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Summary

Recurrent neural network (RNN) model trained to perform cognitive tasks is a useful computa-

tional tool for understanding how cortical circuits execute complex computations. However, these

models are often composed of units that interact with one another using continuous signals and

overlook parameters intrinsic to spiking neurons. Here, we developed a method to directly train

not only synaptic-related variables but also membrane-related parameters of a spiking RNN model.

Training our model on a wide range of cognitive tasks resulted in diverse yet task-specific synaptic

and membrane parameters. We also show that fast membrane time constants and slow synap-

tic decay dynamics naturally emerge from our model when it is trained on tasks associated with

working memory (WM). Further dissecting the optimized parameters revealed that fast membrane

properties and slow synaptic dynamics are important for encoding stimuli and WM maintenance,

respectively. This approach offers a unique window into how connectivity patterns and intrinsic

neuronal properties contribute to complex dynamics in neural populations.
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Introduction1

Neurons in the cortex form recurrent connections that give rise to the complex dynamic processes2

underlying computational functions [1–4]. Previous studies have used models based on recurrent3

neural networks (RNNs) of continuous-rate units to characterize network dynamics behind neural4

computations and to validate experimental findings [5–10]. However, these models do not explain5

how intrinsic membrane properties could also contribute to the emerging dynamics.6

Rate-based encoding of information has been reliably observed in experimental settings [8].7

However, recent studies demonstrated that membrane potential dynamics along with spike-based8

coding are also capable of reliably transmitting information [11–13]. In addition, the intrinsic9

membrane properties of inhibitory neurons, including the membrane time constant and rheobase10

(minimum current required to evoke a single action potential), were different in two higher-order11

cortical areas [14]. These findings strongly indicate that neuronal intrinsic properties, often ignored12

in previous computational studies employing rate-based RNNs, are crucial for better understanding13

how distinct subtypes of neurons contribute to information processing.14

Rate-based RNNs can be easily trained by stochastic gradient-descent to perform specified cog-15

nitive tasks [15]. However, similar supervised learning methods cannot be used to train spiking16

RNNs due to the non-differentiable behavior of action potentials [16]. Thus, several methods intro-17

duced differentiable approximations of the non-differentiable spiking dynamics [17–20]. These stud-18

ies directly applied backpropagation to tune synaptic connections for task-specific computations.19

Other methods that do not rely on gradient computations have been also utilized to train spiking20

networks. One such method is based on the first-order reduced and controlled error (FORCE)21

algorithm previously developed for rate RNNs [6]. The FORCE-based methods are capable of22

training spiking networks, but training all the parameters including recurrent connections could23

become computationally inefficient [21–23]. Lastly, recent studies successfully converted rate-based24

networks trained with a gradient-descent method to spiking networks for both convolutional and25

recurrent neural networks [24, 25]. Since these models are built on rate-coding networks, the result-26

ing spiking models do not take advantage of the rich spiking dynamics. Moreover, these previous27

models assume that all the units in a trained network are equivalent, even though experimental28

evidence shows that neurons in biological neural networks are highly heterogeneous. Such diversity29
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has a vital role in efficient neural coding [26].30

Here, we present a new approach that can directly train not only recurrent synapses but also31

membrane-related parameters of a spiking RNN model. Our method utilizes mollifier functions [27]32

to alter the spiking dynamics to be differentiable, and a gradient-descent method is applied to tune33

the model parameters. These parameters are composed of synaptic parameters including recurrent34

connections and several important spiking-related parameters such as membrane time constant and35

action potential threshold. Neurons with diverse and heterogeneous intrinsic parameters emerged36

from training our spiking model on a wide range of cognitive tasks. Furthermore, we observed that37

both synaptic and spiking parameters worked in a synergistic manner to perform complex tasks38

that required information integration and working memory.39

Results40

Here, we provide an overview of the method that we developed to directly train spiking recurrent41

neural network (RNN) models (for more details see Methods). Throughout the study, we considered42

recurrent network models composed of leaky integrate-and-fire (LIF) units whose membrane voltage43

dynamics were governed by:44

τm,i
dvi
dt

= − (vi(t)− vresti) +RiIi(t) (1)

where τm,i is the membrane time constant of unit i, vi(t) is the membrane voltage of unit i at time45

t, vrest,i is the resting potential of unit i, and Ri is the input resistance of unit i. Ii(t) represents46

the current input to unit i at time t, which is given by:47

Ii(t) =

N∑
j=1

sij(t) + Iexti(t) (2)

where N is the total number of units in the network, sij(t) is the synaptic input from unit j to48

unit i at time t, and Iext,i(t) is the external current source into unit i at time t. We used a single49

exponential synaptic filter to model the synaptic input (s):50

τij
dsij
dt

= −sij(t) +
∑
t
(k)
j <t

wijδ(t− t(k)j ) (3)
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where τij is the decay time constant of the synaptic current from unit j to unit i, wij is the synaptic51

strength from unit j to unit i, t
(k)
j denotes the time of the k-th action potential of unit j, and δ(x)52

is the Dirac delta function. Once the membrane voltage of the unit i crosses its action potential53

threshold (ϑi), its membrane voltage is brought back down to its reset voltage (vreset,i).54

Each LIF unit is characterized by five distinct parameters: membrane time constant (τm,i),55

resting potential (vrest,i), input resistance (Ri), action potential threshold (ϑi), and reset potential56

(vreset,i). In addition, there are two trainable synaptic parameters: synaptic strength (wij) and57

synaptic decay time constant (τij) from unit j to unit i.58

In order to tune all the parameters described above to produce functional spiking RNNs capable59

of performing cognitive tasks, we employed the commonly used gradient-descent method known as60

backpropagation through time (BPTT; [28]) with a few important modifications. We utilized mol-61

lifier gradient approximations to avoid the non-differentiability problem associated with training62

spiking networks with backpropagation [27]. Furthermore, we optimized each of the model param-63

eters (except for the synaptic connectivity weights) in a biologically plausible range (see Methods).64

We also employed the weight parametrization method proposed by Song et al. to impose Dale’s65

principle [29] (see Methods). All the spiking RNN models trained in the study used the parameter66

value ranges listed in Supplementary Table 1 unless otherwise noted.67

Units with diverse parameter values emerge after training. We applied our method to train68

spiking networks to perform the context-dependent input integration task previously employed by69

Mante et al. [8]. Briefly, Mante et al. trained rhesus monkeys to flexibly integrate sensory inputs70

(color and motion of randomly moving dots presented on a screen). A contextual cue was given to71

instruct the monkeys which sensory modality (color or motion) they should attend to. The monkeys72

were required to employ flexible computations as the same modality could be either relevant or73

irrelevant depending on the contextual cue. Several previous modeling studies have successfully74

implemented a simplified version of the task and reproduced the neural dynamics present in the75

experimental data with both continuous-rate RNNs and spiking RNNs converted from rate RNNs76

[25, 29, 30]. With our method, we were able to directly train the first, to our knowledge, spiking77

RNNs with heterogeneous units whose parameters were within biologically plausible limits.78

In order to train spiking RNNs to perform the input integration task, we employed a task79
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paradigm similar to the one used by previous computational studies [8, 25, 29, 30]. A recurrently80

connected network received two streams of noisy input signals along with a constant-valued signal81

that encoded the contextual cue (Fig. 1A). The input signals were sampled from a standard Gaus-82

sian distribution (i.e., with zero mean and unit variance) and then shifted by a positive or negative83

“offset” value to simulate the evidence presented in the input modalities. The network was trained84

to produce an output signal approaching either +1 or −1 depending on the cue and the evidence85

present in the input signal: if the cued input had a positive mean, the output signal approached86

+1, and vice versa (Fig. 1B top). The input signal, 150 ms in duration, was given after a fixation87

period (300 ms), and the network was trained to produce an output signal immediately after the88

offset of the input signal.89

We trained 20 spiking RNNs to perform the context-based input integration task. All the train-90

able parameters were initialized with random numbers drawn from a standard Gaussian distribution91

and re-scaled to the biologically plausible ranges (see Methods and Supplementary Table 1). Each92

network was trained until the training termination criteria were satisfied (see Methods). On av-93

erage, 508.21 ± 45.96 training trials were needed for a network to meet the training termination94

conditions. After training, a wide distribution of the parameters emerged for both excitatory and95

inhibitory populations (Fig. 1C, top).96

Consistent with the previous experimental recordings from cortical neurons, the inhibitory units97

in our trained RNNs fired at a higher rate compared to the excitatory units [31]. The higher average98

firing rates of the inhibitory units were largely due to the intrinsic properties that resulted from99

training. Compared to the excitatory population, the inhibitory units in the trained RNNs had100

significantly larger input resistance, smaller membrane time constants, and more depolarized resting101

potential (Fig. 1C; P < 0.0001, two-sided Wilcoxon rank-sum test). The action potential thresholds102

and the reset potentials were significantly more depolarized for the inhibitory group. Furthermore,103

the time constants of the inhibitory synaptic current variable were significantly larger than the104

excitatory synaptic decay time constants (Fig. 1C).105

Working memory requires distinct parameter distributions. The context-dependent input106

integration task considered in the previous section did not require complex cognitive skills such as107

working memory (WM) computations. In order to explore what parameter values are essential for108
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WM tasks, we modified the paradigm to incorporate a WM component by adding a delay period109

after the delivery of the input signals. The RNN model was trained to integrate the noisy input110

signals, sustain the integrated information throughout the 300 ms delay period, and produce an111

output signal (Fig. 1B bottom). We again trained 20 models for the modified integration task with112

the same training termination criteria (see Methods). This task required more training trials (on113

average 1618.10± 345.54), but all the models were successfully trained within 2000 training trials.114

Overall, the distributions of the trained parameters were similar to those observed from the115

RNNs trained on the non-WM version of the task (Fig. 1D). The parameters that were significantly116

different between the two RNN models were the membrane time constant and the synaptic decay117

time constant. The inhibitory units from the WM model displayed much faster membrane dynamics118

and slower synaptic decay compared to the inhibitory population of the non-WM model (P <119

0.0001, two-sided Wilcoxon rank-sum test).120

To ensure that the patterns of the trained parameters and the distinct distributions of the two121

parameters (τm and τ) observed from the delayed integration model were indeed associated with122

WM computations, we trained RNNs on two additional WM-related tasks: delayed matched-to-123

sample (DMS) and delayed discrimination (DIS) tasks. For each task, we again trained 20 RNNs.124

Both task paradigms included two sequential stimuli separated by a brief delay period. For the125

DMS task, the two input stimuli were either +1 or −1; if the two sequential had the same sign126

(i.e., +1/ + 1 or −1/ − 1), the network was trained to have an output signal approaching +1,127

while if the two stimuli had different signs (i.e., +1/− 1 or −1/+ 1), the output signal approached128

−1 (Fig. 2A; see Methods). The two input stimuli for the DIS task were sinusoidal waves with129

different frequencies, modeled after the task used by Romo et al. [32] where monkeys were trained130

to discriminate two vibratory stimuli. If the first stimulus had a higher (lower) frequency, our RNN131

model was trained to produce a positive (negative) output signal (Fig. 2B; see Methods).132

It took longer to train our model on these two tasks compared to the delayed integration task133

(7103.95 ± 3738.65 trials for the DMS task and 6985.47 ± 2112.34 trials for the DIS task). The134

distributions of the tuned parameters from the two WM tasks were similar to the distributions135

obtained from the delayed integration task (Fig. 2C and D). More importantly, we again observed136

significantly faster membrane voltage dynamics and slower synaptic decay from the inhibitory137
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units in the DMS and DIS models compared to the inhibitory units from the non-WM task. These138

findings strongly suggest that the two parameters (τm and τ) of the inhibitory group contribute to139

important dynamics associated with WM.140

Shared intrinsic properties across different working memory tasks. Prefrontal cortex and141

other higher-order cortical areas have been shown to integrate information in a flexible manner and142

switch between tasks seamlessly [8]. Along this line of thought, we hypothesized that the intrinsic143

properties optimized for one WM task should be generalizable to other tasks that also require144

WM. In order to test this hypothesis, we re-trained all the RNNs that were trained in the previous145

sections to perform the DMS task without tuning the intrinsic parameters. For example, given a146

network trained on the non-WM integration task, we froze its intrinsic (R, τm, vrest, vreset ϑ) along147

with the synaptic decay time constant (τ) and optimized the recurrent connections (W ) only using148

BPTT (see Methods). Therefore, each of the 20 RNNs trained for each of the four tasks (non-WM149

integration, delayed integration, DMS, and DIS tasks) was re-trained to perform the DMS task.150

As expected, the average number of trials required to successfully retrain the RNNs previously151

trained for the DMS task was low at 4408.95 ± 3596.27 (Fig. 3A). The number of trials required152

to re-train the RNNs from the DIS task was also low at 4180.30 ± 2692.81. The RNNs trained153

for the delayed integration task took longer to re-train at 5391.85 ± 2197.99. The non-WM RNNs154

required the most number of training trials to perform the DMS task (9647.55 ± 2933.17). These155

findings indicate that the intrinsic properties from one WM model are transferable to other WM156

models.157

Based on these previous results, the membrane time constant (τm) and the synaptic decay (τ)158

variables appeared to be the two most important parameters for the transferability of WM. To test159

this, we repeated the re-training procedure with both τm and τ either fixed (“frozen”) or optimized160

(“tuned”) for the non-WM RNNs (see Methods). For the “frozen” condition (i.e., τm and τ frozen161

while the other parameters optimized), the number of trials required to re-train the non-WM RNNs162

to perform the DMS task was high and not significantly different from the number of trials it took163

with the intrinsic parameters fixed (Fig. 3B). On the other hand, re-tuning only τm and τ with the164

other parameters fixed (i.e., “tuned” condition) resulted in a significant reduction in training time165

(Fig. 3B), suggesting that these two parameters are indeed critical for performing WM. Optimizing166
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both τm and τ resulted in a significant decrease in τm for both excitatory and inhibitory populations167

(Fig. 3C). The synaptic decay values decreased for the excitatory units after re-tuning (Fig. 3D168

left). For the inhibitory population, τ was significantly increased (Fig. 3D right).169

Membrane and synaptic decay time constants critical for WM maintenance. Pyramidal170

excitatory neurons and parvalbumin (PV) interneurons make up the majority of the neuronal cell171

population in the cortex, and they have been shown to specialize in fast and reliable encoding of172

information with high temporal precision [33]. To further investigate if the fast membrane and173

slow synaptic dynamics of the units from our WM RNNs are aligned with previous experimental174

findings and to probe how they contribute to WM maintenance, we manipulated τm and τ during175

different epochs of the DMS task paradigm.176

For each of the RNNs trained from the DMS task, we first divided the population into two177

subgroups based on their τm values (see Methods). The short τm group contained units whose τm178

was smaller than the lower quartile value, while the long τm group contained units whose τm was179

greater than the upper quartile. During each of the four epochs (fixation, first stimulus, delay, and180

second stimulus), we then inhibited the two τm subgroups separately by hyperpolarizing them and181

assessed the task performance (see Methods). As shown in Fig. 4, inhibiting the short τm subgroup182

during the two stimulus windows significantly impaired task performance (Fig. 4B and D), while183

disrupting the long τm group did not result in significant changes in task performance in all four184

task epochs.185

We repeated the above analysis with two subgroups derived from a quartile split of the synaptic186

decay time constant (τ ; see Methods). Suppressing the synaptic connections in the long τ subgroup187

during the first stimulus window and the delay period significantly impaired task performance188

(Fig. 4B and C). Inhibiting the short τ group at any of the four epochs did not affect the task189

performance.190

Therefore, the units with the fast membrane voltage dynamics (τm) were important for encoding191

of stimuli, while the slow synaptic dynamics (τ) were critical for maintaining the first stimulus192

information throughout the period spanning from the first stimulus window to the end of the delay193

window.194
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Discussion195

In this study, we presented a new method for directly training spiking RNNs with a gradient-based196

supervised training algorithm. Our approach allows optimizing not only the synaptic variables but197

also parameters intrinsic to spiking dynamics. By optimizing a wide range of parameters, we first198

demonstrated that units with diverse features emerged when the model was trained on a cognitive199

task (Figs. 1 and 2). We also showed that fast membrane dynamics combined with a slow synaptic200

property are critical for performing WM tasks (Figs. 3 and 4). Diversity is a basic biological201

principle that emerged here as a basic computational principle in spiking neural models.202

Previous modeling studies have trained RNNs to perform cognitive tasks [8, 34, 35]. Although203

some of these studies were able to train spiking RNN models, the intrinsic parameters of spiking204

neurons were not included as trainable variables. By using the mollifier approximation [27], we205

developed a comprehensive framework that can tune both connectivity and spiking parameters206

using a gradient-descent method. Training spiking RNNs on multiple tasks using our method207

revealed functional specialization of excitatory and inhibitory neurons. More importantly, our208

approach allowed us to identify fast membrane voltage dynamics as an essential property required209

to encode incoming stimuli robustly for WM tasks.210

Previous computational studies employing RNNs assumed that all the units in a network shared211

the same intrinsic parameters and optimized only synaptic connectivity patterns during training.212

Recent studies developed models that give rise to units with heterogeneous intrinsic properties.213

For example, a new activation function that is tunable for each neuron in a network was recently214

proposed [36]. In addition, we recently trained synaptic decay time constants in a rate RNN model215

[25]. Although these methods produce heterogeneous units, they do not incorporate parameters216

inherent to spiking mechanisms. Our method not only allows direct training of synaptic weights217

of spiking RNNs that abide by Dale’s principle, but also enables training of synaptic and intrinsic218

membrane parameters for each neuron.219

Although our method was successful at training spiking RNNs with biological constraints, the220

gradient-based method employed in the present study is not biologically plausible. In cortical neural221

networks, local learning rules, such as spike-timing-dependent plasticity (STDP), were observed,222

but the gradient-descent algorithm used in our method is neither local to synapses nor local in time223
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[16]. However, this non-locality allowed our method to train intrinsic membrane and connectivity224

parameters, creating biologically plausible neural architectures that solve specified problems. The225

learning algorithm for spiking neurons makes it possible to uncover neural dynamics hidden in226

experimental data [8, 29, 37], thus emphasizing that a biologically realistic model can be constructed227

by non-biological means.228

Another limitation of our framework arises from our spiking neuron model. Although we were229

able to train models with heterogeneous neurons the leaky integrate-and-fire model used in the230

present study can only capture the dynamics of fast-firing neurons due to the lack of adaptation231

[38]. In particular, several other types of neurons, such as regular-firing and bursting neurons,232

are also common in cortical networks [39]. Applying our method to spiking neuron models with233

adaptation currents, such as those in Hodgkin-Huxley models model [40] and adaptive exponential234

integrate-and-fire model [41], will be an interesting next step to further investigate the role of235

neurons from various firing classes in information processing.236

In summary, we provide a novel approach for directly training both connectivity and membrane237

parameters in spiking RNNs. Training connectivity and intrinsic membrane parameters revealed238

distinct populations only identifiable by their parameter values, thus enabling investigation of the239

roles played by specific populations in the computation processes. This lays the foundation for240

uncovering how neural circuits process information with discrete spikes and building more power-241

efficient spiking networks.242
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Fig. 1 | Biologically realistic spiking network performing a context-dependent input integration
task. (A) Schematic diagram of the RNN model trained for the context-dependent integration task. Two
streams of noisy input signals (green and magenta lines) along with a context signal were delivered to the
LIF RNN. The network was trained to integrate and determine if the mean of the cued input signal (i.e.,
cued offset value) was positive (“+” choice) or negative (“−” choice) without or with a delay period at the
end of the noisy input signals. (B) Example input and output signals from example RNNs trained to perform
the task without (top row; INT) or with a delay period (bottom row; Dly. INT). (C) Distributions of the
optimized parameters for the excitatory (red) and inhibitory (blue) units across all 20 models trained for
the INT task. Top, distributions pooled from all the units from 20 models. Bottom, each dot represents the
average value from one network. (D) Distributions of the optimized parameters for the excitatory (red) and
inhibitory (blue) units across all 20 models trained for the Dly. INT task. Top, distributions pooled from
all the units from 20 models. Bottom, each dot represents the average value from one network.
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Methods344

Spiking network structure and discretization. Our spiking RNN model consisted ofN integrate-345

and-fire (LIF) units is governed by346

τm,i
dvi
dt

= − (vi(t)− vresti) +RiIi(t) + ξ (4)

where τm,i is the membrane time constant of unit i, vi(t) is the membrane voltage of unit i at347

time t, vrest,i is the resting potential of unit i, and Ri is the input resistance of unit i, and ξ is the348

membrane voltage spontaneous fluctuation. Ii(t) represents the current input to unit i at time t,349

which is given by:350

Ii(t) =
N∑
j=1

sij(t) + Iexti(t) (5)

where N is the total number of units in the network, sij(t) is the filtered spike train of unit j to351

unit i at time t, and Iexti(t) is the external current source into unit i at time t. For this study,352

N = 400 for all tasks and networks trained.353

The external current IIIext(t) encodes the task-specific input at time t:354

IIIext(t) = Winuuu(t) (6)

where the time-varying stimulus signals uuu(t) ∈ RNin×1 are fed into the network via Win ∈ RN×Nin ,355

which can be viewed as presynaptic connections to the network that convert analog input into firing356

rates. Nin corresponds to the number of channels in the input signal.357

We used a single exponential synaptic filter:358

τij
dsij
dt

= −sij(t) +
∑
t
(k)
j <t

wijδ(t− t(k)j ) (7)

where τij is the synaptic decay time constant from unit j to unit i, wij is the synaptic strength359

from unit j to unit i, t
(k)
j denotes the time of the k-th action potential of unit j, and δ(x) is the360

Dirac delta function. Once the membrane voltage of the unit i crosses its action potential threshold361

(ϑi), its membrane voltage is brought back down to its reset voltage (vreset,i).362
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The output of our spiking model at time t is given by363

o(t) = Woutrrr(t) (8)

where Wout ∈ R1×N are the readout weights, and rrr(t) ∈ RN×1 , which can be interpreted as the364

firing rate of units, are given by365

τr,i
dri
dt

= −ri(t) +
∑
t
(k)
i <t

δ(t− t(k)i ) (9)

where τr,i is the synaptic decay time constant of firing rate estimate for unit i.366

We converted the continuous-time differential equations to discrete-time iterative equations367

and used numerical integration (Euler’s method) to solve the equations. The membrane voltage368

vvv ∈ R1×N at step n+ 1 is given by369

vvv(n+1) = ṽvv(n) +
∆t

τττm

(
−
(
ṽvv(n) − vvvrest

)
+ III(n+1) �RRR

)
+ cN (0,∆t) (10)

where ∆t is the sampling rate (or step size), which was set ∆t = 1 ms for this study, τττm ∈ R1×N is370

the membrane time constant, vvvrest ∈ R1×N is the resting potential, � refers to Hadamard operation371

(element-wise multiplication),
·
·

refers to the element-wise division, and RRR ∈ R1×N is the input372

resistance. The term cN (0,∆t) injects spontaneous membrane fluctuations, where N (0,∆t) ∈373

R1×N is a Gaussian random vector consisting of N independent Gaussian random variables with374

mean 0 and variance ∆t, and c is the scaling constant for the amplitude of fluctuations, set as c = 5375

throughout the study.376

There are two time-varying terms in Eq. 10, the membrane voltage after reset (ṽ̃ṽv(n)) and input377

current (III(n+1)). The voltage reset in the LIF model after action potentials at step n is formulated378

as379

ṽ̃ṽv(n+1) = vvv(n+1) +
(
vvvreset − vvv(n+1)

)
�H

(
vvv(n+1) − ϑϑϑ

)
(11)

where vvvreset ∈ R1×N is the reset potential, ϑϑϑ ∈ R1×N is the action potential thresholds, and H(x) is380

the element-wise Heaviside step function. The term H
(
vvv(n+1) − ϑϑϑ

)
represents the spiking output381

20

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 12, 2020. ; https://doi.org/10.1101/2020.06.11.147405doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.11.147405
http://creativecommons.org/licenses/by-nc-nd/4.0/


activities at step n+ 1. The input current at step n+ 1 is given by382

III(n+1) = S(n) · 1 +Winuuu
(n+1) (12)

where 1 ∈ R1×N is the column vector with all ones and S(n) is the filtered spike train matrix at383

step n, which follows the iteration384

S(n) = S(n−1) +
∆t

T

(
−S(n−1) +W �H

(
vvv(n) − ϑϑϑ

))
(13)

where T ∈ RN×N is the matrix of synaptic decay time constants and W ∈ RN×N is the matrix of385

synaptic strengths. Here, W ∈ RN×N is a matrix and H
(
vvv(n) − ϑϑϑ

)
∈ R1×N is a row vector. The386

notation A�vvv refers to element-wise multiplication of matrix A row by row with the row vector vvv.387

The output at step n+ 1 is computed by388

o(n+1) = Woutrrr
(n+1) (14)

in which389

rrr(n+1) = rrr(n) +
∆t

τττ r

(
−rrr(n) +H

(
vvv(n+1) − ϑϑϑ

))
(15)

where τττ r ∈ R1×N is the synaptic decay time constants of firing rate estimate.390

Training details. In this study, we only used the supervised backpropagation of errors learning391

algorithm. The loss function (L) is defined in terms of the root mean square error (RMSE) with392

respect to a task-specific target signal (zzz) and the network output signal (ooo):393

L :=

√√√√( M∑
n=1

(
z(n) − o(n)

)2)
(16)

where M is the total time steps.394

We used Adaptive Moment Estimation (ADAM) stochastic gradient descent algorithm [42]395

with mini-batch training. The mollifier gradient approximations were employed to address non-396

differentiability problem associated with the spiking process (see Mollifier gradient approxi-397

mations). The learning rate was set to 0.01, the batch size was set to 10, and the first and398
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second moment decay rates were 0.9 and 0.999, respectively. The trainable parameters include in-399

put weights (Win), synaptic strengths (W ), readout weights (Wout), synaptic decay time constants400

(T ), membrane time constants (τττm), input resistances (RRR), resting potentials (vvvrest), reset voltages401

(vvvreset), action potential thresholds (ϑϑϑ), and synaptic decay time constants for firing rate estimates402

(τττ r).403

A nonlinear projected gradient method was used to constrain parameters within the biologically404

realistic ranges described in Supplementary Table 1. A linear projection map forces some solutions405

to be projected on the boundary. That is, there are always some units whose parameters take the406

min and max values of the constraint. On the other hand, a nonlinear projection guarantees that407

no values are on the boundary almost surely, a more realistic situation to consider. Specifically, to408

bound a parameter p at iteration i+ 1 into the range [pmin, pmax], we have409

p̃i+1 = σ(pi+1) · (pmax − pmin) + pmin (17)

where p̃i+1 is the projected solution of parameter p at iteration i + 1, pi+1 is the unconstrained410

solution given by the gradient descent algorithm at iteration i+ 1, pmax and pmin are the maximum411

and minimum values of parameter p, and σ(x) is the sigmoid function, defined as412

σ(x) :=
1

1 + exp(−x)
(18)

We initialized all parameters, except the input weights (Win), as samples from the standard413

Gaussian distribution with zero mean and unit variance, whereas the input weights were drawn414

from Gaussian distribution with zero mean and variance 400. This is because our input signals415

were bounded within the range [−1, 1], insufficient to bring the membrane voltage from the resting416

potential above the action potential threshold. Hence, to accelerate training, it was necessary to417

make sure units were excited by the input signals in the first place. The synaptic strength matrix418

(W ) was also initialized sparse, with the percentage of connectivity being only 20%. We say the419

network successfully did the task if the output signal hits above +0.8 (or below −0.8) if the target420

output is +1 (or −1). We stopped training when the loss (L) is less than 15 and the accuracy over421

100 trials is above 95%.422
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The method proposed by Song et al. [29] was used to impose Dale’s principle with separate423

excitatory and inhibitory populations. The synaptic connectivity matrix (W ) in the model was424

parametrized by425

W̃i+1 = [Wi+1]+ ·D (19)

where W̃i+1 is the resulted matrix that encoded separate populations at update step i + 1, Wi+1426

is the solution given by the gradient descent algorithm at step i + 1, and [·]+ is the rectified427

linear unit (ReLU) operation applied at the end of each update step. The ReLU operation is to428

ensure that entries of the matrix are always non-negative before multiplied by the matrix D, as the429

negative weight connections update from gradient descent are pruned by the end of each update.430

The diagonal matrix (D ∈ RN×N ) encode +1 for excitatory units and −1 for inhibitory units.431

The value of matrix (D) was randomly assigned before training according to a preset proportion432

between inhibitory and excitatory units, and the value D was fixed through the whole training433

process. The I/E units proportion in this study was 20% to 80%.434

In order to capture the biologically realistic dynamics of SNNs, the temporal resolution (∆t)435

was set to be no longer than the duration of absolute refractory period to ensure that the spiking436

activities are not affected by the numerical integration process. Therefore, we set ∆t = 1 ms during437

training. Due to the vanishing gradient problem occurring in training RNNs [43], with ∆ = 1 ms,438

it is impossible to train tasks with duration longer than 1 second (i.e., M > 1000). It is notable439

that in the above formulation, only membrane time constant (τm) and synaptic time decay (τ) are440

dependent on the sampling rate (∆t; Eq. 10 and Eq. 13). Hence, after the models are trained,441

we can make sampling rate (∆t) smaller (i.e., having finer temporal resolution) while still keeping442

the same dynamics of the trained networks. Increasing ∆t by a factor is equivalent to decreasing τ443

and τm altogether by the same factor, as τ and τm are inversely proportional to ∆t in Eq. 10 and444

Eq. 13. Hence, to train a network performing tasks with duration longer than 1 second, we need445

to make the temporal resolution coarser (i.e., increasing ∆t by a factor s) so that with the same446

trainable range of time steps (i.e., a fixed M ≤ 1000), the duration of task becomes longer by the447

same factor s. This “decrease in temporal resolution” can be interpreted as shortening τ and τm448

instead of an actual decrease in temporal resolution. Applying this trick enables us to train tasks449

with arbitrary duration by re-scaling the ranges of τ and τm into a smaller one while still making450
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the spiking activities biologically realistic. In practice, we simply scaled down τ and τm by a factor451

s = 3 with a fixed number of time steps (M), and later during the testing stage, we re-scaled M, τ452

and τm up by the same factor s.453

Mollifier gradient approximations. In the above formulation, the Heaviside step function H(x)454

is not continuous. As a result, the loss function L is not differentiable. This poses the major problem455

when applying the traditional backpropagation algorithm for training neural networks, because the456

backpropagation algorithm uses gradient descent methods that require the function being minimized457

to be differentiable, or at least to be continuous. However, the derivative of Heaviside step function458

H(x) is Dirac Delta function δ(x), which is 0 everywhere except at 0, where the function value is459

∞. It is difficult to use this derivative for the gradient descent methods because the value of the460

gradients is 0 almost everywhere.461

To address the discontinuity problem, we employed mollifier gradient method proposed by462

Ermoliev et al. [27]. The method can be applied to any strongly lower semicontinuous functions463

to find local minima following an iterative gradient descent in which the gradients change over464

iterations based on averaged functions derived from the original objective function. The family of465

averaged functions fε of function f is defined by convolution of f with a mollifier: ψε466

fε(x) :=

∫
Rn

f(x− z)ψε(z)dz =

∫
Rn

f(x)ψε(x− z)dz = f ∗ ψε(x) (20)

where ψε ∈ {ψε : Rn → R+, ε > 0}, a family of compactly supported (generalized) functions named467

mollifiers that satisfy468

∫
Rn

ψε(x) dx = 1, lim
ε→0

ψε(x) = lim
ε→0

ε−nψε(x/ε) = δ(x) (21)

It was shown that for any strongly lower semicontinuous functions f , the averaged functions fε469

epi-converge to f as ε→ 0, a type of convergence that preserves the local minima and minimizers.470

Therefore, it is possible to use the gradients of averaged functions to minimize the original lower471

semicontinuous functions and find the local minima. We used the conventional family of mollifiers472
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obtained by normalizing a probability density function ψ:473

ψε(z) :=
ψ(z/ε)

εn
(22)

In our case, n = 1 as the domain of H(x) is the real line:474

Hε(x) :=
1

ε

∫ ∞
−∞

H (x− z)ψ(z/ε) dz (23)

For any ε > 0, the gradient of Hε (g(x)) with respect to parameter p is given by475

∇pHε (g(x)) =
1

ε
ψ (g(x)/ε)∇pg(x) = ψε (g(x))∇pg(x) (24)

where ψ is some symmetric density function and g(x) is any function with R as its codomain. Since476

our goal was not to find a local minimum x∗ that satisfies the optimality condition lim
ε→0
‖∇fε(x∗)‖ = 0477

as defined by Ermoliev et al., but rather to minimize the loss function for its value to be sufficiently478

small so that the network can perform the task correctly, we did not vary the gradients during the479

minimization process. Instead, we fixed an approximation of the gradient and used the approxi-480

mation throughout the training process. We chose the normalized box function, i.e., the density481

function of uniform distribution U(−ε/2, ε/2), as the kernel,482

ψ(x) :=


1

ε
for x ∈ [−ε/2, ε/2]

0 otherwise

(25)

and fixed ε = 5.483

We found no difference in the trained models with different choices of ε, as long as the value484

was large enough to keep the gradients active so that gradients did not vanish through time steps.485

There was also no difference between models trained with fixed ε and those trained with the original486

scheme in Ermoliev et al. where ε→ 0 as the number of iterations increases. The purpose for fixing487

the value of ε was to compare the training epochs (iterations) among the retraining paradigms (see488

Fig. 3) with the same gradient.489
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Re-training models for DMS task. To test whether intrinsic properties optimized for one WM490

task are generalizable to other tasks that also require WM, we re-trained our models to perform491

the DMS task with all intrinsic properties fixed. In contrast to the training paradigm described492

in the previous sections, the trainable parameters for re-training only include input weights (Win),493

synaptic strengths (W ), and readout weights (Wout). Each of the 20 RNNs trained for each of the494

four tasks (non-WM integration, delayed integration, DMS, and DIS tasks) used in this study was495

re-trained to perform the DMS task.496

To test whether synaptic decay time constants (τ) and membrane time constants (τm) are the497

most crucial parameters for transferability of WM tasks, we repeated the re-training procedure498

with both τm and τ either fixed or optimized for the non-WM RNNs. The RNNs optimized to499

perform the context-based input integration task were used for re-training under two schemes: the500

tuned scheme and the frozen scheme. For the tuned scheme, the trainable parameters include input501

weights (Win), synaptic strengths (W ), readout weights (Wout), synaptic decay time constants (T ),502

membrane time constants (τττm), and synaptic decay time constants for firing rate estimates (τττ r).503

For the frozen scheme, the trainable parameters include input weights (Win), synaptic strengths504

(W ), readout weights (Wout), input resistances (RRR), resting potentials (vvvrest), reset voltages (vvvreset),505

and action potential thresholds (ϑϑϑ).506

Units function analysis. For Fig. 4, we manipulated τm and τ during different epochs of the507

DMS task paradigm to investigate if fast membrane and slow synaptic dynamics are responsible for508

WM maintenance. For each of the RNNs trained from the DMS task, we first divided the population509

into two subgroups based on their τm values. The short τm group contained units whose τm was510

smaller than the median value of τm of all units in the RNN, while the long τm group contained511

units whose τm was greater than the median value. The average median value of τm across all 20512

models was 19.64 ± 2.45 ms. During each of the four epochs (fixation, first stimulus, delay, and513

second stimulus), we inhibited the two τm subgroups separately by hyperpolarizing them and then514

assessed the task performance. The hyperpolarization was done by setting the membrane voltage515

v = −100 mV for the intended subgroup of units. Similar to the training stage, we say that the516

network successfully did the task if the output signal hits above +0.8 (or below −0.8) if the target517

output is +1 (or −1). If the target output is between −0.8 and +0.8, the network is considered518
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having no response. If the output signal is above +0.8 (or below −0.8) while the target output is519

−1 (or +1), we say that the network gives an incorrect response.520

We conducted a similar analysis based on two subgroups of synapses derived from a quartile521

split of synaptic decay time constant (τ). The short τ group contained synapses whose τ was522

smaller than the 25th percentile of all τ in the RNN, while the long τ group contained synapses523

whose τ was greater than the 75th percentile. The average 25th percentile across all 20 models was524

25.36 ± 2.40 ms, and the average 75th percentile was 66.18 ± 1.17 ms. The targeted subgroup of525

synapses was suppressed by setting the connection strength w = 0 during each of the four epochs526

of DMS task.527

Code availability528

The implementation of our framework and the codes to generate all the figures in this work are529

available at https://github.com/y-inghao-li/SRNN/530

Data availability531

The trained models used in the present study are available as MATLAB-formatted data at https:532

//github.com/y-inghao-li/SRNN/533
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Supplementary Table

Parameter name Symbol Minimum Maximum

Input resistance R 5 MΩ 1000 MΩ

Membrane time
constant

τm 5 ms 50 ms

Action potential
threshold

ϑ −50 mV −30 mV

Resting potential vrest −80 mV −60 mV

Reset voltage
value

vreset vrest − 10 mV vrest − 1 mV

Synaptic decay time τ 5 ms 100 ms

Supplementary Table 1: Parameter values used for this study. To keep the constraint vrest >
vreset, we trained the afterhyperpolarization (AHP) potential with range from −10 mV to −1 mV,
so the value of vreset is dependent upon the value of vrest.
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