On best approximate solutions of linear matrix equations. Math. 786

Proc. Cambridge Philos. Soc. 52, 17–19 (1956). 787

10. Neri, F. Linear algebra for computational sciences and engineering. Linear Algebra for 788

Computational Sciences and Engineering (Springer, 2016). doi:10.1007/978-3-319-40341-789

0 790

11. Lennie, P. & Place, W. The Cost of Cortical Computation. Curr. Biol. 13, 493–497 (2003). 791

12. Mizuseki, K. & Buzsáki, G. Preconfigured, Skewed Distribution of Firing Rates in the 792

Hippocampus and Entorhinal Cortex. Cell Rep. 4, 1010–1021 (2013). 793

13. Schneidman, E., Berry, M. J., Segev, R. & Bialek, W. Weak pairwise correlations imply 794

strongly correlated network states in a neural population. Nature 440, 1007–1012 (2006). 795

14. Strata, P. & Harvey, R. Dale’s principle. Brain Res. Bull. 50, 349–350 (1999). 796

15. Lefort, S., Tomm, C., Floyd Sarria, J. C. & Petersen, C. C. H. The Excitatory Neuronal 797

Network of the C2 Barrel Column in Mouse Primary Somatosensory Cortex. Neuron 61, 798

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 23, 2020. ; https://doi.org/10.1101/2020.04.20.051565doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.20.051565
http://creativecommons.org/licenses/by-nc/4.0/

35

301–316 (2009). 799

16. Seeman, S. C. et al. Sparse recurrent excitatory connectivity in the microcircuit of the adult 800

mouse and human cortex. Elife 7, 1–27 (2018). 801

17. Szegedi, V. et al. Robust perisomatic GABAergic selfinnervation inhibits basket cells in the 802

human and mouse supragranular neocortex. Elife 9, 1–19 (2020). 803

18. Bekkers, J. M. Neurophysiology: Are autapses prodigal synapses? Curr. Biol. 8, 52–55 804

(1998). 805

19. Calamai, P. H. & Moré, J. J. Projected gradient methods for linearly constrained problems. 806

Math. Program. 39, 93–116 (1987). 807

20. Song, S., Sjöström, P. J., Reigl, M., Nelson, S. & Chklovskii, D. B. Highly Nonrandom 808

Features of Synaptic Connectivity in Local Cortical Circuits. PLoS Biol. 3, e68 (2005). 809

21. Brunel, N. Is cortical connectivity optimized for storing information? Nat. Neurosci. 19, 749–810

755 (2016). 811

22. Garlaschelli, D. & Loffredo, M. I. Patterns of link reciprocity in directed networks. Phys. 812

Rev. Lett. 93, 1–4 (2004). 813

23. Schulz, D. P. A., Sahani, M. & Carandini, M. Five key factors determining pairwise 814

correlations in visual cortex. J. Neurophysiol. 114, 1022–1033 (2015). 815

24. de la Rocha, J., Doiron, B., Shea-Brown, E., Josić, K. & Reyes, A. Correlation between 816

neural spike trains increases with firing rate. Nature 448, 802–806 (2007). 817

25. Constantinidis, C. & Goldman-Rakic, P. S. Correlated discharges among putative 818

pyramidal neurons and interneurons in the primate prefrontal cortex. J. Neurophysiol. 88, 819

3487–3497 (2002). 820

26. Alemi, A., Baldassi, C., Brunel, N. & Zecchina, R. A Three-Threshold Learning Rule 821

Approaches the Maximal Capacity of Recurrent Neural Networks. PLoS Comput. Biol. 11, 822

1–23 (2015). 823

27. Such, F. P. et al. Deep Neuroevolution: Genetic Algorithms Are a Competitive Alternative 824

for Training Deep Neural Networks for Reinforcement Learning. (2017). doi:1712.06567 825

28. Salimans. Evolution Strategies as a Scalable Alternative to Reinforcement Learning. Proc. 826

- 4th IEEE Int. Conf. Softw. Testing, Verif. Valid. Work. ICSTW 2011 476–485 (2011). 827

doi:10.1109/ICSTW.2011.58 828

29. Vinyals, O. et al. Grandmaster level in StarCraft II using multi-agent reinforcement learning. 829

Nature 575, 350–354 (2019). 830

30. Silver, D. et al. A general reinforcement learning algorithm that masters chess, shogi, and 831

Go through self-play. Science (80-.). 362, 1140–1144 (2018). 832

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 23, 2020. ; https://doi.org/10.1101/2020.04.20.051565doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.20.051565
http://creativecommons.org/licenses/by-nc/4.0/

36

31. Kojima, S. & Goldman-Rakic, P. S. Delay-related activity of prefrontal neurons in rhesus 833

monkeys performing delayed response. Brain Res. 248, 43–50 (1982). 834

32. Guo, Z. V. et al. Maintenance of persistent activity in a frontal thalamocortical loop. Nature 835

545, 181–186 (2017). 836

33. Orhan, A. E. & Ma, W. J. A diverse range of factors affect the nature of neural 837

representations underlying short-term memory. Nat. Neurosci. 22, 275–283 (2019). 838

34. Murray, J. D. et al. Stable population coding for working memory coexists with 839

heterogeneous neural dynamics in prefrontal cortex. Proc. Natl. Acad. Sci. U. S. A. 114, 840

394–399 (2017). 841

35. Vries, M. H. De, Christiansen, M. H. & Petersson, K. M. Learning Recursion : Multiple 842

Nested and Crossed Dependencies. Biolinguistics 10–35 (2011). 843

36. Honey, C. J., Thivierge, J. P. & Sporns, O. Can structure predict function in the human 844

brain? Neuroimage 52, 766–776 (2010). 845

37. Bullmore, E. & Sporns, O. Complex brain networks: Graph theoretical analysis of structural 846

and functional systems. Nat. Rev. Neurosci. 10, 186–198 (2009). 847

38. Vázquez-Rodríguez, B. et al. Gradients of structure–function tethering across neocortex. 848

Proc. Natl. Acad. Sci. U. S. A. 116, 21219–21227 (2019). 849

39. Kording, K. P. Bayesian statistics: Relevant for the brain? Curr. Opin. Neurobiol. 25, 130–850

133 (2014). 851

40. Knill, D. C. & Pouget, A. The Bayesian brain : the role of uncertainty in neural coding and 852

computation. Trends Neurosci. 27, (2004). 853

41. Ellefsen, K. O., Mouret, J. B. & Clune, J. Neural Modularity Helps Organisms Evolve to 854

Learn New Skills without Forgetting Old Skills. PLoS Comput. Biol. 11, 1–24 (2015). 855

 856

 857

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 23, 2020. ; https://doi.org/10.1101/2020.04.20.051565doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.20.051565
http://creativecommons.org/licenses/by-nc/4.0/

37

Acknowledgements: 858

This research was supported by grants from Agencia Nacional de Promoción Científica y 859

Tecnológica (ANPCYP) PICT 2016-2145 and PICT 2017-3208) and from Universidad de Buenos 860

Aires (UBACYT 20020170100568BA). The work of Camilo J. Mininni was supported by a 861

postdoctoral fellowship from ANPCYT. 862

 863

Author contributions: 864

CJM conceived the project, implemented the algorithms and wrote the initial draft. CJM and 865

BSZ reviewed and edited the final manuscript. 866

 867

Competing interests: 868

The authors declare no competing interests. 869

 870

Materials and correspondence: 871

Correspondence to Camilo J. Mininni: mininni@dna.uba.ar. 872

Matlab codes are available upon request. 873

 874

 875

 876

 877

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 23, 2020. ; https://doi.org/10.1101/2020.04.20.051565doi: bioRxiv preprint

mailto:mininni@dna.uba.ar
https://doi.org/10.1101/2020.04.20.051565
http://creativecommons.org/licenses/by-nc/4.0/

