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Abstract: 1 

Neural network models are an invaluable tool to understand brain function, since they allow to 2 

connect the cellular and circuit levels with behaviour. Neural networks usually comprise a huge 3 

number of parameters, which must be chosen carefully such that networks reproduce anatomical, 4 

behavioural and neurophysiological data. These parameters are usually fitted with off-the-shelf 5 

optimization algorithms that iteratively change network parameters and simulate the network to 6 

evaluate the changes and improve fitting. Here we propose to invert the fitting process by 7 

proceeding from the network dynamics towards network parameters. Firing state transitions are 8 

chosen according to the transition graph followed by an agent when solving a given behavioural 9 

task. Then, a system of linear equations is constructed from the network firing states and 10 

membrane potentials, in such a way that system consistency in guarantee. This allows to 11 

uncouple the activity features of the model, like its neurons firing rate and correlation, from the 12 

connectivity features and from the task-solving algorithm implemented by the network, allowing 13 

to fit these three levels separately. We employed the method to probe the structure-function 14 

relationship in a stimuli sequence memory task, finding solution networks where commonly 15 

employed optimization algorithms failed. The constructed networks showed reciprocity and 16 

correlated firing patterns that recapitulated experimental observations. We argue that the 17 

proposed method is a complementary and needed alternative to the way neural networks are 18 

constructed to model brain function.  19 

  20 
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Introduction: 21 

Understanding brain function requires construction of physiological models that explain 22 

experimental data, which encompass behavioural outcome, anatomical features, neurons 23 

biophysics and coding properties, among others1,2. Many kinds of physiological models have been 24 

proposed along history, each one with their own merits. Among them, neural network models are 25 

well poised to connect all levels of analysis, from the behavioural to the molecular level, being a 26 

natural choice as neurons are the functional units of the brain. Yet, constructing neural networks 27 

that are suitable models is not an easy task. Neural networks can be hand-designed, setting 28 

network parameters following experimental data, or randomly chosen when experimental data is 29 

not available or as a mean of attaining more general conclusions. However, this approach may 30 

fall short given the complexity of the nervous systems. To tackle this issue, theorist have 31 

employed optimization methods to define the network parameters in such a way that a loss 32 

function is minimized. The loss function must encompass relevant aspects of the model, like its 33 

performance in one or several tasks, structural constrains such as the Dale’s principle, or a 34 

connectivity with a certain degree of sparseness 3. Optimization methods are widely used in 35 

artificial intelligence (AI), and the ongoing deep learning revolution has prompted an explosion of 36 

fitting algorithms, and the eagerness of taking advantage of them to build models of brain 37 

function4,5. However, AI needs are different from the theoretical neuroscience needs. Artificial 38 

intelligence deals with constructing systems capable of solving difficult tasks, employing very 39 

general optimization algorithms parameter fitting6. On the other hand, models in neuroscience are 40 

expected to explain how animals behave in simple tasks, yet with biologically plausible neural 41 

networks. Simple tasks are desired because behavioural outcome is easier to interpret, and 42 

mechanistic explanations easer to envisage. Thus, in AI the difficulty strives in the task, while in 43 

theoretical neuroscience it strives in the restrictions in network design that are imposed by biology. 44 

Therefore, methods for parameter fitting in theoretical neuroscience can take leverage from this 45 

point – the simplicity of the task – to solve problems that could be too hard to solve with generic 46 

optimization methods. 47 

One approximation that has been overlooked consists in finding the synaptic weights of a 48 

network as the solution of a system of equations. For many commonly employed neural network 49 

models, neurons perform a weighted sum of their inputs, followed by a non-linear transformation. 50 

For these models, if neurons firing and their added postsynaptic potential are known, the synaptic 51 

weights can be readily found by solving a linear system of equations in which the neurons firing 52 

constitute the coefficient matrix and the added postsynaptic potentials are the dependent 53 

variables. Thus, the problem of finding the network parameters is replaced by the problem of 54 
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finding sequences of valid network states that are consistent with solving the task. Although this 55 

problem might seem as hard as the former, we show in this work that viable network dynamics 56 

can easily be found by taking into account the transition graph associated with solving the task. 57 

By doing so, we were able to construct networks with millions of parameters extremely fast, 58 

without inefficient searches in parameter space. Moreover, optimization algorithms may have 59 

biases for a subset of all possible solutions7. These biases depend on the algorithms employed, 60 

the hyperparameters and the regularizations, and the relation between biases and its causes 61 

might be difficult to understand or control8. In contrast, our method allows to construct networks 62 

by sampling from a desired distribution of network dynamics, while further structural constrains 63 

on solutions can be easily imposed. Since the method proceeds from the network firing states to 64 

the network parameters, we call it the Firing to Parameter (FTP) method. 65 

In this work we test the FTP method in a sequence memory task, and compare the method 66 

performance against an off-the-shelf optimization algorithm. Then, we show how to construct 67 

networks with certain activity and structural constrains, and analyse the relationship between 68 

structure and function. 69 

 70 

 71 

 72 

  73 
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Results: 74 

Neural networks that follow a predefined transition graph: 75 

We will consider an agent that interacts with its environment. At each time step t  the agent is 76 

at one of M  possible states m . Conversely, the environment adopts one of L  possible states 77 

e . Agent and environment transitions can be expressed as: 78 

 79 

 
1 1[ , ] [E( , ),A(E( , ), )]t t t t t t te m e m e m m+ + =  (1)80 

  81 

where E  and A  are the transition functions that take the agent and environment states and give 82 

the agent and environment states in the subsequent time step. The agent state m  may codify 83 

several sub-states related to a biological agent, such as the behavioural response, reward signals, 84 

etc. Equation (1) thus describes a state machine which can model animal behaviour and 85 

neurophysiology. In particular, a behavioural task in which the agent must interact with the 86 

environment in a certain way to obtain reward can be codified in the E  and A  functions. Hence, 87 

any agent that solves a given behavioural task must follow the transition graph associated with 88 

solving that task. This includes agents controlled by recurrent neural networks, which are the main 89 

focus in this paper. We will work with networks of binary (McCulloch-Pitts) neurons composed of 90 

zN  recurrently connected integration neurons. Information about the environment is carried by a 91 

set of yN  sensory neurons (Fig. 1a). The temporal evolution of the network is dictated by:  92 

 93 

 
H( )

y zu yw zw

z u 

= +

= −
 94 

 95 

where yw  and rw  are synaptic weights matrices of sensory and integration neurons, vector y  96 

contains firing states of sensory neurons,   is a vector of neuron thresholds, and H  stands for 97 

the Heaviside function.  Vector u  contains the neurons activation states, akin of membrane 98 

potentials, and vector z  contains the neurons firing states. We will call mz  the vector of firing 99 

states of all integration neurons associated with population state m , and ey   the vector of firing 100 

states of sensory neurons associated with environment state e . Since we want our network to 101 

follow the state transitions depicted in eq. (1), the next equation must hold: 102 

 103 

 ( , ) ,H( )A e m e mz c w = −  (2) 104 

 105 
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where , [ , ]e m e mc y z=  is the concatenation of sensory and integration neurons firing states, and 106 

[ , ]y zw w w=  is the concatenation of the synaptic weight matrices. Equation (2) says that 107 

transitions in network states as ruled by the weight matrix w  must be consistent with transitions 108 

in the transition graph that solves the target task.  109 

 110 

Linear system construction: 111 

Figure 1. Constructing recurrent networks that follow a predefined transition graph. a, networks are composed of 

binary McCulloch & Pitts neurons. Sensory neurons codify external stimuli and project to the integration neurons 

through synaptic weights yw . Integration neurons are recurrently connected through synaptic weights 
rw . In the 

s-task, the population of integration neurons must codify in its firing state the sequence of the last   stimuli 

presented. b, transition graph showing transitions between network states during execution of the s-task, for 3 =
. Each node in the graph is a network state, and arrows depict transitions between nodes after stimuli presentation. 

Each possible sequence of 3 stimuli in length is codified by exactly one network state. Nodes are numbered such 

that transitions can be represented in a simple transition matrix. c, transition matrix associated with the transition 

graph in panel (b). It shows the activation states u  that are reached when recurrent neurons are in a population 

firing state z , and 
1s  (blue) or 

2s  (red) are presented. d, same transitions depicted in panels (b) and (c), but 

explicitly showing vectors 
iu  and vectors 

ic , which are the concatenation of one y  and one z . The index i  is 

such that 
iz  and 

iu  are the firing state and activity vectors corresponding to agent state 
im .  
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We are interested in constructing a recurrent network of neurons by solving a system of linear 112 

equations built from the set of neurons firing states. To this end we first define a coefficient matrix 113 

C , whose rows result from the concatenation of one ey  vector and one 
mz  vector, for all 114 

combinations of environment state e  and agent state m : 115 

 116 

 

1 1

1

1

L

M

L M

e m

e m

e m

e m

y z

y z

C

y z

y z

 
 
 
 
 

=  
 
 
 
 
 
 

 117 

 118 

Then we define a matrix U , such that its ith row vector iu  is such that H( )iu −  gives the z  119 

associated with the state m  that should follow from the e  state and m  state of row i  in C , 120 

according to the desired transition graph. Thus, matrix C  and U  condense all the transitions 121 

required to solve the target task. It follows that: 122 

 123 

 Cw U=  (3) 124 

 125 

The matrix w  can be found by computing: 126 

 127 

 w C U+=  (4) 128 

 129 

where C+
 stands for the pseudoinverse of C . Thus, the connectivity matrix w  can be obtained 130 

by solving the linear system with coefficient matrix C  and dependent variable matrix U . Since 131 

we are using the pseudoinverse to solve the system, the solution is the one with minimum 132 

Frobenius norm9.  133 

We want to sample from the set of matrixes w  that accomplish the task constrain, i.e. networks 134 

constructed with the sole constrain of solving the target task. A naïve approximation to this 135 

problem would be to pick the iu  vectors at random, threshold them to obtain the associated iz  136 

vectors, and construct matrices C  and U  by following the desired transition graph. However, by 137 

doing so it is very likely that we end up by having an inconsistent system of equations, meaning 138 
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that there is no network of neurons that can follow those state transitions. This is because matrix 139 

C  is not full rank, but its rows are linearly dependent. If we consider the case of two stimuli 1s  140 

and 2s , codified by vectors 1y  and 
2y , then each vector 1[ , ]my z  can be expressed as a linear 141 

combination of 
2[ , ]my z  and vectors 1[ , ]Py z  and 

2[ , ]Py z , where vector 
Pz  can be any vector 142 

taken from the set of all firing states the network can adopt: 143 

 144 

 
2 1 1 2[ , ] [ , ] [ , ] [ , ]m m P Py z y z y z y z= − +  (5) 145 

 146 

Thus, rank( ) 1C M= + . Following the Rouché-Capelli theorem10, eq. (3) has a solution if and 147 

only if rank( ) rank([ , ])C C U= , being [ , ]C U  the augmented matrix. Yet, if we choose vectors 148 

u  randomly, when adjoined to matrix C  the linear dependencies expressed in eq. (5) will be 149 

broken, and the resulting augmented matrix will have rank above 1M + . However, consistency 150 

can be enforced if initial randomly generated vectors u  are linearly combined following linear 151 

dependencies in C , such that the same linear dependencies in C  are conserved in the 152 

augmented matrix.  153 

 154 

The s-task: 155 

In the following we will consider a sequence memory task: the environment consists of two 156 

stimuli 1s  and 2s , which are sequentially presented at each time step, chosen randomly with 157 

equal probability. To obtain reward at time step t  the agent has to recall the stimulus presented 158 

at time step t t− . Successful behaviour thus requires to have a memory of stimuli sequences 159 

of length 1t =  + , starting from t t− . The constant   defines the memory requirements of 160 

the task. Figure 1b shows an agent’s states and the transitions gated by the stimuli when solving 161 

the s-task for 3 = .  162 

To solve the task the agent needs at least 2M =  states, meaning that complexity grows 163 

exponentially. This would suggest that the task is a complex one. However, it can be seen that 164 

the transition matrix has a stereotyped form if nodes are numbered properly (Fig. 1c). The 165 

transition graph in Fig. 1b shows the state transitions any agent that solves the s-task should 166 

follow. With the transition matrix structure at hand we can construct matrices C  and U . We will 167 

define a neural network with two sensory neurons such that 
1

(1,0)sy =  and 
2

(0,1)sy = . If we 168 

order the transitions as in Fig. 1b-d, we have that, if eq. (3) has a solution, rows in the augmented 169 

matrix should satisfy: 170 

  171 

 2 1 1 1 1 2 1 1[ , , ] [ , , ] [ , , ] [ , , ]T T T T P P P Py z u y z u y z u y z u+ + + += − +  (6) 172 
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 173 

where T  are indexes over the rows of C  and U , which are odd numbers between 1 and M . 174 

The row index P  is and odd number between 1 and M , different from all T . Note that 
1T Tz z +=  175 

and 
1P Pz z += , but 

1T Tu u + and 1P Pu u + . Equation (6) shows us how row vectors in matrix U  176 

should be linearly combined such that eq. (3) has a solution. We have that: 177 

 178 

 
1 1T T P Pu u u u+ += − +  (7) 179 

 180 

This means that the number of linear combinations in U  is 2 / 2 1R = − , and 181 

rank( ) 2 / 2 1U = + . Note that rewriting eq. (7) we have: 182 

 183 

 
2 1, ,s i s i iu u− =   (8) 184 

 185 

where 
1 ,s iu  and 

2 ,s iu  are the activation that neuron i  adopts after presentation of 1s  and 2s , 186 

respectively. In words, eq. (8) tells that the difference in effects provoked by the stimuli is a 187 

constant for each neuron, regardless of which network state or transition we are dealing with. This 188 

fact is not surprising, since synaptic weights are held fixed, so each stimulus has the same effect 189 

at any time, which is specific for each neuron. Thus, making the system of equations in (3) 190 

consistent is equivalent to guarantee that activation values are chosen so that the effect of each 191 

stimulus is consistent. 192 

We proceeded by generating a vector of thresholds  , with  3 51
2 2 2, ,i  . Then, we 193 

constructed base matrix baseU  with 2 / 2 1baseM = +  row vectors such that: 194 

 195 

 
1

( , ) ( , )
2

base iU m i r m i= + +  196 

 197 

where ( , )r m i  is an integer uniformly sampled from the [-5,5] interval. We added the term 1
2  to 198 

avoid fitting errors when numerically solving the system, otherwise the activation values could be 199 

equal to the threshold values, which would result in erroneous firing states because of numeric 200 

precision issues. This initial randomly generated matrix baseU  has full rank. We computed the 201 

vector   of i  elements as the difference between the first two rows of baseU . Next, we applied 202 

eq. (8) to generate the remaining R  rows as linear combinations of the third to the last row of 203 

baseU , obtaining 2  row vectors which constitute the matrix 
*U . Each row vector u  in matrix 

*U  204 

has the neurons activations for one of the 2  network state. Applying eq. (8) creates a 205 
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dependency between  
1 ,s iu  and 

2 ,s iu . Hence, for each linear combination we chose at random 206 

which activation value (the one associated with 1s  or 2s ) will be defined in terms of the other. 207 

This is to ensure that u  value distributions are equal between stimuli. We constructed matrix Z  208 

by applying threshold   to 
*U , and then we followed the ordering depicted in Fig. 1b-d to 209 

construct matrix U  from 
*U , and matrix C  from Z  and vectors 1y ,

2y . Finally, we employed 210 

eq. (4) to obtain the synaptic weight matrix w . Since matrix w  is the minimum Frobenius norm 211 

solution to eq. (4) and defines a network that solves the s-task, we call it a T+F network.  212 

We are assuming that two conditions are met after thresholding: 1) the resulting vectors c  are 213 

all different, and 2) they are linearly independent. If after thresholding any vector is repeated, this 214 

would result in lower performance in the task, since not all sequences of length   will be encoded. 215 

On the other hand, if linear independency fails after thresholding, then matrix C  will have more 216 

linear combinations than the contemplated in eq. (5), meaning that combining the rows of U  217 

following eq. (8) will not be enough, and some linear dependencies in C  will be lost in the 218 

augmented matrix, making the system inconsistent. In our implementation of the algorithm, if any 219 

of these two conditions were not verified, then the algorithm was restarted from the beginning. 220 

This occurred sometimes, for 5  . For higher  , both conditions were always fulfilled in one 221 

attempt. 222 

In the above explanation we assumed that 2zN = , such that there is one neuron per sequence 223 

of length  . It was possible to fit networks with lower number of neurons, but undesired linear 224 

dependencies in C  after thresholding, or a number of network states bellow 2  occurred with 225 

higher probability, especially for 3  . 226 

We employed the FTP algorithm to construct networks of 2zN =  neurons that solve the s-227 

task (Fig. 2a,b). The resulting synaptic weight distribution had zero mean and resembled a normal 228 

distribution, at least for the rw  values (Fig. 2c). In fact, the synaptic weight distributions became 229 

progressively closer to a normal distribution as more neurons were used in network construction 230 

(Fig. 2d). We also noted that the absolute weight value decreased, especially for rw  values (Fig. 231 

2e), which can be explained by thinking that more neurons imply more parameters and hence 232 

more degrees of freedom to reach a lower Frobenius norm. This observation will become 233 

important later when imposing structural constrains to the network.  234 

 235 

Efficiency of the FTP algorithm: 236 

We assessed the performance of the algorithm by measuring the time expended in finding 237 

solutions for 1 =  to 12 = , and comparing these times with the times required for a genetic 238 

algorithm (GA) to find solutions for the same   values and number of neurons. The FTP  239 
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 240 

  241 

Figure 2. Solving the s-task with the FTP algorithm. a, raster plot showing the neurons firing states in a network 

constructed to solve the s-task for 3 = . The network is composed of eight integration neurons and 2 sensory 

neurons. Each possible sequence of 3 stimuli has a unique network firing state that codifies it. Therefore, the 

network has 8 possible firing states. b, sensory and integration synaptic weights of the network. For this example (

1rf = ) the range of weights is grater for sensory than for integration synapses. c, distribution of synaptic weights 

for sensory (upper panel) and integration (lower panel) synaptic weights, for the same network as in (a, b). 

Distributions are zero centred. d, Kolmogorov-Smirnov statistic between the distribution of synaptic weights and a 

normal distribution of the same mean and variance. As the number of integration neurons increases, the distribution 

of synaptic weights gets closer to a normal. Integration neurons weights are closer to a normal than sensory neurons 

weights. Mean ± SD are shown for n = 100 networks that solves the s-task, with 3 = . e, absolute synaptic weight 

values as a function of the number of integration neurons in the network. Absolute values are higher and of larger 

variability when the neuron count is close to the number of coded stimuli sequences. As the number of integration 

neurons increases the absolute mean value and dispersion decreases. Sensory neurons weights quickly reach a 

minimum, while integration neurons weights decrease in the entire range of integration neurons. Mean ± SD are 

shown for n = 100 networks that solves the s-task, with 3 = . 
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 242 

outperformed the genetic algorithm by several orders of magnitude (Fig. 3a), and for 6   the 243 

GA could not find a network with performance above 0.9. The result is not surprising, since the 244 

time complexity of solving a linear system of equations is 
3( )O n 10, with n  being the total number 245 

of variables. As   was increased, most of the GA running time was expended in the simulation 246 

of the networks, while the fraction of time expended in evaluating network performance with the 247 

classifier became smaller.  248 

Given that performance of optimization algorithms is sensitive to several hyperparameters, 249 

including initial conditions and mutation factor, we asked whether a GA that starts near a solution 250 

network would stay around the solution or would it drift away. To that end we employed the FTP 251 

to find a solution network, and set it as the individual from which the first population was built. 252 

Then the GA was used to reduce fitness over 20 generations, such that the population became 253 

20 generations apart from the solution (Fig. 3b). Next, the GA was run for another 20 generations 254 

in the increasing fitness direction (Fig. 3c). In each generation, random mutations were applied, 255 

with a mutation factor 
* ( )mut mutf f w=  (see Methods). We run this experiment for several values 256 

of   and 
*

mutf . It can be seen that up to 4 =  performance dropped to chance level during the 257 

fitness reduction phase, followed by a total or partial recovery during the fitness increment phase. 258 

However, performance did not recover for higher values of  . This suggests that, as   increases, 259 

Figure 3. Efficiency of the FTP algorithm. a, efficiency of FTP and GA, measured as the time expended in finding a 

network solution for s-tasks of different  . The time expended by the FTP algorithm is orders of magnitude lower 

than the time expended by the GA. As   increases, the time expended in network simulation (dashed blue line) 

tends to match the total time expended by the GA (solid blue line). The FTP running time showed some variability 

for 6  , in the range of tens of milliseconds. The absence of points in the GA curves for 6   means that this 

algorithm could not find a solution within the limit of 1 hour of running time. The GA was run 1 time for each  , 

while the FTP was run 30 times for each  . b, fitness of solution networks found for different   after their synaptic 

weights were mutated for 20 generations with different mutation ratios 
*

mutf , and selected to reduce their fitness. 

Mutations reduced fitness to chance level for all 
*

mutf values except for the lowest. For 5   even the lowest 
*

mutf

had detrimental effects. c, fitness measured after networks in (b) where subjected to 20 generations of mutation 

and selection to increase their fitness. Fitness could be restored when   and 
*

mutf values were low. If   or 
*

mutf  

where higher, restoration was only partial or did not occurred. 
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the basin of attraction around the initial solution gets narrower, leading the GA to drift away from 260 

the solution. Although these results cannot rule out that other optimization algorithms have better 261 

performance, they do highlight how small the solution space is, and the huge gap between the 262 

FTP and another, more generic fitting algorithm. 263 

 264 

Imposing activity constrains through U  matrix initialization: 265 

We want to construct neural network models that not only solve relevant tasks but do so under 266 

desired firing constrains, as measured in real brains. Some of these constrains are low firing rates 267 

(FR)11,12, or low correlation coefficient (CC)13. In regular optimization algorithms, these constrains 268 

can be imposed to solution networks by introducing regularization terms in the loss function3. On 269 

the other hand, in the FTP algorithm the activity states of the network are the result of linearly 270 

combining the rows of an initial matrix baseU . Hence, we can apply firing constrains by 271 

appropriately choosing this initial matrix. For example, to attain networks that solve the s-task with 272 

low/high firing it suffices to choose an initial matrix baseU  such that after thresholding the resulting 273 

matrix C  has few/many ones. Following this procedure, we constructed networks with average 274 

FR within a wide range of target FR (Fig 4a, blue line). Shuffling the afferent synaptic weights of 275 

each neuron produces only small changes to the average FRs (Fig. 4a, red line). This suggests 276 

that it is the distribution of afferent synaptic weights the critical structural statistic that defines the 277 

networks average FR, and not its precise connectivity. Solutions are harder to find for extreme 278 

FR values, because thresholding gives C  matrices with repeated rows, which translate in not 279 

enough network states to codify all stimuli sequences.  280 

On the other hand, we can construct networks with desired signal correlation, by multiplying   281 

by a factor ccf , which results in stimuli inducing different firing rates (Fig. 4b). For networks shown 282 

in Fig. 4 ( 4, 3rf = = ) correlations could be modulated in a range between 0.25 and 0.5. 283 

Although scaling of   is expected to induce signal correlation, it can be seen that it is inducing 284 

noise correlation as well, as a by-product (Fig. 4c). Correlations of networks solving the s-task are 285 

significantly higher than correlations of their synaptic weights-shuffled counterparts (Fig 4b, blue 286 

vs. red), which shows that pairwise correlations depend on the whole weight matrix and not only 287 

on the distribution of the afferent weights, as is the case with FR. It also suggests that the set of 288 

networks that solve the s-task necessarily have correlation above a minimum. On the other hand, 289 

correlations also seem not to exceed a certain value: higher correlations would imply a reduced 290 

number of network states, incompatible with the number of sequences required to codify.  291 

Hand-based manipulation of baseU  allows to generate solution networks in a wide range of FR 292 

and CC (Fig. 4d, blue dots). An even better control of firing and correlation can be achieved by 293 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 23, 2020. ; https://doi.org/10.1101/2020.04.20.051565doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.20.051565
http://creativecommons.org/licenses/by-nc/4.0/


14 
 

fitting baseU  by means of a GA in which the fitness of baseU  is a function of the FR and CC 294 

computed over the population firing states of the network generated from that baseU . Fitting baseU  295 

allows for more extreme values of FR and CC (Fig 4d, black dots), while keeping computational 296 

Figure 4. Using FTP to construct networks subjected to task and activity constrains. a, real FR measured in networks 

constructed to solve the s-task, as a function of the target FR. The FR of networks constructed with the FTP 

algorithm are close to the target FR (blue line). There is a tendency to obtain lower firing rates for target FR values 

above 0.5 spikes/ time step, and higher firing rates for target FR values bellow 0.5 spikes/time step (grey line is the 

identity function). The same networks with their afferent synaptic weights shuffled (red line) show a similar 

relationship between target FR and measured FR, albeit with a lower slope. A total of 30 networks were generated 

for each target FR. Mean ± SD are shown, n = 30. b, correlation between pairs of integration neurons as a function 

of the scaling factor 
ccf . Pairwise correlation, computed over all time steps, increases with 

ccf  until it saturates at 

CC = 0.48 for 5ccf   (blue line). Networks with their afferent synaptic weights shuffled (red line) show low 

correlation, invariant to 
ccf . A total of 30 networks were constructed for each 

ccf  value, with target FR set to 0.1 

spikes/time step. Mean ± SD are shown, n = 30. c, pairwise correlation computed separately for 
1s  and 

2s  (noise 

correlation). The correlation coefficient increases with 
ccf , similarly for both stimuli, and closely following correlation 

values in (b). Mean ± SD are shown, n = 30. d, Measured FR as a function of pairwise correlation. Each blue dot 

shows the FR and CC of one network constructed to solve the s-task with FR and correlation constrains imposed 

by 
baseU  initialization. Values for 2700 networks are shown. Points form stripes pointing towards FR = 0.5 

spikes/time step, each stripe corresponding to networks with the same target FR. As correlation increases, the 

measured FR tends to 0.5 spikes/time step. Black dots show FR and correlation of 4 networks for which FR and 

correlation constrains were imposed by evolution of a population of 
baseU  matrices. 
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cost low by computing FR and CC over the set of population firing vectors c  instead of computing 297 

the actual network activity by simulating the network. Altogether, both methods ( baseU  298 

manipulation, or its evolution with a GA) easily allow to generate networks that perfectly solve the 299 

task, while imposing desired activity constrains at the same time. 300 

 301 

Applying structural constrains with projected gradient descend in isofunction weight 302 

space: 303 

Networks generated so far share one structural constrain: their synaptic weights matrix is the 304 

one that minimizes the Frobenius norm. Other relevant structural constrains, such as the lack of 305 

self-connections, Dale’s principle, or sparse connectivity are not satisfied. Since these structural 306 

constrains are key experimentally observed features(Lefort et al. 2009; Seeman et al. 2018; Strata 307 

and Harvey 1999) but see17,18, we were interested in imposing such constrains onto the w  308 

obtained by the algorithm. To do this we followed a projected gradient descent (PGD) approach19, 309 

taking advantage of the fact that the loss function , which encloses the structural constrains, is 310 

a linear function with respect to the synaptic weights, and that the matrix w  can be changed 311 

without changing the stimulus-response mapping (see Methods). To exemplify the procedure we 312 

constructed a network that solves the s-task for 4 = , with 3rf =  (Fig. 5a), and then we 313 

employed PGD to transform its matrix w  to remove self-connections, enforce Dale’s principle 314 

with a 4:1 Ex:In ratio, and set a sparsity 40%sp =  (defined as the percentage of weights equal 315 

to zero). The PGD reduced the loss function  in a steady fashion, reaching a negligible error, 316 

provided that the network had enough neurons (Fig. 5b). It is remarkable how such different 317 

synaptic weight matrices, as the ones depicted in Fig. 5a,c,d, gave rise to exactly the same 318 

stimulus-response mapping.  319 

 We noted the that structural constrains could not be imposed to networks with low number of 320 

neurons, i.e. y zN N N= +  between M  and 3M . This is not surprising, since it is expected that 321 

imposing more constrains requires more parameters. To evaluate the efficiency of the PDG in 322 

relation with the number of neurons, we imposed the above structural constrains for networks 323 

solving the s-task with 3 =  to 6 = , and zN  between 32 and 256 neurons. Since matrix U  324 

and vector   were randomly chosen, it is expected that some of them result in matrices w  for 325 

which the structural constrains are impossible to apply. Consequently, we measured PDF 326 

efficiency by computing # attempts, the number of networks that were required to generate until 327 

obtaining the first successfully constrained network. It can be seen that # attempts decreased as 328 

the number of neurons increased (Fig. 5e). Concordantly, the computing time required to obtain 329 

a fitted network decreased as the number of neurons increased, because fewer fitting attempts  330 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 23, 2020. ; https://doi.org/10.1101/2020.04.20.051565doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.20.051565
http://creativecommons.org/licenses/by-nc/4.0/


16 
 

 331 

Figure 5. Applying structural constrains to networks. a, synaptic weight matrices yw  and 
rw  of the network obtained 

through FTP before structural constrains were imposed, The network was constructed to solve the s-task for 4 =  

and 3rf = , with a target FR of 0.1 spikes/time step. b, Loss function  as a function of the number of iterations 

of the PGD algorithm. The loss function falls below the criterium 
3

1 10e −=  at iteration 121. c, d, synaptic weight 

matrices yw  and 
rw  for a network with the same stimulus-response mapping but after applying structural 

constrains: (c) no self-connection, Dale’s principle, with 40 excitatory and 10 inhibitory neurons, and sparsity 

40%sp = ; (d) no self-connections, Dale’s principle, with 26 excitatory and 24 inhibitory neurons, and sparsity 

23%sp = . e, average number of attempts to obtain one network with successful structural fitting, as a function of 

the number of integration neurons, and for different  . The number of attempts is high when the neuron number is 

low, but it decreases fast as the neuron number increases. From 60 neurons onwards, less than five attempts are 

needed, on average, to obtain one network with the desired structural constrains. Mean ± SD are shown.  f, total 

running time to obtain one network with successful structural fitting, as a function of the number of integration 

neurons, and for different   (color code as in (g)). Running time decreases and then increases for 3 =  and 4 =
. The case of 6 =  is the one with more neurons and equations to solve, and present some of the highest running 

times, even when the number of neurons is high. Nevertheless, all average running times are below the tens of 

seconds. 
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were required (Fig. 5f). The fitting time was somewhat higher for networks with the highest neuron 332 

count, but always within the order of tens of seconds, even for 256zN = .  333 

 334 

Linking structure, function and activity: 335 

Neural network structure determines its activity, which in turn translates into function. To 336 

understand the relationships between these three network features we constructed networks with 337 

different average firing rate and functionality and analysed their structure, more precisely, their 338 

connectivity. One key aspect of connectivity is reciprocity, which has been observed 339 

experimentally20 and its implications studied theoretically21. Here we chose the correlation 340 

between weights of incoming and outgoing synapses as the measure of reciprocity22 (see 341 

Methods). 342 

We have already shown how the FTP algorithm can be employed to generate networks with 343 

predefined activity features, namely, with desired firing rate and correlation. To compare networks 344 

with different functionality we constructed networks which had the same number of neurons and 345 

network states but for which the graph of transitions between network states was generated at 346 

random (Fig. 6a,b). In this manner we can construct networks whose dynamics have complexity 347 

similar to that of networks that solve the s-task, but which lack their function, i.e. to codify 348 

sequences of stimuli of length  . We screened networks with memory ranging from 2 =  to 349 

7 = , and FR from 0.1 spikes/time step to 0.9 spikes/time steps, and found that the reciprocity 350 

varied with  , FR and neuron number. In particular, we observed that, when 1rf = , reciprocity 351 

was positive and of lower mean for networks that were the minimum Frobenius norm solution to 352 

the s-task (T+F networks, Fig. 6c), in comparison with networks that were the minimum Frobenius 353 

norm solution to a random transition graph (F networks, Fig. 6d). However, for bigger rf  the 354 

relationship was inverted, and T+F networks showed positive reciprocity (Fig. 6e) while F 355 

networks showed negative reciprocity (Fig. 6f). 356 

To further describe these relationships, we selected networks constructed for 7 =  and 1rf =  357 

(Fig. 7a-c) and 4rf =  (Fig. 7d-f). Signal and noise correlation varied with FR following an inverted 358 

U-shape relationship, with a maximum next to 0.5 spikes/time step (Fig. 7a,d). Note that, up to a 359 

FR = 0.5 spikes/time step, CC increased with FR, as has been observed experimentally23,24. 360 

Interestingly, the way CC changed with FR was similar for both T+F and F networks, with the 361 

distinction that F networks had overall higher correlations than T+F networks. We computed the 362 

CC after shuffling the inter-spike interval of each neuron and found that it remained practically 363 

invariant with respect to FR. These CC values were also much smaller than the CC values of the 364 

non-shuffled firings (CCshuffled = 0.0224 ± 1.10-4, mean ± SD, for n = 90 T+S networks pooled over  365 
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366 

Figure 6. Reciprocity as a function of  , FR and the type of transition graph. a, transition graph for solving the s-

task with 7 = . Blue and red lines represent transitions gated by 
1s  and 

2s , respectively. b, random transition 

graph. Nodes (network states) may receive different number of incoming connections. There are 24 nodes that are 

gated by both stimuli. c, reciprocity for T+F networks, with 1rf = , as a function of   and target FR. Reciprocity 

changes from slightly negative to slightly positive as   increases. For 7 = , reciprocity is maximized around target 

FR = 0.5 spikes/time step, and decreases for lower and higher values of target FR. d, F networks with 1rf =  shows 

increasing positive reciprocity as   increases, maximized at target FR = 0.5 spikes/time step. e, when the number 

of neurons is higher ( 4rf = ), T+F networks show positive reciprocity that is minimal around target FR = 0.5, and 

increases towards higher and lower target FR, reaching the highest reciprocity values among all networks screened. 

f, reciprocity of F networks gets increasingly negative as   increases, reaching the lowest reciprocity among all 

networks screened, around target FR = 0.5 spikes/time step. For all panels, 30 networks were constructed for each 

  and target FR combination. Normalized means (mean/SD) are shown. Positive and negative reciprocity values 

were mapped separately to colours red and blue, respectively. Red tones go from 0 reciprocity (white) to maximal 

positive reciprocity (pure red). Blue tones go from 0 reciprocity (white) to maximal (in absolute value) negative 

reciprocity (pure blue). All random graphs were constructed with 0.5bcf = . Graphs were plotted with the Force-

directed layout 
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all FR values). These results rule out the possibility that correlations were trivially increasing with 367 

FR because of the higher number of spikes. We also found an inverted U-shape between 368 

reciprocity and FR, and a linear relationship between reciprocity and CC. The parabolic 369 

relationship is accentuated in networks with more neurons, the curve being more pronounce and 370 

of lower dispersion. With 1rf =  reciprocity tended to be maximized as FR approached 0.5 371 

spikes/time step, with F networks showing higher (and positive) reciprocity (Fig. 7b). With 4rf =372 

, reciprocity tended to increase as FR departed from 0.5 spikes/time step towards lower and 373 

higher values, i.e., networks with lower correlation (Fig. 7e). Specially, F networks showed 374 

negative reciprocity for all firing rates, except for the more extreme cases (0.1 and 0.9 spikes/time 375 

step). Just as the reciprocity/FR relationship inverts with the number of neurons, so does the 376 

reciprocity/CC relationship. Networks with higher reciprocity has higher correlation when the 377 

Figure 7. Correlation and reciprocity differentiate networks with sequence memory from random transition networks. 

a-c, networks constructed to solve the s-task with 7 =  and 1rf =  (T+F networks), their isofunction network (T 

network), and networks with the same number of neurons and network states that follow a random transition graph 

(F networks). (a), correlation increases as FR approaches 0.5 spikes/time step. F networks show a positive offset 

with respect to T+F and T networks. (b), the dependency between reciprocity and FR is similar to the dependency 

between CC and FR. Higher reciprocity values are found in F networks. (c) reciprocity grows linearly with correlation, 

as expected from panels (a) and (b). d-f, idem a-c, but with 4rf = . (d), the CC/FR relationship is similar to the one 

observed with lower neuron number (panel (a)). e, the reciprocity/FR relationship inverted as the neuron number 

was increased. Reciprocity is minimized as FR approaches 0.5 spikes/time steps, and increases towards lower or 

higher FR values. F networks show pronounced negative reciprocity. (f) reciprocity decreases linearly with 

correlation, as expected from panels (d) and (e). Mean ± SD are shown; n = 10 networks were constructed for each 

target FR and network type. All random graphs were constructed with 0.25bcf = . 
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number of neurons is low (Fig. 7c). However, and somewhat counterintuitive, when the number 378 

of neurons is higher, more reciprocity implies lower correlation (Fig. 7f). Networks that solve the 379 

s-task but do not minimize the Frobenius norm (T networks) showed almost zero reciprocity. This 380 

implies that reciprocity is not a property of all networks that solve the s-task. On the contrary, most 381 

networks that solve the s-task do not show significant reciprocity, unless other structural constrain, 382 

such as Frobenius norm minimization, is imposed. However, Frobenius norm minimization alone 383 

only produces negative reciprocity (in random graphs). For positive reciprocity to occur in 384 

networks with high number of neurons, both high sequence memory and Frobenius norm 385 

minimization is required.  386 

We asked whether the results depicted in Fig. 7 also occur in networks which lack self-387 

connections and comply with Dale’s principle. To that end we imposed these structural constrains 388 

to networks constructed with 7 =  and 4rf = , and found a reciprocity/FR relationship that 389 

resembles the one observed in unconstrained networks, with F networks showing prominent 390 

negative reciprocity and T+F networks showing increasing reciprocity as FR departs from 0.5 391 

spikes/time step (Fig. 8a). Correlations increased as FR approached 0.5 spikes/time step, with F 392 

networks showing more correlation than T+F networks (Fig. 8b,c). Correlation in T+F and F 393 

networks were higher for pairs of inhibitory neurons than for pairs of excitatory neurons, as has 394 

been observed experimentally25, while correlations between excitatory and inhibitory neurons laid 395 

in the middle. It is interesting to note that the classification of neurons as excitatory or inhibitory 396 

was not defined by design, but emerged during the enforcement of the structural constrains, when 397 

the network firing states were already chosen. This suggests that it was the (predefined) firing 398 

statistic of the neurons, specially the correlation among them, which ultimately defined which 399 

neuron could become excitatory and which inhibitory. 400 

In the F networks studied so far, each network state can be reached from either one of the two 401 

stimuli, or from both stimuli. This is the case because the random transition graphs allow nodes 402 

with incoming edges from both stimuli. Network states which can be reached from both stimuli 403 

(bicoloured nodes, see Methods) codify stimuli in a relative manner, meaning that the identity of 404 

the stimulus presented at time step t  can be decoded if the network state at time step t  and at 405 

time step 1t +  is known. On the other hand, network states which can be reached from 406 

exclusively one of the two stimuli (monocoloured nodes), codify stimuli in an absolute manner, 407 

since it is possible to know the identity of the presented stimuli at time step t  by knowing the 408 

network state at time step 1t +  alone. We asked whether the proportion of relative coding states 409 

and absolute coding states could explain the strong differences in correlation and reciprocity 410 

found between T+F and F networks. To that end, we changed the fraction of nominal bicolored 411 
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nodes 
bcf  and computed reciprocity for F networks of fixed  , FR and rf  (Fig. 9). We found that 412 

negative reciprocity values are caused by relative coding network states, since reciprocity is 413 

reduced as the fraction of these states is increased. When all network states are absolute coding 414 

states ( 0bcf = ), reciprocity is the lowest, as observed in T+F networks with the same FR and rf415 

. This suggests that reciprocity differentiates networks by how their network states codify stimuli, 416 

regardless of the capacity of the network for sequence coding.   417 

 418 

  419 

Figure 8. Reciprocity and correlation of structurally constrained networks. a, reciprocity as a function of FR for 

networks without self-connections and Dale’s principle with 1:1 Ex:In ratio. Reciprocity shows a parabolic 

relationship with FR, decreasing as FR approaches 0.5 spikes/time step. F networks show strong negative 

reciprocity, while T networks reciprocity is close to zero. b, pairwise correlation for T+F networks as a function of 

firing rate. Correlation was computed over pairs of excitatory neurons (Ex-Ex), pairs of inhibitory neurons (In-In), 

and pairs of one excitatory and one inhibitory neuron (Ex-In). Correlation has a maximum close to 0.5 spikes/time 

step. The In-In pairs show the highest correlations, followed by the Ex-In pairs. The Ex-Ex pairs show the lowest 

correlation. c, pairwise correlation for F networks as a function of firing rate. The CC/FR relationship is similar to 

the one observed for T+F networks, although F networks correlation is displaced towards higher values. Mean ± 

SD are shown; n = 20 networks were constructed for each target FR and network type. Firing rates of excitatory or 

inhibitory neurons are displayed for Ex-Ex and In-In curves, respectively. For Ex-In curves the average FR over all 

neurons is shown. 
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 420 

 421 

  422 

Figure 9. Relative coding network states cause negative reciprocity. Reciprocity as a function of 
bcf , the fraction 

of nominal bicolored nodes, in networks that follow random transition graphs. Reciprocity decreases linearly with 

bcf , approaching zero as 
bcf  approaches zero. Mean ± SD are shown, n = 30 networks for each 

bcf . Networks 

were constructed with target FR = 0.5 spikes/ time step, and with the same number of neurons and network firing 

states as T+F networks constructed with 7 =  and 4rf = .  
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Discussion: 423 

We have presented a simple method to generate binary neural network models that accomplish 424 

a desire task. Binary networks are computational inexpensive, and despite their simplicity many 425 

neurophysiological and neuroanatomical observations have been recapitulated by means of 426 

these networks21,26. Our key contribution is to note that, for networks in which neurons inputs are 427 

linearly added, their synaptic weights can be found by solving a system of linear equations. In 428 

turn, this system can be constructed from the transition graph associated with the solution of the 429 

target task. System consistency is guarantee if the dependent variables of the system (the 430 

neurons activations) are linearly combined following the linear dependences among the 431 

independent variables (the firing states). We have shown how the FTP method works with the 432 

simplest of networks. Yet, we think the same procedure can be implemented in networks built 433 

from more complex neuron models, like the firing rate model or the leaky integrate-and-fire model, 434 

provided that a system of linear equations can be constructed.  435 

Current automated methods for constructing network models relay on off-the-shelf optimization 436 

algorithms typically employed in the artificial intelligence field, like stochastic gradient descent3, 437 

genetic algorithms27 or evolutionary strategies28. These optimization algorithms iteratively change 438 

network parameters in a direction that minimizes a loss function, and have proved to be very 439 

effective in finding networks that solve very complex tasks29,30. However, they require a 440 

considerable amount of human design, and there are no guarantees that they can reach a 441 

solution. Moreover, each optimization iteration requires the evaluation of the network, which is 442 

time consuming, especially for a recurrent network performing in a multi-trial task. In contrast, the 443 

FTP algorithm reduces the problem of finding a suitable network to a series of linear combinations 444 

and the solution of a linear system, which can be solved in polynomial time. Most importantly, it 445 

is guaranteed that the resulting network will solve the task perfectly. 446 

When employing traditional optimization algorithms to fit neural networks, a loss function is 447 

defined, taking into account all the required constrains, whether these are task related, activity 448 

related, or structural. Then, the loss function is minimized and hence all constrains are enforced 449 

at once. In this scenario the relationship between parameters and the loss function can be quite 450 

complex, and some conflict between constrains may emerge. Conversely, one key advantage of 451 

our method is that it allows to uncouple the dynamic and coding aspects of the network from the 452 

structural aspects, giving the opportunity of sampling them independently. Since the method 453 

proceeds from the firing states to the parameters, it allows to find networks with desired activity 454 

profiles, and to study the resulting connectivity. Further structural constrains can be enforced in a 455 

second stage, by projected gradient descent, or any other optimization algorithm. The fact that 456 
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projected gradient descent worked so well suggests that structural constrains are easy to 457 

implement once the connectivity required to solve the task is in place. This is probably because 458 

structural measures such as sparsity, clustering, etc are a simple function of the synaptic weights. 459 

On the contrary, the relationship between weights and network function or coding capabilities are 460 

more complex. In this way, our method gives more control over each constrain type, making the 461 

whole process simpler at the same time. 462 

To show the applicability of the method we employed it to construct networks that solve a stimuli 463 

sequence memory task (s-task) in which the network has to codify in its network firing states the 464 

sequence of the last   stimuli that were presented. This task is relevant in the broad sense of 465 

working memory function. Although working memory is traditionally associated with maintaining 466 

information about a single stimulus in the persistent activity of recurrently connected neurons31,32, 467 

mounting evidence suggests that neuron populations code information in the form of highly 468 

heterogenous firing sequences33,34. Sustained activity can be a suitable strategy when there is 469 

one specific relevant stimulus to attend, whose identity has been already elucidated. However, 470 

more complex scenarios require keeping track of sequences of stimuli. An example of this case 471 

is the processing of language, in which the succession of utterances must be integrated over time, 472 

from phonemes, to words, to phrases, so that the meaning of speech depends on the whole 473 

sequence35. We explored the case of two stimuli presented with equal probability, but the analysis 474 

could be extended to more realistic cases in which stimuli presentation probability is not uniform. 475 

It is expected that statistical regularities in the input sequences are going to be exploited by the 476 

network, resulting in more specialized connectivities. The relationship between sequence 477 

statistics and network structure should be further studied. For example, it would be of interest the 478 

case in which each stimulus lasts more than one time-step, and they are interleaved by neutral 479 

stimuli, which could act as distractors. Then, the relationship between feedback and feedforward 480 

connections could be studied, in relation with the duration of each stimulus presentation, and with 481 

that of the distractors.  482 

The structure-function relationship is central to neuroscience36–38. Connectivity at the macro 483 

meso and micro scale, neurons biophysics, plasticity mechanisms, among other structural traits, 484 

all act co-ordinately to give sophisticated adaptive behaviour. It is widely believed that structural 485 

properties of networks have evolved over time to proficiently perform function, many times in an 486 

optimal way39,40. However, brain structure could also be the result of other constrains, different 487 

from those imposed by adaptive behaviour. For example, neural network modularity might have 488 

emerged as a good structural trait for solving tasks which have a modular or hierarchical aspect41. 489 

But it could also have emerged as a result of previously acquired structural traits such as 490 
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constrains in the length of dendrites and axons, which precludes the possibility of a much wider 491 

connectivity.  Thus, determining how much of the structure observed in the brain comes from 492 

task-related constrains and how much comes from other structural traits is central to 493 

understanding the structure/function relationship. A theoretical approximation to this issue 494 

consists in constructing neural network models that solve different kind of tasks under a variety 495 

of structural constrains, and then study the pattern of connectivity that emerges and relate it to 496 

the experimentally observed connectivity in real brains. This approximation requires to sample as 497 

uniformly as possible from the set of networks that fit the task and structural constrains. However, 498 

optimization methods commonly used in network parameter fitting may give a restricted set of 499 

solutions, thus biasing any conclusion about the structure/function relationship. Another issue is 500 

that some connectivity traits could emerge only in networks of certain size, and fitted to several 501 

tasks. In this case, fitting large networks with complex cost functions could have a high 502 

computational cost. Consequently, generating a relatively large sample of networks suitable for 503 

statistical treatment of their connectivity would result unfeasible. In this aspect, the FTP algorithm 504 

is very well suited for answering structure/function questions, since exact solutions can be 505 

computed starting from an arbitrary set of population firing codes, as long as it defines a system 506 

of equations that have a solution. 507 

The FTP approach allows to test hypothesis linking structure and function by constructing 508 

networks which follow transition graphs that instantiate some null hypothesis. Following this 509 

approach, we constructed networks which had the same number of network states and neurons 510 

required to solve the s-task, but whose state transitions were chosen at random. With this tool at 511 

hand we were able to show that a structural feature emerges as   and redundancy increase, 512 

evidenced in the reciprocity of the network. The same procedure can be followed to build any 513 

other set of networks in accordance with some relevant null hypothesis. Such networks can be 514 

easily constructed with the FTP method, while they would be hard to construct with regular 515 

optimization algorithms. 516 

Evidence for high reciprocity has been found experimentally, by measuring excitatory 517 

postsynaptic potentials of reciprocally connected neurons in vitro20. It has also been the centre of 518 

theoretical analysis. For example, it has been shown that high reciprocity is recapitulated in 519 

networks of binary neurons that have maximum number of attractors21. Interestingly, the same 520 

work shows that reciprocity is lost when networks are optimized to remember sequences of 521 

uncorrelated network states. However, we showed that, when networks are built to codify 522 

sequences of stimuli, the network itself shows sequences of states that follow the sequences of 523 

stimuli up to an arbitrary  . 524 
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Reciprocity was absent in networks taken at random from the set of all connectivities that give 525 

the same dynamics. This implies that the observed reciprocity is the result of following a particular 526 

transition graph with the additional constrain of weights minimizing the Frobenius norm, the latter 527 

being explained biologically as an upper bound on the size of the synapses. Thus, to explain one 528 

structural feature (reciprocity), a functional feature (solving the s-task) and another structural 529 

feature (Frobenius norm minimization) were required. It would be interesting to study to what 530 

extent other structural features encountered in biological neural networks, like modularity or 531 

sparsity of connections, can be explained as the answer to some computational demand of 532 

adaptive behaviour, or they are the result of another structural feature, or both factors interact, as 533 

is the case of the s-task. 534 

In conclusion, we have provided a method that inverts the usual process of constructing neural 535 

network models. It allows to probe the dependency between the firing statistics, connectivity and 536 

function of a network in a way that is not matched by current optimization algorithms. Moreover, 537 

it is computationally inexpensive. Therefore, we consider the method to be a powerful alternative 538 

to the way neural networks are constructed to model brain function.  539 

 540 

  541 
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Methods: 542 

Network simulation and synaptic weights statistics: 543 

Networks were evaluated in the s-task during at least 10.2iterN =  time steps, to gather enough 544 

samples of each network state. To assess the similarity between the synaptic weight distribution 545 

and a normal distribution we computed the Kolmogorov-Smirnov two samples statistic, between 546 

the set of synaptic weights and a set of normally distributed values of the same mean, variance 547 

and sample size than that of the synaptic weights.  548 

Equation (4) gives the matrix w  with lowest Frobenius norm10. Since we are considering 549 

networks with 2 2N = +  total neurons (including sensory and integration neurons), there are 550 

infinite solution matrices w  for the same system of equations defined by C  and U . These 551 

solutions lay in a subspace of 
N

, of dimension rank( )N C− . The set of all solutions can be 552 

obtained by finding a matrix w  such that: 553 

 554 

 0C w =  (9)555 

  556 

 ker( )w C =  (10) 557 

 558 

where ker( )C  is an orthonormal basis of the null space of C  of dimensions x( rank( ))zN N C−559 

, 0  is a matrix of zeros, and M  is a linear mapping of dimensions ( rank( ))xz zN C N− . These 560 

networks share the same stimulus-response mapping. We say they conform an isofunction space. 561 

For several applications, networks with 2zN   were desired. Hence, we defined 2z rN f= , 562 

where rf  stands for ‘redundancy factor’, as the network has rf - times more neurons than 563 

required to solve the s-task with that specific  .  564 

 565 

Computation of fitting times for FTP and a genetic algorithm: 566 

We assessed the efficiency of the FTP algorithm by measuring the time expended in finding 567 

networks that solve an s-task with 1 =  to 12 = , and 1rf = . 568 

We also computed the time expended by a genetic algorithm (GA) to obtain networks that solve 569 

the s-task of 1 =  to 10 = . We employed a population of 200pobN =  individuals, each one 570 

composed by one matrix yw , one matrix rw  and one vector  . Networks were evaluated in the 571 

s-task for 10.2iterN =  time steps, and its fitness F  was defined as 1 minus the classification 572 

loss of a support vector machine, trained to classify the stimulus presented at time step 1t − +  573 

based on the population firing state at time step t . The classification model was cross-validated 574 

with the holdout method, trained on 50% of the data and tested on the remaining 50%. We picked 575 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 23, 2020. ; https://doi.org/10.1101/2020.04.20.051565doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.20.051565
http://creativecommons.org/licenses/by-nc/4.0/


28 
 

0.1 pobT N=  individuals with the highest fitness as parents. Then, we picked parents at random 576 

and built the next generation by mutating each synaptic weight with gaussian noise of zero mean 577 

and standard deviation 0.1 ( )mutf w= . The factor ( )w  is the standard deviation of the 578 

synaptic weights in yw  of networks generated with FTP if we are mutating yw , and the standard 579 

deviation of synaptic weights in rw  if we are mutating rw . We defined 
mutf  in this way to avoid 580 

mutf  values that are so big that a solution can not be reached, or so small that the solution will 581 

not be reached in a reasonable amount of time. One of the individuals of each generation was an 582 

unmutated copy of the best individual of the previous generation (elitism). Threshold vectors   583 

were not mutated. The GA was run until the average fitness surpassed 0.9targetF = , or after 60 584 

minutes of search. Once the stopping criterion was met, the elite individual was evaluated during 585 

100.2  time steps to obtain the final fitness. 586 

We also tested how stable was a solution obtained with FTP under evolution with a GA. We 587 

employed FTP to construct networks of given   and 1rf = . From this network a population of 588 

100pobN =  individuals was constructed by mutating the network with a mutation rate 589 
* ( )mut mutf f w= , where ( )w  is the standard deviation of the synaptic weights obtained with 590 

FTP. As before, yw  and rw  has their own 
mutf , according to their corresponding standard 591 

deviation. Then, a GA was employed to reduce fitness during 20 generations, and then to 592 

increment it for another 20 generations, employing the same 
*

mutf . We followed the procedure for 593 

  ranging from 1 =  to 6 = , and 
* 0.001mutf =  to 

* 0.4mutf =  in steps of 0.1. We performed 10 594 

repetitions for each   and 
*

mutf . combination.  595 

 596 

Imposing activity constrains: 597 

To construct networks with desired FR we generated baseU  as described in the Results Section, 598 

but adjusted the sign of ( , )r m i  such that, after thresholding, matrix C  had a fraction of ones 599 

equals the target FR. To induce signal correlation, we scaled vector   by a factor ccf . This 600 

manipulation makes each neuron to have very different firing rates for 1s  and 2s , which increases 601 

the signal correlation. By following this procedure, we constructed networks in Fig. 4. The target 602 

FR values were taken from the range between 0.1 to 0.9 spikes/time step, in steps of 0.1 603 

spikes/time step. The ccf  values were taken from the range between 1 and 10 in unitary steps. A 604 

total of 30 networks were constructed for each combination of FR and ccf  values within those 605 

ranges. For each network the average FR was computed over the FR of all neurons in the 606 

network. Similarly, the average correlation coefficient (CC) was computed from the Spearman 607 

correlation coefficient computed for all neuron pairs.  608 
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We also employed a GA to evolve a population of baseU  matrices to fit their mean FR and 609 

correlation. We employed a population of 200pobN =  individuals, each one composed of one 610 

matrix baseU  and one vector  . For each individual we constructed U  and C  matrices, and 611 

computed an approximate value of FR and correlation, under the assumption that each network 612 

firing state occurs with equal probability. The fitness F  of an individual was computed as 613 

  614 

 1
2

target targetFR FR CC CC
F

− + −
= −  615 

  616 

where FR  and CC  are the firing rate and correlation values of the networks output, and targetFR  617 

and targetCC  are the firing rate and correlation values we want the networks to have. 618 

If an individual produced an inconsistent system, or a system with not enough network states, 619 

its fitness was set to zero. We chose 0.1 pobT N=  and mutated baseU  by adding gaussian noise 620 

to each matrix element, of zero mean and standard deviation 0.1mutf = = . Threshold vectors 621 

  were not mutated. Elitism was employed. The GA was run until the average fitness surpassed 622 

0.95targetF = . Firing rates and correlations shown in Fig. 4d were computed by running the 623 

network constructed from the elite baseU  during 30.2  time steps.  624 

 625 

Imposing structural constrains: 626 

Solving equation (4) gives networks with minimum Frobenius norm. These networks do not 627 

suffice basic structural features observed experimentally, such as the lack of self-connections or 628 

Dale’s principle. To impose such structural constrains we constructed a matrix dw  such that 629 

d dw w w= + . Matrix dw  is a matrix which fulfils the desired structural constrains. Most probably 630 

dw  will not be within the null space of C , and thus dw  will not be a solution to the system 631 

defined by C  and U . Hence, we defined a matrix:  632 

 633 

 ker( ) scw C =  (11) 634 

 635 

where ker( )sc dC w+=  , and ker( )C +
 is the Moore-Penrose pseudoinverse of ker( )C . 636 

Matrix sc  is a linear mapping that incorporates the desired structural constrains, making w  637 

the change in matrix w  within the null space of C  that is closest to dw , in the least squares 638 

sense.  639 

We imposed three structural constrains: no self-connections, Dale’s principle, and a certain 640 

degree of sparsity. Thus: 641 
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 642 

 d self Dale spw w w w =  +  +   643 

 644 

The matrix selfw  (which deletes self-connections in the integration neurons) has values: 645 

 646 

 
( , ) 2

,( )
0 2

self

w j i j i
w j i

j i

− = +
 = 

 +
 647 

 648 

Matrix 
dalew  was defined as: 649 

 650 

 

1

0 ( ( , ) 0) ( ( , ) 0)
( , )

( , ) ( ( , ) 0) ( ( , ) 0)

j j

Dale

c j j

Ex w i j Inh w i j
w i j

w i j Ex w i j Inh w i j

=    =  
 = 

− =    =  
 651 

 652 

where 
1c selfw w w= +   and { , }jT Ex In  indicates if neuron j  was chosen to be excitatory 653 

( )Ex  or inhibitory ( )Inh . Matrix Dalew  sets to zero the synaptic weights that violate Dale’s 654 

principle. Neuron j  was chosen to be excitatory if ( , ) 0j

i

w i j =  . Otherwise, it was chosen 655 

to be inhibitory. If more excitatory/inhibitory neurons were required, neurons with negative/positive 656 

  closest to 0 were set as excitatory/inhibitory as needed.  657 

Matrix spw  to enforce sparsity was defined as: 658 

 659 

 
2 2
( , ) ( , ) ( )

( , )
0

c c

sp

w i j w i j sp
w i j

otherwise

− 
 = 


 660 

 661 

where 
2 1c c Dalew w w= +  . The value ( )sp  is the sp  percentile of the absolute values in 

2cw . 662 

In this manner spw  will set to zero the lowest weights such that a sparsity sp  is enforced.  663 

The loss function ( )k  at iteration k  was defined as the average of the absolute ( , )dw i j  664 

values: 665 

 666 

 
,

( ) ( , )d i j
k w i j=   667 

 668 

where 
,i j

 stands for the average across indexes ( , )i j . The structural constrains were 669 

imposed through an iterative process, in which at each iteration the neurons were classified as 670 

excitatory or inhibitory according to their  , a matrix w  was computed using eq. (11), and a 671 
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new w  was obtained. The process was stopped when the loss fell below a desired value 1e , in 672 

which case the fitting process was considered successful. The process was also stopped if 673 

2( ( ) ( 1)) / ( )L k L k L k e− −  . When this latter condition was met, the fitting process was 674 

considered unsuccessful, since the error was not decreasing fast enough and would probably 675 

converge to an unacceptable value above zero. We used 
3

1 10e −=  and 
4

2 10e −= . If the process 676 

was successful, values that violated any of the constrains were clipped to zero. These values are 677 

expected to be small enough since the error was small. We computed:  678 

 679 

 
,

( , ) ( , )clip sc i j
e U i j U i j= −  680 

 681 

where sc scU Cw=  with 
scw  being the resulting synaptic weight matrix after the constraining 682 

process, to verify that the deviation from the original U  was negligible. If the process was 683 

unsuccessful, or the clipping error 
310clipe − , then the original w  was considered not to be 684 

suitable for the structural fitting. 685 

We measured the efficiency of the process by computing the number of networks generated (# 686 

attempts) and the running time t  expended until reaching the first successfully constrained 687 

network. We varied   from 3 =  to 6 = . For each   we varied the number of integration 688 

neurons in steps of 16 neurons, from a minimum number of 4.2  to the maximum value 
62 . For 689 

each combination of   and neuron number we generated networks with the FTP algorithm, and 690 

subjected them to structural constrain (no self-connections, 4:1 Ex:In ratio, and a minimum 691 

sparsity 40%sp = ). We obtained 10 measurements of # attempts and t , from which we 692 

computed the mean and SD depicted in Fig. 5e,f. 693 

 694 

Network construction from random transition graphs: 695 

To construct random transition graphs that have an associated consistent system, we first 696 

constructed a matrix baseU , a vector  , and a matrix 
*U  of 2M =  rows such that the row 697 

vectors 
*

iU ,
*

1iU +  and   were linear combinations, with indexes i  being odd numbers between 698 

1  and M . Next, we constructed matrix U  in a way that ensures that each node in the graph was 699 

reachable, meaning that every node had to receive at least one edge. This is equivalent to say 700 

that every row in 
*U  is found at least once in U . Therefore, we set the first M  rows in U  equal 701 

to the 
*U  matrix. Then, to define the remaining rows in U , we chose / 2M  pairs of indexes 702 

, 1i i + , picking i  values at random from the set of odd numbers between 1  and M . In this way, 703 

and unlike the transition graphs that solve an s-task, nodes could receive just one edge, or more 704 

than 2.  705 
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So far, if a row vector 
*

iU  appeared in matrix U  more than once, then it appeared only in odd 706 

rows, or only in even rows, but not in both. This is because, indexes were ordered from 1  to M  707 

in the first half of U , and ordered in pairs of , 1i i +  indexes in the second half. The resulting 708 

graph would be one in which any given node is reachable as the result of the presentation of 709 

either 1s  or 2s , but not from both. In other words, if node b  is reachable from node a  after 
is  710 

presentation, then node b  is reachable from node c  only after 
is  presentation, where c  is any 711 

other node from which b  is reachable. Following the colour code of the graph in Fig. 1b, any node 712 

receives arrows of the same colour. We wanted graphs as random as possible, so nodes 713 

reachable thought different stimuli were desired. We define these nodes as bicoloured nodes. In 714 

terms of indexes in matrix U , a bicolored node translates into a row vector 
*

iU  that appeared in 715 

matrix U  in both odd and even row. For example, if we had indexes (1,2,3,4)  for the first 4  716 

rows of U , with 1 2( , , )U U   and 
3 4( , , )U U   each being linearly combined, then we wanted to 717 

change this series to (1,2,2,4) , or (1,2,3,1) . This requires to generate new linear combinations, 718 

in particular, 
1 2 4( , , , )U U U  will be linearly combined, for the first example, and 

1 2 3( , , , )U U U   719 

in the second example. Thus, we modified matrix U  to generate / 4bcf M  bicolored nodes, 720 

where 
bcf  stands for ‘bicolored fraction’ and is a number between 0  and 1 . The (nominal) 721 

maximum number of bicolored nodes is / 4M , since we generated one node for each series of 722 

indexes i  to 3i + . Finally, we constructed matrix Z  by thresholding matrix 
*U , and then matrix 723 

C , which rows were in the form:  724 

 725 

 

1 (1)

2 (1)

1 ( )

2 ( )

k

k

k M

k M

y Z

y Z

y Z

y Z

 
 
 
 
 
 
 
 

 726 

 727 

where iZ  is the ith row vector in matrix Z  and vector k  is a permutation of the list of integers 728 

from 1  to M . 729 

Following the above procedure, we constructed random transition graphs that respected the 730 

linear combinations needed so that a consistent system of equations could be constructed. Given 731 

that these networks do not solve the s-task but are the minimum Frobenius norm solution to a 732 

random transition graph, we call them F networks. The procedure avoids index sequences like 733 

(1221) , since this ordering gives a consistent system only if 0 = , in which case stimuli cannot 734 
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be distinguished by the network. The procedure also avoids index sequences of the type (11)  735 

(one node leads to another single node through both stimuli, 1s  and 2s ). If this were the case, 736 

one possibility is that 1s  and 2s  produce the same u  values. Therefore,   is a vector of zeros 737 

and stimuli cannot be discriminated. Another possibility is that stimuli lead to different vectors u , 738 

but these vectors in turn lead to the same vector c  after thresholding. This situation is possible, 739 

but would require careful selection of u  values in relation to  , and for this it was avoided.  740 

We constructed networks that follow random transition graphs and compared their properties 741 

with the properties of networks that solve the s-task. In particular, we measured the reciprocity of 742 

the network, defined as the Spearman correlation between weights of incoming and outgoing 743 

synapses. Reciprocity was computed over matrix  , a normalized version of the synaptic weights 744 

constructed by taking the absolute values of w  and scaling them between 0 and 1. Since 745 

imposing structural constrains like Dale’s principle, or sparsity, may generate many zero-valued 746 

weights, reciprocity was computed over   values such that ( , ) 0i j   and  ( , ) 0j i   for each 747 

possible pair ( , )i j . 748 

For each network generated to solve the s-task we also picked a network from its isofunction 749 

space, that is, from the set of all networks that has the same stimulus-response mapping (as 750 

described above). We refer to these networks as T networks, since they solve the s-task but they 751 

are not the minimum Frobenius norm solution. The linear mapping  in eq. (10) has entries 752 

,
,

( , ) max( ( , ))i j
i j

i j r w i j= , where ,i jr  is a random number, different for each entry, sampled 753 

uniformly from the [ 1,1]−  interval, and w  is the synaptic weight matrix from which an isofuntion 754 

network is desired. We defined mapping  in this way to obtain isofunction networks with 755 

synaptic weight values within the range of the weights in the original network.  756 

In addition, for each network that solves the s-task we constructed an isofunction network with 757 

structural constrains: no self-connections and Dale’s principle with excitatory and inhibitory 758 

neurons in equal numbers. 759 

All the algorithms were implemented in Matlab. 760 

. 761 

 762 

 763 

  764 
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