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SUMMARY  
 
There are rich structures in off-task neural activity. For example, task related neural codes are 
thought to be reactivated in a systematic way during rest. This reactivation is hypothesised to 
reflect a fundamental computation that supports a variety of cognitive functions. Here, we 
introduce an analysis toolkit (TDLM) for analysing this activity. TDLM combines nonlinear 
classification and linear temporal modelling to testing for statistical regularities in sequences 
of neural representations. It is developed using non-invasive neuroimaging data and is designed 
to take care of confounds and maximize sequence detection ability. The method can be 
extended to rodent electrophysiological recordings. We outline how TDLM can successfully 
reveal human replay during rest, based upon non-invasive magnetoencephalography (MEG) 
measurements, with strong parallels to rodent hippocampal replay. TDLM can therefore 
advance our understanding of sequential computation and promote a richer convergence 
between animal and human neuroscience research. 
 
 
INTRODUCTION  
 
Human neuroscience has made remarkable progress in detailing the relationship between the 
representations of different stimuli during task performance 1,2. At the same time, it is 
increasingly clear that resting, off-task, brain activity is structurally rich and is important for 
understanding the neural underpinnings of cognition 3. However, unlike the case for task-based 
activity, little attention has been given to techniques that can measure representational content 
or structure of this resting activity. Here, we introduce TDLM (temporal delayed linear 
modelling) as an analysis framework, based on linear modelling, that can characterize temporal 
structure of internally generated neural representations.   
 
TDLM enables a detailed examination of sequential patterns in neural code reactivation that 
are not tied to task events. Our approach is inspired by evidence from the rodent literature of 
rich temporal structure in representational content of offline brain activity. Here a seminal 
finding in rodent electrophysiological research is “hippocampal replay” 4-6. During rest and 
quiet wakefulness, place cells in the hippocampus (that signal self-location during periods 
activity) spontaneously recapitulate old, and explore new, trajectories through an environment 
4,5. These internally generated sequences are hypothesized to reflect a fundamental feature of 
neural computation across tasks 7-10.  
 
Applying TDLM on non-invasive neuroimaging data we, and others, have shown it is possible 
to measure spontaneous sequences of neural representations during rest in humans 11,12. The 
results resemble key characters found in rodent hippocampal replay and inform key 
computational principles of human cognition 12.  
 
In the following sections, we introduce the logic and mechanics of TDLM in detail. We first 
compare performance of alternative algorithms on synthetic data where the ground truth is 
known (see detailed description of the synthetic data and simulation code in Supplementary 
Note 1). Subsequently, we apply the method to  real neural data, both human 
magnetoencephalography (MEG) 11,12 and rodent hippocampal electrophysiological recordings 
(Supplementary Note 2). In relation to the latter, we show TDLM successfully reproduces key 
findings, including the presence of theta sequences 13.  
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TDLM is a general, and flexible, tool for measuring neural sequences. It facilitates cross-
species investigations by linking large-scale measurements in humans to cellular 
measurements in non-human species. We outline its promise for revealing abstract cognitive 
processes that extend beyond sensory representation, potentially opened doors for new avenues 
of research in cognitive science. All code and facilities will be available at 
https://github.com/yunzheliu/TDLM. 
 
 
RESULTS 
 
TDLM   
 
Overview of TDLM 
 
Our primary goal is to test for temporal structure in neural activity. To achieve this, we would 
like ideally a method which (1) uncovers regularity in the reactivation of neural activity, (2) 
tests whether this regularity conforms to a hypothesized structure. Here the structure between 
neural representation is expressed as their sequential reactivation in time, i.e., sequence. In 
what follows, we will use the terms “temporal structure” and “sequence” interchangeably.  
 
The starting point of TDLM is a set of n time series, each corresponding to a decoded neural 
representation of a variable of interest. These time series could themselves be obtained in 
several ways, described in detail in a later section (“Getting the states”). The aim of TDLM is 
to identify task-related regularities in sequences of these representations off-task. 
 
Consider, for example, a task in which participants have been trained such that n=4 distinct 
sensory cues (A, B, C, and D) appear in a consistent order (𝐴 → 𝐵 → 𝐶 → 𝐷) (Fig 1a). If we 
are interested in replay of this sequence during subsequent resting periods, we might want to 
ask statistical questions of the following form: “Does the existence of a neural representation 
of A, at time T in the rest period, predict the occurrence of a representation of B at time T+∆𝑡”, 
and similarly for 𝐵 → 𝐶 and 𝐶 → 𝐷 .  
 
In TDLM we ask such questions using a two-step process. First, for each of the n2 possible 
pairs of variables Xi and Xj, we find the correlation between the Xi time series and the ∆𝑡-shifted 
Xj time series. These n2 correlations comprise an empirical transition matrix, describing how 
likely each variable is to be succeeded at a lag of ∆𝑡 by each other variable (Fig. 1b, left panel). 
Second, we correlate this empirical transition matrix with a task-related transition matrix of 
interest (Fig. 1b, right panel). This produces a single number that characterizes the extent to 
which the neural data follow the transition matrix of interest, which we call ‘sequenceness’. 
Finally, we repeat this entire process for all ∆𝑡 > 0, yielding a measure of sequenceness at each 
possible lag between variables (Fig. 1c). 
 
Note that, for now, this approach decomposes a sequence (such as 𝐴 → 𝐵 → 𝐶 → 𝐷) into its 
constituent transitions and adds the evidence for each transition. It therefore does not require 
that the transitions themselves are sequential: 𝐴 → 𝐵 and 𝐵 → 𝐶 could occur at unrelated times, 
so long as the within-pair time lag was the same. In section “Multi-step sequences”, we address 
how to strengthen the inference by looking explicitly for longer sequences.  
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Constructing the empirical transition matrix  
 
In order to find evidence for state-to-state transitions at some time lag ∆𝑡, we could regress a 
time-lagged copy of one state, 𝑋!, onto another, 𝑋":  
 
                                                        𝑋!(𝑡 + ∆𝑡) = 𝑋"(𝑡)𝛽"!                                                                      (1) 
 
Instead, TDLM includes all states in the same regression model for important reasons, detailed 
in section “Moving to multiple linear regression”: 
 
 𝑋!(𝑡 + ∆𝑡) = ∑ 𝑋#(𝑡)𝛽#!$

#%&  (2) 
 
In this equation, the values of all states 𝑋# at time t are used in a single multilinear model to 
predict the value of the single state 𝑋! at time 𝑡 + ∆𝑡.  
 
The regression described in Equation 2 is performed once for each 𝑋!, and these equations can 
be arranged in matrix form as follows: 
    
                  𝑋(∆𝑡) = 𝑋𝛽                                                                 (3) 
 
Each row of X is a timepoint, and each of the n columns is a state.  𝑋(∆𝑡) is the same matrix 
as X, but with the rows shifted forwards in time by ∆𝑡. 𝛽 is an 𝑛 × 𝑛 matrix of weights – which 
we call the empirical transition matrix. 𝛽"!  is an estimate of the influence of 𝑋"(𝑡)  on 
𝑋!(𝑡 + ∆𝑡), over and above variance that can be explained by other states at the same time.  
 
To obtain 𝛽, we invert Equation 3 by ordinary least squares regression.  
 
                                                     𝛽 = (𝑋'𝑋)(&𝑋'𝑋(∆𝑡)                                                        (4) 
                  
This inversion can be repeated for each possible time lag (∆𝑡 = 1, 2, 3, …), resulting in a 
separate empirical transition matrix β at every time lag. We call this step the first level sequence 
analysis.  
 
Testing the hypothesized transitions 
 
The first level sequence analysis assesses evidence for all possible state-to-state transitions. 
The next step in TDLM is to test for the strength of a particular hypothesized sequence, 
specified as a transition matrix, 𝑇). We therefore construct another GLM which relates 𝑇) to 
the empirical transition matrix β. We call this step the second level sequence analysis: 
 
                                                            𝑣𝑒𝑐(𝛽) = 𝑇𝑍                                                               (5) 
 
where 𝑣𝑒𝑐 denotes the vectorized form of a matrix, 𝑇 is the design matrix. T has 4 columns, 
each of which is a vectorized transition matrix: 𝑣𝑒𝑐(𝑇*+,-) , 𝑣𝑒𝑐(𝑇.-$/,) , 𝑣𝑒𝑐(𝑇))  and 
𝑣𝑒𝑐(𝑇0) . 𝑇)  is the task-related transition matrix of interest, as described above. 𝑇0  is 𝑇) 
transposed; that is, the same transitions in the backward direction. 𝑇.-$/, is a constant vector 
that models away the average of all transitions, ensuring that any weight on 𝑇)  and 𝑇0  is 
specific to the hypothesized transitions. 𝑇*+,-  models self-transitions to control for auto-
correlation (equivalently, we could simply omit the diagonal elements from the regression).   
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Z is the weights of the second level regression, which has four entries. Repeating the regression 
of Equation 5 at each time lag (∆𝑡 = 1, 2, 3, …) results in four vectors, which we will call 𝑍), 
𝑍0, 𝑍*+,-, and 𝑍.-$/,. The values of 𝑍) and 𝑍0 at each time lag are our estimates of forward 
and backward sequence strength (respectively) at that lag, along the transition matrix of interest 
(Fig. 1c). 
 
In many cases, ZF and ZB will be the final outputs of a TDLM analysis. However, it may 
sometimes also be useful to consider the quantity:  
 
                                                            𝐷 = 𝑍) − 𝑍0                                        (6) 
 
𝐷 contrasts forward and backward sequences to give a measure that is positive if sequences 
occur mainly in a forward direction and negative if sequences occur mainly in a backward 
direction. This may be advantageous if, for example, 𝑍) and 𝑍0 are correlated across subjects 
(due to factors such as subject engagement and measurement sensitivity). In this case, 𝐷 may 
have lower cross-subject variance than either 𝑍) or 𝑍0, as the subtraction removes common 
variance. 𝐷  can also help mitigate a potential confound from biased state representations 
following learning 14 (discussed later in section “Cautionary note on biased state confusion”). 
 
Finally, to test for statistical significance, TDLM relies on a nonparametric permutation-based 
method. The null distribution is constructed by randomly shuffling the identities of the n states 
and re-calculating the second level analysis for each shuffle. The first level analysis retains the 
veridical labels. This approach allows us to reject the null hypothesis that there is no 
relationship between the empirical transition matrix and the task-defined transition of interest. 
Note that there are many wrong ways to perform permutations, which permute factors that are 
not exchangeable under the null hypothesis and therefore lead to false positives. We will 
examine some of these later with simulations. In some cases, it may be desirable to test slightly 
different hypotheses by using a different set of permutations; this will also be discussed later. 
 
If the time lag ∆𝑡 at which neural sequences exist is not known a priori, then we must correct 
for multiple comparisons over all tested lags. This can be achieved by using the maximum ZF 
across all tested lags as the test statistic. If we choose this test statistic, then any values of ZF 
exceeding the 95th percentile of the null distribution can be treated as significant at 𝛼 = 0.05.  
 
 
TDLM STEPS IN DETAIL 
 
Getting the states 
 
As described above, the input to TDLM is a set of time series of decoded neural representations, 
or states. Here we give three examples of specific state spaces that we have worked with using 
TDLM.  
 
States as sensory stimuli   
The simplest case, perhaps, is to define a state in terms of a neural representation of sensory 
stimuli, e.g., face, house. To obtain their neural representation, we present the stimuli in a 
randomized order at the start of a task, while whole-brain neural activity is recorded by non-
invasive neuroimaging method, e.g., MEG or EEG. We then train a supervised decoding model 
to map the pattern of recorded neural activity to the presented image (Supplementary Fig. 1). 
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This could be any of the multitude of available decoding models. For simplicity we have used 
a logistic regression model throughout.  
 
In MEG/EEG, neural activity is recorded by multiple sensor or channel arrays on the scalp. 
The sensor arrays record whole-brain neural activity at millisecond temporal resolution. To 
avoid potential selection bias (given the sequence is expressed in time), we choose to use the 
whole brain sensor activity at a single time point (i.e., spatial feature) as the training data fed 
into classifier training.  
 
Ideally, we would like to select a time point where the neural activity can be most truthfully 
read out. This can be indexed as the time point that gives the peak decoding accuracy. If the 
state is defined by the sensory feature of stimuli, we can use a classical leave-one-out cross-
validation scheme to determine the ability of classifiers to generalise to unseen data of the same 
stimulus type (decoding accuracy) at each time point. This cross-validation scheme is asking 
whether the classifier trained on the sensory feature can be used to classify the unseen data of 
same stimuli (Fig. 2a, b).  
 
States as abstractions.  
As well as sequences of sensory representations, it is possible to search for replay of more 
abstract neural representations, within the constraint that we can build a decoder for them. Such 
abstractions might be associated with the presented image (e.g., mammal vs fish), in which 
case analysis can proceed as above by swapping categories for images.  
 
A more subtle example, however, is where the abstraction has to do with the sequence or graph 
itself. For example, one representation of interest might be whatever is common at a particular 
location in space but invariant to what sensory stimuli are present at that location 15. A related 
type of abstraction corresponds to the position of an item in a sequence, invariant to which 
actual item is in that position 12,16.  
 
We need to exercise care when setting up cross-validation schemes for training “abstract” 
classifiers, because we don’t want the “abstract” classifier to capitalize on common sensory 
features. Otherwise, we might report false positive sequences of abstract codes when in fact 
there is only sequence for sensory information (Supplementary Fig. 2). This can happen if we 
train and test on the same sensory (as well as abstract) object. In other words, we need to ensure 
that there is no one-to one mapping between sensory and abstract code. To do so, we need more 
than one sensory exemplar of each abstract state.  
 
If we have exemplars of 𝑁	(𝑁 > 1) different sensory images for each abstract state, then 
training can proceed in the following way. For example, the training set for the “2” decoder 
comprises 𝑁 − 1	types of sensory images at position 2, leaving out all instances of one single 
type sensory example for cross-validation. Therefore, an above chance classification must rely 
on features that are shared between the N-1 sensory images and the one left-out sensory image, 
which is the abstract code. If there are just 2 stimuli per abstraction, we can train on one 
stimulus, and test on the other (and vice versa), selecting the time point that does best in this 
“cross-validation”. This scheme therefore searches for representations that generalise over at 
least two stimuli that embody the same abstract meaning (Fig. 2c).  
 
States as sequence events 
TDLM can also be used iteratively to ask question about the ordering of different types of 
replay events (Fig. 2d). This can lead to powerful inferences about the temporal organisation 
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of replay, such as “Rapid replay of sensory representations is embedded within a lower 
frequency rhythm”. This more sophisticated use of TDLM merits its own consideration and is 
discussed below under “Sequences of sequences”.  
 
Controlling confounds and maximising sensitivity in sequence detection 
 
Here, we motivate the key features of TDLM.   
 
Temporal correlations 
 
In standard linear methods, unmodelled temporal autocorrelation can inflate statistical scores. 
Techniques such as auto-regressive noise modelling are commonplace to mitigate these effects 
17,18. However, autocorrelation is a particular burden for analysis of sequences, where it 
interacts with correlations between the decoded neural variables.  
 
To see this, consider a situation where we are testing for the sequence 𝑋" → 𝑋! . TDLM is 
interested in the correlation between 𝑋" and lagged 𝑋! (see Equation 1). But if the 𝑋" and 𝑋! 
time series contain autocorrelation and are also correlated with one another, then 𝑋"(𝑡) will 
necessarily be correlated with 𝑋!(𝑡 + ∆𝑡). Hence, the analysis will spuriously report sequences.   
 
Correlations between states are commonplace. Consider representations of visual stimuli 
decoded from neuroimaging data. If these states are decoded using an n-way classifier (forcing 
exactly one state to be decoded at each moment), then the n states will be anti-correlated by 
construction. On the other hand, if the states are each classified against a null state 
corresponding to the absence of stimuli, then the n states will typically be positively correlated 
with one another.  
 
Notably, in our case, because these autocorrelations are identical between forward and 
backward sequences, one approach for removing them is to compute the difference measure 
described above (𝐷 = 𝑍) − 𝑍0). This approach that works well was suggested in Kurth-Nelson, 
et al. 11. However, a downside it that it prevents us from measuring forward and backward 
sequences independently. The remainder of this section considers alternative approaches that 
can allow independent measurement of forward and backward sequences.  
 
Moving to multiple linear regression: The spurious correlations above are induced because 
𝑋!(𝑡) mediates a linear relationship between 𝑋"(𝑡) and 𝑋!(𝑡 + ∆𝑡). Hence, if we knew 𝑋!(𝑡),	 
we could solve the problem by simply controlling for it in the linear regression, as in Granger 
Causality 19: 
 
                                          𝑋!(𝑡 + ∆𝑡) = 𝛽1 + 𝑋"(𝑡)𝛽"! + 𝑋!(𝑡)𝛽!!  
 
Unfortunately, however, we do not have access to the ground truth of 𝑋 – since these variables 
have been decoded noisily from brain activity. Any error in  𝑋!(𝑡) but not 𝑋"(𝑡) will mean that 
the control for autocorrelation will be imperfect, leading to spurious weight on 𝛽"! , and 
therefore spurious inference of sequences.  
 
This problem cannot be solved without a perfect estimate of X, but it can be systematically 
reduced until negligible. It turns out the necessary strategy is simple. We do not know ground 
truth 𝑋!(𝑡), but what if we knew a subspace that included estimated 𝑋!(𝑡)? If we controlled for 
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that whole subspace, we would again be safe. We can get closer and closer to this by including 
further co-regressors that are themselves correlated with estimated 𝑋!(𝑡) with different errors 
from ground truth 𝑋!(𝑡). The most straightforward approach is to include the other states of 
𝑋(𝑡), each of which has different errors, leading to the multiple linear regression of Equation 
2.                                       
 
Figure 3a shows this method applied to the same simulated data whose correlation structure 
induces false positives in the simple linear regression of Equation 1. The multiple regression 
accounts for the correlation structure of the data and allows correct inferences to be made. 
Unlike the simple subtraction method proposed above (Fig. 3a, left panel), the multiple 
regression permits separate inference on forwards and backwards sequences.  
 
Oscillations and long timescale autocorrelations. Equation 2 performs multiple regression, 
regressing each 𝑋!(𝑡 + ∆𝑡) onto each 𝑋!(𝑡) whilst controlling for all other state estimates at 
time t. This method works well when spurious relationships between  𝑋"(𝑡) and 𝑋!(𝑡 + ∆𝑡) are 
mediated by the subspace spanned by the other estimated states at time t (in particular 𝑋!(𝑡)).  
One situation in which this assumption might be challenged is when replay is superimposed on 
a large neural oscillation. For example, during rest with eyes closed (which is often of interest 
in replay analysis), MEG and EEG data often express a large alpha rhythm, at around 10Hz.  
 
If all states experience the same oscillation at the same phase, the approach correctly controls 
false positives. The oscillation induces a spurious correlation between 𝑋"(𝑡) and 𝑋!(𝑡 + ∆𝑡) 
but, as before, this spurious correlation is mediated by 𝑋!(𝑡).  
 
However, this logic fails when states experience the oscillation at different phases. This 
scenario may occur, for example, if there are travelling waves in cortex 20,21, because different 
sensors will experience the wave at different times, and different states have different 
contributions from each sensor. In this case, 𝑋"(𝑡) predicts 𝑋!(𝑡 + ∆𝑡) over and above 𝑋!(𝑡). 
To see this, consider the situation where ∆𝑡 is &

2
	𝜏 (where 𝜏 is the oscillatory period) and the 

phase shift between 𝑋"(𝑡) and 𝑋!(𝑡) is pi/2. Now every peak in 𝑋!(𝑡 + ∆𝑡) corresponds to a 
peak in 𝑋"(𝑡) but a zero of 𝑋!(𝑡).   
 
To combat this problem, we can include phase shifted versions/more timepoints of 𝑋(𝑡). If 
dominant background oscillation is at alpha frequency (e.g., 10Hz), neural activity at time T 
would be correlated with activity at time T +	𝜏. We can control for that, by including 𝑋(𝑡 + 𝜏), 
as well as 𝑋(𝑡) in the GLM (Fig. 3b). Here 𝜏 = 100 ms, if assuming the frequency is 10Hz. 
Applying this method to the real MEG data during rest, we see much diminished 10Hz 
oscillation in sequence detection during rest 12.  
 
Spatial correlations 
 
As mentioned above, correlations between decoded variables commonly occur. The simplest 
type of decoding model is a binary classifier that maps brain activity to one of two states. These 
states will, by definition, be perfectly anti-correlated. Conversely, if separate classifiers are 
trained to distinguish each state’s representation from baseline (“null”) brain data, then the 
states will often be positively correlated with each other. 
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Unfortunately, positive or negative correlation between states reduces the sensitivity of 
sequence detection, because it is difficult to distinguish between states within the sequence: 
collinearity impairs estimation of β in Equation 2. In Figure 3c, we show in simulation that the 
ability to detect real sequences goes down as spatial correlation goes up.  
 
Ideally, the state decoding models should be as independent as possible. We have suggested 
the approach of training models to discriminate one state against a mixture of other states and 
null data 11,12. The mixture ratio can be adjusted. Adding more null data causes the states to be 
positively correlated with each other, while less null data leads to negative correlation. We 
adjust the ratio to bring the correlation between states as close to zero as possible. In Figure 3d, 
we show in simulation the benefit for sequence detection. An alternative method is penalizing 
covariance between states in the classifier’s cost function 22. 
 
Regularization. A key parameter in training high dimensional decoding models is the degree 
of regularization.  
 
In sequence analysis, we are often interested in spontaneous reactivations of state 
representations – as in replay. However, our decoding models are typically trained on stimulus-
evoked data, because this is the only time at which we know the ground truth of what is being 
represented. This poses a challenge in so far as the models best suited for decoding evoked 
activity at training may not be well suited for decoding spontaneous activity at subsequent test .  
 
We find that L1 weight regularization outperforms L2 regularization in detecting sequences 
(Fig. 3e). Notably, the L1 penalty encourages sparsity, which reduces spatial correlation 
between states.  
 
STATISTICAL INFERENCE 
 
So far, we have shown how to quantify sequences in representational dynamics. An essential 
final step is assessing the statistical reliability of these quantities. 
 
All the tests described in this section evaluate the consistency of sequences across subjects. 
This is very important, because even in the absence of any real sequences of task-related 
representations, spontaneous neural activity is not random but follows repeating dynamical 
motifs 23. Solving this problem requires a randomized mapping between the assignment of 
physical stimuli to task states. This can be done across subjects, permitting valid inference at 
the group level. 
 
At the group level, the statistical testing problem can be complicated by the fact that sequence 
measures do not in general follow a known distribution. Additionally, if the state-to-state lag 
of interest (𝛥𝑡) is not known a priori, it will be necessary to perform tests at multiple lags, 
creating a multiple comparisons problem over a set of tests with complex interdependencies. 
In this section we discuss inference with these issues in mind. 
 
Distribution of sequenceness at a single lag 
 
If the state-to-state lag of interest (𝛥𝑡) is known a priori then the simplest approach is to 
compare the sequenceness against zero, for example using either a signed-rank test, or one-
sample t test (assuming Gaussian distribution). Such testing assumes that the data would be 
centred on zero if there were no real sequences. We show this approach is safe in both 
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simulation (assuming no real sequences) and real MEG data in which we know there are no 
sequences. 
 
In simulation, we assume no real sequences, but state time courses are autocorrelated. At this 
point, there is no systematic structure in the correlation between the neuronal representations 
of different states (see later for this consideration). We then simply select the 40 ms time lag 
and compare its sequenceness to zero using either a signed-rank test or one-sample t test. We 
compare false positive rates predicted by the statistical tests with false positive rates measured 
in simulation (Fig. 4a). We see the empirical false positives are well predicted by theory.  
 
We also tested this on real MEG data. In Liu, et al. 12 we had one condition where we measured 
resting activity before the subjects saw any stimuli. Therefore, by definition these stimuli could 
not replay, but we can use the classifiers from these stimuli (measured later) to test the false 
positive performance of statistical tests on replay. To get many examples, we randomly 
permute the 8 different stimuli 10,000 times and then compare sequenceness (at 40 ms time 
lag) to zero using either signed rank test or one-sample t test across subjects. Again, predicted 
and measured false positive rates match well (Fig. 4b, left panel). This holds true across all 
computed time lags (Fig. 4b, right panel).  
 
An alternative to making assumptions about the form of the null distribution is to compute an 
empirical null distribution by permutation. Given that we are interested in the sequence of 
states over time, one could imagine permuting either state identity or time. However, permuting 
time uniformly will typically lead to a very high incidence of false positives, as time is not 
exchangeable under the null hypothesis (Fig. 4c, blue colour). Permuting time destroys the 
temporal smoothness of neural data, creating an artificially narrow null distribution 11,12. State 
permutation, on the other hand, only assumes state identities are exchangeable under the null 
hypothesis, while preserving the temporal dynamics of the neural data, represents a safer 
statistical test that is well within 5% false positive rate (Fig. 4c, purple colour). 
 
Correcting for multiple comparisons 
 
If the state-to-state lag of interest is not known, we have to search over a range of time lags. 
As a result, we have a multiple comparison problem. Unfortunately, we don’t yet have a good 
parametric method to control for multiple testing over a distribution. It is possible that one 
could use methods that exploit the properties of Gaussian Random Fields, as is common in 
fMRI 24, but we have not evaluated this approach. We could use Bonferroni correction, but the 
assumption that each computed time lag is independent is likely false and overly conservative.  
 
We recommend relying on state-identity based permutation. To control the family wise error 
rate (assuming 𝛼 = 0.05), we want to make sure that there is a 5% probability of getting the 
tested sequenceness strength (𝑆,3/,) or bigger by chance in *any* of the multiple tests. We 
therefore need to know what fraction of the permutations give 𝑆,3/, or bigger in any of their 
multiple tests. If any of the sequenceness scores in each permutation exceed 𝑆,3/,, then the 
maximum sequenceness score in the permutation will exceed 𝑆,3/,, so it is sufficient to test 
against the maximum sequenceness score in the permutation. The null distribution is therefore 
formed by first taking the peak of sequenceness across all computed time lags of each 
permutation. This is the same as approach as is used for family-wise error correction for 
permutations tests in fMRI data 25, and in our case it is shown to behave well statistically (Fig. 
4d). 
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What to permute 
 
We can choose which permutations to include in the null distribution. For example, consider a 
task with two sequences, 𝑆𝑒𝑞1:	𝐴 → 𝐵 → 𝐶 → 𝐷, and 𝑆𝑒𝑞2:	𝐸 → 𝐹 → 𝐺 → 𝐻. We can form 
the null distribution either by permuting all states (e.g., one permutation might be: E→ 𝐹 →
𝐴 → 𝐵, H→ 𝐶 → 𝐸 → 𝐷), as was performed in Kurth-Nelson, et al. 11.  Alternatively, we can 
form a null distribution which only includes transitions between states in different sequences 
(e.g., one permutation might be: D→ 𝐺 → 𝐴 → 𝐸, H→ 𝐶 → 𝐹 → 𝐵), as was performed in Liu, 
et al. 12.  In each case, permutations are equivalent to the test data under the assumption that 
states are exchangeable between positions and sequences. The first case has the advantage of 
many more possible permutations, and therefore may make more precise inferential statements 
in the tail (Fig 4e). The second may be more sensitive in the presence of signal, as the null 
distribution is guaranteed not to include permutations which share any transitions with the test 
data.  
 
Cautionary note on exchangeability of states after training  
 
Until now, all tests have assumed that state identity is exchangeable under the null hypothesis. 
Under this assumption, it is safe to perform state-identity based permutation tests on raw 𝑍) 
and 𝑍0, or their subtraction - 𝐷. In this section, we consider a situation where this assumption 
is broken. 
 
More specifically, we are considering a situation where the neural representation of state 𝐴 and 
𝐵 are correlated or, in other words, the classifier on state 𝐴 is confused with state 𝐵, and we 
are testing sequenceness of  𝐴 → 𝐵 . Crucially, to break the exchangeability assumption, 
representations of 𝐴 and 𝐵 have to be systematically more correlated than other states, e.g., 𝐴 
and 𝐷. This cannot be caused by low level factors (e.g., visual similarity) because states are 
counterbalanced across subjects, so any such bias would cancel at the population level. 
However, such a bias might be induced by task training.  
 
In this situation, it is possible to detect a, above zero sequenceness of 𝐴 → 𝐵, even in the 
absence of real sequences. In the autocorrelation section above, we introduced protections 
against the interaction of state correlation with autocorrelation. These protections may fail in 
the current case as we cannot use other states as controls (as we do in the multiple linear 
regression). Here, 𝐴 has systematic correlation with 𝐵, but not other states. Furthermore, state 
permutation will not protect us from this problem because state identity is no longer 
exchangeable (Supplementary Fig. 3a, red colour).  
 
Is this a substantive problem? After extensive training, behavioural pairing of stimuli can 
indeed result in increased neuronal similarity 26,27.  However, it is unknown what are the 
timescales of training required for such representational changes. Furthermore, when analysed 
across the whole brain, such representational changes tend to be localised to discrete brain 
regions 28,29, and as a consequence may have limited impact on whole brain decodeability. 
Lastly, this effect could be diagnosed from the data itself, as it would cause maximum 
sequenceness at zero-lag, systematically reducing with increasing lag (Supplementary Fig. 3b) 
- a profile that is not consistent with sequenceness effects reported to date.  
 
If concerns remain, this problem can be bypassed by performing statistical tests on the 
subtraction quantity	𝐷, instead of 𝑍)  (Supplementary Fig. 3a, yellow). This is because the 
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confound caused by correlation of 𝐴&𝐵 is symmetrical and therefore affects 𝑍0 and 𝑍) equally. 
Subtracting  𝑍0 from  𝑍) de-confounds the inference.  
 
EXTENSIONS TO TDLM 
 
TDLM can be used iteratively. Two extensions of TDLM of particular interest are: Multi-step 
sequences and Sequence of sequences. The former asks about consistent regularity among 
multiple states, the latter ask about the hierarchical structure of state reactivation, not only 
within but between sequences. 
 
Multi-step sequences.  
 
So far, we have introduced methods for quantifying the extent to which the state-to-state 
transition structure in neural data matches a hypothesized task-related transition matrix. An 
important limitation of these methods is that they are blind to hysteresis in transitions. In other 
words, they cannot tell us about multi-step sequences. In this section, we describe a 
methodological extension to measure evidence for sequences comprising more than one 
transition: for example, 𝐴 → 𝐵 → 𝐶.  
 
The key ingredient is controlling for shorter sub-sequences (e.g., 𝐴 → 𝐵 and 𝐵 → 𝐶), in order 
to find evidence unique to the multi-step sequence of interest. 
 
Assuming constant state-to-state time lag, ∆𝑡, between A and B, and between B and C. We can 
create new state space AB, by shifting B up ∆𝑡, and elementwise multiply it with state A. This 
new state AB measure the reactivation strength of 𝐴 → 𝐵, with time lag ∆𝑡. In the same way, 
we can create new state space, BC, AC, etc. Then we can construct the same first level GLM 
on the new state space. For example, if we want to know the evidence of 𝐴 → 𝐵 → 𝐶 at time 
lag ∆𝑡. We can regress AB onto state time course C, at each ∆𝑡 (cf. Equation 1). But we want 
to know the unique contribution of AB to C. More specifically, we want to test if the evidence 
of 𝐴 → 𝐵 → 𝐶 is stronger than 𝑋 → 𝐵 → 𝐶, where X is any state but not A. Therefore, similar 
as Equation 2, we want to control CB, DB, when looking for evidence of AB of C. Applying 
this method, we show TDLM successfully avoids false positives arising out of strong evidence 
for shorter length (see simulation results in Fig. 3f, see results obtained on human neuroimaging 
data in Fig. 3g). This process can be generalized to any number of steps. 
 
Sequence of sequences  
 
We have so far detailed use of either sensory or abstract representations as states in TDLM. 
We now take a step further and use sequences themselves as states. With this kind of 
hierarchical analysis, we can search for sequences of sequences. This is useful because it can 
reveal the temporal structure not only within sequence, but also between sequences. The 
organization between sequences is of particular interest for revealing neural computations. For 
example, the forward and backward search algorithms hypothesized in planning and inference 
30 can be cast as sequences of sequences problem: the temporal structure of forward and 
backward sequence. This can be tested by using TDLM iteratively.  
 
As yet little human neural data is available on the organization of sequences. Interestingly, one 
can think of theta sequence, a well-documented phenomenon during rodent spatial navigation 
8,13,31, as a neural sequence repeating itself in theta frequency (6 - 12 Hz). We will show TDLM 
is able to replicate this well-known phenomenon. 
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To look for sequences between sequences we need first to define sequences as new states. To 
do so, the raw state course, for example, state B needs to be shifted up by the empirical within-
sequence time lag ∆𝑡 (determined by the two-level GLM described above), to align with the 
onset of state A, if assuming sequence 𝐴 → 𝐵 exist (at time lag ∆𝑡). Then, we can elementwise 
multiply the raw state time course A with the shifted time course B, resulting in a new state 
AB (Fig. 2d). Each entry in this new state time course indicates the reactivation strength of 
sequence AB at a given time. 
 
After that, the general two-level GLMs framework still applies, but with one important caveat. 
The new sequence state (e.g., AB) is defined based on the original states (A and B), and we are 
now interested in the reactivation regularity, i.e., sequence, between sequences, rather than the 
original states. We should therefore control for the effects of the original states. Effectively, 
this is like controlling for main effects (e.g., state A and shifted state B) when looking for their 
interaction (sequence AB). TDLM achieves this by putting time lagged original state regressors 
A, B, in addition to AB, in the first level GLM sequence analysis (see details in online Methods). 
 
In simulation we demonstrate, applying this method, that TDLM can uncover hierarchical 
temporal structure: state A is temporally leading state B with 40 ms lag, and the sequence A->B 
tends to repeat itself with a 140 ms gap (Fig. 4a). On real rodent hippocampal 
electrophysiological recording, we replicate the well-known theta sequence - neural sequence 
repeating itself in theta frequency (Fig. 4b, see detailed analysis on rodent data in 
Supplementary Note 2). 
 
In addition to looking for temporal structure of the same sequence, this method is equally 
suitable when searching for temporal relationship between difference sequences in a general 
form. For example, assuming two different types of sequences, one sequence type has a within-
sequence time lag at 40 ms; while the other has a within-sequence time lag at 150 ms; and there 
is a gap of 200 ms between the two types of sequences (Supplementary Fig. 4a) (these time 
lags are set arbitrarily for illustration purposes. TDLM captures accurately the dynamics both 
within and between the sequences (Supplementary Fig. 4b, c), supporting a potential for 
uncovering temporal relationships between sequences in general under the same framework. 
 
SOURCE LOCALIZATION 
 
Uncovering the temporal structure of neural representation is important, but one might also 
want to ask where in the brain the sequence is generated. Rodent electrophysiology research 
focuses mainly on hippocampus when searching for replay. One advantage of whole-brain non-
invasive neuroimaging over electrophysiology (despite many known disadvantages, including 
poor anatomical precision, low signal-noise ratio) is its ability to look for neural activity in 
other brain regions. Ideally, we would like a method that is capable of localizing sequences of 
more abstract representation in brain regions beyond hippocampus 12. 
 
We can achieve this by availing of the two-level GLMs in TDLM. More specifically, after 
identifying the empirical time lag that gives rise to the strongest neural sequence, one can 
project the time lag back to the time series of decoded states and work out the probability of 
sequence reactivation at each time point (Supplementary Fig. 5a, left panel). This is the same 
as changing the state space from A and B to sequence A->B.  This gives us a temporal stamp 
on the testing time, e.g., resting state: the time indices of sequence onset (Supplementary Fig. 
5a, right panel). To ensure it is the onset of a sequence event, rather than a middle portion, we 
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apply an extra constraint: there is a low sequence probability time window (e.g., 200 ms) before 
the sequence onset. Then, we can epoch the testing time data into a bunch of sequence events 
with appropriate thresholding, e.g., above 95th percentile (see detailed calculation in online 
Method). After epoching, the epoched data can be treated as event related neural activity, with 
onset as the initialization of neural sequence. This approach is similar to spike-triggered 
averaging 32,33. Applying this to real MEG data during rest, we can detect increased 
hippocampal power at 120-150 Hz, during replay onset (Supplementary Fig. 5b, c). 
 
DISCUSSION 
 
TDLM is a general analysis framework for capturing sequence regularity of neural 
representations. It is developed on human neuroimaging data but can be applied to other data 
sources, including rodent electrophysiology recordings. The framework can facilitate cross-
species investigations and enables investigation of  phenomena that are not readily addressable 
in rodents 12.  
 
The temporal dynamics of neural states have been studied previously with MEG 23,34. Normally 
states are defined by common physiological features (e.g., frequency, functional connectivity) 
during rest, and termed resting state networks (e.g., default mode network 35). However, these 
approaches remain agnostic about the content of neural representation.  Being able to study the 
temporal dynamics of representational content permits richer investigations into cognitive 
processes, as neural states can be analysed in the context of their roles with respect to cognitive 
tasks.  
 
Reactivation of neural representations have also been studied previously 36 using approaches 
similar to the decoding step of TDLM, or multivariate pattern analysis (MVPA) 37. This has 
proven fruitful in revealing mnemonic functions38, understanding sleep39, and decision-
making40. However, classification alone cannot reveal the rich temporal structures of 
reactivation dynamics. For example, the ability to detect sequences allows us to tease apart 
clustered from sequential reactivation, where this  may be important for dissociating decision 
strategies 41 and their individual differences 41,42. Furthermore, it enables comparisons with the 
sequential reactivation patterns reported in rodent hippocampus 10,43, and may allow tests of 
neural predictions from process models such as reinforcement learning 44, which have been 
hard to probe previously in humans 45. 
 
We have mainly discussed the application of TDLM on high temporal resolution neuroimaging 
data (e.g., MEG). Recently, sequential replay has been reported using fMRI 46. We anticipate 
it will be useful to combine the high temporal resolution available in M/EEG and the spatial 
precision available in fMRI to probe region - specific sequential computation. Whilst related 
techniques are available 47, TDLM could, in principle, also be applied to fMRI data.  
 
TDLM enables neuroscientists to decipher rich temporal structures of neural reactivation. We 
described the application of TDLM mostly during off-task state. However, the very same 
analysis can be applied to on-task data, to test for cued sequential reactivation 42, or sequential 
decision-making 45. We believe TDLM opens doors for novel investigations of human 
cognition, including language, sequential planning and inference in non-spatial cognitive tasks 
11,41. It is particularly suited to test specific neural prediction from process models. Therefore, 
we hope TDLM can aid a synthesis between empirical and theoretical approaches in 
neuroscience and in so doing shed novel lights on dynamic neural computation. 
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ONLINE METHODS 
 
The TDLM framework 
 
TDLM comprises three stages. The objective of the first stage is to map the multivariate neural 
activity to labelled states. In the second and third stage, TDLM builds a linear generative model 
of the state time course and assesses the statistical significance by non-parametric permutation 
test. The three-stage computation is described below. 
 
Step 1: Mapping multivariate neural activity to labelled state 
 
Mappings between neural activity and labelled states are established through a supervised 
decoding approach. To avoid selection bias, the training data should come from an independent 
task with no biased experience of the states. The choice of machine learning methods is not the 
focus of this work. We choose logistic regression models for simplicity.  
 
For each state we trained one binomial classifier. Positive examples for the classifier were trials 
on which that object was presented. Negative examples consisted of two kinds of data: trials 
when another object was presented, and data from the fixation period before the semantic pre-
cue appeared (i.e., “null data”). The null data are included to reduce the anticorrelation between 
different classifiers. It was possible for all classifiers to report low probabilities simultaneously 
in testing data. Prediction accuracy was estimated by treating the highest probability output 
among all classifiers as the predicted object. Permutation-based method is employed to assess 
the statistical significance, which is corrected for multiple comparisons across time. The time 
point that gives the highest cross-validation accuracy is selected for training the classifiers.  
 
Step 2: Quantifying strength of state transitions 
 
The decoding models allow one to measure spontaneous reactivation of task-related 
representations during testing time, where ground truth label is not available e.g., resting state. 
TDLM defined a ‘sequenceness’ measure, which describes the degree to which these 
representations were reactivated in a prescribed sequential order. 
 
TDLM first applies each of the state decoding models to the test data. This yields a reactivation 
matrix X with dimension 𝑇 × 𝑁 ., where 𝑇 is the duration of the time series, and 𝑁  is the 
number of states. After that, TDLM asks whether particular sequences of state activations 
appeared above chance in the reactivation matrix X, by applying a two-level GLMs (Equations 
2 and 5). 
 
Step 3: Test statistical significance of neural sequence 
 
In the final step, TDLM assesses the statistical significance of sequenceness. TDLM chooses 
to apply nonparametric tests involving possible permutations of the state labels. Shuffling state 
identity allows one to reject the null hypothesis that the MEG time series had no relationship 
to the transition structure of the task. Different levels of statistical inference can be made 
precisely by controlling the null distribution - how the states are permuted. 
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Change of state spaces 
 
TDLM allows one to construct a new state space by building on the original one. For example, 
after figuring out the empirical state-to-state time lag, TDLM can build the sequence state, and 
look for sequence of sequence, or identify the onset of sequence. 
 
To do so, TDLM first time shifted the reactivation matrix X up to the empirical time lag ∆𝑡4, 
obtained 𝑋∆4. 
																																																																			𝑋∆4 = 𝑋(𝑡 − ∆𝑡4)                                                       
 
Then, 𝑋 is multiplied by the transition matrix	𝑃, obtained a project matrix - 𝑋6. 
 
																																																																								𝑋6 = 𝑋 × 𝑃							                                                                
 
Next, TDLM elementwise multiply 𝑋∆4 by 𝑋6, result in matrix 𝑅, which indicate the new state 
space of sequence, where each element indicates the strength of a (pairwise) sequence at a 
given moment in time.  
																																																																				𝑅 = 𝑋∆4	.∗ 𝑋6                                                          
 
 
Identifying sequence onsets 
 
Sequence onsets were defined as moments when a strong reactivation of a state was followed 
by a strong reactivation of the next state in the sequence. In general, TDLM first finds the 
empirical state-to-state time lag ∆𝑡4  where there is maximum evidence for state-to-state 
sequenceness. Finally, TDLM identifies the sequence onset by thresholding the sequence state 
at its high (e.g., 95th) percentile with a constraint that a sequence onset has a sequence-free time 
window (e.g., 100 ms) preceding it. This analysis pipeline gives a temporal stamp on the testing 
time. One can therefore epoch the data based on those sequence onsets and apply temporal 
frequency analysis and source localization, just like on the standard task data. 
 
 
Sequence of sequence 
 
TDLM is capable of quantifying not only the item-to-item transitions, but also sequence-to-
sequence dynamics after change of state space. To quantify sequence of sequences, TDLM 
needs to construct the design matrix to carefully control for dynamics within the sequence. In 
the linear model, this is effectively asking for the interaction effect of item state A and B, one 
should therefore control for the main effect of A and B. Similar with quantifying the original 
state-to-state transitions, TDLM operate in two-level GLMs to measure the sequence-to-
sequence transitions, but with extra control of within sequence effects.  
 
Let’s assume the sequence state matrix is 𝑋/37, after transforming the original state space to 
sequence space based on the empirical within-sequence time lag ∆𝑡8. Each column at 𝑋/37 is 
sequence state, denoted by 𝑆"!, which indicates the strength of sequence i -> j reactivation. The 
raw state i is 𝑋", and the shifted raw state j is 𝑋!8 (by time lag ∆𝑡8). 
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In the first level GLM, TDLM ask for the strength of unique contribution of sequence state 𝑆"! 
to 𝑆9$ while controlling for original states (𝑋" and 𝑋!8). For each sequence state 𝑖𝑗, at each 
possible time lag ∆𝑡, TDLM estimated a separate linear model: 

 
	𝑆9$ = 𝑋"(∆𝑡)𝛽" +	𝑋!8(∆𝑡)𝛽! +	𝑆"!(∆𝑡)𝛽"!(∆𝑡)	                         

 
Repeat this process for each sequence state separately at each time lag, resulting a sequence 
matrix 𝛽/37. 
 
In the 2nd level GLM, TDLM asks how strong the evidence of sequence of interest is compared 
to sequences that have the same starting state or end state at each time lag.	𝛽/37 contains the 
beta of sequence of interest, 𝛽:"!; beta of sequence that share the same starting state, 𝛽:"; beta 
of sequence that share the same end state, 𝛽:! . The design matrix T includes sequence of 
sequence of interest 𝑇/37 (label “1” for 𝛽"!∆"#, “0” for anything else), constant, 𝑇.. 
 

𝛽/37 = 𝑇𝑍                                                              
 

This is asking how strong the specific sequence of sequence of interest (𝑇/37) is, compared to 
the general sequence effect that is contributed by either the same starting state or the end state. 
This resulted in a single number 𝑍/37, quantifying the specific strength of transition of interest 
at given time lag ∆𝑡.  
 
Abstract code 
 
TDLM assumes the variance of structure code and sensory code of the same object are 
uncorrelated and can be linearly decomposed. TDLM first estimates the mean multivariate 
response pattern of the objects (sensory code) on the data where there is no structural 
information. The objective here is to find the response patterns that can explain the maximal 
variance of sensory code overall rather than separating neural representations of each sensory 
code 48. After that, TDLM regresses the multivariate response pattern of sensory code, 𝛽/3$/-;<, 
onto the position code training data, 𝐷=, and get the residual that cannot be explained by the 
sensory code, 𝐸6. 
 

	𝐸6 = 𝐷= − 𝑝𝑖𝑛𝑣S𝛽/3$/-;<T × 𝐷= × 𝛽/3$/-;<                                     
 

The position code is then trained only on the residuals, 𝐸6, through the same analysis pipeline 
of the first step of TDLM.  
 
 
Human MEG dataset 
 
Task design 
 
Participants were required to perform a series of tasks with concurrent MEG scanning (see 
details in Liu, et al. 12).  The functional localizer task was performed before the main task and 
was used to train a sensory code for eight distinct objects. Note, the participants were provided 
with no structural information at the time of the localizer. These decoding models, trained on 
the functional localizer task, capture a sensory level neural representation of stimuli (i.e., 
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stimulus code). Following that, participants were presented with the stimuli and were required 
to unscramble the “visual sequence” into a correct order, i.e., the “unscrambled sequence” 
based on a structural template they had learned the day before. After that, participants were 
given a rest for 5 mins. In the end, stimuli were presented again in random order, and 
participants were asked to identify the true sequence identity and structural position of the 
stimuli. Data in this session are used to train the structural code of the objects.  
 
MEG data Acquisition and Pre-processing  
 
MEG was recorded continuously at 600 samples/second using a whole-head 275-channel axial 
gradiometer system (CTF Omega, VSM MedTech), while participants sat upright inside the 
scanner. Participants made responses on a button box using four fingers as they found most 
comfortable. The data were resampled from 600 to 100 Hz to conserve processing time and 
improve signal to noise ratio. All data were then high-pass filtered at 0.5 Hz using a first-order 
IIR filter to remove slow drift. After that, the raw MEG data were visually inspected, and 
excessively noisy segments and sensors were removed before independent component analysis 
(ICA). An ICA (FastICA, http://research.ics.aalto.fi/ica/fastica) was used to decompose the 
sensor data for each session into 150 temporally independent components and associated sensor 
topographies. Artefact components were classified by combined inspection of the spatial 
topography, time course, kurtosis of the time course and frequency spectrum for all 
components. Eye-blink artefacts exhibited high kurtosis (>20), a repeated pattern in the time 
course and consistent spatial topographies. Mains interference had extremely low kurtosis and 
a frequency spectrum dominated by 50 Hz line noise. Artefacts were then rejected by 
subtracting them out of the data. All subsequent analyses were performed directly on the 
filtered, cleaned MEG signal, in units of femtotesla.  
 
MEG Source Reconstruction 
 
All source reconstruction was performed in SPM12 and FieldTrip. Forward models were 
generated on the basis of a single shell using superposition of basis functions that 
approximately corresponded to the plane tangential to the MEG sensor array. Linearly 
constrained minimum variance beamforming 49, was used to reconstruct the epoched MEG data 
to a grid in MNI space, sampled with a grid step of 5 mm. The sensor covariance matrix for 
beamforming was estimated using data in either broadband power across all frequencies or 
restricted to ripple frequency (120-150 Hz). The baseline activity was the mean neural activity 
averaged over -100 ms to -50 ms relative to sequence onset. All non-artefactual trials were 
baseline corrected at source level. We looked at the main effect of the initialization of sequence. 
Non-parametric permutation tests were performed on the volume of interest to compute the 
multiple comparison (whole-brain corrected) P-values of clusters above 10 voxels, with the 
null distribution for this cluster size being computed using permutations (n = 5000 
permutations). 

Code availability 

Source code of TDLM can be found at https://github.com/yunzheliu/TDLM. 

Data availability  

Data are available upon reasonable request from the corresponding author, unless prohibited 
owing to research participant privacy concerns.  
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FIGURES & LEGENDS  
 

 
 
Fig. 1 TDLM is a linear generative model that assumes that state time course can be predicted by 
other lagged state time courses. a, State definition: The first step of TDLM is decoding, to establish 
the mapping between multivariate neural patterns and labelled states through supervised learning. A 
separate decoding model, e.g. regularised logistic regression was trained to recognize each state (left) 
vs. other states and null data. Decoding models (consisting of a set of weights over sensors) were then 
tested on unlabelled testing data (e.g., resting state) to generate a time*state decoding matrix (right). 
Examples of forward sequential state reactivations in simulated data (right).  b, The second step of 
TDLM is to quantify the temporal structure of the decoded states using a two-level GLM approach. In 
the first level GLM result in a state*state regression coefficient matrix at each time lag. In the second 
level GLM, this coefficient matrix is projected onto the hypothesized state transition matrix (in red), to 
give a single measure of sequenceness as a function of time-lag. c, The statistical significance was tested 
using a nonparametric state permutation test by randomly shuffling the transition matrix of interest (in 
grey). The statistical significance threshold is defined as the 95th percentile of all shuffles across all time 
lags for raw forward (in red) and backward (in blue) sequence, denoted as the dashed line. In addition, 
we define a summary statistic – sequence difference (D), which is the subtraction of forward and 
backward sequence at each time lag (in green). Positive value means favouring forward vs. backward, 
and vice versa. The permutation threshold for sequenceness is defined as the 95th percentile of the 
maximum absolute value of the subtraction of all shuffles across all time lags.  
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Fig. 2 TDLM is capable of working on different state spaces. a, Assuming we have two abstract 
codes, each abstract code has two different sensory codes (left panel). The M/EEG data corresponding 
to each stimulus is a conjunctive representation of sensory and abstract codes (right panel). The abstract 
code can be operationalised as the common information in the conjunctive codes of two stimuli that 
share the same abstract representation. b, Training decoding models for stimulus information. The 
simplest state is defined by sensory stimuli. To determine the best time point for classifier training, we 
can use classical leave-one-out cross validation scheme on the stimuli-evoked neural activity. c, 
Training decoding models for abstracted information. The state can also be defined as the abstractions. 
To extract this information only, we need to avoid sensory information. We can train the classifier on 
the neural activity evoked by one stimulus and tested on the other sharing the same abstract 
representation. If the neural activity contains both the sensory and abstract code, then the only 
information can generalize is the common abstract code. d, The state can also be defined as the sequence 
event itself. 
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Fig. 3 TDLM builds a linear model to test for sequential structure in state reactivations by 
controlling for temporal and spatial correlations. a, Simple linear regression or cross-correlation 
approach relies on the asymmetry of forward and backward transitions; therefore, subtraction is 
necessary (left panel). TDLM instead relies on multiple linear regression. TDLM can assess forward 
and backward transitions separately (right panel). b, Background alpha oscillations, as seen during rest 
periods, can reduce sensitivity of sequence detection (left panel), controlling alpha in TDLM helps 
recover the true signal (right panel). c, The spatial correlation between the sensor weights of decoders 
for each state reduces the sensitivity of sequence detection. This suggests reducing overlapping patterns 
between states are important for sequence detection. d, Adding null data to the training set can help 
increase the sensitivity of sequence detection by reducing the spatial correlations of the trained classifier 
weights. Here the number indicates the ratio between null data and task data. “1” means the same 
amount of null data and the task data. “0” means no null data is added for training. e, L1 regularization 
helps sequence detection by reducing spatial correlations (all red dots are L1 regularization with a 
varying parameter value), while L2 regularization does not help sequenceness (all blue dots are L2 
regularization with a varying parameter value) as it does not reduce spatial correlations of the trained 
classifiers compared to the classifier trained without any regularization (green point).  
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Fig. 4 Statistical inference. a, P-P plot of one-sample t test (blue) and Wilcoxon signed rank test (red) 
against zero. This is done in simulated MEG data assuming auto-correlated state time courses but no 
real sequences. In each simulation, the statistics are done only on sequenceness at 40 ms time lag, across 
24 simulated subjects. There are 10,000 simulations. b, We have also tested the sequenceness 
distribution on the real MEG data. This is pre-task resting state of 22 subjects from Liu et. al, where the 
ground truth is no sequence given the stimuli are not shown yet. The statistics are done on sequenceness 
at 40 ms time lag, across the 22 subjects. There are eight states. The state identity is randomly shuffled 
10,000 times to construct the null distribution. c, Time-based permutation test tends to give high false 
positive, while state identity-based permutation does not. This is done in simulation assuming no real 
sequences (n=1000). d, P-P plot of state identity-based permutation test over peak sequenceness is 
shown. To control for multiple comparisons, the null distribution is formed taking the maximal absolute 
value over all computed time lags within a permutation, and the permutation threshold is defined as the 
95% percentile over permutations. In simulation, we only compared the max sequence strength in the 
data to this permutation threshold. There are 10,000 simulations. In each simulation, there are 24 
simulated subjects, with no real sequence. e, In state-identity based permutation, we can test more 
specific hypotheses by controlling the null distribution. Blue are the permutations that only exchange 
state identity across sequences. Red are the permutations that permit all possible state identity 
permutations. 500 random state permutations are chosen from all possible ones. The X axis is the 
different combinations of the state permutation. It is sorted so that the cross-sequence permutations are 
in the beginning.  
 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 7, 2020. ; https://doi.org/10.1101/2020.04.30.066407doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.30.066407
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
Fig. 5 Extension to TDLM: Multi-step sequences and Sequence of sequences. a, TDLM can 
quantify not only pair-wise transition, but also longer length sequences. It does so by controlling for 
evidence of shorter length to avoid false positive. b, Method applied to human MEG data, incorporating 
control of both alpha oscillation and co-activation for both length-2 and length-3 sequence length. 
Dashed line indicates the permutation threshold. This is adapted from Liu, et al. 11. c, TDLM can also 
be used iteratively to capture the repeating pattern of sequence event itself. Illustration in the top panel 
describes the ground truth in the simulation. Intra-sequence temporal structure (right) and inter-
sequence temporal structure (right) can be extracted simultaneously. d, On a real rodent hippocampal 
electrophysiological dataset, TDLM revealed the well-known theta sequence phenomena during active 
spatial navigation. 
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SUPPLEMENTARY FIGURES  
 

 
 
Supplementary Fig. 1 Source localization of stimuli evoked neural activity. The states here are 
defined as the stimuli evoked neural activity. The classifiers are trained at 200 ms post-stimulus 
onset. For example, the stimuli are faces, buildings, body parts, and objects. Source localizing 
the evoked neural activity, we found expected activation pattern of the 4 stimuli based on 
literature. For faces, activation peaked in a region roughly consistent with the fusiform face 
area (FFA) as well as the occipital face area (OFA). Activation for building stimuli was located 
between the well-known parahippocampal place area (PPA) and the retrosplenial cortex (RSC), 
a region also known to respond to scene and building stimuli. Activation for body part stimuli 
was in a region consistent with the extrastriate body area (EBA). Activation for objects was in 
a region consistent with the object-associated lateral occipital cortex (LOC) as well as an 
anterior temporal lobe (ATL) cluster that may relate to conceptual processing of objects. 
Individual category maps thresholded to display localized peaks for illustration. This is adapted 
from Wimmer, et al. 2. Full unthresholded maps can be found at 
https://neurovault.org/collections/6088/. 
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Supplementary Fig. 2 Sequences of abstract code. a, Illustration of the relationship between sensory 
code and (abstract) structural code. The problem is we cannot directly access structural code. We can 
only indirectly obtain structural code from the conjunctive code which have both sensory and structural 
information. In the ground truth, there is sequence of sensory code but not structural code. b, We show 
in simulation the importance of controlling for sensory (stim) information, when looking for sequences 
of abstract code.  
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Supplementary Fig. 3 Inferences on biased state representations. a, State identity based permutation 
on raw forward sequenceness (fwd) will fail when state identity is not exchangeable, but still behave 
well statistically on the subtraction between forward and backward sequences (fwd - bkw). There are 
10,000 simulations, each simulation has 24 simulated subjects. The state space contains 4 states: A, B, 
C, D. There are 24 possible state permutations. The transition of interest is 𝐴 → 𝐵 → 𝐶 → 𝐷. The 
biased state confusion is between state 𝐴 & 𝐵. All state time courses have high autocorrelation. 
b, Sequence plot on an example data set with 24 simulated subjects, assuming biased state 
confusion. This will create problems for raw forward and backward sequenceness, because 
only state A and B are systematically correlated, so that the first level sequence analysis in 
TDLM will still leave unexplained autocorrelation in the data (right panel). Fortunately, the 
subtraction still works because the autocorrelation is symmetrical in both directions (left panel). 
The dotted line is the 95th percentile of permutations at each time lag. The dashed line is the 
95th percentile of permutation on the maximum sequenceness over all computed time lags, 
which is corrected for multiple comparison.  
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Supplementary Fig. 4 Temporal structure between and within different sequences. a, Illustration 
of two sequence types with different state-to-state time lag within sequence, and a systematic gap 
between the two types of sequences. b, TDLM can capture the temporal structures both within (left 
panel) and between (right panel) the two sequence types. 
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Supplementary Fig. 5 Source localization of replay onset. a, TDLM figures out the onset of sequence 
based on the identified optimal state-to-state time lag (left panel). Sequence onset during resting state 
from one example subject is shown (right panel). b, On the real human neuroimaging data during rest, 
there was a significant power increase (averaged across all sensors), in the ripple frequency band (120-
150 Hz), at the onset of replay, compared to the pre-replay baseline (100 to 50 ms before replay). c, 
Source localization of ripple-band power at replay onset revealed significant hippocampal activation 
(right panel, peak MNI coordinate: X = 18, Y = -12, Z = -27). This is adapted from Liu, et al. 1. 
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Supplementary Note 1: Synthetic datasets 
 
We simulate the data to be similar with the human MEG data. Therefore, there is always strong 
autocorrelation in time, and sometimes with rhythmic oscillation (e.g., 10Hz). In spatial 
domain, the sensors are always spatially correlated. To imitate the temporal auto-correlation 
feature of real MEG data, the simulated data is generated with an auto-aggressive model with 
multivariate gaussian noise. To imitate the spatial correlation between MEG sensors, we add 
dependence among sensors in the simulated data. The simulated data is nSensors (number of 
sensors = 273) by nSamples (number of samples = 6000, with each sample =10 ms). 
  
An example of the Matlab implementation are  
(see full codebase in https://github.com/yunzheliu/TDLM): 
 
%% Simulate_Replay 
 
   %% generate dependence of the sensors 
    A = randn(nSensors); 
    [U,~] = eig((A+A')/2);  

covMat = U*diag(abs(randn(nSensors,1)))*U'; 
 
    %% make simulated data  
    X = nan(nSamples, nSensors);    
    X(1,:) = randn([1 nSensors]); 

for iT=2:nSamples 
      X(iT,:)=0.95*(squeeze(X(iT-1,:))'+mvnrnd(zeros(1,nSensors),covMat));% add dependence  
end 

 
We generate ground truth multivariate patterns of states with core common patterns across all 
states. This is to respect the fact that most of the states are likely to be defined as pictures, 
which elicit similar neural activity in general, to some degree. The sequences of the 
multivariate patterns of states are then injected into the simulated data following the ground 
truth of state transitions. The state-to-state time lag is assumed to follow gamma distribution 
with Matlab function “gamrnd”. 
 
    %% generate the true patterns 
    commonPattern = randn(1,nSensors);     

patterns = repmat(commonPattern, [8 1]) + randn(8, nSensors);  
 

    %% Injecting Sequence 
    for iRS = 1:nSequences 
        seqTime = randi([40 nSamples-40]); % pick a random point, not right at the edges 
        state = false(8,1); state(randi(8)) = true;  % start the sequence in a random state 
         
        for iMv=1:2 % number of transition length allowed 
            if sum(state)~=0 
                X(seqTime,:) = X(seqTime,:) + patterns(state,:);  
                state = (state'*T)'; state2 = false(8,1); state2(find(rand < cumsum(state), 1, 'first')) = true; 
state = state2; % advance states 
                seqTime = seqTime + round(gamrnd(gamA,gamB)); 
            end 
        end 
    end 
 
The classifiers are trained based on a different set of simulated data, same as the real MEG data 
analysis setup. The classifiers are trained using Matlab function “lassoglm”.  
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    %% make training data 
    trainingData = 4*randn(nNullExamples+8*nTrainPerStim, nSensors) + 
[zeros(nNullExamples,nSensors); ... 
        repmat(patterns, [nTrainPerStim 1])]; 
    trainingLabels = [zeros(nNullExamples,1); repmat((1:8)', [nTrainPerStim 1])]; 

 
    %% train classifiers on training data 
    betas = nan(nSensors, 8); intercepts = nan(1,8); 
    for iC=1:8 
        [betas(:,iC), fitInfo] = lassoglm(trainingData, trainingLabels==iC, 'binomial', 'Alpha', 1, 'Lambda', 
0.006, 'Standardize', false); 
        intercepts(iC) = fitInfo.Intercept; 
    end 
 
    %% make simulated data  
    X = nan(nSamples, nSensors);    
    X(1,:) = randn([1 nSensors]); 

for iT=2:nSamples 
      X(iT,:)=0.95*(squeeze(X(iT-1,:))'+mvnrnd(zeros(1,nSensors),covMat));% add dependence  
end 

 
In the end, the simulated data are passed through the trained decoders. The sensor data are 
transformed to state time courses. 
 
    %% make predictions with trained models 

preds = 1./(1+exp(-(X*betas + repmat(intercepts, [nSamples 1])))); 
 
After that, TDLM works on the decoded state space data - *preds* throughout. 
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Supplementary Note 2: Rodent data analysis under TDLM 
 
The rodent data is from Matt Wilson’s lab. This is electrophysiology recording from one rat. 
Data were collected in a spatial navigation task where the rat ran back and forth on a circular 
track that had a high-wall divider with reward sites on either side. The rat completed 6 rounds 
of run up (both clockwise and counterclockwise). Fifty-three Cells were recorded in the CA1 
of the hippocampus. Spiking activity was recorded at 31,250 Hz /channel. The local field 
potential was sampled at 2000 Hz. The position of the rat was simultaneously recorded with a 
sampling rate of 30 Hz. The position records were linearized for later analysis. 
 
The data is analyzed by first subsetting the data based on running speed. In all analysis, the 
data are restricted to time when the velocity is greater than 10 cm/s. This is to exclude resting 
or pause during active spatial navigation. We then binned the data for future analysis. The 
spatial bin size is 5 cm, and the temporal bin size is 10 ms. 
 
The turning curve of the cells on the track is estimated separately based on the running direction 
(clockwise vs. counterclockwise). After that, the classical one-step Bayesian position decoding 
is performed on the spike counts of cells, assuming the spike counts follow Poisson distribution, 
independent between cells and uniform prior over space 3. Importantly, the probability of the 
position is joint estimated based on the running direction and the position on the track. To 
obtain a readout of the decoded position, we marginalize over the running direction. This is 
important, because sequence results based on TDLM can be biased by the biased experience 
(e.g., in clockwise direction, A is always followed by B), estimating jointly with running 
direction can reduce this concern given the rat has equal experience of running clockwise and 
counterclockwise. 
 
After that, TDLM can perform on the decoded position space just as the same as on the state 
time series derived from human MEG data. Importantly, we cannot estimate forward and 
backward sequence currently, because of the biased experience during decoder training, i.e., 
the tuning curve at position A is correlated with B, and tuning curve at position B is correlated 
with C, etc. To correct for this, we rely again on the asymmetry of forward and backward 
transitions by subtracting reverse sequenceness from forward sequenceness. The state identity 
permutation test can now work given the rodent running in the clockwise and counterclockwise 
with equal amount of experience, any asymmetry of forward and backward cannot be explained 
by the biased experience alone (see also on  the section “Cautionary note on exchangeability 
of states after training ”). This analysis pipeline replicates the key rodent finding (Fig 5d), the 
sequence is forward and is repeating in theta frequency (autocorrelation of sequence peaks at 
80 ms, roughly 12 Hz). 
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