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Abstract

A major goal of computational neuroscience is to develop powerful analysis tools that operate on large
datasets. These methods provide an essential toolset to unlock scientific insights from new experiments. Un-
fortunately, a major obstacle currently impedes progress: while existing analysis methods are frequently shared
as open source software, the infrastructure needed to deploy these methods – at scale, reproducibly, cheaply,
and quickly – remains totally inaccessible to all but a minority of expert users. As a result, many users can
not fully exploit these tools, due to constrained computational resources (limited or costly compute hardware)
and/or mismatches in expertise (experimentalists vs. large-scale computing experts). In this work we develop
Neuroscience Cloud Analysis As a Service (NeuroCAAS): a fully-managed infrastructure platform, based on
modern large-scale computing advances, that makes state-of-the-art data analysis tools accessible to the neuro-
science community. We offer NeuroCAAS as an open source service with a drag-and-drop interface, entirely
removing the burden of infrastructure expertise, purchasing, maintenance, and deployment. NeuroCAAS is
enabled by three key contributions. First, NeuroCAAS cleanly separates tool implementation from usage,
allowing cutting-edge methods to be served directly to the end user with no need to read or install any analysis
software. Second, NeuroCAAS automatically scales as needed, providing reliable, highly elastic computational
resources that are more efficient than personal or lab-supported hardware, without management overhead. Fi-
nally, we show that many popular data analysis tools offered through NeuroCAAS outperform typical analysis
solutions (in terms of speed and cost) while improving ease of use and maintenance, dispelling the myth that
cloud compute is prohibitively expensive and technically inaccessible. By removing barriers to fast, efficient
cloud computation, NeuroCAAS can dramatically accelerate both the dissemination and the effective use of
cutting-edge analysis tools for neuroscientific discovery.

1 Introduction

In recent years, our field has developed a remarkable variety of recording technologies that measure behavior and
neural activity at previously unimaginable scale, producing vast quantities of large and complex data. In parallel,
neural data analysis — which aims to build the path from these datasets to scientific insight — has grown into a
centrally important and necessary component of modern neuroscience (Paninski and Cunningham, 2018).

The result of this growth is an explosion in the complexity of neural data analysis techniques. Historically,
scientific analysis algorithms were typically implemented as isolated code scripts that performed straightforward
computations on moderately sized data and were often run on standard desktops or locally networked servers.
These code scripts were typically shared with the research community in an ad hoc fashion (printed in appendices
or as pseudocode, shared via email, etc.). In stark contrast, modern neural data analysis routinely involves video
processing algorithms (Pnevmatikakis et al., 2016, Pachitariu et al., 2017, Mathis et al., 2018, Zhou et al., 2018,
Giovannucci et al., 2019) , deep neural networks (Gao et al., 2016, Batty et al., 2016, Lee et al., 2017, Parthasarathy
et al., 2017, Mathis et al., 2018, Pandarinath et al., 2018, Giovannucci et al., 2019), sophisticated graphical models
(Yu et al., 2009, Wiltschko et al., 2015, Gao et al., 2016), and/or other machine learning tools (Pachitariu et al.,
2016, Lee et al., 2017). Thus, modern core analyses depend extensively upon underlying infrastructure, including
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Figure 1: Data analysis infrastucture. A. Core analysis code sits atop a pyramid of infrastructure (including
both software and hardware) that must be installed and maintained to make analysis viable. B. A number of
common problems arise at each layer of this infrastructure pyramid; some of these issues are most visible to users,
while some are more visible to software developers. C. Many common management tools deal only with one or
two layers in the infrastructure pyramid, leaving gaps that users and developers must fill manually or by cobbling
systems together. D. Our surveys of common neural data analysis tools for calcium imaging and behavioral analysis
indicate that many layers of the infrastructure pyramid are currently not managed by analysis developers, and
implicitly delegated to the user’s responsibility (see Methods for full details).

software libraries such as pytorch and tensorflow (Abadi et al., 2016, Paszke et al., 2019), systems necessary to
connect this software to underlying hardware (Merkel, 2014), and precisely built and configured CPU and GPU
hardware. Figure 1A details this infrastructure as the necessary – but largely ignored – foundation on which all
analyses run (Demchenko et al., 2013, Jararweh et al., 2016, Zhou et al., 2016).

Major efforts have been made by journals (Donoho, 2010, Hanson et al., 2011, https://www.nature.com/

news/code-share-1.16232) and funding agencies (Carver et al., 2018) to encourage the sharing of core analysis
code. However, these important efforts still ignore the vast majority of the infrastructure (Figure 1A) required to
complete modern neural data analysis. As a first example, though many algorithms require a specific operating
system for their proper use, only the rarest offer an operating system bundled with their release of code (as is
possible via containerization). It thus falls entirely on the user to match analysis technique to operating system.
As another example, many neural data analysis algorithms require meaningful use of graphics processing units
(GPUs) for their operation, but none to our knowledge offer a bundled GPU with freely available analysis code.
(As we will see, this example is quite a bit less absurd than it may appear; indeed this paper offers a solution.)
Despite calls to improve standards of practice in the field (Vogelstein et al., 2016), and some progress in other
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fields such as astronomy, genomics, and high energy physics (Hoffa et al., 2008, Zhou et al., 2016, Chen et al.,
2019), there has been little concrete progress in our field towards a solution that provisions or even documents
infrastructure at a scientifically acceptable standard.

The implication of this missing infrastructure is a set of problems all too familiar to experimental and com-
putational neuroscientists alike (Figure 1B): both human and financial resources must be spent on hardware
setup, configuration and troubleshooting of software and libraries, unexpected interruptions to processing from
unreliable systems, constraints due to limited “on-premises” computational resources, and more. Some tools
– notably compute clusters (whether in a public or university-owned cloud), versioning websites like github
(https://github.com), and more recently containerization websites like Docker (Merkel, 2014) – offer various
infrastructure components (Figure 1C), but each of these tools requires some expertise to use, and it is nontrivial
to combine these components into a complete working infrastructure, sharply limiting the accessibility and pre-
venting the universal adoption of these tools. The unfortunate result of these problems and these partially used
toolsets is a hodgepodge of often slipshod infrastructure practices across the literature (Figure 1D; see supporting
data in Tables S1, S2).

Far from being simply a headache, these infrastructure issues can have a serious negative impact on the data
analysis process. For example, limitations on hardware capacity have real consequences for the performance
of analysis algorithms (Radiuk, 2017), and can interfere with analysis performance in ways that preclude the
most careful attempts to reproduce the appropriate infrastructure. Further, the difficulty of configuring analysis
infrastructure drives yet more divergence (Demchenko et al., 2013, Monajemi et al., 2016), and can make errors
extremely difficult to detect, let alone repair. This challenge persists even if the original developer provides clear
and comprehensive instructions for use (which is rarely the case and an ongoing challenge across science (Zhao and
Deek, 2005, Stodden et al., 2018, Raff, 2019). Emphasizing this challenge, a recent study of the machine learning
literature observed that although local compute clusters address the issue of practical resource availability, none
of the studies that made use of a compute cluster were reproducible. That paper indicated two causes: the
lack of unifying infrastructure frameworks for distributed computing, and lack of details in the description of
infrastructure resources (Raff, 2019).

Suboptimal infrastructure has meaningful and urgent scientific consequences. First, scientific progress suffers
when researchers must make a choice between a cutting-edge data analysis (with some nontrivial cost and dif-
ficulty of use) versus a simpler (though less insightful) traditional technique. Second, reproducibility of results,
one hallmark of rigorous scientific discovery, is extremely difficult when the infrastructure components needed
to reproduce a result are neither described fully nor readily recreated (Crook et al., 2013, Stodden et al., 2018,
Krafczyk et al., 2019, Raff, 2019). Third, scientific results become less reliable as opportunities for errors creep
into poorly understood analysis pipelines. Taken together, the current standards for (re)creating and then main-
taining data analysis infrastructure is an unaddressed bottleneck in the field. Furthermore, this burden often
falls on trainees who are neither scientifically rewarded (https://chanzuckerberg.com/rfa/essential-open-
source-software-for-science/) nor specifically instructed on how to build, configure, and install infrastructure.
We term this problematic conventional model of creating analysis infrastructure Infrastructure-as-Grad-Student
(IaGS). The IaGS status quo fails any reasonable standard of scientific rigor and impedes both scientific training
and the broad use of valuable analytical tools.

Of course, the infrastructure issues described here are not specific to neuroscience. Looking to sectors that
deploy software as a service at industrial scale, there has been in the last few years remarkable progress in the
Infrastructure-as-Code (IaC) paradigm (Morris, 2016): a practice and emerging toolset that endows infrastructure
creation and deployment with the replicability and determinism that we have come to expect from software. IaC
first details, in code, the various infrastructure resources (each box in Figure 1A) that constitute a project, and the
ways that they should be coordinated. This code is then automatically deployed into the equivalent functioning
software, system, and hardware resources, analogous to how standard software code is compiled into a program
and executed. IaC offers tremendous benefits to scientific data analysis, and neuroscience in particular, but there
has been no previous effort to extend this new technology for our field.

In response, we developed Neuroscience Cloud Analysis as a Service (NeuroCAAS), a platform that hosts
neural data analysis algorithms and builds all the infrastructure (via IaC) upon which they depend. The result
is a drag-and-drop interface for neural data analysis: experimentalists and computational neuroscientists can log
on to the NeuroCAAS website, set some parameters for an analysis, and drop their neural or behavioral data
onto the platform. Infrastructure is then automatically provisioned, deployed on the cloud, and used to produce
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analysis results which are returned to the user, after which the infrastructure is automatically dissolved.
In this work we combine the modern concepts of resource virtualization, immutable analysis environments,

and analysis blueprints to automate the data analysis process, building a platform that fully dissociates science
from engineering. With NeuroCAAS, as elsewhere, the scientific user bears the responsibility of using analyses
thoughtfully. Thus, critically, NeuroCAAS neither removes nor attempts to lessen the scientific rigor needed for
neural data analysis; instead, it abstracts away all nonscientific infrastructure.

Next, we manifest NeuroCAAS as a fully hosted, secure service on the publicly accessible cloud. This
point warrants emphasis, as it diverges starkly from the traditional scientific practice: NeuroCAAS is not a
platform design or suggestion that the reader can attempt to recreate on their own; instead, NeuroCAAS is
offered as an open source, fully hosted platform available for immediate use, via a website that users can sign
up to and then drag and drop their data for analysis (www.neurocaas.org). NeuroCAAS offers a growing set
of popular but challenging-to-implement data analysis algorithms, and has been heavily tested by users in the
computational and experimental neuroscience community. As natural consequences of its design, data analyses
hosted on NeuroCAAS are automatically reproducible end-to-end, and seamlessly scalable across datasets.

Finally, we conducted experiments that compare NeuroCAAS’s implementation to conservative ”on-premises”
benchmarks, measuring time and financial cost. Because it uses state-of-the-art compute resources, but only when
needed, NeuroCAAS is both cheaper and faster than local computing across a wide range of common data
analyses, dispelling a common misconception about the viability of such a platform (§2.3). Indeed, processing on
NeuroCAAS is sufficiently inexpensive that we can offer this platform as a free service for many users, sharply
increasing the accessibility and reach of modern analysis tools (§2.4). By addressing these critical and growing
issues in neuroscience research, NeuroCAAS paves the way to the next generation of rigorous and powerful data
analysis in our field.

2 Results

2.1 NeuroCAAS replaces Infrastructure-as-Grad-Student with Infrastructure-as-Code

The challenges described above make IaGS difficult to address through policy changes or enforcement of particular
programming practices, as has been suggested for infrastructure in other contexts (Buckheit and Donoho, 1995,
Crook et al., 2013, Stodden et al., 2018). In response, we designed an infrastructure service (not a policy or new
software library) that uses ideas from modern computing research to entirely remove infrastructure development
and management from a user’s data analysis process. This service – NeuroCAAS– offers a qualitatively different
analysis model (Figure 2) to what is standard in the field.

To analyze data on NeuroCAAS, users simply choose from a list of supported methods (see Table 1, or better
the continuously updating list at www.neurocaas.org), select a corresponding configuration file and modify it
as needed, and then drag-and-drop all datasets to be processed into the appropriate box on the website (Figure
2, top left). No further user input is needed: NeuroCAAS first detects the submission event (dataset and
configuration file submission), then recruits a job manager to programatically create and manage all infrastructure
and autonomously execute analysis, thereby providing highly scalable and completely reproducible computational
processing via IaC (Figure 2, right). Analysis outputs (including live status logs and a complete description of
analysis parameters) are then delivered back to the user, and finally the provisioned infrastructure is dissolved
automatically when data processing is complete (Figure 2, bottom). We reiterate that throughout the whole
process, the user never has to maintain any sophisticated hardware, read or install any complicated software, or
troubleshoot any software dependency or operating system compatibility issues.

NeuroCAAS simultaneously resolves all of the challenges underlying IaGS, uniformly across all potential
users of a given algorithm. First, to solve the challenge of practical resource availability (§2.1.1), we use virtual-
ized public cloud resources that are accessible at scale and effectively limitless. Second, for reproducibility (§2.1.2),
NeuroCAAS saves analyses into a blueprint that can be versioned, copied, and redeployed back into fully func-
tioning analyses. Finally, to address configuration difficulty and analysis at scale, we autonomously configure all
resources into an immutable analysis environment (§2.1.3). These three innovations introduce the Infrastructure
as Code, or IaC (Morris, 2016) paradigm to neuroscience.
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Figure 2: Overview of NeuroCAAS. Left indicates the user’s experience; right indicates the work that Neu-
roCAAS performs. The user begins by choosing from the algorithms hosted on the NeuroCAAS website, then
choosing a corresponding configuration file (and modifying this file as needed). The user then uploads dataset(s)
and the configuration file. NeuroCAAS detects this upload event, reads the configuration file, and deploys the
requested algorithm using an infrastructure blueprint (including the necessary software, compute environment
resources, and hardware) that the developer previously specified as optimal for the user’s needs. The deployed
blueprint is read by NeuroCAAS’s job manager, and built into an immutable analysis environment. Multiple
analysis environments may be deployed in parallel if the user uploads multiple datasets. The deployed resources
persist only as necessary, and results, as well as diagnostic information, are automatically routed back to the user.
Still image of neural data adapted from http://neurofinder.codeneuro.org.
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Figure 3: Infrastructure-as-grad-student vs infrastructure-as-code. A. Local processing requires a number
of time-consuming steps from the user (hardware setup, software installation and maintenance, etc.) before any
analyses are run. Then typically analyses of large datasets are run serially (due to resource constraints), leading
to longer processing times. On NeuroCAAS, user interaction is only required at the beginning of the analysis
(to upload the data), then NeuroCAAS processes the data using large-scale parallel compute resources, leading
to faster overall processing times. B. On NeuroCAAS, some costs are incurred with each analysis run: the user
must upload the datasets (incurring a small job monitor cost), and then each dataset incurs some compute cost.
For local processing, the bulk of the costs are paid upfront, in purchasing hardware; then additional labor costs
are incurred for maintenance, support, and usage of limited local resources. If the per-dataset costs are low and
the total number of datasets to be processed is limited then NeuroCAAS can lead to significantly smaller total
costs than local processing.

2.1.1 Virtualization

For data analyses provided on NeuroCAAS, users never provision their own infrastructure. By utilizing fully
virtualized infrastructure, NeuroCAAS makes the exact infrastructure resources used by the developer of an
analysis available to all users. Furthermore, this access is achieved without sacrificing the freedom of developers to
allocate the resources most appropriate for their needs. NeuroCAAS uses virtualized resources on a commercial
public cloud (currently Amazon Web Services).

The public cloud is the right choice for three reasons. First, the public cloud provides a vast array of virtu-
alization options that can support the diverse needs of different analyses. Second, the cloud operates at a scale
and level of accessibility that supports many global, industrial-grade applications, meaning that the volume of
virtualized resources that can be simultaneously deployed is practically unlimited by physical resource availability.
Finally, we made use of cloud tools and frameworks to build a high-level job manager that coordinates automatic
assembly, destruction, and communication with analysis-relevant computing infrastructure.

2.1.2 Reproducibility via Blueprints

NeuroCAAS makes analyses immediately reproducible by specifying the identity and configuration of all rele-
vant infrastructure resources in a blueprint that captures all aspects of analysis-related infrastructure, describing
resources as disparate as virtualized hardware, job managers, and relevant user permissions in a comprehensive
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document. The NeuroCAAS blueprint is a dictionary of key-value pairs, implemented as a JSON object, with
the keys representing different virtualized infrastructure components, and values representing their specification.

NeuroCAAS blueprints have immediate value for standards of reproducible research in our field. A great
deal of ink has been spilled over the last couple decades on the importance of reproducible research (Buckheit and
Donoho (1995), others) — but in many cases research remains frustratingly non-reproducible (Crook et al., 2013,
Raff, 2019, Stodden et al., 2018). NeuroCAAS sidesteps all of the typical barriers to reproducible research by
tightly coupling resources to documentation via blueprints: virtualized resources are provisioned and configured
directly into functioning analyses from these blueprints without any further manual input (Figure 2, top right
into bottom right), meaning that any working analysis is by necessity reproducible. What follows is extreme
portability: when provided with a blueprint, the exact analysis employed by a particular user to analyze their
data is instantly available to anyone else.

Developers can easily extend analyses already on NeuroCAAS by instantiating them from blueprints, adjust-
ing them as required, and saving the relevant changes. All changes to blueprints are version controlled via git,
and generate a unique id that can be referenced within jobs (see Figure 2), ensuring that the infrastructure used
to analyze a particular data set is never lost, regardless of ongoing development to the analysis itself.

2.1.3 Immutable Analysis Environments

NeuroCAAS serves analyses to users by means of immutable analysis environments. In an immutable analysis
environment, all infrastructure is configured independently of the user, and cannot be altered during the process
of analyzing data. The requirement of immutability means that the hardware and operating system of an analysis
are set up without user input, but more strictly that installation, package management, and critically analysis
workflow are dictated by developer choices. We provide developers an interface to create the immutable analysis
environment without requiring additional knowledge of cloud architecture (see neurocaas.org for details).

To stabilize data analysis workflow, immutable analysis environments are isolated from user interaction mid-
analysis. Instead, users simply input data and analysis parameters to the relevant NeuroCAAS job manager,
which parses these inputs and initiates processing in the immutable analysis environment, autonomously executing
the necessary computations to generate a result (Figure 2, bottom right panel). The NeuroCAAS job manager
collects status messages from analysis output and environment diagnostics throughout processing, and returns
them to the user live, allowing them to monitor ongoing progress as they wait for their analysis results. At the end
of processing, users receive with their results a certificate detailing the blueprint, data, and analysis parameters
that fully specify the analyses that were run (Figure 2, bottom left panel).

Serving immutable analysis environments has several benefits. First, immutable analysis environments provide
scalability: the NeuroCAAS job manager uses the information in a blueprint to rapidly instantiate immutable
analysis environments on-demand. NeuroCAAS’s job manager automatically detects input batching and instan-
tiates the corresponding number of identical immutable analysis compute environments (Figure 2, bottom right),
distributing batched data across these environments, aggregating results for the user afterwards, and destroying
the immutable analysis environments once they are no longer needed. In the era of big data and powerful analyses
it is common to use the same configuration parameters to analyze many datasets simultaneously, providing an
ideal use case for NeuroCAAS. On typical local infrastructure, this type of large-scale analysis would be very
time consuming (or not feasible at all) and would often require a great deal of laborious manual oversight and
book-keeping.

Second, immutable analysis environments minimize the potential for analysis errors. By closing the immutable
analysis environment from direct input, we eliminate the possibility of concurrent and irrelevant processes in-
terfering with analysis stability, and minimize the effects of software updates and spontaneous hardware failure-
long-standing frustrations in the scientific computing literature that can have considerable effects upon the results
of an analysis (Crook et al., 2013, Stodden et al., 2018) (see Methods for details). Additionally, the degree of
predictability offered by immutable design makes developer bugs much more easy to find and fix, as they must be
a result of incorrect input management (and not, for example, due to the user running a different version of some
software package).

The principle of immutability has a long history in computer science (Bloch, 2008) and is readily achievable on
existing popular algorithms in neuroscience (§2.3). Moreover, immutable analysis environments support a long line
of work arguing for increasing automation in data analysis as opposed to interactivity. Advocates have argued that
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automation provides scientists the opportunity to better study their data and methods (Tukey, 1962), and that
automation is fundamental to allow modern data analysis to achieve reliable and reproducible results at massive
scale (Waltz and Buchanan, 2009, Monajemi et al., 2016).

2.2 NeuroCAAS: hammer, screwdriver, or what?

The modern computing era brings neuroscientists a large and increasingly powerful toolkit for improved data
analysis. What sort of tool then is NeuroCAAS, and what problems does it (and does it not) address?

What NeuroCAAS does. As discussed throughout, we emphasize that NeuroCAAS offers automated infras-
tructure. Its purpose is to remove the burden of setting up and maintaining software, hardware, operating system,
etc. from the process of neural data analysis. The singular goal of NeuroCAAS is to remove Infrastructure-
as-Grad-Student from neuroscience, freeing users from having to think about infrastructure choices, from having
to purchase and set up infrastructure, and from having to troubleshoot infrastructure; all users of those methods
then are provided that same infrastructure via NeuroCAAS.

What NeuroCAAS does not do. First, NeuroCAAS does not aim to improve the scientific use of neural
data analysis algorithms. For example, if a user has data that is incorrectly formatted for a particular algorithm,
the same error will happen with NeuroCAAS as it would with conventional usage. Garbage-in-garbage-out is as
true with NeuroCAAS as with any other software platform.

Second, NeuroCAAS is not a scientific workflow management system. Workflow management systems such
as Datajoint (Yatsenko et al., 2015) and the Common Workflow Language (Amstutz et al., 2016) codify the
sequential steps (or workflow) that make up a data analysis, ensuring data integrity and provenance. While the
design of NeuroCAAS incorporates some level of data and task management, our main goal is not to schematize
the workflow within a given algorithm, or to ensure its compatibility within other data pipelines. Instead, our
goal is to organize, document, and provide the work that must be done to make a given data analysis functional,
efficient, and accessible. This goal is orthogonal and complementary to applications that explicitly provide tools
to make rigorous the data pipeline from experiment through to database and data processing.

Third, NeuroCAAS is not unstructured access to cloud computational resources. The concept of immutable
analysis environments should clarify this fact: NeuroCAAS serves a set of analyses that are configured to a
particular specification, as established by the algorithm developer. If a user is looking for computational resources
to run an algorithm that is not yet supported on NeuroCAAS, they can either request to add the algorithm to
NeuroCAAS, or adapt existing cloud services to their needs (Jupyter et al., 2018, Chen et al., 2019).

2.3 NeuroCAAS is faster and cheaper than local “on-premises” processing

NeuroCAAS offers a number of major advantages over local processing, in terms of ease of use, reproducibility,
and scalability whether we consider local infrastructure to be a personal workstation or a locally available cluster.
However, since NeuroCAAS is based on a cloud computing architecture, one might worry that data transfer
times (i.e., uploading and downloading data to and from the cloud) could potentially lead to slower overall results
compared to various forms of local processing. Second, one might worry that cloud computing might be more
expensive than local processing.

Figure 3 qualitatively illustrates the accumulating inefficiencies of time and cost in every IaGS pipeline. IaGS
begins with a number of time-consuming steps from the user, including hardware acquisition, hardware setup,
and software installation and maintenance (Figure 3A). Another manual user event must then follow, namely the
uploading and analysis of a new dataset. While parallel processing is possible, in many cases datasets are run
serially. The user sometimes acts as job monitor, waiting for an analysis to complete before (after some delay)
starting another analysis. What results from IaGS is gross inefficiency of time and resources. Consider as an
alternative IaC-based analyses as delivered by NeuroCAAS: once data is uploaded, parallel infrastructure is
instantly created, data is analyzed, and results are served, without any steps required from the user, and without
any artificial IaGS delays (Figure 3A, top). Indeed, this gap between IaGS and IaC is mirrored from a cost
perspective as well (Figure 3B).

Figure 4 considers this same question quantitatively, comparing NeuroCAAS to processing on local infras-
tructure resources, priced as a personal workstation (see Methods). For the analogous comparisons pricing these
resources as a local cluster, see Figure 9. To be (extremely) conservative, we assume local infrastructure is set up
already, neglecting all of the time associated with installing and maintaining software and hardware. We use a total
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Figure 4: Quantitative comparison of NeuroCAAS versus local processing for three different analysis
pipelines. A. Simple quantifications of NeuroCAAS performance. Left graphs compare total processing time on
NeuroCAAS vs. local infrastructure (orange). NeuroCAAS processing time is broken into two parts: Upload
(yellow) and Compute (green). Repeated analyses of data already in NeuroCAAS need only consider Compute
times (see main text for details). Right graphs quantify cost of analyzing data on NeuroCAAS with two different
pricing schemes: Standard (dark blue) or Save (light blue), offering the same analyses at a reduced price if the
approximate duration of an analysis job is known beforehand. B. Cost comparison with local infrastructure. Local
Cost Crossover gives the minimum per-week data analysis rate required to justify the cost of a local infrastructure
compared to NeuroCAAS. We consider local pricing against both Standard and Save prices, and with Realistic
(2 year) and Optimistic (4 year) lifecycle times for local hardware. C. Achieving Crossover Analysis Rates. Local
Utilization Crossover gives the minimum utilization required to achieve crossover rates shown in B. Dashed vertical
line indicates maximum feasible utilization rate at 100%.

cost of ownership (TCO) metric (Morey and Nambiar, 2009) that includes the purchase cost of local hardware, plus
reasonable maintenance costs; see Methods for full details. Figure 4 presents time and cost benchmark results on
four modern data analysis algorithms hosted on NeuroCAAS: CaImAn, a toolbox for analysis of calcium imaging
data (Giovannucci et al., 2019); DeepLabCut (DLC), a method for markerless tracking of pose from behavioral
video data (Mathis et al., 2018); Penalized Matrix Decomposition (PMD), a method for denoising and compressing
functional imaging data (Buchanan et al., 2018); and Localized Non-negative Matrix Factorization (LocaNMF),
a method for demixing widefield calcium imaging data (Saxena et al., 2020). Each analysis presented in Figure
4 highlights a different strength of NeuroCAAS compared to local infrastructure (see Methods for implementa-
tion details). Our implementation of CaImAn shows that NeuroCAAS is more efficient than a standard local
workstation even without parallelizing data into batches by using state-of-the-art virtualized computing resources.
Our implementation of DeepLabCut highlights the scalability benefits of our approach, simultaneously deploying
15 separate GPU-equipped immutable analysis environments to efficiently analyze a batch of data in parallel.
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Finally, we used NeuroCAAS to compose PMD and LocaNMF into a single analysis, passing the data sequen-
tially through two separate, independently optimized immutable analysis environments. The resulting analysis
shows that multiple analysis pipelines hosted on NeuroCAAS can be chained together without compromising
infrastructure towards one or the other, and maintaining efficiency in both cost and time.

Across all algorithms and datasets considered in Figure 4, we found that analyses run on NeuroCAAS were
significantly faster than those run on the selected local infrastructure, even accounting for the time taken to stage
data to the cloud (Figure 4A, left panes). For DLC and PMD+LocaNMF, the NeuroCAAS compute time was
effectively constant across increasing total dataset size, as data was evenly batched into subsets of approximately
equal size and each batch was analyzed in its own independent instance; this is a concrete example of the scalability
benefits discussed in section 2.1.3. Furthermore, note that NeuroCAAS upload time can be ignored if analyzing
data that has already been staged for processing — for example if there is a need to re-process data with an
updated algorithm or parameter setting — leading to potential speedups. Finally, in the future processing can be
made even more efficient by scheduling the construction of immutable analysis environments ahead of data upload,
saving a precious few minutes for the cases of small datasets and time-sensitive analysis paradigms.

Next we turn to cost analyses. Over the range of algorithms and datasets analyzed here, we found that the
overall NeuroCAAS analysis cost was on the order of a few US dollars per dataset (Figure 4A, right panels).
In addition to our baseline implementation , we also offer an option to run analyses at a significantly lower price
(indicated as “Std” and “Save” respectively in the cost barplots in Figure 4), if the user knows ahead of time how
long their job is expected to take (i.e. from previous runs of similar data).

We also provided a cost metric that faciliates direct comparison to the cost of an on-premise hardware imple-
mentation in each panel of Figure 4B. The Local Cost Crossover is a fair metric to compare NeuroCAAS cost to
the TCO of an analogous local infrastructure. Assuming reasonable lifetimes for local hardware, the Local Cost
Crossover provides the threshold rate at which a user would have to analyze data in order to merit purchase of a
local machine instead of using NeuroCAAS (e.g., in order for a local machine to be cost effective for CaImAn,
one must analyze ∼100 datasets of 8.39 GB per week, every week for several years according to the top two bars
of Figure 4B, left).

The threshold rates given in Figure 4B do not consider the time taken to process datasets on local infrastructure.
To integrate the time and cost of analyzing data locally, we introduce the Local Utilization Crossover: this
measures the utilization (proportion of all possible compute time devoted to a given data analysis) required to
achieve the rates depicted in Figure 4B. It assumes the analysis times that are given in Figure 4A to calculate
these utilization percentages (see Methods for details). In practice, maximum attainable utilization is bounded
well below 100% by the constraints of the user’s time, or the needs of other users on shared cluster resources (see
Figure 9). These calculations demonstrate that even without considering all of the IaGS issues that our solution
avoids, it is difficult to use local infrastructure more efficiently than NeuroCAAS. For users who would like to
benchmark their own infrastructure against NeuroCAAS, we provide a tool to do so (see the instructions at
https://github.com/cunningham-lab/neurocaas).

2.4 NeuroCAAS is offered as a free service for many users

From Figure 4 we conclude that running analyses on NeuroCAAS is fairly inexpensive: on the order of a few
US dollars per dataset for the analysis pipelines considered here. Given this low per-dataset cost, and the major
advantages summarized above of NeuroCAAS compared to the current status quo of local processing, we have
decided to subsidize the use of NeuroCAAS, as a service to the community. Users do not need to set up any
billing information or worry about incurring any costs when trying out NeuroCAAS; in the interest of protecting
NeuroCAAS as a non-commercial open-source effort, we cover all costs up to a per-user cap. This removes one
final friction point that might slow adoption of NeuroCAAS. Since NeuroCAAS is relatively inexpensive, many
users will not hit the cap; thus, for these users, NeuroCAAS is offered as a free service.

10

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 12, 2020. ; https://doi.org/10.1101/2020.06.11.146746doi: bioRxiv preprint 

https://github.com/cunningham-lab/neurocaas
https://doi.org/10.1101/2020.06.11.146746
http://creativecommons.org/licenses/by-nc/4.0/


3 Discussion

NeuroCAAS integrates scientifically rigorous infrastructure practices via IaC into neuroscience data analysis. By
drastically reducing the technical barriers to usage, NeuroCAAS promotes a new standard of replicable, efficient,
cutting-edge data analysis for the neuroscience community that smoothly integrates with current development and
use practices. Further, NeuroCAAS introduces robust automation methods via our job manager to reliably handle
the increasingly large and complex data that have become characteristic of modern approaches to neuroscience,
and seamlessly parallelizes analyses over multiple datasets. Finally, we have shown that the scientific virtues
of NeuroCAAS are accompanied by increases in efficiency, reducing both the time and cost required to run
neuroscience data analyses.

The fundamental choice made by NeuroCAAS is to provide infrastructure as a service, such that neither
analysis users nor analysis developers have to introduce a new library or framework into their coding practices;
rather, NeuroCAAS removes the infrastructure burden entirely. Such a choice is a tradeoff worth making explicit.
First, a service provides the user an interface to use the analysis method exactly as intended by the developer,
without possibility for the introduction of additional errors in the pipeline, and without setup inefficiencies on
the user side. For the developer, NeuroCAAS provides a user-independent approach to analysis configuration
that alleviates the burden of maintaining an open source project across diverse computing environments, and
simultaneously provides developers freedom to design infrastructure to be as powerful or complicated as is optimal
without being constrained by accessibility concerns. These benefits to analysis users and developers will collectively
tighten the feedback loop between experimental and computational neuroscientists.

This commitment to a service architecture also has one notable consequence: if an analysis method is difficult
to use – for example if data needs to be preprocessed, or reconfigured in some non-obvious way for proper use –
NeuroCAAS does not intervene, and simply passes this analysis onto the user. Explicitly, NeuroCAAS is an
infrastructure service, not a workflow management system. Many excellent works have and continue to develop
such tooling (Perkel, 2019), breaking down complicated data analysis workflows into reusable, organized, well
documented parts. NeuroCAAS does not seek to improve the use of analysis directly as these systems do; it
seeks only to remove the burden of the infrastructure upon which that analysis sits. Workflow management systems
have been specifically designed for neuroscience (Gorgolewski et al., 2011, Yatsenko et al., 2015) as well as more
general tools and frameworks (Köster and Rahmann, 2012, Stojanovic, 2016). These tools can be integrated with
NeuroCAAS to control workflow in our immutable analysis environments, or replace our current data storage
implementation, as well as developing pipelines that easily chain together multiple individual analyses hosted
on NeuroCAAS. Integrating workflow management tools more thoroughly with NeuroCAAS is an important
future direction to extend the benefits of NeuroCAAS across the entire data lifecycle.

Many different related analysis platforms have gained prominence in our community and others, including
models that focus on a set of streamlined core methods (Carpenter et al., 2006, Sommer et al., 2011), as well as
those that consolidate a broad selection of community-contributed packages/plugins (De Chaumont et al., 2012,
Schindelin et al., 2012, Amezquita et al., 2019). In contrast to these platforms that are installed on a researcher’s
hardware, NeuroCAAS is totally independent of local infrastructure resources to emphasize standardized, reliable
performance for cutting-edge data analyses across a variety of experimental media and analysis methods. Other
tools have brought large-scale distributed computing to neuroscience (Freeman, 2015, Rocklin, 2015). It is entirely
feasible to extend analyses on NeuroCAAS with more sophisticated methods of parallelization as offered by these
tools on a per-analysis basis, as an immutable analysis environment contains all of the infrastructure available in
typical computing environments, spanning infrastructure ranging from workstation to compute cluster. Lastly,
other tools offer reproducible analyses to researchers as a service (Monajemi et al., 2016, Šimko et al., 2019,
Brinckman et al., 2019, https://flywheel.io). NeuroCAAS is again complementary to these methods and
services because it is designed explicitly for a heterogeneous community of neuroscientists, giving developers
access to all the resources required to create powerful, general-purpose analyses, while simultaneously removing
all major barriers of entry to these analyses for a diverse population of users.

By virtue of its open source code and public cloud construction, NeuroCAAS will naturally continue to evolve.
First, we and community developers will add more analysis algorithms to NeuroCAAS, with an emphasis on
subfields of computational analysis that we do not yet support (e.g. Pachitariu et al. (2016) and Lee et al. (2017)
for spike sorting) and also add more support for real-time processing (e.g., Giovannucci et al. (2017) for calcium
imaging, or Schweihoff et al. (2019) for closed-loop experiments, or Lopes et al. (2015) for the coordination of
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multiple data streams). Second, many existing methods can be upgraded given the NeuroCAAS service: for
example, on NeuroCAAS we or a developer can trivially take advantage of many more cores or GPUs than
are typically available locally on a university compute cluster, and this will likely lead developers to different
algorithmic choices and tradeoffs. Third, to facilitate more interactive workflows, we plan further integration with
database systems such as Datajoint (Yatsenko et al., 2015) to enable more routine hierarchical multi-step analyses
of large-scale datasets.

Finally, and perhaps most importantly, another opportunity for future work is the integration of Neuro-
CAAS with modern visualization tools. We have emphasized above that NeuroCAAS ’s immutable analysis
environments are designed with the ideal of fully automated data analyses in mind, because of the virtues that
automation brings to data analyses. However, we recognize that for some of the algorithms on NeuroCAAS,
and indeed most of those popular in the field, some user interaction is required to optimize results. Nothing
fundamentally excludes user interaction (UI) design from NeuroCAAS, so we will establish a configuration path
by which analysis developers can also serve a UI to the user in an interactive mode, without sacrificing the benefits
of cost efficiency, scalability, and reproducibility that distinguish NeuroCAAS in its current form.

Longer term, we hope to build a sustainable and open-source user and developer community around Neuro-
CAAS. We welcome suggestions for improvements from users, and new analyses as well as ideas for extensions
from interested developers, with the goal of creating a sustainable community-driven resource that will enable new
large-scale neural data science in the decade to come.
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Šimko, T., L. Heinrich, H. Hirvonsalo, D. Kousidis, and D. Rodŕıguez
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9 Methods

9.1 NeuroCAAS architecture specifics

The NeuroCAAS platform is comprised of two complementary components: the infrastructure resources that
run data analyses (i.e., handle data, launch the immutable analysis environment, and manage the analysis jobs)
and the code schematic that defines these infrastructure resources. Together these two components (Figure 5)
constitute our Infrastructure-as-Code (IaC) architecture.

The code schematic (Figure 5, top) contains a comprehensive and programmatic design specification for all
resources used in NeuroCAAS. It includes template code for NeuroCAAS blueprints, analogous templates for
user profiles, and protocols determining the behavior of NeuroCAAS’s per-analysis job managers. First, for
each NeuroCAAS analysis, its corresponding blueprint contains the details necessary to fully describe analysis
configuration and usage via an immutable analysis environment (§9.2, 9.3). An example of the NeuroCAAS
blueprint template is included in the supplementary text; all other components of the NeuroCAAS code schematic
are available at https://github.com/cunningham-lab/neurocaas). Second, for each NeuroCAAS user, their
user profile contains user-specific data storage and security information, as described in section (§10.1). The front
end neurocaas.org automates the process of filling in user profile templates from a web interface.

Finally, to transmit data between analysis based and user based resources, we rely on autonomous, event-
triggered job managers. Within the code schematic, protocols dictate the duties and behavior of job managers,
such as parsing user input, monitoring active analyses for errors and sending key outputs back to the user as well
as various resources. Protocols were configured and packaged with each NeuroCAAS blueprint according to the
particular needs that each analysis imposed on the job manager.

To materialize this code schematic into NeuroCAAS’s infrastructure resources, NeuroCAAS contains tools
that read the code schematic and provision the virtualized resources declared within. The code schematic also
provides directions to automatically configure and link these resources into a fully functioning platform without
further manual setup. We call the conversion of the code schematic into infrastructure resources deployment
(Figure 5, middle). There is a one-to-one correspondence between NeuroCAAS’s code schematic and infras-
tructure components: deploying the code schematic provides total coverage of all of the functioning resources
that together constitute NeuroCAAS (Figure 5, bottom). For our public cloud implementation, we used a
variety of AWS cloud resources as building blocks for deployed infrastructure, as described in the following
sections. We designed deployment to be modular, so that individual blueprints and user profiles could be de-
ployed to extend the existing NeuroCAAS platform. Notably, our deployment tools interfaced with the AWS
Serverless Application Model (an AWS-native IaC management resource), and the python library troposphere
https://troposphere.readthedocs.io/en/latest/ (a set of utilities that make our code schematic more legi-
ble and easier to organize).

9.2 Building immutable analysis environments

For each immutable analysis environment, the blueprint specifies hardware as a single virtualized instance; i.e.,
a bundled collection of virtual cpus, memory, and gpus. Some virtualized instances have capacity analogous to
personal hardware, while others provide resources comparable to high performance cluster compute nodes (see
Table 1 for details). We chose instances for each of our analyses from the list of available Amazon EC2 instance
types; these are updated periodically as newer, faster hardware becomes available. Data storage was provisioned
on these instances (again, via the blueprint) with virtualized hard disks large enough to accommodate the datasets
analyzed as performance benchmarks (see Table §4). Additional storage can be mounted on-demand to immutable
analysis environments, increasing storage capacity as required by particularly large datasets. We specified storage
as Amazon EBS volumes. All of our analysis environments ran on virtualized Linux operating systems (EC2 base
AMIs).

To bring the actual analyses into NeuroCAAS, we followed developer instructions and/or collaborated with
the analysis developers. Custom per-analysis scripts handle user inputs (data and parameters) and pass these
inputs to the native analysis interface (the code from the developers) over the course of an active analysis’s
progress; see supplementary material for an example script. Scripts were saved as executables in the analysis
environment.
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Figure 5: NeuroCAAS design diagram. NeuroCAAS is built with an Infrastructure-as-Code design, mean-
ing that we first write a code schematic (top) specifying all of the actual resources we will use to carry out data
processing (bottom). Section numbers refer to relevant parts of the main text. The code schematic (top) contains
three main types of code: User Profiles, specifying relevant user data; Analysis Blueprints, describing individual
analyses on NeuroCAAS, and Protocols, giving rules that describe NeuroCAAS job manager function. Each
user and each analysis in NeuroCAAS has a dedicated code document, as specified by indices (u, b). All parts
of the code schematic can independently be deployed, automatically provisioning and configuring the infrastruc-
ture resources specified therein. Deployment comprehensively generates the resources necessary to run analyses
on NeuroCAAS. Notably, Immutable Analysis Environments (bottom right) are not persistent, but rather are
instantiated every time users request an analysis job, specified as a combination of datasets and parameter con-
figurations (bottom left). Job managers deploy one Immutable Analysis Environment for each requested job, as
specified by the index j.

To ensure immutability, we defined the job manager to be the only entity capable of starting scripts in an
immutable analysis environment in the code schematic and closed analysis environments off from standard network
access protocols such as ssh. To allow data upload to the analysis environment without the interactive access
provided by standard network protocols, we wrote an additional toolbox that facilitates data transfer between the
immutable analysis environment and the user. This toolbox communicates with the job manager and is critical to
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deliver status updates mid-analysis to the user. The toolbox consists of a set of shell functions that are analysis-
agnostic and shared between all of the analyses currently implemented on NeuroCAAS. It can be found here
(https://github.com/cunningham-lab/neurocaas_remote), along with a set of example use cases that should
be sufficient to implement data transfer (input and output) for most analyses relevant to NeuroCAAS (template
in supplement).

Once configured, we saved the state of the analysis environment’s operating system, storage, installed applica-
tions, and toolbox in a single machine image (Figure 5, bottom right), capturing infrastructure details that would
otherwise be difficult to document in a code schematic. Once saved, machine images can be easily redeployed
with different hardware on other instances, providing immutable analysis environments with portability similar to
that provided by Docker images. Together with the instance type and network configuration, the machine image
provides a complete account of the state of a configured immutable analysis environment.

For developers, detailed instructions for hosting analyses on NeuroCAAS can be found at neurocaas.org.

9.3 Deploying analyses from blueprints

NeuroCAAS blueprints are custom built JSON objects that can describe any analysis deployed on Neuro-
CAAS. In addition to the machine image,each blueprint contains the instance type and network configuration
of the immutable analysis environment. Each blueprint also includes a list of the users approved to use to the
corresponding analysis. Storing user access details in the blueprint allows NeuroCAAS to monitor the resource
usage of each user, distribute users to minimize wait time, and easily make newly developed analyses available to
users. For an example blueprint and more on user management see supplementary methods.

Additionally, each blueprint is paired with a protocol that configures a dedicated job manager for a particular
analysis (Figure 5, top right). Protocols describe the input format that the job manager should expect for a given
analysis, the analysis diagnostics that should be routed to the user during analysis, and the specific strategy used
to scale processing over many datasets. Protocols are written in python, and job managers were implemented on
AWS Lambda.

Deployment of each blueprint illustrates a critical feature of NeuroCAAS’s design. Deploying a single
blueprint creates a dedicated job manager for the corresponding analysis, but does not directly create a cor-
responding immutable analysis environment. Instead, through protocols the job manager is given the ability to
autonomously deploy and dissolve any number of immutable analysis environments in response to requests from
approved users (Figure 5, red). For each analysis request submitted by a user, an entirely new immutable analysis
environment is instantiated on-demand, and subsequently destroyed at the end of processing.

NeuroCAAS job managers also have the ability to deploy multiple immutable analysis environments in
response to batched inputs from a single user. When provided with multiple different datasets all to be analyzed
with the same parameters, job managers for the analyses that we host deploy one immutable analysis environment
for each, providing easy parallelization.

We collected all of the NeuroCAAS blueprints into a version controlled repository, and stipulated that all
NeuroCAAS analyses can be updated only by directly editing blueprints (see supplementary methods). By
enforcing a tight correspondence between blueprints and analyses, we ensured the reproducibility of all analyses
conducted via NeuroCAAS, regardless of ongoing updates to the underlying infrastructure or algorithm (Figure
5). For details on reproducing previously run analyses, see supplements and neurocaas.org.

9.4 Benchmarking algorithms on NeuroCAAS

For each analysis currently on NeuroCAAS, the specific infrastructure choices in the corresponding blueprint
(Figure 5, right) are given in Table 1. To meaningfully benchmark NeuroCAAS against current standards, we
built corresponding local infrastructure to simulate resources that might be available to a typical user. Local
infrastructure was also built on AWS, and spans resources comparable to personal hardware and cluster compute,
depending on the use case (see Table 2). As a general guideline, we chose local infrastructure representatives that
would reasonably be available to a typical researcher, unless the datasets we considered required more powerful
resources. To account for the diversity of resources available to neuroscience users, we offer alternative quantifica-
tions to those presented in Figure 4 in the supplementary methods (see Figure 9), and make calculations available
to users who would like to compare to their own infrastructure through a custom tool on our project repository
(see README): https://github.com/cunningham-lab/neurocaas.
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NeuroCAAS Available Analyses

Analysis
Name

Storage Memory GPU CPU
count

OS Job
Monitor

Resource
Usage

Version
Control

Packages

CaImAn 500 GB
SSD

275 GB N/A 64
vCPU1

Ubuntu
16.04
(Linux
HVM)

stdout CPU
Utiliza-
tion

Github pip
require-
ments
file

DeepLabCut 200 GB
SSD

65 GB Nvidia
Tesla
K80

4
vCPU2

Ubuntu
16.04
(Linux
HVM)

stdout CPU
Utiliza-
tion

Github conda
environ-
ment
file

PMD 75 GB
SSD

275 GB N/A 64
vCPU1

Ubuntu
18.04
(Linux
HVM)

stdout CPU
Utiliza-
tion

Github Conda
Package

LocaNMF 75 GB
SSD

65 GB Nvidia
Tesla
V100

8
vCPU3

Ubuntu
16.04
(Linux
HVM)

stdout CPU
Utiliza-
tion

Github Conda
Package

1 Intel Xeon Platinum 8000 series (Skylake-SP): https://aws.amazon.com/ec2/instance-types/m5/
2 Intel Broadwell (AWS): https://aws.amazon.com/blogs/aws/new-p2-instance-type-for-amazon-ec2-up-to-

16-gpus/
3 Intel Xeon E5-2686v4: https://aws.amazon.com/blogs/aws/new-amazon-ec2-instances-with-up-to-8-

nvidia-tesla-v100-gpus-p3/
Table 1: Infrastructure details for implemented algorithms. Job Monitor refers to the mechanisms used to track
the status of ongoing jobs. Resource Usage refers to the hardware diagnostics tracked by NeuroCAAS. Version
Control refers to the version control mechanisms used to maintain fidelity of core analysis code. Packages refers
to the mechanisms used to handle analysis dependencies.

For each analysis that we benchmarked on NeuroCAAS, we chose three datasets of increasing size as rep-
resentative use cases of the algorithms in question. The size differences of these datasets reflect the diversity of
potential use cases among different users of the same algorithm. The CaImAn benchmarking data consists of
datasets N.02.00, J 123, J 115 from the data shared with the CaImAn paper (Giovannucci et al., 2019). Bench-
mark analysis is based on a script provided to regenerate Figure 4 of the CaImAn paper. Note that although this
data could be batched, we choose to maintain all three datasets as contiguous wholes. DeepLabCut benchmarking
data consists of behavioral video capturing social interactions between two mice in their home cage. Data is pro-
vided courtesy of Robert C. Froemke and Ioana Carcea, as analyzed and presented in Carcea et al. (2019). Data
processing consisted of analyzing these videos with a model that had previously been trained on other images from
the same dataset. The same dataset was used to benchmark PMD and LocaNMF as a single analysis pipeline
with two discrete parts. Input data consist of the dataset (“mSM30”), comprising widefield calcium imaging data
videos, provided courtesy of Simon Musall and Anne Churchland, as used in Musall et al. (2019) and Saxena et al.
(2020). The full dataset is available in a denoised format at http://repository.cshl.edu/id/eprint/38599/.
Data processing on NeuroCAAS consisted of first processing the raw videos with PMD, then passing the resulting
output to LocaNMF. Further details on the datasets used can be found in Table 4.

We split the time taken to run analyses on NeuroCAAS into two separate quantities. First, we quantified the
time taken to upload data from local machines to NeuroCAAS, denoted as NeuroCAAS (Upload) in Figure
4. This time depends upon the specifics of the internet connection that is being used. It is also a one time
cost: once data is uploaded to NeuroCAAS, it can be reanalyzed many times without incurring this cost again.
Upload times were measured from the same NeuroCAAS interface made available to the user. (This upload time
was skipped in the quantification of local processing time.) Second, we automatically quantified the total time
elapsed between job submission and job termination, when results have been delivered back to the end user in the
NeuroCAAS interface (denoted as NeuroCAAS (Compute) in Figure 4) via AWS native tools (see supplement
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NeuroCAAS Local Simulation

Analysis
Name

Storage Memory GPU CPU
count

OS Job
Monitor

Resource
Usage

Version
Control

Packages

CaImAn 500 GB
SSD

17 GB N/A 4
vCPU1

Ubuntu
16.04
(Linux
HVM)

stdout None github Pip
require-
ments
file

DeepLabCut 200 GB
SSD

65 GB Nvidia
Tesla
K80

4
vCPU2

Ubuntu
16.04
(Linux
HVM)

stdout None github Conda
Package

PMD 75 GB
SSD

131 GB N/A 16
vCPU3

Ubuntu
18.04
(Linux
HVM)

stdout None Github Conda
Package

LocaNMF 75 GB
SSD

65 GB Nvidia
Tesla
K80

4
vCPU2

Ubuntu
16.04
(Linux
HVM)

stdout None github Conda
Package

1 AMD EPYC 7000 Series: https://aws.amazon.com/ec2/instance-types/m5/
2 Intel Broadwell (AWS): https://aws.amazon.com/blogs/aws/new-p2-instance-type-for-amazon-ec2-up-to-

16-gpus/
3 Intel Xeon E5 Broadwell Processors: https://aws.amazon.com/blogs/aws/new-next-generation-r4-

memory-optimized-ec2-instances/
Table 2: Details of infrastructure used to simulate local processing. The column labels mirror those in Table 1

.

Pricing List

Resource Metrics Rate

EC2 (Compute) Time Hardware Depen-
dent, Fluctuates

Lambda
(Workflow)1

Data Size × Time $1.66667 × 1e−5
per GB-second

S3 (Data Transfer
Out)2

Data Size $0.09 per GB

1 AWS Lambda is also priced for number of requests, but
this is a negligible cost for a single analysis run.

2 Data Transfer is only priced out of Amazon Web Services,
i.e. in returning results to the end user.
Table 3: Pricing details for implemented algorithms

for details). Local timings were measured on automated portions of workflow in the same manner as NeuroCAAS
(Compute).

We quantified the cost of running analysis on NeuroCAAS by enumerating costs of each of the AWS resources
used in the course of a single analysis. Costs can be found in Table 3. We provide the raw quantification data and
corresponding prices in Table 3. To further reduce costs, we also offer the option to utilize AWS Spot Instances
(dedicated duration); these are functionally identical to standard compute instances, but are provisioned for
a pre-determined amount of time with the benefit of significantly reduced prices. We provide the estimated
cost of running analyses with both of these options in Figure 4, with quantifications labeled “NeuroCAAS
Save” corresponding to analyses run with dedicated duration spot instances, and those labeled “NeuroCAAS
Std” corresponding to those run with standard instances. For more on Spot Instance price quantification, see
supplementary methods.
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Dataset Details

Analysis Format Size (Small) Dim (Small) Size
(Medium)

Dim
(Medium)

Size (Large) Dim (Large)

CaImAn zipped
tiff

8.39GB 8000×512×
5121

35.84GB 41000 ×
458× 4771

78.70GB 90000 ×
463× 4722

DeepLabCut mpeg 5× 214.8MB 5 × 36000 ×
340× 4203

10×214.8MB 10×36000×
340× 4203

15×214.8MB 15×36000×
340× 4203

PMD +
LocaNMF

numpy
array

1× 20.1GB [500× 600×
1697, 1697 ×
8979]4

3× 20.1GB [500× 600×
1697, 1697 ×
8979];
[500× 600×
1652, 1652 ×
9000];
[500× 600×
2298, 2298 ×
8988]4

5× 20.1GB [500× 600×
1697, 1697 ×
8979];
[500× 600×
1652, 1652 ×
9000];
[500× 600×
2298, 2298 ×
8988];
[500× 600×
2304, 2304 ×
8992];
[500× 600×
1910, 1910×
8952]4

1 [Time × X × Y] at 7 hz Giovannucci et al. (2019)
2 [Time × X × Y] at 30 hz Giovannucci et al. (2019)
3 [Batch × Time × X × Y ] at 30 hz
4 [X × Y × Rank, Rank × Time] at 30 Hz

Table 4: Details of the datasets used to benchmark performance. Sizes given for the three datasets tested for
each pipeline shown. Dataset dimensionality labels are included in footnotes provided.

We hosted local infrastructures on AWS, but calculated local costs for them by pricing analogous computing
resources as available through a personal workstation, or a local cluster (Table 7). In Figure 4, we assume that the
local infrastructures considered are hosted on typical local laptop or desktop computing resources, supplemented
with the resources necessary to run analyses as they were done on NeuroCAAS (additional storage, memory, GPU,
etc), while maintaining approximate parity in processor power. We referred to (Morey and Nambiar, 2009) to
convert pricetag costs of local machines to Equivalent Annual Costs, i.e. the effective cost per year if we assume
our local machines will remain in service for a given number of years, as our implementation of a TCO calculation
(as is often done in industry). Given a price tag cost xlocal, an assumed lifetime n, an annuity rate r, and cs(n)
defined as the estimated annual cost of local machine support given a lifetime n, we follow Mahvi and Zarfaty
(2009), Morey and Nambiar (2009) in calculating the Equivalent Annual Cost as:

EAC(xlocal, n, r) =
xlocal

1−(1+r)−n

r

+ cs(n).

Here cs(n) is provided in the cited paper (Morey and Nambiar, 2009), estimated from representative data across
many different industries. The denominator of the first term is an annuity factor. We consider two different values
for n, which we label as “realistic” (2 years) and “optimistic” (4 years) in the text. In industry, 3-4 years is the
generally accepted optimal lifespan for computers, after which support costs outweigh the value of maintaining an
old machine (“Pilot Study”, 2004, Mahvi and Zarfaty, 2009, Morey and Nambiar, 2009). Some have argued that
with more modern hardware, the optimal refresh cycle has shortened to 2 years (J.Gold Associates LLC, 2014).
By providing quantifications assuming two and four year refresh cycle, we consider the short and long end of this
generally discussed optimal range.

Given a per-dataset NeuroCAAS cost xNeuroCAAS, we further derive the Local Cost Crossover (LCC), the
threshold weekly data analysis rate at which it becomes cost-effective to buy a local machine. The LCC is given
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Calcium Imaging
Algorithm Name Publication Version

Control
Packages Operating

System
Job
Monitor

Resource
Usage

Storage Memory GPU CPU

CaImAn Giovannucci et al.
2017

X X X X X X

CNMF-E Zhou et al. 2018 X X X X X X

Suite2p Pachitariu et al.
2017

X X X X X X

ABLE Reynolds et al.
2017

X X X X X X

SCALPEL Petersen et al.
2018

X X X X X X X X

Min1PIPE Lu et al. 2018 X X X X X X

SamuROI Rueckl et al. 2017 X X X X X X X

Romano Romano et al.
2017

X X X X X X

FISSA Keemink et al.
2018

X X X X X X

OASIS Friedrich et al.
2017

X X X X X X

Percentage Supporting 90% 80% 0% 100% 0% 0% 0% 0% 0%

Table 5: Infrastructure support for Calcium Imaging Algorithms. Labels mirror those in Table 1.

by:

LCC(xlocal, n, r, xNeuroCAAS) =
EAC(xlocal, n, r)

52× xNeuroCAAS
.

Furthermore, given the per-dataset local analysis time, we can estimate the corresponding Local Utilization
Crossover (LUC). The LUC considers the LCC in the context of the maximal achievable data analysis rate on
local infrastructure as calculated in the previous section. If the time taken to analyze a dataset on a local machine
is given by tlocal (in seconds), The LUC is given by:

LUC(tlocal, xlocal, n, r, xNeuroCAAS) =
LCC(xlocal, n, r, xNeuroCAAS)× tlocal × 100

604800
.

9.5 Survey

We characterized data analysis infrastructure as consisting of three hierarchical parts (Dependencies, System,
Hardware), segmented consistently with infrastructure descriptions referenced elsewhere (Demchenko et al., 2013,
Zhou et al., 2016). In several different subfields of neuroscience, we then selected 10 recent or prominent analysis
techniques, and asked how they fulfilled each component of data analysis infrastructure. We denoted a particular
infrastructure component as supported if it is referenced in the relevant installation and usage guides as being
provided in a reliable, automated manner (e.g., automatic package installation via pip). Survey details are provided
in tables 5, 6. We addressed the question of how data analyses are installed and used with these surveys in the
tradition of the open source usability literature. Surveys such as these are standard methodology in this field,
which relies upon empirical data from studies of user’s usage habits (Nichols et al., 2001, Zhao and Deek, 2005),
developer sentiment (Terry et al., 2010), and observation of user-developer interactions via platforms like github
(Cheng and Guo, 2018).
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Behavioral Quantification.
Algorithm Name Publication Version

Control
Packages Operating

System
Job
Monitor

Resource
Usage

Storage Memory GPU CPU

DeepLabCut Mathis et al.
2018

X X X X X

DeepFly3D Günel et al. 2019 X X X X X X

JAABA Kabra et al. 2012 X X X X X X

Ctrax Branson et al.
2009

X X X X X X

DeepPoseKit Graving et al.
2019

X X X X X X X

Ethovision —- X X X X X X

APT —- X X X X X

bonsai Lopes et al. 2015 X X X X X X X

Miceprofiler de Chaumont et
al. 2012

X X X X X X

LEAP Pereira et al.
2018

X X X X X X

Percentage Supporting 90% 90% 20% 100% 0% 0% 0% 0% 0%

Table 6: Infrastructure support for Behavioral Quantification Algorithms. Labels mirror those in Table 1.

Cost (Local)

Algorithm Name vCPU
count

GPU Memory Storage
Capacity

Workstation
Price, US Dollars
(Estimated Price
Tag Cost)

Cluster Price,
US Dollars (Es-
timated Price
Tag Cost from
Amazon TCO
Calculator)

CaImAn 4 N/A 16 GiB 500 GB 16182 1499+1000
DeepLabCut 4 Tesla

K80
61GiB 200 GB 31203 1701+400+15555

PMD + Lo-
caNMF 1

16 Tesla
K80

122 GiB 150 GB 54364 10836+300+15555

1 Cost for PMD and LocaNMF refers to hardware cost for a local instance that can account for
processing done on both.

2 https://www.newegg.com/p/1TS-000D-052P6
3 https://www.newegg.com/p/1VK-001E-1SVY3?Item=9SIADB38AG7178&Description=1080%

20ti%20workstation%2064%20gB%204%20core&cm_re=1080_ti_workstation_64_gB_4_core-_-

1VK-001E-1SVY3-_-Product
4 https://www.newegg.com/p/1VK-001E-1A6V1
5 https://www.vgastore.com/2023019/hp-j0g95a-tesla-k80-24gb-384-bit-gddr5-pci-e-3-

0-x16-graphics-card
Table 7: Instance and hardware cost details for local cost comparisons. Estimated Price tag prices as of May
3rd, 2020. Price tag estimation of workstation style hardware was based on market prices chosen to reflect
the infrastructure implementation as given in Table 2, in particular, CPU make. Estimation of cluster style
hardware cost was based on the AWS TCO calculator (https://awstcocalculator.com), as of January 25th,
2020, incorporating the total server hardware cost (undiscounted) and acquisition cost of SAN storage.
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10 Supplementary Materials

10.1 Managing users from user profiles

On NeuroCAAS, users resources were defined in code via JSON documents we call user profiles. New users were
registered by filling in a corresponding user profile, which was then deployed to automatically generate storage
space, dedicated login credentials, and permissions to use analyses for the user. The user profile is similar in format
to the UXData segment of the blueprint as given in Figure 8, and can be found in the NeuroCAAS codebase
online.

We created a secure, virtualized storage location where users could store their data on NeuroCAAS before
and in between analyses. Data storage on NeuroCAAS is shared within a user group (i.e. a lab), but private
from all other parties. In figure 4, NeuroCAAS Upload time refers to the time required to upload data from
local machines to this storage- once uploaded, data can be deleted post analysis or maintained over the course
of several analyses. Maintaining data post analysis cuts out NeuroCAAS Upload time on subsequent upload
events.

User credentials are automatically generated upon new user sign up. Permissions to use analyses are generated
by updating NeuroCAAS blueprints with the information of newly added users, and redeploying the analysis
in question. Upon redeployment, the corresponding job manager begins monitoring this new user for analysis
requests. Importantly, this addition is minimally disruptive to ongoing analyses.

10.2 Managing analyses from blueprints

On NeuroCAAS, all changes to analyses in the course of development were recorded in the corresponding analysis
blueprint. We updated analyses during development by instantiating the analysis’s immutable analysis environ-
ment in “developer mode”, which allowed ssh. After making the appropriate edits, details of the resulting environ-
ment were saved to the corresponding blueprint. The analysis blueprint could then be redeployed, reconfiguring
the job manager to create and destroy the new, updated analysis environment. Likewise, the addition of new users
and adjustments to the job manager’s programming was managed via blueprints. Any divergence of deployed
analyses from blueprints due to manual adjustment was detected via AWS Cloudformation, and corrected by
redeploying blueprints. Importantly, blueprint redeployment first determines the minimal set of changes necessary
to update existing analyses, and implements them in a way that minimizes interruptions to ongoing analyses.

10.3 Automatic compute benchmarking

The duration of NeuroCAAS Compute and Local analysis time was recorded automatically with cloud native
resource monitoring tools. These tools were automatically notified of the creation and destruction of immutable
analysis environments, and recorded the relevant timestamps at millisecond resolution. These monitoring tools
were also managed via NeuroCAAS blueprints, and their design can be found in the same blueprint codebase.
Automatic monitoring was implemented via AWS Lambda, AWS Cloudwatch Events, and AWS S3.

10.4 Spot instance pricing

The virtualized hardware underlying immutable analysis environments can be provisioned at several different
prices. We used Spot Instance pricing to reduce costs, having known beforehands how long the analyses would
take. At the moment, we depict prices based on spot instance availability in September 2019. Empirically, we
observe that spot instance price fluctuations give standard deviations on the order of cents over a period of months
(see code for experiments).

10.5 Analysis reproducibility

Because we designed analysis blueprint to be git versioned, we can reproduce the infrastructure and software
configuration used to generate any analysis, up to the reliability of Amazon AWS. Since we returned identifying
information about the blueprint to the user in a certificate along with configuration parameters, data is the
only portion of an analysis that must be maintained to ensure perfect analysis reproducibility. Although not
implemented here, AWS offers cheap, glacial storage that can be used to preserve data for long amounts of time
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NeuroCAAS AWS Specifics

Analysis
Name

Instance
(NeuroCAAS)

Instance (local) AMI ID

CaImAn m5.16xlarge m5a.xlarge ami-
01dc867df8c05aa5a)

DeepLabCut p2.xlarge p2.xlarge ami-
00b1babeb8637f5c3)

PMD m5.16xlarge r4.4xlarge ami-0007adf33fbcf0c1c)

LocaNMF p3.2xlarge p2.xlarge ami-
04ebe747c2e33038c)

Table 8: Instance and Amazon Machine Image (AMI) details for implemented
algorithms.

under conditions of infrequent access, offering a feasible solution for guaranteed total analysis reproducibility on
NeuroCAAS.

10.6 Alternative local crossovers

Because the instances offered on AWS are not wholly analogous to either personal hardware or cluster resources,
we offer additional comparisons that span the range of prices.

Cluster pricing was calculated with the AWS TCO calculator https://awstcocalculator.com/#. We calcu-
lated the cost of infrastructure as a subset of the TCO provided by AWS. In particular, we calculated xlocal as
the total server hardware cost (undiscounted) and acquisition cost of NAS storage, and the cost of a GPU, with
additional yearly recurring costs cs(n) given by storage administration cost, server hardware maintenance cost,
and IT Labor costs. We then calculated the LCC and LUC from these quantities as described in the Methods.

The results of these quantifications are given in Figure 9.

10.7 AWS details

We provide details on the AWS implementation of analyses used to generate time and cost data in Table 8.
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#!/bin/bash

## Import functions for workflow management.

## Get the path to this function:

execpath="$0"

echo execpath

scriptpath="$(dirname "$execpath")/ncap_utils"

source "$scriptpath/workflow.sh"

## Import functions for data transfer

source "$scriptpath/transfer.sh"

## Set up error logging.

errorlog

## Custom setup for this workflow.

source .dlamirc

export PATH="/home/ubuntu/anaconda3/bin:$PATH"

source activate dlcami

## Declare local storage locations:

userhome="/home/ubuntu"

datastore="ncapdata/localdata/"

outstore="ncapdata/localout/"

## Make local storage locations

accessdir "$userhome/$datastore" "$userhome/$outstore"

## Stereotyped download script for data. The only reason this comes after something custom is because

we depend upon the AWS CLI and installed credentials.

download "$inputpath" "$bucketname" "$datastore"

## Stereotyped download script for config:

download "$configpath" "$bucketname" "$datastore"

###############################################################################################

## parse the config to place model folder, myconfig_analysis, in the right places.

modelpath=$(cat "$userhome/$datastore/$configname" | jq ’.modeldata.modelpath’ | sed ’s/"//g’)

configpath=$(cat "$userhome/$datastore/$configname" | jq ’.modeldata.configpath’ | sed ’s/"//g’)

## place python myconfig_analysis file and modelfolder in the right location.

aws s3 sync "s3://""$bucketname"/"$modelpath" "$userhome/DeepLabCut/pose-tensorflow/models/"$(basename

"$modelpath")""

aws s3 cp "s3://""$bucketname"/"$configpath" "$userhome/DeepLabCut/myconfig_analysis.py"

## Replace the video location in the config folder.

python "ncap_remote/substitute_config.py"

## Run deeplabcut analysis:

cd DeepLabCut/Analysis-tools

python AnalyzeVideos.py

cd "$userhome"/"$datastore"

find -iname "*.h5" -exec cp {} "$userhome"/"$outstore" \;

find -iname "*.pickle" -exec cp {} "$userhome"/"$outstore" \;

## Copy:

cd "$userhome"

###############################################################################################

## Stereotyped upload script for the data

upload "$outstore" "$bucketname" "$groupdir" "$resultdir" "mp4"

Figure 6: DeepLabCut script, written in bash. Referenced variables are provided by template scripts we wrote (see
supplement). Called functions are native to DeepLabCut interface; Most of script (outside of demarked lines) are
agnostic to this algorithm, and can be copied directly to a newly developed algorithm.
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#!/bin/bash

## Bash script that establishes ncap monitoring routines with minimal dependencies on other packages.

## Load in helper functions.

execpath="$0"

echo execpath

scriptpath="$(dirname "$execpath")/ncap_utils"

source "$scriptpath/workflow.sh"

## Import functions for data transfer

source "$scriptpath/transfer.sh"

## Now parse arguments in to relevant variables:

# Bucket Name $bucketname

# Group Directory $groupdir

# Results Directory $resultdir

# Dataset Name $dataname

# Dataset Full Path $datapath

# Configuration Name # configname

# Configuration Path # configpath

set -a

parseargsstd "$1" "$2" "$3" "$4"

set +a

## Example usage:

echo "$bucketname"/"$groupdir"/"$resultdir"/logs/DATASET_NAME:"$dataname"_STATUS.txt""

## Set up Error Status Reporting:

errorlog_init

## Set up STDOUT and STDERR Monitoring:

errorlog_background &

background_pid=$!

echo $background_pid, "is the pid of the background process"

## MAIN SCRIPT GOES HERE #####################

bash /home/ubuntu/ncap_remote/run_caiman.sh

##############################################

errorlog_final

kill "$background_pid"

Figure 7: Analysis agnostic use case implementing dataflow toolbox, written in bash. Declares variables referenced
in Figure 6.
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{

"PipelineName":"ncapexamplepipeline",

"REGION":"region of service for users",

"Lambda":{

"CodeUri":"Codebase for \ncap Compute",

"Handler":"Module for \ncap Compute",

"Launch":"Whether or not to launch new pipelines. ",

"LambdaConfig":{

"AMI":"AMI id of the developer-configured instance",

"INSTANCE_TYPE": "virtualized hardware instance id. ",

"REGION": "us-east-1",

"SECURITY_GROUPS":"network configuration",

"IAM_ROLE":"permissions to launch new immutable analysis environments",

"KEY_NAME":"permissions to access immutable analysis environments",

"WORKING_DIRECTORY":"immutable analysis environment code",

"COMMAND":"code to run to initiate processing",

"SHUTDOWN_BEHAVIOR":"destroy immutable analysis environment after processing terminates",

"CONFIG":"location of additional configuration parameters",

"MISSING_CONFIG_ERROR":"We need a config file to analyze data.",

"EXECUTION_TIMEOUT":"Additional parameters for \ncap Compute",

"SSM_TIMEOUT":"Additional parameters for \ncap Compute",

"LOGDIR":"Parameters for \ncap interface",

"OUTDIR":"Parameters for \ncap interface",

"INDIR":"Parameters for \ncap interface",

"LAUNCH":"Launching new pipelines",

"LOGFILE":"Logging location for diagnostic information",

"DEPLOY_LIMIT":"Maximum number of concurrent instances to deploy",

"MONITOR":"Enable or disable detailed monitoring"

}

},

"UXData":{

"Affiliates":[

{

"AffiliateName":"examplegroup1",

"UserNames":["ian","shreya","taiga"],

"UserInput":true,

"ContactEmail":"The email we should notify regarding processing status."

},

{

"AffiliateName":"examplegroup2",

"UserNames":["liam","john"],

"UserInput":true,

"ContactEmail":"The email we should notify regarding processing status."

}

]

}

}

Figure 8: NeuroCAAS blueprint template declaring all relevant resources. Immutable Analysis Environments
can be defined from Variables in the Lambda.LambdaConfig field, the job manager is defined in Lambda.CodeUri
and Lambda.Handler. Users and permissions are defined in UXData.
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Figure 9: Alternative cost quantification of local infrastructure A) provides Local Cost Crossover Crossover
for these resources priced as cluster compute resources, priced according to Amazon AWS’s TCO calculator. B)
provides the same for Local Utilization.
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