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Abstract

Neural computations are currently investigated using two competing approaches: sorting neurons into
functional classes, or examining the low-dimensional dynamics of collective activity. Whether and how these
two aspects interact to shape computations is currently unclear. Using a novel approach to extract com-
putational mechanisms from networks trained with machine-learning tools on neuroscience tasks, here we
show that the dimensionality of the dynamics and cell-class structure play fundamentally complementary
roles. While various tasks can be implemented by increasing the dimensionality in networks consisting of a
single global population, flexible input-output mappings instead required networks to be organized into sev-
eral sub-populations. Our analyses revealed that the subpopulation structure enabled flexible computations
through a mechanism based on gain-controlled modulations that flexibly shape the dynamical landscape of
collective dynamics. Our results lead to task-specific predictions for the structure of neural selectivity and
inactivation experiments.
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1 Introduction

The quest to understand neural computations in the cortex currently relies on two competing paradigms. Clas-
sical works have sought to determine the computational role of individual cells by sorting them into functional
classes based on their responses to sensory and behavioral variables [Hubel and Wiesel, 1959; Moser et al.,
2017; Hardcastle et al., 2017]. Fast developing tools for dissecting neural circuits have opened the possibility
of mapping such functional classes onto genetic and anatomic cell types, and given a new momentum to this
cell-category approach [Adesnik et al., 2012; Ye et al., 2016; Kvitsiani et al., 2013; Hangya et al., 2014; Pinto
and Dan, 2015; Hirokawa et al., 2019]. This viewpoint has however been challenged by observations that in-
dividual neurons often represent seemingly random mixtures of sensory and behavioral variables, especially in
higher cortical areas [Churchland and Shenoy, 2007; Machens et al., 2010; Rigotti et al., 2013; Mante et al.,
2013], where clear functional cell classes are often not clearly apparent [Raposo et al., 2014] (but see [Hirokawa
et al., 2019]). A newly emerging paradigm has therefore posited that neural computations need instead to
be understood in terms of collective dynamics in the state space of joint activity of all neurons [Buonomano
and Maass, 2009; Rigotti et al., 2013; Mante et al., 2013; Gallego et al., 2017; Remington et al., 2018; Saxena
and Cunningham, 2019]. Within this viewpoint, neural computations are revealed by studying properties of
low-dimensional trajectories of activity in state space [Mante et al., 2013; Rajan et al., 2016; Chaisangmongkon
et al., 2017; Remington et al., 2018; Wang et al., 2018; Sohn et al., 2019], while the selectivity of the individual
neurons is often largely uninformative. Whether and how the two paradigms based on functional cell categories
and collective dynamics can be reconciled is an open question.

A key hypothesis emerging from the collective dynamics paradigm states that the dimensionality of neural
trajectories determines the complexity of the computations a network can implement [Legenstein and Maass,
2007; Buonomano and Maass, 2009; Rigotti et al., 2013; Fusi et al., 2016]. In contrast, a candidate computational
role for functional cell classes within the collective dynamics framework is currently lacking. Can any task be
implemented by increasing the dimensionality of the dynamics in a single population with random selectivity,
or are functionally distinct sub-populations necessary for specific computations [Yang et al., 2019]? To address
this fundamental computational question, we developed a new class of interpretable recurrent networks, which
fully disentangle the concepts of cell populations and dimensionality of the collective dynamics. We then
exploited this framework to identify the respective roles of dimensionality and sub-populations in recurrent
neural networks trained on a range of systems neuroscience tasks using machine-learning [Sussillo, 2014; Barak,
2017; Yang et al., 2019]. Specifically, we first trained networks with minimal intrinsic dimensionality for each
task, then determined whether several sub-populations are needed to perform the task. This approach allowed
us to extract computational mechanisms from the trained networks, by reducing them to simpler interpretable
networks consisting of minimal intrinsic dimension and number of sub-populations. These simplified networks
performed the tasks with identical accuracy and identical collective dynamics as the original networks, but
revealed the key mechanisms underlying the computations.

Altogether, our analyses demonstrate that the intrinsic dimension and sub-population structure play funda-
mentally different and complementary computational roles in recurrent networks. As expected from previous
studies [Remington et al., 2018; Mastrogiuseppe and Ostojic, 2018], the intrinsic dimension determines the
number of internal collective variables available for the network to perform a computation. The sub-population
structure in contrast shapes the possible dynamics of these collective variables. While a range of tasks could
be implemented by increasing the intrinsic dimension of a network consisting of a single global population with
random connectivity, we found that specific tasks required the network to be organized into several statistical
sub-populations. This was specifically the case for tasks requiring a flexible reconfiguration of input-output
associations, a common component of many cognitive tasks [Sakai, 2008]. We show that a subpopulation struc-
ture of the network enables such flexible computations through a mechanism based on modulations of gain
and effective interactions that flexibly modify the dynamical landscape of collective dynamics. Specifically, the
sub-population structure allows different inputs to act either as drivers or modulators of the collective dynamics.
Our results lead to direct predictions on when and where statistical structure should be present in single-neuron
selectivity, as well as to specific predictions for inactivations of different sub-populations.
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2 Results

2.1 Computational framework

To identify the respective roles of dimensionality and cell populations, we extended a recently introduced
class of network models, low-rank recurrent neural networks [Mastrogiuseppe and Ostojic, 2018]. In line with
dimensionality reduction approaches [Cunningham and Yu, 2014; Gallego et al., 2017], in this framework, the
network connectivity is represented in terms of patterns over neurons (Fig. 1a, Methods section 4.1). Each
feed-forward input to the network is specified by a pattern I(l), and the output of the network is read out
linearly through a pattern w. The recurrent connectivity matrix J is of rank R, so that it is specified in terms
of R modes:

J = m(1)n(1)T + . . .+m(R)n(R)T . (1)

Each mode r consists of an output pattern m(r) that determines a principal direction of activity in state space,
and an input-selection pattern n(r) that determines which input patterns activate the corresponding mode
([Mastrogiuseppe and Ostojic, 2018], Methods section 4.2). The population-level activity in the network can
then be directly described in terms of set of internal and external collective variables κr and ul, analogous to
latent variables usually identified by dimensionality reduction:

x(t) =
R∑
r=1

κr(t)m
(r) +

Nin∑
l=1

ul(t)I
(l). (2)

The two sets of collective variables correspond to recurrent and input-driven directions in state-space [Wang
et al., 2018]. One internal collective variable κr is associated with each connectivity mode r, and one external
collective variable ul is associated with each feed-forward input pattern, so that the dynamics is embedded in a
linear subspace of dimension given by the sum of the dimensionality of feed-forward inputs and the rank R of the
connectivity (Methods section 4.2). A mean-field analysis of low-rank networks provides a reduced description
of the low-dimensional dynamics, in which the set of internal variables {κk} forms a dynamical system, with
effective inputs and interactions determined by the statistics of feed-forward and connectivity patterns (Fig. 1d,
Methods section 4.5).

Within this framework, each neuron is characterized by a set of loadings that correspond to its values on
each of the input, readout and connectivity patterns. Each neuron can therefore be represented as a point
in loading space, where each axis is associated with one pattern (Methods section 4.4). For instance, if the
network consists of one input pattern, one readout pattern and two connectivity modes, each neuron has six
loadings, and the loading space is six-dimensional (Fig. 1b). The full network can then be represented as a set
of points in the space of loadings, one point for each neuron, and within mean-field theory the statistics of this
cloud of points fully determine the collective dynamics and computations performed by the network (Methods
section 4.5). If the network size is large, any network generated by randomly sampling all neurons from a given
statistical distribution of loadings exhibits identical collective dynamics, and therefore identical computations.

Previous work on the low-rank framework [Mastrogiuseppe and Ostojic, 2018; Schuessler et al., 2020a]
considered the situation where all neurons belonged to a single cluster in the loading space. Specifically, all
neurons belonged to a single Gaussian population fully specified by a matrix of covariances between input
and connectivity patterns. In biological networks, neurons instead belong to several sub-populations with,
in particular, distinct relations between input and connectivity [Harris and Mrsic-Flogel, 2013]. We therefore
extended the low-rank framework to include P populations of neurons that corresponded to P Gaussian clusters
in the space of loadings of connectivity, input and readout patterns (Fig. 1b). Each cluster was centered at the
origin, but had its own matrix of covariances between patterns (Fig. 1c). Within this extended framework, the
number R of connectivity modes, and the number P of populations are two independent parameters that play
distinct roles: R determines the number of available internal variables, while the number of populations shapes
the dynamics of these variables (Methods section 4.5).

Our goal was to understand when several distinct sub-populations of neurons are needed from a compu-
tational perspective, and what role such diversity plays in computations. To this end, we first used machine-
learning tools to train low-rank RNNs on a set of systems neuroscience tasks. For each task, we specifically
sought networks of minimal rank R, and identified corresponding sets of patterns that implemented the task
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Behavioral task Minimal rank Minimal # of populations
Perceptual DM R=1 P=1
Multi-sensory DM R=1 P=1
Parametric WM R=2 P=1
Context-dependent DM R=1 P=2
Delay-Match-to-Sample R=2 P=2
(two items {A,B})

Table 1. Minimal rank and number of populations required to implement individual cognitive tasks.

(Methods section 4.6). We then performed clustering analyses on pattern loadings, and determined the co-
variance structure corresponding to each cluster. Specifically, we progressively increased the number of fitted
clusters, and determined the minimal number of populations needed to implement the task (Table 1) by ran-
domly sampling connectivity from the corresponding distribution of connectivity and inspecting the performance
of the obtained networks (Methods section 4.7). We finally combined these analyses with mean-field theory to
identify the key parameters and build reduced, minimal models of the networks in terms of collective vari-
ables (Fig. 1d) that allowed us to directly identify and interpret the dynamical mechanisms underlying the
implemented computations.

2.2 Increasing dimensionality allows networks to implement increasingly complex
tasks with a single population

As expected from previous work [Buonomano and Maass, 2009; Rigotti et al., 2013], we found that tasks of
increasing complexity could be implemented with networks consisting of a single population by increasing the
dimensionality of the internally generated activity, and therefore the number of internal variables available for
computations.

We started with one of the most classical system neuroscience tasks, perceptual decision making [Gold and
Shadlen, 2007]. A network received a noisy scalar stimulus along a random input pattern, and was trained
to report the sign of its temporal average along a random readout pattern (Fig. 2a). A unit-rank network,
consisting of a single connectivity mode was sufficient to solve the task (Supplementary Fig. S6). As expected
from the theory of low-rank networks, the dynamics evolved in a two-dimensional plane spanned by the input
pattern I and the output connectivity pattern m, and could be described by two corresponding collective
variables u(t) and κ(t) (Fig. 2e). The internal collective variable κ(t) encoded the integrated stimulus (Fig. 2d),
and therefore could be directly interpreted in terms of the computation performed by the network. The output
connectivity pattern m was aligned with the readout pattern w, so that the network output was directly set
by κ.

As the network was specified by four patterns (the input, readout and the two connectivity patterns), the
loading space was four-dimensional (Fig. 2b). Fitting a single cluster to the four dimensional distribution of
loadings revealed that a single, global Gaussian population was sufficient to implement this task. Indeed, new
networks generated randomly by resampling the connectivity from the fitted single-cluster covariance structure
led to task accuracies indistinguishable from trained networks (Fig. 2c). We next performed a mean-field analysis
of the obtained connectivity to identify the parameters in the pattern covariance structure that determined the
computation. We found three key parameters: the covariance between the input pattern I and the input-selective
connectivity pattern n determined the strength of the inputs integrated by the internal variable, the covariance
between the readout pattern w and the output connectivity pattern m determined the strength with which
the internal variable drove the readout, while the covariance between the two connectivity patterns m and n
determined positive feedback on the internal variable and the integration timescale (Supplementary Fig. S1c,d).
Such reduced models built by controlling only the three key parameters performed the task with an accuracy
comparable to trained networks (Fig. 2c) and reproduced identical low-dimensional dynamics (Supplementary
Fig. S1b).

The findings from the perceptual decision task directly extended to a multi-sensory decision-making task
[Raposo et al., 2014], in which the network received two stimuli along orthogonal input patterns, and was
trained to process both of them to produce the output. A unit-rank network consisting of a single population
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Figure 1: Multi-population, low-rank recurrent neural networks. (a) The recurrent connectivity consists of R
modes (R = 2 in this illustration), each represented by an input-selection pattern n(r) and and output pattern
m(r). The activity along each mode is represented by an internal collective variable κr. Inputs and readouts
are similarly represented in terms of patterns over neurons. Each neuron in the network belongs to one of P
subpopulations, each defined by different statistics of the corresponding input and connectivity sub-patterns.
In the illustration P = 2, each population and the corresponding sub-pattern are represented by a different
color (green, violet). (b) Two-dimensional projections of statistics in pattern loading space. Each neuron is
characterised by its set of input, readout and connectivity pattern values, which we refer to as loadings. Each
neuron therefore corresponds to a point in loading space, which is six-dimensional in this example. The two
sub-populations form two distinct clusters of points in loading space. (c) Each population is summarized by a
set of covariances between patterns, that specify the shape and orientation of the corresponding cluster in the
pattern loading space. In this study, we focus on zero-mean clusters, which are all centered at the origin. (d)
The dynamics in the network can be described by an effective circuit model consisting of interacting collective
variables κr, driven by the input (see Eq. (3)). The interactions between the collective variables and the input
are set by a combination of pattern covariances of the two populations shown in (c).
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was sufficient to integrate several orthogonal, but congruent inputs (Supplementary Fig. S8).
We next turned to a parametric working memory task [Romo et al., 1999], where two scalar stimuli f1 and

f2 were successively presented along an identical input pattern, interleaved by a variable delay period. The
network was trained to report the difference f1 − f2 between the values of the two stimuli (Fig. 3a). We found
that this task required R = 2 pairs of connectivity patterns (Supplementary Fig. S6), so that the dynamics
were now three-dimensional and described by two internal collective variables. One internal variable integrated
the first stimulus and memorized it during the delay period (Fig. 3d top), while the second one encoded stimuli
transiently (Fig. 3d bottom). The final readout was obtained by combining linearly the two output directions
to compute the difference between the two internal variables after the second stimulus was presented (Fig. 3a
bottom).

The network was now specified by six patterns (the input and readout patterns and two pairs of connectivity
patterns), so that the loading space was six-dimensional. However, again a single population was sufficient to
implement the task, as fitting a single cluster to the loadings of the trained connectivity, input and readout
patterns (Fig. 3b), and generating new networks by sampling from the fitted covariance structure led to networks
with indistinguishable performance (Fig. 3c). The mean-field analysis allowed us to reduce the network to
a simple circuit of two non-interacting collective variables (Fig. 3e), and to identify as key parameters the
covariances between the input-selection and output patterns within each mode. Specifically, a large covariance
between the first pair of connectivity patterns led to strong positive feedback and persistent activity in the first
internal variable, while the covariance was much weaker for the second pair of patterns that encoded stimulus
value transiently. The resulting reduced model performed the task with accuracy indistinguishable from trained
networks (Fig. 3c), and reproduced the collective dynamics (Supplementary Fig. S2b).

2.3 Flexible tasks require multiple populations

While a variety of tasks could be implemented by increasing the dimensionality in networks consisting of a
single neural population, this was not the case for all tasks we considered. In particular, several tasks required
processing the same input differently in various epochs. When such flexibility was needed, we found that
increasing the number of neural populations was crucial.

A first example of such a task was context-dependent decision making, where stimuli consisted of a com-
bination of two scalar features that fluctuated in time [Mante et al., 2013]. Depending on a contextual cue,
only one of the two features needed to be integrated (Fig. 4a), so that the same stimulus could require oppo-
site responses, a hallmark of flexible input-output transformations [Fusi et al., 2016]. We implemented each
stimulus feature and contextual cue as an independent input pattern over the population, so that the total
input dimensionality was four. Training networks to perform this task, we found that unit-rank connectivity,
consisting of a single connectivity mode and therefore a single internal variable, was sufficient (Fig. S6). As for
standard decision-making, the internal variable encoded integrated evidence. However, our clustering analysis
in the loading space, which was now seven-dimensional (four input, one readout and two connectivity patterns),
revealed that several sub-populations were necessary to perform the computation (Fig. 4b and Supplementary
Fig. S7). Indeed, generating networks from a single fitted population led to a strong degradation of the perfor-
mance (Fig. 4c left). Specifically, single-population networks performed the task correctly for stimuli consisting
of congruent features, but failed for incongruent stimuli for which responses needed to be flipped according to
context (Fig. 4c right). This was the case even if the internal dimensionality of the networks was increased while
constraining the neurons to belong to a single cluster (Supplementary Fig. S7). Instead, when we generated
networks randomly by sampling from two fitted clusters with preserved covariance structure, we found they
performed the task with an accuracy indistinguishable from the trained network (Fig. 4c), indicating that two
sub-populations were sufficient to implement the computation.

As a second example of a task requiring flexible stimulus processing, we considered the delay-match-to-
sample task [Miyashita, 1988; Engel and Wang, 2011; Chaisangmongkon et al., 2017], where two stimuli were
presented interleaved by a delay period, and the network was trained to indicate in each trial whether the two
stimuli were identical or different (Fig. 5a). This task involved flexible stimulus processing analogous to the
context-dependent decision-making task because an identical stimulus presented in the second position required
opposite responses depending on the stimulus presented in the first position (Fig. 5a,c). We found that this task
required a rank two connectivity (Fig. S6), and therefore two internal variables. As in the parametric working-
memory task (Fig. 3d), one internal variable maintained the first stimulus in memory during the delay period
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Figure 2: Perceptual decision making task. (a) A unit rank network was trained to integrate a fluctuating
scalar input and report whether its average, which we denote as coherence, was positive or negative. Top
to bottom: input, activity of 3 random units and output, shown for a positive coherence (orange) and a
negative coherence (blue) trials. Grey and orange outlines indicate respectively the stimulus presentation and
output epochs. (b) Statistics of the pattern loadings. The trained network consisted of an input pattern I,
connectivity patterns m and n and a readout pattern w so that the loading space was four-dimensional. Left:
selected two-dimensional projections of the loading space. Each point represents the entries of a neuron on the
corresponding pattern. Right: covariances between input, connectivity and readout patterns. (c) Task accuracy
and psychometric curves of trained, resampled and minimal reduced networks. Ten resampled networks were
generated by sampling loadings from a multivariate Gaussian distribution with a covariance matrix fitted to the
trained network. The reduced model was generated by adjusting only the covariances outlined in black in (b),
and corresponds to the effective circuit shown in (f). (d) Dynamics of the collective internal variable on trials
with positive (orange) and negative (blue) evidence. (e) Trajectories of activity in the two-dimensional plane
corresponding to the internal collective variable κ(t) and the external collective variable u(t). This subspace
corresponds to the projection of activity on the output pattern m and the input pattern I. (f) Circuit diagram
representing the reduced model.
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Figure 3: Parametric working memory task. (a) A rank two network received two stimuli f1 and f2 interleaved by
a delay, along the same input pattern, and was trained to output their difference. Top to bottom: input, activity
of 5 random units and output, shown for an example trial; the target value is indicated in red in the bottom panel.
Grey and orange outlines indicate respectively the stimulus presentation and output epochs. (b) Statistics of the
trained pattern loadings. Left: selected two-dimensional projections of the six-dimensional loading space. Right:
covariances of the input, connectivity, and readout patterns. (c) Task accuracy and psychometric responses of
trained, resampled and minimal, reduced networks. Left: same as figure 2c. Right: psychometric response
matrices showing the proportion of positive responses in the f1 − f2 plane. (d) Low-dimensional dynamics of
internal collective variables. Left: responses to the first stimulus (colors represent different values of f1). Right:
responses throughout the whole trial to a range of values for the second stimulation (f1 fixed at 30Hz, colors
represent different values of f2). (e) Circuit diagram representing the reduced model.
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(Fig. 5d), while the second internal variable implemented the comparison after the second stimulus (Fig. 5d).
Similarly to the context-dependent decision making task, more than one population was needed to implement
the task, as networks generated by resampling from a single population scrambled the performance (Fig. 5c).
Fitting instead two clusters in the seven-dimensional loading space (two input, one readout and four connectivity
patterns) showed that two sub-populations were sufficient (Fig. 5b), as networks generated by sampling from
the fitted two-population distribution performed the task with full accuracy (Fig. 5c).

Altogether, training and randomly regenerating networks revealed that several populations were required
for flexible input-output tasks. The precise role of the various populations was however not immediately clear
from the low-dimensional dynamics in the trained networks.

2.4 Mechanism: reconfiguration of network dynamics by gain modulation

To unveil the mechanisms underlying flexible input-output mappings in networks with several sub-populations,
we performed a mean-field analysis of the dynamics. Here we first lay out the general principles revealed by the
analysis, and then apply them specifically to networks trained on the two flexible tasks described above.

For concreteness, we consider a network with R = 2 connectivity modes, and two input patterns IA and IB

driven by scalar inputs uA(t) and uB(t). Such a network is described by two internal collective variables κ1 and
κ2, and our mean-field analysis showed that the dynamics of these variables is equivalent to a simple two-unit
circuit:

τ
dκ1
dt

= −κ1 + σ̃n(1)m(1)κ1 + σ̃n(1)m(2)κ2 + σ̃n(1)IAuA(t) + σ̃n(1)IBuB(t)

τ
dκ2
dt

= −κ2 + σ̃n(2)m(1)κ1 + σ̃n(2)m(2)κ2 + σ̃n(2)IAuA(t) + σ̃n(2)IBuB(t).

(3)

The internal variables and the inputs are coupled through effective couplings σ̃ab, which depend both on the
hardwired input and connectivity patterns, and implicitly on the collective variables themselves, so that the
dynamics of internal variables is non-linear.

For networks consisting of a single Gaussian population, the effective couplings are simply given by σ̃ab =
〈Φ′〉σab, where σab is the covariance between the corresponding input-selection pattern (a = n(1),n(2)) and
output or input patterns (b = m(1),m(2), IA, IB), while 〈Φ′〉 is the average gain of all the neurons, that
depends implicitly both on internal variables and external inputs (see Methods section 4.5). Importantly, only
input patterns having a non-zero covariance with the input-selection patterns n(1) and n(2) directly drive the
internal variables. In contrast, inputs orthogonal to input-selection patterns do not directly drive the dynamics
of internal variables, but modulate the value of the gain 〈Φ′〉. These two types of inputs can therefore in
principle play the roles of drivers and modulators [Sherman and Guillery, 1998]. Crucially however, in networks
consisting of a single population, all the effective couplings are scaled by the same gain factor, which strongly
limits the range of possible dynamics for the internal variables [Beiran et al., 2020], and the possible roles of
modulatory inputs.

We next turn to a network in which neurons belong to P distinct sub-populations. Each connectivity or
input pattern is now split into P sub-patterns of size αpN , one for each sub-population p, and each of the

sub-populations is specified by its own set of overlaps σ
(p)
ab between sub-patterns. A key difference with single-

population networks is that now each sub-population has its own gain factor 〈Φ′〉p that can be modulated
independently by inputs, or internal dynamics. The collective dynamics is described by the same dynamical
system as in Eq. (3), but the effective couplings are now weighted averages of connectivity overlaps for different
populations:

σ̃ab =
P∑
p=1

αp〈Φ′〉pσ(p)
ab . (4)

As the gain of each sub-population can be modified independently by modulatory inputs, increasing the number
of populations considerably extends the range of possible dynamics, and in fact allows a rank two network to
implement in principle any two-dimensional dynamical system [Beiran et al., 2020]. In particular, modulating
the gains in different trials or epochs of a task allows the sub-populations to flexibly remodel effective couplings
to shape the collective dynamics, and therefore the performed computation. We next describe how this general
mechanism explains the computations in the two flexible tasks of Fig. 4 and 5.
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Figure 4: Context-dependent decision-making task. The input to the network consisted of a stimulus composed
of two fluctuating scalar features along two different input patterns, as well as two constant contextual cues
along two additional input patterns. The contextual cues indicated in each trial the identity of the stimulus
feature to be integrated. The network was trained to report the sign of the average of the relevant feature.
(a) Illustration of network dynamics in two trials with an identical stimulus but different contextual cues,
leading to opposite responses (left and right columns). Top-bottom: contextual cues and stimulus inputs;
activity of 6 random neurons, 3 from each identified population; output generated by the readout. Grey and
orange outlines indicate respectively the stimulus presentation and output epochs. (b) Statistics of the trained
pattern loadings, determined by a clustering analysis in the seven-dimensional loading space. Left: three two-
dimensional projections of the loading space, showing the presence of two clusters that defined two different
sub-populations. The regression lines indicate covariances between loadings for each cluster. Right: empirical
covariances between patterns for each of the two populations.
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Figure 4 (previous page): (c) Accuracy and response matrix of trained, resampled and minimal reduced networks.
Ten resampled networks were generated by sampling loadings from either a single-population (p = 1) or a two-
population (p = 2) Gaussian distribution with covariance matrices fitted to the trained network (error bars
display standard deviations). The reduced model was generated by adjusting only the covariances outlined in
black in (b), and corresponds to the effective circuit shown in (f). (d) Trajectories of activity in response to the
2 trials of panel a in the two-dimensional subspaces corresponding to the internal collective variable κ and the
external collective variable uA (left) or uB (right). These sub-spaces are spanned respectively by vectors m-IA,
and m-IB . (e) Distribution of single neuron gains across the two populations, in the two contexts. (f) Circuit
diagram representing the reduced model. (g) Contribution of the two populations to the effective input to the

internal variable in the two contexts, defined as 1
N

∑
i niφ(

∑
k I

(k)
i ).

For the context-dependent decision-making task, the trained network consisted of a single connectivity mode
with patterns m and n, and therefore a single internal variable κ, while the input consisted of two patterns IA

and IB for the two stimulus features, and two patterns IctxA and IctxB for the contextual cues. The minimal
trained networks consisted of two sub-populations, so that each connectivity and input pattern was split into
two sub-patterns. Combining the clustering analysis with mean-field theory revealed three key properties for
these sub-patterns. First, input-feature and contextual cue patterns play repectively the roles of drivers and
modulators. Indeed, the contextual cue patterns IctxA and IctxB were mostly orthogonal to input-selection
pattern n (Fig. 4b), and therefore modulated gains but did not drive the dynamics, while input-feature patterns
had non-zero covariances with the input-selection pattern (Fig. 4b) and therefore directly drove the dynamics
of the internal variable. Second, each of the two input-selection sub-patterns was correlated with only one
of the input-feature patterns. Specifically, for the first population, the input-selection sub-pattern overlapped

with input pattern IA and not IB (i.e. σ
(1)

nIA
> 0 and σ

(1)

nIB
≈ 0), and conversely the second sub-population

input-selection pattern overlapped with feature input pattern IB and not IA (σ
(2)

nIA
≈ 0 and σ

(2)

nIB
> 0, see

Fig. 4b). Third, each context-cue pattern had a strong variance on a different sub-population, and therefore
the two contextual cues modulated the gains 〈Φ′〉1 and 〈Φ′〉2 of the two populations in a differential manner
(Fig. 4g). Altogether, the dynamics of the internal collective variable could therefore be described by a reduced
model of the form

dκ

dt
= −κ+ σ̃mnκ+ σ

(1)

nIA
〈Φ′〉1uA(t) + σ

(2)

nIB
〈Φ′〉2uB(t) (5)

with 〈Φ′〉1 and 〈Φ′〉2 varying in opposite directions in the two contexts. As a consequence, the effective couplings
between stimulus features uA/uB and the internal variable were strongly modulated by contextual cues through
gain-modulation, with contextual cues effectively switching off an input to κ in each context. This reduced
model was analogous to classical perceptual decision making (Fig. 2c), but the internal variable selectively
integrated only one stimulus feature in each context. This mechanism allowed the network to flexibly respond
to non-congruent stimuli, and consequently the networks generated using this reduced model performed the
task with high accuracy (Fig. 4c). Importantly, the contextual gating of the integrated stimulus feature relied
on recurrent dynamics and took place only on the level of effective inputs to the internal variable, not at
the level of overall inputs to the network. On the overall population level, the two stimulus features were
equally represented in both contexts, but along directions orthogonal to the internal collective variable (Fig. 4d)
as observed in experimental data [Mante et al., 2013]. The selective gating identified in the reduced model
(Eq. (5)) is therefore not directly apparent at the level of low-dimensional dynamics of the trained network
(Fig. 4d), but can be revealed by splitting the contribution from the two populations to the internal variable
(compare Fig. 4g for the trained network with Fig. S3b for the reduced model).

For the delay-match-to-sample task, the trained network consisted of two connectivity modes, and therefore
the internal dynamics was described by two internal variables κ1 and κ2. The stimuli corresponded to two
patterns IA and IB , which were activated in two trial epochs (Fig. 5a). In contrast to the context-dependent
decision-making task, the input patterns were essentially orthogonal to the input-selection connectivity patterns
(Fig. 5a), and therefore did not directly drive the internal collective variables, but acted instead as modulators.
As a consequence, the dynamics was mostly driven by recurrent interactions between internal collective variables,
and could be visualised in terms of a flow in a dynamical landscape in the κ1 − κ2 plane (Fig. 5d). The main
effect of the inputs was to shape the trajectories of neural activity in this plane by modulating the dynamical
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Figure 5: Delay match-to-sample task. A rank-two network received on each stimulation period one out of two
stimuli A or B, represented by different input patterns, and was trained to report whether the two stimuli were
identical or different. (a) Illustration of the dynamics in two trials corresponding to stimuli A-A (left) and B-A
(right). Top-bottom: inputs to the network; traces of six neurons, three from each identified sub-population;
readout generated by the output. (b) Statistics of the trained pattern loadings, determined by a clustering
analysis in the seven-dimensional loading space. Left: two two-dimensional projections of the loading space,
showing the presence of two clusters that defined two different sub-populations. Right: empirical covariances
between patterns for each of the two sub-populations. (c) Task accuracy and response matrices for the trained,
resampled and minimal reduced networks. Ten resampled networks were generated by sampling loadings from
either a single-population (P = 1) or a two-population (P = 2) Gaussian distribution with covariance matrices
fitted to the trained network (error bars display standard deviations). The reduced model was generated by
adjusting only the covariances outlined in black in (b).
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Figure 5 (previous page): (d) Trajectories of activity in the two-dimensional subspace corresponding to the
two internal collective variables. This subspace is spanned by vectors m(1) and m(2). Trajectories in the four
possible trials are shown in different colors. The color density plot and flow lines display the dynamical landscape
corresponding to the speed and orientation of the autonomous dynamics of the network. (e) Distribution of
single neuron gains across both sub-populations in presence of different inputs. (f) Dynamical landscape in
the 2D subspace corresponding to the two internal collective variables, in presence of different inputs, and the
associated circuit diagrams. Stable fixed points of the dynamics are indicated by filled white dots, unstable and
saddle points by dots filled in black. (g) Illustration of the different cuts in the full state space corresponding
to the different two-dimensional dynamical landscapes shown in (f).

landscape at different trial epochs (Fig. 5f,g and Supplementary Fig. S4c,d). These modulations of the dynamical
landscape relied on the organization of the network in two sub-populations. Indeed, we found that overlaps
between sub-patterns of connectivity vectors differed strongly between the two populations (Fig. 5b). As shown
in Eq. (4), the effective coupling between the internal collective variables is determined by a weighted average
of overlaps corresponding to the individual sub-populations, where the weights are given by the gains 〈Φ′〉p of
individual sub-populations. The stimuli differentially modulated the gains of the two sub-populations (Fig. 5e),
so that the effective couplings interpolated between the overlaps of the two sub-populations. In the trained
network described in Fig. 5, we found that the first population implemented positive feedback between the two
internal variables, while the second population implemented negative feedback. In absence of inputs, positive
and negative feedback balanced each other (Fig. 5f left), but individual stimuli disrupted this balance and
strongly modified the dynamical landscape. In particular stimulus A strongly enhanced negative feedback
(Fig. 5f middle), which led to a limit-cycle in the dynamics that opened a fast transient channel that could flip
neural activity in the κ1−κ2 plane [Chaisangmongkon et al., 2017]. Each trial in the task therefore corresponded
to a different sequence of dynamical landscapes and therefore led to a different trajectory from the initial to the
final state of neural activity that determined the output. A minimal, reduced model built from the observed
population statistics performed the task with accuracy indistinguishable from the trained network (Fig. 5c),
thus confirming the dynamical mechanisms behind the computation.

In summary, we found that networks with multiple sub-populations implemented flexible computations by
exploiting gain modulation to modify effective couplings between collective variables. The two tasks displayed
in Fig. 4 and Fig. 5 illustrate two different variants of this general mechanism. In the context-dependent
decision-making task, the sensory inputs acted as drivers of the internal dynamics, and contextual inputs as
gain modulators that controlled effective coupling between the sensory inputs and the internal collective variable.
In contrast, in the delay-match-to-sample task, sensory inputs acted as modulators of recurrent interactions,
and gain modulation controlled only the effective coupling between the two internal variables. More generally,
modulations of inputs and modulations of recurrent interactions could be combined to implement more complex
tasks.

2.5 Implications for structure in neural selectivity

Our analyses of trained networks showed that flexible tasks required a sub-population structure in the connec-
tivity, while simpler tasks did not. We next explored the experimental predictions of these findings. Current
experimental procedures rarely allow to access the connectivity in animals trained on specific tasks. Instead,
experiments typically record the activity of large neural populations during behavior, after animals have been
trained on the task. We therefore examined how the experimentally accessible structure of neural activity
reflects the underlying structure of connectivity.

A common approach to characterizing the relationship between neural activity and the ongoing computation
is to analyze the selectivity of individual cells by performing a linear regression of activity with respect to
controlled or measured task variables, such as stimulus, context or behavioral choice [Park et al., 2014; Mante
et al., 2013; Raposo et al., 2014; Aoi and Pillow, 2018; Kobak et al., 2016]. For each neuron i, and at every time

point t, this approach yields a set of regression coefficients β
(k)(t)
i , which quantify how much the activity depends

on the task variable k. In our computational framework, the inputs xi to the neurons are directly set by the input
patterns I(k) and connectivity patternsm(r) (Eq. (2)), and regression coefficients of firing rates φ(xi) necessarily
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Figure 6. Connectivity structure determines selectivity to task variables. (a) - (e) Regression analysis in a
network trained on the multi-sensory integration task. (a) Relationship between input mode A and regressor
with respect to input A for each neuron. (b) Same for output mode m and choice regressors. (c) Relationship
between input A regressors and input B regressors for each neuron. (d) Relationship between choice and input
A regressors. (e) Clustering stability analysis on the 3 dimensional regressor space. No evidence is found for a
particular number of clusters in this space (see methods). (f) - (g) Regression analysis in a network trained on
the context-dependent decision-making task. (f) Relationship between input mode for context A and regressor
with respect to context A. (g) Same for output mode m and choice regressor. (h) Relationship between context
A and context B regressors, with 2 clusters found on the 5-dimensional regressor space. (i) Relationship between
input A and B regressors, with the same clusters. (j) Clustering stability analysis on the 5-dimensional regressor
space shows evidence for the presence of 2 clusters.
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reflect this network structure, albeit non-linearly through the transfer function φ. In particular, during stimulus

presentation, the components I
(k)
i of the input pattern directly determine the regression coefficients with respect

to the sensory input k. During the decision epoch, the regression coefficients with respect to the choice are in
turn determined by the readout pattern w [Haefner et al., 2013], which in each of the tasks we studied can
be approximated by a linear combination of output connectivity patterns m(r). Since input patterns I(k) and
the output connectivity patterns m(r) determine regression coefficients with respect to stimuli and choice, a
sub-population structure corresponding to clusters in pattern loading space implies the existence of clusters in
the regression space, where each axis corresponds to a regression coefficient with respect to a different variable.
This relationship between sub-population structure in connectivity and in selectivity leads to predictions that
we next illustrate for two specific tasks.

We start with the multi-sensory integration task [Raposo et al., 2014], which is an extension of the perceptual
decision-making task to the situation where stimuli of two different modalities need to be integrated. Impor-
tantly, in this task, the sensory inputs corresponding to the two modalities are always congruent, i.e. they point
to the same decision. We found that this task could be implemented by a unit-rank, single population network
similar to perceptual decision-making (see also [Sederberg and Nemenman, 2020]), the only difference being
that the two modalities correspond to two independent input patterns (Supplementary Fig. S8). The loadings
of these input patterns onto individual neurons directly determine the regression coefficients with respect to
the two stimulus modalities through a non-linear transform (Fig. 6a). As the network is unit-rank, it possesses
a single output connectivity pattern, which fully determines the readout, and the regression coefficients with
respect to choice therefore correspond to a non-linear transform of the loadings for the output connectivity
pattern (Fig. 6b). Since the network consists of a single population, the input and connectivity patterns form a
single cluster in loading space (Supplementary Fig. S8b). As long as the single-unit firing rates do not strongly
saturate, this implies the presence of a single cluster in the space of regression coefficients, a situation referred
to as fully mixed, or category-free selectivity [Raposo et al., 2014; Hirokawa et al., 2019]. To test the presence or
absence of clusters in the regressor space, we ran a bootstrap stability analysis [Hirokawa et al., 2019] (Fig. 6e,
Methods), essentially applying a clustering algorithm to several subsamples of the data and measuring the con-
sistency of its results accross subsamples. This analysis showed that all clusterings in more than one population
provided a poor fit to the data, thus indicating a non-clustered structure in regressor space. Detailed analyses
of selectivity in neural activity recorded in this task have precisely pointed out such a lack of structure [Raposo
et al., 2014], and are therefore in line with the predictions of our network models.

We next turn to the context-dependent decision-making task [Mante et al., 2013], which is essentially an
extension of the multi-sensory integration task to the case where the two modalities can indicate incongruent,
conflicting choices, and the relevant modality is indicated by a contextual cue. In this task, on top of sensory and
choice regressors, we have also access to regression coefficients with respect to the two contextual cues, which
directly reflect the corresponding contextual input patterns (Fig. 6f). As shown in previous sections, correct
context-dependent responses to incongruent stimuli in trained networks require the presence of two different
populations, that correspond to two clusters in loading space determined in particular by the two contextual
inputs (Fig. 4b). These induce corresponding clusters in the regression space, for which our bootstrap analysis
found evidence (Fig. 6j), and that strongly match the sub-populations in the connectivity loading space (F1-
score=0.89). These are specifically apparent in the plane of regression coefficients to the contexts (Fig. 6h), but
not along other projections (Fig. 6i). While the selectivity is still mixed and varies strongly among neurons, it
is not fully random and contains structure that is key to the task performance. Note however that the strength
of clustering in the regression space depends both on the strength of clustering in the loading space, and on how
much individual neurons engage the non-linearity, since the regression coefficients are determined from firing
rates φ(xi). In particular, strongly non-linear activity may induce additional, spurious clusters in regression
space. Functional clusters that take part in computations can then be identified either by comparing clusters in
the loading and regression spaces, or by examining the effects of inactivating sub-populations as we show next.

2.6 Predictions for inactivations of specific sub-populations

In addition to implications for single-neuron selectivity, the functional sub-population structure present in
networks trained on flexible input-output tasks implies specific effects on the output when clusters are silenced,
and therefore leads to predictions for inactivation experiments that we illustrate here for the same two tasks as
in Fig. 6.
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In our network models, the input and connectivity patterns are highly distributed over individual neurons.
As a consequence, the dynamics and computations in the networks are highly resilient to random, unpatterned
perturbations. Inactivating a large random fraction of the neurons therefore leaves the input-output transform
intact, and merely increases the effective noise in the output, irrespective of the task, and irrespective of whether
the network contained a single (Fig. 7b) or multiple (Fig. 7d) subpopulations. When the computation relies
on the presence of several sub-populations, inactivating instead neurons belonging to a specific sub-population
produces highly specific effects that are determined by the role of that sub-population in the computation. In
the context-dependent decision-making task, inactivating randomly half of the neurons within a sub-population
responsible for context A switched the computation in context A from feature-selection to feature integration
similar to the multi-sensory integration task, while it essentially left intact the input-output association in
context B (Fig. 7e). Inactivating a specific sub-population therefore directly revealed its role in selecting the
relevant stimulus feature to integrate.

The inactivations displayed in Fig. 7e,f assume that connectivity-defined sub-populations have been pre-
viously identified and made accessible for perturbations [Peron et al., 2020]. In a more realistic setting, the
neurons belonging to the relevant sub-populations need first to be functionally identified, and our model provides
a direct guidance for that preliminary step. As outlined above, the model predicts that neurons that specif-
ically select the feature A or B correspond to distinct clusters in the plane defined by regression coefficients
with respect to contextual cues (Fig. 6h). Since these neurons are also the ones that respond most strongly to
separate contextual cues, a simple alternative for identifying the two sub-populations relevant for contextual
computations is therefore to select the two groups of neurons with contextual regression coefficients larger than
a threshold. Inactivating each of the obtained sub-populations then leads to the same specific disruptions of
performance as inactivating the actual connectivity-defined subpopulations (Fig. 7g,h).
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Figure 7. Population structure predicts specific effects for inactivations. (a) Baseline performance matrices for
the multi-sensory integration task. (b) Performance matrices after randomly inactivating half of the network
for the multi-sensory integration task. (c) Baseline performance matrices for the context-dependent decision-
making task. (d) Performance matrices after randomly inactivating half of the network for the context-dependent
decision-making task. (e) Left: half of the neurons in population 1 were inactivated (red-crosses). Right: Perfor-
mance matrices after randomly inactivating half of population 1. (f) Same as (e) for population 2 inactivations
for the context-dependent decision-making task. (g,h) Same as (e,f) but with inactivated neurons chosen based
on their selectivity to context A or B.
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3 Discussion

Our goal was to determine whether and when a multi-population structure is necessary for a network to perform
specific computations. To address this question, we reverse-engineered recurrent neural networks trained on
a set of neuroscience tasks using a new theoretical framework, in which sub-populations of neurons, and the
dimensionality of the dynamics are controlled independently. Although a number of tasks could be implemented
by increasing dimensionality in networks where all neurons were statistically equivalent, we found that tasks
based on flexible input-output mappings instead required neurons to be structured in several sub-populations
that played functionally distinct roles. It has been previously argued that the organization in sub-populations
may be important in early sensory areas where individual cells perform specific computations [Hardcastle et al.,
2017; Kastner et al., 2015; Tanaka et al., 2019; Ocko et al., 2018], and less prevalent in higher cortical areas
where neurons typically multi-task [Raposo et al., 2014; Fusi et al., 2016]. Our results instead support the idea
that some neurons need to be specialized for specific parts of the computation if a task is complex enough [Yang
et al., 2019], so that multi-population structure is expected also in higher cortical areas, as found in [Hirokawa
et al., 2019].

Our theoretical analysis shows that, within the collective dynamics paradigm where trajectories of activity
implement computations, sub-population structure plays a fundamentally complementary role to the dimen-
sionality of the dynamics. While the dimensionality sets the number of latent, collective variables available for
computations, the sub-population structure in contrast determines the collective dynamics of these variables,
and their response to inputs. Mechanistically, this role of sub-population structure can be understood from two
perspectives. From the neural state-space perspective, the collective dynamics explore a low-dimensional recur-
rent subspace, and the sub-population structure shapes the non-linear dynamical landscape of the activity in this
subspace [Sussillo and Barak, 2013]. Specifically, different inputs differentially activate different populations,
and shift the recurrent sub-space into different regions of the state-space with different non-linear dynamical
landscapes (Fig. 5g). A complementary picture emerges from the perspective of an effective circuit description
(Fig. 1d), where the collective dynamics is described in terms of interactions between the latent, collective
variables through effective couplings. In that picture, the sub-population structure allows inputs to control the
effective couplings by modulating the average gain of different sub-populations. The computations then rely on
two functionally distinct types of inputs: drivers that directly entrain the collective variables, and modulators
that shape the gains of the different sub-populations, and thereby the interactions between collective variables.
Interestingly, gain modulation has long been posited as a mechanism underlying selective attention [Rabinowitz
et al., 2015], a type of processing closely related to flexible input-output tasks considered here. While patterns
of gain modulation [Salinas and Thier, 2000; Ferguson and Cardin, 2020], and the distinction between drivers
and modulators [Sherman and Guillery, 1998] are fundamentally physiological concepts, here we found that
analogous mechanism emerge in abstract trained networks at the population level of collective variables. Note
that in our framework, driver and modulators are indistinguishable at the single cell level, where they both
correspond to additive inputs (in contrast to eg neuro-modulation that may multiplicatively control the gain of
individual neurons, see [Stroud et al., 2018]). The functional distinction between drivers and modulators instead
stems from the relation between the collective pattern of inputs, and the recurrent connectivity in the network.

Our framework is based on a highly abstract concept of sub-populations, defined as clusters in the connec-
tivity loading space. In particular, we did not implement any explicit anatomical constraint such as Dale’s law,
hence sub-populations appear for purely functional, computational reasons. What could be the physiological
counter-parts of the different functional sub-populations that we identified? There are at least two distinct
possibilities. In the network trained on the context-dependent decision-making task, we found that the two sub-
populations differed only in the relationship of their connectivity with respect to feed-forward and contextual
inputs. Such sub-populations therefore bear an analogy with input- and output-defined cortical populations
such as for instance defined by inputs from the thalamus [Harris and Mrsic-Flogel, 2013; Schmitt et al., 2017]
or outputs to the striatum [Znamenskiy and Zador, 2013]. In the network trained on the delay-match-to sample
task, the two sub-populations instead differed at the level of recurrent connectivity: one population implemented
positive, and the other negative feedback, the two being in general balanced, except in response to one of the two
stimuli. This situation is reminiscent of excitatory and inhibitory sub-populations, which effectively implement
positive and negative feedback in biological networks. More generally, these observations pave the way for more
systematic comparisons between functional and anatomical cell types, though additional biological constraints
will need to be included in our network models.
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In this study, for each task we explicitly sought to identify networks with the minimal rank and minimal
number of sub-populations. This was achieved in particular by directly constraining the connectivity matrix
to be of low-rank, and by approximating the distribution of loadings with the minimal number of Gaussian
populations, an approach akin to a strong type of regularization. Remarkably, networks trained without the
low-rank constraint lead to connectivities that are also based on a low-rank structure [Schuessler et al., 2020b],
but this structure is generally of higher rank than found here, and correlated with the underlying full-rank
initial connectivity. The solutions to the various tasks we identified here are therefore not unique - other
solutions with higher rank and higher number of sub-populations appear depending on the details of training
(see Supplementary section S3 and Fig. S5, S10). Our method for reducing the trained networks to simpler
effective models is still applicable to trained networks with higher rank and number of sub-populations. The
overall computational mechanism remains based on gain-controlled modulation of effective couplings, but the
specific instantiations of this mechanism become more complex.

The fact that neurons are selective to mixtures of task variables rather than individual features has emerged as
one of the defining properties of higher order areas in the mammalian cortex [Fusi et al., 2016]. Mixed selectivity
however does not necessarily preclude the presence of any sub-population structure. Indeed, moving beyond the
dichotomy between pure and mixed selectivity, recent works have begun to distinguish between various types
of mixed selectivity. In particular, fully random mixed selectivity, where the distribution in selectivity space is
fully isotropic [Raposo et al., 2014] has been contrasted with structured mixed selectivity, where cells can be
assigned to different categories based on clusters in the space of selectivity to different task variables [Hirokawa
et al., 2019]. Here we followed a similar approach by determining whether the distribution in the connectivity
space could be approximated by a single Gaussian cluster, or requires a mixture of several Gaussians that define
effective populations. Since the presence of sub-population structure in the connectivity implies the presence of
clusters in selectivity space (Fig. 6h), our results predict that the expected type of mixed selectivity depends
on the complexity of the performed task. For tasks requiring flexible input-output associations, we predict the
presence of clusters in the selectivity space, but this statistical structure is however computationally necessary
only for selectivity to specific variables, that depend on the considered task, while selectivity to other variables
can be fully random. Ultimately, identifying specific signatures of computational mechanisms in the neural data
therefore requires a careful comparison with recurrent network models constrained by both behavior and neural
activity on a task-by-task basis.
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4 Methods

4.1 Low-rank networks

We considered networks of N rate units that evolve over time according to

τ
dxi
dt

= −xi +
N∑
j=1

Jijφ(xj) + IFFi (t) + ηi(t). (6)

Here xi represents the activation or total current received by the ith recurrent neuron, and φ(xi) = tanh(xi) is
its activity or firing rate. Each neuron received an independent white-noise input ηi(t).
The connectivity matrix J was constrained to be of rank R, so that it can be represented as

Jij =
1

N

R∑
r=1

m
(r)
i n

(r)
j (7)

i.e. as a sum of R modes, the mode r consisting of an outer-product of vectors m(r) = {m(r)
i }i=1...N and

n(r) = {n(r)i }i=1...N . Throughout the text, we refer to the vectors m(r) and n(r) as the connectivity patterns,
with m(r) the r-th output pattern, and n(r) the r-th input-selection pattern. Without loss of generality, we will
assume that all the output patterns (and respectively all the input-selection patterns) are mutually orthogonal.
Such a representation is uniquely defined by singular-value decomposition of the connectivity matrix.
The network received feedforward inputs IFF (t) generated by Nin temporally-varying scalar stimuli us(t), each

fed into the network through a set of weights I
(s)
i :

IFFi (t) =

Nin∑
s=1

I
(s)
i us(t). (8)

We refer to the vector I(s) = {I(s)i }i=1...N as the s-th input pattern.
The output of the network is defined by readout values

zk =
1

N

N∑
j=1

w
(k)
j φ(xj) k = 1 . . . Nout. (9)

where w(k) = {w(k)
i }i=1...N is the k-th readout pattern.

The time constant of neurons was τ = 100ms. For simulation and training this equation was discretized using
Euler’s method with a time step ∆t = 20ms. The white noise ηi is simulated by drawing at each time step from
a centered Gaussian distribution of standard deviation 0.05.

4.2 Low-dimensional dynamics

The dynamics defined by Eq. (6) can be represented as a trajectory in the N -dimensional state space in which
each axis corresponds to the activation xi of unit i. In low-rank networks, the dynamics is confined to a low-
dimensional subspace of this state-space [Mastrogiuseppe and Ostojic, 2018]. Inserting Eq. (7) into Eq. (6),
the activation vector x = {xi}i=1...N can be expressed in terms of R internal collective variables κr, and Nin
external collective variables vs:

x(t) =
R∑
r=1

κr(t)m
(r) +

Nin∑
s=1

vs(t)I
(s)
⊥ . (10)

The first term on the right-hand side in Eq. (10) represents the component of the activity on the recurrent space
[Wang et al., 2018; Remington et al., 2018] defined as the sub-space spanned by the output connectivity patterns
{m(r)}r=1...R. The corresponding internal collective variables κr are defined as projections of the activation
vector x on the m(r):
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κr(t) =
1

‖m(r)‖2
N∑
j=1

m
(r)
j xj(t). (11)

The second term on the right-hand side in Eq. (10) represents the component of the activity on the input space

defined as the sub-space spanned by {I(s)⊥ }s=1...Nin
, the set of input vectors orthogonalized with respect to

the recurrent sub-space. The corresponding external collective variables vs are defined as projections of the

activation vector x on the I
(s)
⊥ :

vs(t) =
1

‖I(s)⊥ ‖2
N∑
j=1

I
(s)
⊥,jxj(t). (12)

The dimensionality of the dynamics in activation space is thus given by the sum of the dimension R of the

recurrent sub-space, i.e. the rank of the connectivity, and the dimensionality of the input space {I(s)⊥ }s=1...Nin .
The dynamics of the internal variables κr is obtained by projecting Eq. (6) onto the output connectivity patterns
m(r):

τ
dκr
dt

= −κr(t) + κrecr (t) +
1

‖m(r)‖2
N∑
j=1

m
(r)
j

Nin∑
s=1

Isj us(t) (13)

where κrecr represents the recurrent input to the r-th collective variable, defined as the projection of the firing
rate vector φ(x) onto the input-selection pattern n(r):

κrecr (t) =
1

N

N∑
j=1

n
(r)
j φ(xj(t)). (14)

Inserting Eq. (10) into κrecr leads to a closed set of equations for the κr:

κrecr (t) =
1

N

N∑
j=1

n
(r)
j φ

(
R∑

r′=1

κ′r(t)m
(r′)
j +

Nin∑
s=1

Is⊥,jvs(t)

)
. (15)

The dynamics of the external variables vs is obtained by projecting Eq. (6) onto the orthogonalized input

patterns I
(s)
⊥ . They are given by external inputs us(t) filtered by the single neurons time constant τ

τ
dvs
dt

= −vs + us. (16)

Throughout the main text, we assume for simplicity that the stimuli us vary on a timescale slower than τ , and
replace vs with us.
The readout values {zk}k=1...Nout

can then be expressed in terms of the collective variables

zk(t) =
1

N

N∑
j=1

w
(k)
j φ

(
R∑

r′=1

κ′r(t)m
(r′)
j +

Nin∑
s=1

Is⊥,jvs(t)

)
. (17)

4.3 Loading space and mean-field limit

The dynamics of the collective variables is fundamentally determined by the components of connectivity and
input patterns through Eq. (15). From Eq. (10), and by analogy with factor analysis, we call loadings the
components of different patterns on each neuron. Neuron i is therefore characterized by the 2R + Nin + Nout
loadings

{{n(r)i }r=1...R, {m(r)
i }r=1...R, {I(s)i }s=1...Nin , {w(q)

i }q=1...Nout}. (18)

Each neuron can thus be represented as a point in the loading space of dimension 2R + Nin + Nout, and the
connectivity of the full network can therefore be described as a set of N points in this space. Note that the
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right-hand-side of Eq. (15) consists of a sum of N terms, where the term j contains only the loadings of neuron
j. The loadings of different neurons therefore do not interact in κrecr , so that the r.h.s of Eq. (15) can be
interpreted as an average over the set of points corresponding to all neurons in the loading space.
Our main assumption will be that in the limit of large networks (N →∞), the set of points in the loading space
can be described by a probability distribution P (n(1), . . . , n(R),m(1), . . . ,m(R), I(1), . . . , I(Nin), w(1), . . . , w(Nout)) :=
P (n,m, I, w). In this mean-field limit, the r.h.s. of Eq. (15) becomes:

κrecr (t) =

∫
dm dn dI dw P (n,m, I, w) n(r)φ

(
R∑

r′=1

κr′(t)m
(r′) +

Nin∑
s′=1

I
(s′)
⊥ vs′(t)

)
(19)

where we have used the shorthand dmdn dI dw =
∏R
r′=1

∏Nin

s′=1

∏Nout

q′=1

(
dm(r′) dn(r′) dI(s

′) dw(q′)
)

. The col-

lective dynamics is therefore fully specified by the single-neuron distribution of pattern loadings. Once this
distribution is specified, any network generated by sampling from it will have identical collective dynamics in
the limit of a large number of neurons.
This also sets the values of the readouts

zk(t) =

∫
dm dn dI dw P (n,m, I, w) w(k)φ

(
R∑

r′=1

κr′(t)m
(r′) +

Nin∑
s′=1

I
(s′)
⊥ vs′(t)

)
. (20)

4.4 Statistics of loadings and sub-populations

To approximate any arbitrary joint distributions of loadings P (n,m, I, w), we used multivariate Gaussian mix-
ture models (GMMs). This choice was based on the following considerations: (i) GMMs are able to approximate
an arbitrary multi-variate distribution [Kostantinos, 2000]; (ii) model parameters can be easily inferred from
data using GMM clustering; (iii) GMMs afford a natural interpretation in terms of sub-populations (iv) GMMs
allow for a mathematically tractable and transparent analysis of the dynamics as shown below.
In a multivariate Gaussian mixture model, every neuron belongs to one of P sub-populations. For a neuron in

sub-population p, the set of loadings {{n(r)i }r=1...R, {m(r)
i }r=1...R, {I(s)i }s=1...Nin , {w(q)

i }q=1...Nout} is generated
from a multivariate Gaussian distribution with mean µp and covariance Σp, where µp is a vector of size

2R+Nin +Nout, and Σp is a covariance matrix of size (2R+Nin +Nout)
2
. The full distribution of loadings is

therefore given by

P (n,m, I, w) =
P∑
p=1

αpN (µp,Σp) (21)

:=
P∑
p=1

αpPp(n,m, I, w) (22)

where the coefficients αp define the fraction of neurons belonging to each sub-population.
Each sub-population directly corresponds to a Gaussian cluster of points in the loading space. The vector µp
determines the center of the p-th cluster, while the covariance matrix Σp determines its shape and orientation.

For a neuron i belonging to population p, we will write as σ
(p)
ab the covariance between two loadings a and b, with

a, b ∈ {{n(r)}r=1...R, {m(r)}r=1...R, {I(s)}s=1...Nin
, {w(q)}q=1...Nout

}. Note that because the output patternsm(r)

(resp. input-selection patterns n(r)) are mutually orthogonal, the covariances between the loadings {m(r)
i }r=1...R

(respectively {n(r)i }r=1...R) vanish.
Since every neuron belongs to a single population, the r.h.s of Eq. (15) can be split into P terms, each corre-
sponding to an average over one population. As within each population the distribution of loadings is a joint
Gaussian, Eq. (19) becomes a sum of P Gaussian integrals

κrecr (t) =
P∑
p=1

αp

∫
dm dn dI dw Pp(n,m, I, w) n(r) φ

(
R∑

r′=1

κr′(t)m
(r′) +

Nin∑
s′=1

I
(s′)
⊥ vs′(t)

)
. (23)
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4.5 Effective dynamics of internal variables

In the following, we focus on zero-mean multivariate Gaussian mixture distributions for the loadings, and input
patterns orthogonal to {m(r)}r=1...R, as distributions with these assumptions were sufficient to describe trained
networks. The more general case of Gaussian mixtures with non-zero means is treated in [Beiran et al., 2020].
Using Stein’s lemma for Gaussian distributions, the dynamics of the internal collective variables can be expressed
as a dynamical system (see SI section S1)

dκr
dt

= −κr +
R∑

r′=1

σ̃n(r)m(r′)κr′ +

Nin∑
s=1

σ̃n(r)I(s)vs. (24)

For Eq. (3) in the main text, vs were replaced by us which amounts to assume that inputs vary slowly with
respect to the single neuron time constant τ .
In Eq. (24), σ̃n(r)m(r) represents the effective self-feedback of the collective variable κr, σ̃n(r)m(r′) sets the
interaction between the collective variables κr and κr′ , and σ̃n(r)I(s) is the effective coupling between the input
us and κr. These effective interactions between the internal variables are given by weighted averages over
populations

σ̃ab =
P∑
p=1

αpσ
(p)
ab 〈Φ′〉p (25)

where σ
(p)
ab is the covariance between loadings a and b for population p, and 〈Φ′〉p is the average gain of population

p, defined as

〈Φ′〉p = 〈Φ′〉(∆(p)) (26)

with

〈Φ′〉(∆) =
1√
2π

∫ +∞

−∞
dz e−z

2/2φ′(∆z) (27)

and

∆(p) =

√√√√ R∑
r′=1

(σ
(p)

m(r′))
2κ2r′ +

Nin∑
s=1

(σ
(p)

I(s)
)2v2s (28)

the standard deviation of activation variables in population p, where σ
(p)
a is the variance of a pattern a on

population p.

In Eq. (24), the covariances σ
(p)
ab are set by the statistics of the hard-wired connectivity and input patterns,

but the gain factors 〈Φ′〉p depend on both the internal and external collective variables κk and vj . As a
consequence, the dynamics in Eq. (24) is non-linear, and in fact it can be shown that given a sufficient number
of sub-populations, the right-hand side in Eq. (24) can approximate any arbitrary dynamical system [Beiran
et al., 2020].
Eq. (24) shows that feed-forward inputs to the network can have two distinct effects on the collective dynamics of
internal variables κr. If the input pattern s overlaps with the r-th input-selection pattern, i.e. the corresponding

covariance σ
(p)

n(r)I(s)
is non-zero for population p, the input directly drives the dynamics of κr. In contrast, when

all covariances between the input pattern s and the input selection patterns are zero (i.e. σ
(p)

n(r)I(s)
= 0 for all

r, p), the input can still modulate the dynamics by affecting the gain through Eq. (28) if the variance σ
(p)

I(s)
of

the input on some population p is non-zero. The inputs can therefore play roles of drivers and modulators of
internal dynamics.
The values of the readouts (Eq. (20)) can also be expressed in terms of effective interactions

zk =
R∑

r′=1

σ̃m(r′)w(k)κr′ +

Nin∑
s=1

σ̃I(s)w(k)vs. (29)
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4.6 Network training procedure

We used backpropagation through time [Werbos, 1990] to train networks to minimize loss functions correspond-
ing to specific tasks. For each task (see details below), we specified the temporal structure of trials and the
desired mapping from stimuli u to target readouts ẑ, and then stochastically generated trials. We used the
mean squared error loss function

L =
∑
k,i,t

Mt(z
(k)
i,t − ẑ

(k)
i,t )2 (30)

where z
(k)
i,t and ẑ

(k)
i,t are respectively the actual, and the target readout values and the indices k, i, t respectively

run over readout units, trials and time steps. The terms Mt are {0, 1} masks that were non-zero only during a
decision period at the end of trials, when the readouts were required to match their target values.
We specifically looked for solutions in the sub-space of rank R networks. The loss functions were therefore mini-
mized by computing gradients with respect to the elements of connectivity patterns {m(r)}r=1...R, {n(r)}r=1...R.
We didn’t train the entries of input patterns {I(s)}s=1...Nin

and readout patterns {w(k)}k=1...Nout
but only an

overall amplitude factor for each input and readout pattern (unless specified otherwise). All vectors were initial-
ized with their entries drawn from Gaussian distributions with zero mean and unit standard deviation, except
for the read-out vector, for which the standard deviation was 4. The initial network state at the beginning of
each trial was always set to 0. We used the ADAM optimizer [Kingma and Ba, 2014] in pytorch [Paszke et al.,
2017] with the decay rates of the first and second moments of 0.9 and 0.999, and learning rates between 10−3

and 10−2.
To identify networks of minimal rank that performed each task, the number of connectivity patterns R was
treated as a hyper-parameter. We first trained full rank networks (R = N) and determined the loss LR=N with
which they solved the task. We then started training rank R = 5 networks, and progressively decreased the
rank until there was a sharp increase in trained loss (Supplementary Fig. S6). The minimal rank R∗ was defined
for each task such that LR∗ ' LR=N and LR∗−1 � LR=N .
To ease the clustering and resampling procedure, and approach mean-field solutions, we trained large networks
(of sizes 512 neurons for the perceptual DM and parametric WM tasks and 4096 neurons for the context-
dependent DM and DMS tasks).

4.7 Clustering and resampling of trained networks

Following training, we approximated the obtained distributions of pattern loadings using Gaussian mixture
models with zero-mean components, and then generated new networks by resampling from the obtained dis-
tributions. We specifically sought the smallest number of populations for which the network performed the
task with optimal accuracy (defined for all tasks as the percentage of trials for which the signs of z(k) and ẑ(k)

match).
For a given trained network, we first tried fitting a single multivariate Gaussian by computing the empirical
covariance matrix of pattern loadings (matrix of size (Nin+2R+Nout)

2). We then generated networks by resam-
pling from this distribution, and if they were able to perform the task with optimal accuracy, concluded that the
functionality was well explained by a single population. If not, we performed a clustering analysis in the loading
space by progressively increasing the number of clusters until we found networks that were able to optimally
perform the task. We used variational inference with a precision prior for the mean of 105 to enforce the zero-
mean constraint, using the model BayesianGaussianMixture of the package scikit-learn [Pedregosa et al., 2011].

Since the inference and resampling processes are susceptible to finite-size fluctuations, we occasionally comple-
mented the clustering with some retraining of the covariance matrices found for each component. For this we
developed a class of trainable, Gaussian mixture, low-rank RNNs, in which the covariance structure of each
population is trainable. Since directly training the covariance matrices is hard given that they need to be
symmetric definite positive, we use a trick akin to the reparametrization trick used in variational auto-encoders
[Kingma and Welling]: the set of input, connectivity and readout vectors are defined as a linear transformation
of a basis of i.i.d. normal vectors, such that for any loading vector a:

ai = (b(p)a )TXi, (31)
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where p is the population index of neuron i (sampled from a categorical distribution with weights αpp=1...P

derived by the variational inference), Xi
i.i.d.∼ N (0, 1) are random normal vectors of dimension Nin+ 2R+Nout,

and the vectors b
(p)
a correspond to the rows of the Cholesky factorization of the covariance matrix (such that

σ
(p)
ab = (b

(p)
a )T b

(p)
b see SI section S1 for more details). We then trained the vectors b

(p)
v , with the population

indices being sampled only once, and the Xi being resampled at each training epoch.

The relevance of the clustering process has also been evaluated using a clustering stability measure [Hirokawa
et al., 2019; Luxburg] (see SI figure S11). Formally, for a number of clusters varying from 2 to 5 we have
generated 20 bootstrap subsamples containing each 80% of the neurons. The clustering algorithm is applied to
each subsample and the obtained clusterings between each pair of subsamples are compared with the Adjusted
Rand Index (ARI, value between 0 and 1, 1 indicating perfect agreement between clusterings, 0 indicating total
randomness). For each number of clusters, a distribution of ARIs is thus obtained, for which a value consistently
near 1 indicates that the corresponding number of clusters is relevant for this data.

4.8 Regression analysis

We used linear regression to relate single unit activities in networks performing the context-dependent DM task
and the multi-sensory DM task to behavioral variables. For the context-dependent DM task we determined 5
regressors for each neuron, βctxAi , βctxBi , βAi , βBi and βchoicei , while for the multi-sensory DM task only the 3
latter regressors were computed. The context regressors βctxAi and βctxBi were computed based on the activity
during the context-only epoch, the sensory regressors βAi and βBi during the 200 first ms of the stimulation
epoch, and the choice regressor βchoicei during the decision epoch.
To isolate the effect of contextual inputs on neural activity and obtain the regression coefficients βctxtAi and
βctxtBi , we fit the time-averaged neural activity φ(xi) of neuron i obtained in 3 different contextual conditions:
context A, context B (average over the first context-only time period), no context (average over the fixation
period), using the linear regression model with intercept:

ri = Xβi + εi. (32)

Here ri is a 3-by-1 vector containing the average firing rate of neuron i in the 3 conditions, X is the 3-by-3

design matrix, and βi is a 3-by-1 vector of regression coefficients composed of βctxAi and βctxBi and β
(0)
i (that

we discard). This particular choice of separating the effect of context into two regressors was made to better
retrieve the structure of input patterns to the network, as shown in figure 5.
For both the context-dependent and multi-sensory DM tasks, the selectivity to sensory inputs A and B are
measured by regressing the neural activity during the first 200 ms of the stimulation period against the values

of the coherence ū
(k)
j for a set of 128 input conditions in the context-dependent task (8 values for each coherence

and 2 contexts), 192 for the multi-sensory task (8 values for each coherence and 3 modalities).

4.9 Individual tasks

4.9.1 Perceptual decision making task

Trial structure. A fixation epoch of duration Tfix = 100ms was followed by a stimulation epoch of duration
Tstim = 800ms, a delay epoch of duration Tdelay = 300ms and a decision epoch of duration Tdecision = 300ms.
Inputs and outputs. The feed-forward input to neuron i on trial k was

IFFi (t) = Iiu
(k)(t) (33)

where, during the stimulation period, u(k)(t) = u(k) + ξ(k)(t), with ξ(k)(t) a zero-mean Gaussian white noise
with standard deviation σu = 0.03. The mean stimulus u(k) was drawn uniformly from ± 3.2

100{1, 2, 4, 8, 16} on
each trial. The elements Ii of the input pattern were generated from a Gaussian distribution with zero mean
and unit standard deviation, and fixed during training.
During the decision epoch, a single output z was evaluated through a readout pattern w = {wi}i=1...N , the
elements wi of which were generated from a Gaussian distribution with zero mean and standard deviation of
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4, and fixed during the training. On trial k, the target output value ẑ(k) in the loss function (Eq. (30)) was
defined as the sign of the mean input u(k).
Collective dynamics and reduced model. We found that computations in the rank one, single population
trained networks could be reproduced by a reduced model with two non-zero covariances σnI and σnm (Sup-
plementary Fig S1a). For this reduced model, the dynamics of the two internal collective variables is given
by

dκ

dt
= −κ+ σ̃nmκ+ σ̃nIv(t), (34)

where σ̃nm = σnm〈Φ′〉(∆) and σ̃nI = σnI〈Φ′〉(∆) with 〈Φ′〉(∆) defined in Eq. (26), and the effective population
variance ∆ given by:

∆ =
√
σ2
mκ

2 + σ2
Iv

2. (35)

Here v(t) corresponds to the integrated input u(t), see Eq. (16).
An analysis of nonlinear dynamics defined by Eq. (34) showed that adjusting these parameters was sufficient

to implement the task, as additional parameters only modulate the overall gain (see SI section S2.1). In
particular the value of σmn, determines the qualitative shape of the dynamical landscape on which the internal
variable evolves and sets the time scale on which it integrates inputs (see SI S2.1 for more details).

4.9.2 Parametric working memory task

Trial structure. A fixation epoch of duration Tfix = 100ms was followed by a first stimulation epoch of
duration Tstim1 = 100ms, a delay epoch of duration Tdelay drawn from a uniform distribution between 500 and
2000ms, a second stimulation epoch of duration Tstim2 = 100ms and a decision epoch of duration Tdecision =
100ms.
Inputs and outputs. The feed-forward input to neuron i on trial k was

IFFi (t) = Ii

(
u
(k)
1 (t) + u

(k)
2 (t)

)
(36)

where u
(k)
1 (t) and u

(k)
2 (t) were non-zero during the first and second stimulation epochs respectively. On trial

k and during the corresponding stimulation epoch, the values of these inputs were u
(k)
1,2 = 1

fmax−fmin
(f

(k)
1,2 −

fmax+fmin

2 ), with f
(k)
1 and f

(k)
2 drawn uniformly from {10, 14, 18, 22, 26, 30, 34}, and fmin = 10 and fmax = 34.

The elements Ii of the input pattern were generated from a Gaussian distribution with zero mean and unit
standard deviation, and fixed during the training.
During the decision epoch, a single output z was evaluated through a readout pattern w = {wi}i=1...N , the
elements wi of which were generated from a Gaussian distribution with zero mean and standard deviation of
4, and fixed during the training. On trial k, the target output value ẑ(k) in the loss function (Eq. (30)) was

defined as ẑ(k) =
f
(k)
1 −f

(k)
2

fmax−fmin
.

Collective dynamics and reduced model. We found that computations in the rank two, single population
trained networks could be reproduced by a reduced model with four non-zero covariances σn(1)m(1) , σn(2)m(2) ,
σn(1)I and σn(2)I (Supplementary Fig. S2a). In particular covariances σn(1)m(2) , σn(2)m(1) across the two patterns
could be set to zero without performance impairment.
For this reduced model, the dynamics of the two internal collective variables is given by:

dκ1
dt

= −κ1 + σ̃n(1)m(1)κ1 + σ̃n(1)Iv(t)

dκ2
dt

= −κ2 + σ̃n(2)m(2)κ2 + σ̃n(2)Iv(t)

(37)

where σ̃ab = σab〈Φ′〉(∆), with 〈Φ′〉(∆) defined in Eq. (26), and the effective noise ∆ given by:

∆ =
√

(σm(1))2κ21 + (σm(2))2κ22 + σ2
Iv(t)2. (38)
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Here v(t) corresponds to the integrated input u(t), see Eq. (16).
The two internal collective variables are therefore effectively uncoupled, and integrate the incoming feed-forward
inputs at two different timescales due to different levels of positive feedback. For the first collective variable, a
strong, fine-tuned positive feedback σm(1)n(1) ' 1 leads to an approximate line attractor along κ1 that persistently
encodes the first stimulus throughout the delay and the sum of the two stimuli at the decision epoch. For the
second internal variable, a weaker positive feedback σm(2)n(2) . 1 leads to a shorter timescale of a transient
response to stimuli along κ2, such that the first stimulus is forgotten during the delay and that the second
stimulus is represented during the decision epoch.

4.9.3 Context-dependent decision making task

Trial structure. A fixation epoch of duration Tfix = 100ms was followed by a first context-only epoch of
duration Tctxt1 = 350ms, followed by a stimulation epoch of duration Tstim = 800ms, a second context-only
epoch of Tctxt2 = 500ms, and a decision epoch of Tdecision = 20ms.
Stimuli and outputs. The feed-forward input to neuron i on trial k was

IFFi (t) = u
(k)
A (t)IAi + u

(k)
B (t)IBi + u

(k)
ctxA(t)IctxAi + u

(k)
ctxB(t)IctxBi . (39)

Here u
(k)
ctxA and u

(k)
ctxB correspond to contextual cues. On each trial, during the context-only and the stimulation

epochs, one of the two cues took a value +1, while the other was 0. The inputs u
(k)
A (t) and u

(k)
B (t) represent

two sensory features of the stimulus. They were non-zero only during the stimulation epoch, and took the same

form as in the perceptual decision-making task, with means u
(k)
A and u

(k)
B , and fluctuating parts ξ

(k)
A (t) and

ξ
(k)
B (t) drawn independently for each feature, on each trial. The elements of the input patterns were generated

from a Gaussian distribution with zero mean and unit standard deviation on both populations. For the solution
presented in the main text, only the contextual input patterns IctxAi and IctxBi had their entries trained, while for
the other solution reported in supplementary section S2.3 all the input patterns were fixed throughout training.
During the decision epoch, on trial k the target ẑ(k) in the loss function (Eq. (30)) was defined as the sign of

the mean u
(k)
X of feature X = A or B for which the contextual cue was activated, i. e. u

(k)
ctx = 1.

Collective dynamics and reduced model. We found that the computations in the unit rank, two populations
network relied on the following conditions for the pattern covariances in the two populations (Supplementary
Fig. S3a): (i) IctxA and IctxB were essentially orthogonal to the input-selection pattern n, implying that

σ
(p)

nIctxA ' 0 and σ
(p)

nIctxB ' 0 for both populations p = 1, 2; (ii) each of the two input-selection sub-patterns

was correlated with only one of the input-feature patterns, i.e. σ
(1)

nIA
> 0 and σ

(2)

nI(B) > 0, while σ
(1)

nIB
≈ 0 and

σ
(2)

nI(A) ≈ 0; (iii) each context-cue pattern had a strong variance on a different sub-population, i.e. for the first

population IctxA and IctxB had respectively weak and strong variance (i.e. σ
(1)

IctxA ≈ 0 and σ
(1)

IctxB > 1), and

conversely for the second population σ
(2)

IctxA > 0 and σ
(2)

IctxB ≈ 0.

The computation could therefore be described by a reduced model, in which the covariances σ
(1)

nI(B) , σ
(2)

nI(A)σ
(2)

IctxtB , σ
(2)

IctxtB

were set to zero. The dynamics of the internal variable was then given by

dκ

dt
= −κ+ σ̃nmκ+ σ̃nIAvA(t) + σ̃nIBvB(t) (40)

with effective couplings

σ̃nIA =
1

2
σ
(1)

nIA
〈Φ′〉1 (41)

σ̃nIB =
1

2
σ
(2)

nIB
〈Φ′〉2. (42)

The averaged gains for each population were given by equations (27), with the standard deviations of currents
onto each population
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∆(1) =

√
(σ

(1)
m )2κ2 + (σ

(1)

IA
)2v2A + (σ

(1)

IB
)2v2B + (σ

(1)

IctxB )2c2B

∆(2) =

√
(σ

(2)
m )2κ2 + (σ

(2)

IA
)2v2A + (σ

(2)

IB
)2v2B + (σ

(2)

IctxA)2c2A.

(43)

Here vA(t) and vB(t) correspond to the integrated inputs uA(t) and uB(t), see Eq. (16).
As for the perceptual decision making task, the value of σmn, determines the qualitative shape of the dynamical
landscape on which the internal variable evolves and sets the time scale on which it integrates inputs. Large

values of the variances σ
(1)

IctxtB and σ
(2)

IctxtA allow the contextual cues to differentially vary the gain of the two
populations in the two contexts, leading to an effective gating of the inputs integrated by the internal collective
variable (see SI section S2.3 for more details).

4.9.4 Delay-match-to-sample task

Trial structure. A fixation epoch of duration Tfix = 100ms was followed by a first stimulus epoch of duration
Tstim1 = 500ms, a delay epoch of a duration drawn uniformly between 500ms and 3000ms, a second stimulus
epoch of duration Tstim2 = 500ms, and a decision epoch of duration Tdecision = 1000ms.

Stimuli and outputs. During each stimulus epoch, the network received one of two stimuli A or B, which
were randomly and independently chosen on each trial and stimulus epoch. These two stimuli were represented
by two input patterns IA and IB , so that the feed-forward input to neuron i on trial k was:

IFFi (t) = u
(k)
A (t)IAi + u

(k)
B (t)IBi (44)

where the inputs u
(k)
A (t) and u

(k)
B (t) were non-zero only when stimuli A or B are respectively received, in which

case they were equal to one.
During the decision epoch, the target output value ẑ in the loss function (Eq. (30)) was equal to +1 if the same
stimulus was received in both stimulation epochs and -1 otherwise.

Collective dynamics and reduced model. We found that the computations in the rank two, two populations
network relied on the following conditions for the pattern covariances in the two populations (Supplementary

Fig. S4a): (i) on one population, the two connectivity modes were coupled through σ
(1)

n(1)m(2) , σ
(1)

n(2)m(1) 6= 0, with

a specific condition on their values to induce a limit cycle (that the difference |σ(1)

n(1)m(2)−σ(1)

n(2)m(1) | is large, see SI
and [Mastrogiuseppe and Ostojic, 2018; Beiran et al., 2020]); (ii) on the other population, the covariances were

in contrast set to counter-balance the first population, and cancel the rotational dynamics σ
(2)

n(1)m(2) ' −σ(1)

n(1)m(2)

and σ
(2)

n(2)m(1) ' −σ(1)

n(2)m(1) ; (iii) the input-selection and output patterns for the second connectivity mode on

the second population had a strong overlap 1
2σ

(2)

n(2)m(2) > 1 that led to strong positive feedback; (iv) the input

patterns IA has a strong variance on population 2, σ
(2)

IA
� 1 while other input sub-patterns have small variances

σ
(1)

IA
, σ

(1)

IB
, σ

(2)

IB
' 0.

For this reduced model, the dynamics of the two internal collective variables is given by:

dκ1
dt

= −κ1 + σ̃n(1)m(1)κ1 + σ̃n(1)m(2)κ2

dκ2
dt

= −κ2 + σ̃n(2)m(1)κ1 + σ̃n(2)m(2)κ2 + σ̃n(2)IAvA + σ̃n(2)IBvB ,

(45)

with the effective couplings mediating inputs

σ̃n(2)IA =
1

2
σ
(2)

n(2)IA
〈Φ′〉2 (46)

σ̃n(2)IB =
1

2
σ
(2)

n(2)IB
〈Φ′〉2, (47)
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and effective couplings governing the autonomous dynamics:

σ̃n(1)m(1) =
1

2
σ
(1)

n(1)m(1)〈Φ′〉1 (48)

σ̃n(1)m(2) =
1

2
σ
(1)

n(1)m(2)〈Φ′〉1 +
1

2
σ
(2)

n(1)m(2)〈Φ′〉2 (49)

σ̃n(2)m(1) =
1

2
σ
(1)

n(2)m(1)〈Φ′〉1 +
1

2
σ
(2)

n(2)m(1)〈Φ′〉2 (50)

σ̃n(2)m(2) =
1

2
σ
(1)

n(2)m(2)〈Φ′〉1 +
1

2
σ
(2)

n(2)m(2)〈Φ′〉2. (51)

The average gains are given by equations (27), with standard deviations of currents onto each population

∆(1) =

√
(σ

(1)

m(1))2κ
2
1 + σ

(1)

m(2))2κ
2
2 + (σ1

IA
)2v2A

∆(2) =

√
(σ

(2)

m(1))2κ
2
1 + σ

(2)

m(2))2κ
2
2.

(52)

Here vA(t) and vB(t) correspond to the integrated inputs uA(t) and uB(t), see Eq. (16).
Conditions (i) to (iv) on the covariances allow to implement the dynamical landscape modulation of Fig. 4h (see
Supplementary Fig. S4d). When stimulus A is present (uA = 1), the gain of population 2 is set to 〈Φ′〉2 ' 0

because of σ
(2)

IA
� 1 (see Eq. (52)), and the specific values of covariances for sub-patterns in population 1 induce

a limit cycle (see SI section S2.4). In absence of inputs, or when input B was present, gains were approximately
equal for the two populations (Supplementary Fig. S4c), leading to a cancellation of the cross effective couplings

σ̃n(1)m(2) and σ̃n(2)m(1) , while positive feedback implemented through σ
(2)

n(2)m(2) shaped a dynamical landscape
with two fixed-points.

4.9.5 Multi-sensory decision making task

Trial structure. A fixation epoch of duration Tfix = 100ms was followed by a stimulation epoch of duration
Tstim = 800ms, a delay epoch of duration Tdelay = 100ms and a decision epoch of duration Tdecision = 500ms.

Inputs and outputs. The feed-forward input to neuron i on trial k was given by:

IFFi (t) = IAi u
(k)
A (t) + IBi u

(k)
B (t) (53)

where the two inputs signals u
(k)
A (t) and u

(k)
B (t) correspond to two sensory modalities, that provide congruent

evidence for the output. Specifically a sign sk ∈ {−1, 1} is chosen for each trial, as well as a modality that

can be A, B, or AB. Then if the modality is A or AB, a mean u
(k)
A is chosen from 1

10sk{1, 2, 3, 4, 8} and the

signal u
(k)
A (t) during the stimulation period is set to that mean plus a gaussian white noise as in the perceptual

decision making task. If the modality is B, then the signal u
(k)
A (t) is only equal to the zero-centered gaussian

white noise. The signal u
(k)
B (t) is set in a similar manner. During the decision epoch, the target ẑ(k) is the

underlying common sign sk.
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Supplementary information

S1 Parametrization and collective dynamics for mixture of Gaus-
sians loadings

In this section we show how connectivity patterns with loadings drawn from mixtures of multivariate Gaussians
can be constructed from independent Gaussians, as mentionned in Eq. (31). We then derive the dynamics of
the internal collective variables (Eq. (24)) in this setting.

We considered distributions of loadings characterized by P covariance matrices Σp, and zero means µp = 0,

p = 1, . . . , P . For a neuron i belonging to population p, each pattern loading ai ∈ {n(r)
i ,m

(r)
i , I

(s)
i , w

(q)
i } is

constructed as a linear transformation of the same set of values {X(d)
i }d=1...Nin+2R+Nout

ai =

Nin+2R+Nout∑
d=1

b
(p)
a,dX

(d)
i . (S1)

Here theX
(d)
i are drawn fromN (0, 1), independently for each i and d. The linear coefficients {ba,d}d=1...Nin+2R+Nout

are different for each pattern a ∈ {n(r),m(r), I(s), w(q)}, but identical across neurons within a given popula-

tion. These sets of coefficients therefore determine the covariance σ
(p)
ab between pattern loadings within a given

population p:

σ
(p)
ab =

D∑
d=1

b
(p)
a,db

(p)
b,d (S2)

The row-vectors b
(p)
a in fact correspond to the rows of the Cholesky factorization of the covariance matrix.

We next turn to the derivation of Eq. (24). With the parametrization of pattern loadigns defined in Eq. (S1),
the recurrent inputs to the r-th internal collective variable Eq. (19) can be written as

κrecr =

P∑
p=1

αp

∫ ( D∏
d=1

DX(d)

)
D∑
d=1

b
(p)

n(r),d
X(d)φ

(
R∑

r′=1

κr′
D∑
d=1

b
(p)

m(r′),d
X(d) +

Nin∑
s=1

vs

D∑
d=1

b
(p)

I(s),d
X(d)

)
(S3)

withDX(d) = dX(d)
√
2π
e−(X

(d))2/2. For a given p, we then compute each of theD integrals
∫ (∏D

d=1DX
(d)
)
b
(p)

n(r),d
X(d)φ (. . .)

applying successively Stein’s lemma ∫
Dz zf(z) =

∫
Dzf ′(z), (S4)

and using the fact that a sum of Gaussians is a Gaussian with variance given by the sum of variances, so that∫
DxDy . . . f(αx+ βy + . . .) =

∫
Dzf(

√
α2 + β2 + ...z). (S5)

This leads to

κrecr =
P∑
p=1

αp

D∑
d=1

b
(p)

n(r),d

(
R∑

r′=1

b
(p)

m(r′),d
κr′ +

Nin∑
s=1

b
(p)

I(s),d
vs

)∫
Dzφ′

(
∆(p)z

)

=
P∑
p=1

αp

(
R∑

r′=1

σ
(p)

n(r)m(r′)κr′ +

Nin∑
s=1

σ
(p)

n(r)I(s)
vs

)∫
Dzφ′

(
∆(p)z

) (S6)

with
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∆(p) =

√√√√ R∑
r′=1

(σ
(p)

m(r′)m(r′))
2κ2r′ +

Nin∑
s=1

(σ
(p)

I(s)I(s)
)2u2s. (S7)

Inverting the sums on p and r′, s indices and assuming that input patterns I(s) are orthogonal to the output
patterns {m(r)}r=1,...,R (as in all the reduced models described in the section below), we get the compact
description in terms of effective couplings for the dynamics of internal collective variables Eq. (24)

dκr
dt

= −κr +
R∑

r′=1

σ̃n(r)m(r′)κr′ +

Nin∑
s=1

σ̃n(r)I(s)vs (S8)

with, for any two patterns a, b, the effective couplings

σ̃ab =
P∑
p=1

σ
(p)
ab 〈Φ′〉p (S9)

and averaged gains

〈Φ′〉p =

∫
Dzφ′(∆(p)z). (S10)

S2 Theoretical analysis of reduced models

Here we examine reduced network models, that were minimally parametrized to solve each task by relying on
the same network dynamics as the trained networks presented in the main text. The minimal parameter sets
correspond to subsets of covariances between input and connectivity patterns (outlined in Figs. 2b,3b,4b,5b).
These parameters were first set by hand and then, if necessary fine-tuned with the ADAM optimizer to solve
the task with optimal accuracy (see Methods section 4.6). We first report how to parametrize input and
connectivity patterns to build these networks. We then examine the effects of these parameters on mean-field
collective dynamics and show their implication in task solving.

S2.1 Perceptual decision-making network

The network trained on this task was of unit rank, and consisted of a single population. Such a network can
be minimally parametrized using three covariances σnm, σnI and σmw (Fig.S1a). This can be obtained with an

input pattern Ii = X
(1)
i and connectivity patterns given by:

ni = σnIX
(1)
i +

√
σnmX

(2)
i

mi =
√
σnmX

(2)
i +

√
σmm − σnmX(3)

i

(S11)

for i = 1, . . . , N , with X
(d)
i ’s drawn independently from zero-mean Gaussian distributions of unit variance. The

readout components were taken as

wi =
σmw√

σmm − σnm
X

(3)
i . (S12)

The dynamics of the single internal collective variable is then given by

dκ

dt
= −κ+ σ̃mnκ+ σ̃nIv(t) (S13)

with effective couplings given by equation (S9), i.e. the covariances scaled by the global gain factor

〈Φ′〉 =
1√
2π

∫ +∞

−∞
dze−z

2/2φ′(
√
σmmκ2 + σIIv2z) (S14)
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This dynamics can be graphically summarized as in Fig.2c and leads to network dynamics that matches the one
of trained networks (Fig.S1b).

The autonomous dynamics of the network is determined by the parameter σnm that controls (i) the qualitative
shape of the dynamical landscape, with a transition from a single stable fixed-point (σnm < 1) to two symmetric
fixed-points (σnm > 1) and (ii) the time-scale τrec = 1

|1−σnm| with which the network state relaxes or diverges

from the initial condition x = 0 at the beginning of each trial (Fig.S1c,d, [Mastrogiuseppe and Ostojic, 2018]).
The integration of the filtered input v(t) by κ is controlled by σnI , the covariance between the input pattern I
and the input-selection pattern n. For instance for σnI = 0, v(t) is projected on a direction orthogonal to the
input-selection pattern and is not integrated by the recurrent activity (Fig. S1g light shade line).
Finally, the covariance σmw between the output pattern m and the readout pattern w controls the extent to
which the readout is driven by κ, with no drive of the readout in case of orthogonal output pattern and readout
pattern, σmw = 0 (Fig. S1f light shade line).
The network connectivity of equation (S11), also involved the variance of the individual connectivity pattern
σmm. Changing σmm influences the autonomous dynamics of the network (Fig. S1c) by influencing the gain of
neurons (see Eq. (S18)).
For the reconstructed network shown in the main text, the non-zero covariances were: σnm = 1.4, σnI = 2.6 and
σmw = 2.1.

S2.2 Parametric working-memory network

The network trained on this task was of rank two, and consisted of a single population. A minimal parametriza-
tion of this network involves four covariances σn(1)I , σn(1)m(1) , σn(2)I and σn(2)m(2) (Fig. S2a). This can be

obtained with an input pattern Ii = X
(1)
i and two connectivity modes:

n
(1)
i = σn(1)IX

(1)
i +

√
σn(1)m(1)X

(2)
i

m
(1)
i =

√
σn(1)m(1)X

(2)
i +

√
σm(1)m(1) − σn(1)m(1)X

(3)
i

n
(2)
i = σn(2)IX

(1)
i +

√
σn(2)m(2)X

(4)
i

m
(1)
i =

√
σn(2)m(2)X

(4)
i +

√
σm(2)m(2) − σn(2)m(2)X

(5)
i

(S15)

for i = 1, . . . , N , with X
(a)
i ’s drawn from zero-mean Gaussian distributions of unit variance. The readout

components were taken as

wi =
σm(1)w√

σm(1)m(1) − σn(1)m(1)

X
(3)
i +

σm(2)w√
σm(2)m(2) − σn(2)m(2)

X
(5)
i . (S16)

The dynamics of the two internal collective variables is then given by:

dκ1
dt

= −κ1 + σ̃n(1)m(1)κ1 + σ̃n(1)Iv(t)

dκ2
dt

= −κ2 + σ̃n(2)m(2)κ2 + σ̃n(2)Iv(t)

(S17)

with effective couplings given by equation (S9), i.e. the covariances scaled by the global gain factor

〈Φ′〉 =
1√
2π

∫ +∞

−∞
dze−z

2/2φ′(∆z) (S18)

with

∆ =
√
σm(1)m(1)κ21 + σm(2)m(2)κ22 + σIIv2 (S19)

This dynamics can be graphically summarized as in Fig. 3e and reproduces the dynamics of trained networks
as shown in Fig.S2b. Fig.S2c shows the dynamical phase portrait on which recurrent activity evolves. It
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approximates a line attractor [Seung, 1996] on the direction m(1) as the covariance σn(1)m(1) ' 1 sets the
network close to the bifurcation point of Fig.S1c. On the second direction m(2) the dynamics relaxes with a
time scale set by the covariance σn(2)m(2) . For the reconstructed network shown in the main text, the non-zero
covariances were: σn(1)m(1) = 1.0, σn(2)m(2) = 0.5, σn(1)I = 0.5, σn(2)I = 1.9, σm(1)w = 2.8 and σm(2)w = −2.2.

S2.3 Context-dependent decision-making network

The networks trained on this task were of unit rank and consisted of either two or three populations depending
on the training procedure (see methods section 4.9.3 and supplementary section S3).

Two-population network Such a network can be minimally parametrized using 4 non-zero variances/covariances
on each population. This can be obtained with the two sensory input patterns generated independently

IAi = X
(1)
i , IBi = X

(2)
i , irrespective of the population structure. The connectivity patterns are structured

in two sub-patterns. For i in population 1:

ni = σ
(1)

nIA
X

(1)
i +

√
σ
(1)
nmX

(3)
i

mi =

√
σ
(1)
nmX

(3)
i +

√
σ
(1)
mm − σ(1)

nmX
(4)
i

(S20)

while for i in population 2:

ni = σ
(2)

nIB
X

(2)
i +

√
σ
(2)
nmX

(3)
i

mi =

√
σ
(2)
nmX

(3)
i +

√
σ
(2)
mm − σ(2)

nmX
(4)
i

(S21)

with X
(a)
i ’s drawn from centered Gaussian distributions of unit variance. The readout pattern is taken as

wi =
σ
(1)
mw√

σ
(1)
mm − σ(1)

nm

X
(4)
i (S22)

for i in population 1 and

σ
(2)
mw√

σ
(2)
mm − σ(2)

nm

X
(4)
i (S23)

for i in population 2. Importantly the contextual input patterns are also structured in two sub-patterns, such
that for i in population 1:

IctxAi = 0

IctxBi = σ
(1)

IctxBIctxBX
(5)
i

(S24)

while for i in population 2:

IctxAi = σ
(2)

IctxAIctxAX
(5)
i

IctxBi = 0
(S25)

with σ
(1)

IctxBIctxB , σ
(2)

IctxAIctxA � 1.

The recurrent activity is then described by a single internal collective variable, graphically summarized in Fig.4f:
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dκ

dt
= −κ+ σ̃mnκ+ σ̃nIAvA(t) + σ̃nIBvB(t) (S26)

The time evolution of the internal collective variable is coupled to the two inputs through the two effective
couplings σ̃nIA , σ̃nIB , each supported by one of the two populations:

σ̃nIA =
1

2
σ
(1)

nIA
〈Φ′〉1 (S27)

σ̃nIB =
1

2
σ
(2)

nIB
〈Φ′〉2 (S28)

The recurrent dynamics is supported equally by the two populations:

σ̃nm =
1

2
σ(1)
nm〈Φ′〉1 +

1

2
σ(2)
nm〈Φ′〉2 (S29)

with averaged gains given by equations (S10) and standard deviations of currents onto each population

∆1 =

√
(σ

(1)
mm)2κ2 + (σ

(1)

IAIA
)2v2A + (σ

(1)

IBIB
)2v2B + (σ

(1)

IctxtBIctxtB )2c2B

∆2 =

√
(σ

(2)
mm)2κ2 + (σ

(2)

IAIA
)2v2A + (σ

(2)

IBIB
)2v2B + (σ

(2)

IctxtAIctxtA)2c2A.

(S30)

The obtained dynamics is similar to the trained networks displayed in Fig. 4d,e, with contextual inputs con-
trolling the gain of each of the two populations (Fig.S3b). This control relies on the large amplitude of the

weights of contextual input patterns, σ
(2)

IctxtAIctxtA , σ
(1)

IctxtBIctxtB � 1, as illustrated in Fig.S3c where we show the
effect of varying these parameters on the network readout. In this implementation, each of the two populations
selectively integrates one of the two sensory inputs thanks to the non-zero covariances between input pattern

and input-selection modes σ
(1)

nIA
, σ

(2)

nIB
, as illustrated in Fig.S3d.

The non-zero covariances for the implementation of the solution presented in the main text are given by

σ
(1)
nm = 2.2, σ

(2)
nm = 2.3, σ

(1)

nIA
= 2.9, σ

(2)

nIB
= 3.1, σ

(1)
mw = 4.6, σ

(2)
mw = 5.0, σ

(2)

IctxtAIctxtA = 100, σ
(1)

IctxtBIctxtB = 100.

Three-population network For the context-dependent decision-making task, we also examined a network
relying on three populations. In this network, two populations selectively gate inputs as in the two-population
network, but the recurrent interactions that implement evidence integration are segregated to a third population.
Here we describe the corresponding reduced model.

As for the two-population network, the two sensory input patterns are generated independently IAi = X
(1)
i , IBi =

X
(2)
i , irrespective of the population structure. The connectivity mode is structured in three sub-populations.

For i in population 1:

ni = σ
(1)

nIA
X

(1)
i

mi = 0
(S31)

for i in population 2:

ni = σ
(2)

nIB
X

(2)
i

mi = 0
(S32)

and for i in population 3:

ni =

√
σ
(3)
nmX

(3)
i

mi =

√
σ
(3)
nmX

(3)
i +

√
σ
(3)
mm − σ(3)

nmX
(4)
i

(S33)
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for i = 1, . . . , N , with X
(a)
i ’s drawn independently from centered Gaussian distributions of unit variance. The

readout pattern reads only from the third population:

wi =
σ
(3)
mw√

σ
(3)
mm − σ(3)

nm

X
(4)
i (S34)

The contextual inputs are the same as in the two-population network. The overall expression for the time
evolution of the internal collective variable is unchanged compared to the two populations solution Eq. (S26).
Each of the effective couplings between κ and inputs is supported by one of two populations

σ̃nIA =
1

3
σ
(1)

nIA
〈Φ′〉1 (S35)

σ̃nIB =
1

3
σ
(2)

nIB
〈Φ′〉2 (S36)

and the self-coupling of the internal collective variable is supported by the third population

σ̃nm =
1

3
σ(3)
nm〈Φ′〉3 (S37)

with averaged gains given by equations (S10) and standard deviations of currents onto each population by

∆1 =

√
(σ

(1)

IAIA
)2v2A + (σ

(1)

IBIB
)2v2B + (σ

(1)

IctxtBIctxtB )2c2B

∆2 =

√
(σ

(2)

IAIA
)2v2A + (σ

(2)

IBIB
)2v2B + (σ

(2)

IctxtAIctxtA)2c2A

∆3 =

√
(σ

(3)
mm)2κ2 + (σ

(2)

IAIA
)2v2A + (σ

(2)

IBIB
)2v2B

(S38)

In this three-population implementation, the contextual inputs do not control the gains of neurons in the third
population and thus modulate only the effective couplings that mediate the influence of sensory inputs. The non-

zero covariances for an implementation of this solution are given by σ
(3)
nm = 3.6, σ

(1)

nIA
= 3.1, σ

(2)

nIB
= 2.8, σ

(3)
mw =

9.8, σ
(2)

IctxtAIctxtA = 100, σ
(1)

IctxtBIctxtB = 100.

S2.4 Delay-match-to-sample network

Networks trained on this task were of rank two and consisted of two populations. Here we propose a minimally
parametrized network (Fig. S4a) that, similarly to the trained network presented in the main text, relies on
the ability of inputs to control the autonomous dynamics of the network. The connectivity modes defined on

the first population are coupled to each other through covariances σ
(1)

n(1)m(2) and σ
(1)

n(2)m(2) [Mastrogiuseppe and
Ostojic, 2018; Beiran et al., 2020]:

n
(1)
i = σ

(1)

n(1)m(1)X
(1)
i + σ

(1)

n(1)m(2)X
(2)
i

m
(1)
i = X

(1)
i +X

(3)
i

n
(2)
i = σ

(1)

n(2)m(1)X
(3)
i + σ

(1)

n(2)m(2)X
(4)
i

m
(2)
i = X

(2)
i +X

(4)
i

(S39)

with covariances chosen such that the trivial fixed-points x = 0 is an unstable spiral point, and the dynamics
defined by the first sub-population generate a limit cycle. As shown by a linear stability analysis of the dynamical
equation for internal collective variables, this dynamical feature arises when the covariances are such that the
following matrix has complex eigenvalues with positive real-parts [Mastrogiuseppe and Ostojic, 2018; Beiran
et al., 2020]
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J =

(
σ
(1)

n(1)m(1) − 1 σ
(1)

n(1)m(2)

σ
(1)

n(2)m(1) σ
(1)

n(2)m(2) − 1

)
. (S40)

This first population is coupled to a second population which, in the absence of inputs, cancels the rotational

dynamics, through the relationships σ
(1)

n(1)m(2) = −σ(2)

n(1)m(2) and σ
(1)

n(2)m(1) = −σ(2)

n(2)m(1) . The second population
also implements a pair of fixed-points that will be used to store the identity of the first stimulus throughout the
delay and report the match/non-match decision. The connectivity sub-pattern on the second population can
then be written as:

n
(1)
i = σ

(2)

n(1)m(2)X
(2)
i

m
(1)
i = X

(3)
i

n
(2)
i = σ

(2)

n(2)IA
X

(5)
i − |σ

(2)

n(1)IB
|X(6)

i + σ
(2)

n(2)m(1)X
(3)
i + σn(2)m(2)X

(4)
i

m
(2)
i = X

(2)
i +X

(4)
i +X

(7)
i

(S41)

The readout pattern reads only from the second population:

wi = σ
(2)

m(2)w
X

(7)
i (S42)

The input pattern IB also stimulates only the second population, pushing the dynamics towards one fixed point
on the direction m(2)

IBi = X
(6)
i (S43)

while the input pattern IA activates the two populations. For units in the first population

IAi = X
(8)
i (S44)

pushing the dynamics towards the other fixed point on the direction m(2), while for i in the second population

IAi = σ
(2)

IAIA
X

(5)
i , (S45)

with σ
(2)

IAIA
� 1

Such a connectivity leads to the dynamical equation for the two internal collective variables

dκ1
dt

= −κ1 + σ̃n(1)m(1)κ1 + σ̃n(1)m(2)κ2

dκ2
dt

= −κ2 + σ̃n(2)m(1)κ1 + σ̃n(2)m(2)κ2 + σ̃n(2)IAvA + σ̃n(2)IBvB

(S46)

with the effective couplings mediating inputs of the form

σ̃n(2)IA =
1

2
σ
(2)

n(2)IA
〈Φ′〉2 (S47)

σ̃n(2)IB =
1

2
σ
(2)

n(2)IB
〈Φ′〉2 (S48)

and effective couplings governing the autonomous dynamics:
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σ̃n(1)m(1) =
1

2
σ
(1)

n(1)m(1)〈Φ′〉1 (S49)

σ̃n(1)m(2) =
1

2
σ
(1)

n(1)m(2)〈Φ′〉1 +
1

2
σ
(2)

n(1)m(2)〈Φ′〉2 (S50)

σ̃n(2)m(1) =
1

2
σ
(1)

n(2)m(1)〈Φ′〉1 +
1

2
σ
(2)

n(2)m(1)〈Φ′〉2 (S51)

σ̃n(2)m(2) =
1

2
σ
(1)

n(2)m(2)〈Φ′〉1 +
1

2
σ
(2)

n(2)m(2)〈Φ′〉2 (S52)

(S53)

with averaged gains given by equations (S10) and standard deviations of currents onto each population

∆1 =

√
(σ

(1)

m(1)m(1))2κ
2
1 + σ

(1)

m(2)m(2))2κ
2
2 + (σ

(1)

IAIA
)2v2A

∆2 =

√
(σ

(2)

m(1)m(1))2κ
2
1 + σ

(2)

m(2)m(2))2κ
2
2 + (σ

(2)

IAIA
)2v2A + (σ

(2)

IBIB
)2v2B

(S54)

This dynamics can be graphically summarized as in Fig.5f bottom. It reproduces the dynamics of trained rank
two networks presented in the main text (Fig.S4b), by relying on the same network mechanism, with input A
controlling the gains of neurons in population one (Fig.S4c, middle) and thus shaping the dynamical landscape
on which internal collective variables evolve (Fig.S4d). The important non-zero covariances of the reduced

model are given by: σ
(1)

n(1)m(1) = 0.34, σ
(1)

n(2)m(2) = 3.7, σ
(1)

n(1)m(2) = −3.9, σ
(1)

n(2)m(1) = 4.2 for the first population

and σ
(2)

n(2)m(2) = 3.1, σ
(2)

n(1)m(2) = 4.4, σ
(2)

n(2)m(1) = −3.8, σ
(2)

n(2)IA
= 0.2, σ

(2)

n(2)IB
= −0.2, σ

(2)

m(2)w
= 1.0, σ

(2)

IAIA
= 10.

S3 Non-uniqueness of network implementation for a given task

We observed that trainings on a given task can lead to various network implementations. We identified three
factors that contribute to such variability.
A first factor is the determination of the network parameters that are trained (e.g. number of connectivity
modes R, train input patterns or not, scaling of trained parameters with network size, etc.). An example
of this is provided by training a rank-one network on the context-dependent decision-making task, without
training any of the input patterns (while the contextual-input IctxA and IctxB patterns are trained for the
rank-one networks presented in the main text). Fig. S5 reports the analysis of such a trained network, showing
that training leads to a network with three functional populations, whose implication in the computations are
reproduced and detailed in a reduced model (section S2.3), and which is reminiscent of the one found in [Yang
et al., 2019]. Another such example concerns the number of connectivity modes allowed during training. For
instance if training a rank-two networks on the perceptual decision-making task, one could exhibit networks with
a ring-like slow manifold [Mastrogiuseppe and Ostojic, 2018], which gives rise to a single, non-linear collective
variable embedded in a two-dimensional subspace.
A second factor is task parametrization. For instance we observed that training on the parametric-working
memory task with fixed delays between the two stimuli, while they are drawn randomly here, leads to solutions
that exploit network oscillations rather than a line attractor (not shown). Another such example can be put
forward for the context-dependent decision-making task. Here we trained networks on a two-alternatives forced
choice version of this task in which every stimulus requires one out of two responses (section 4.9.3) and found
that multiple populations were required for the implementation (Fig. S7). In a Go-Nogo setting, where the
alternatives are to either respond or not, flexible input-output associations can be implemented with a single
population, through a mechanism based on biasing the response threshold rather than modulating the gain
[Mastrogiuseppe and Ostojic, 2018].
A third factor is the stochastic nature of the training procedure, with initial conditions of trained parameters
randomly drawn for each training, as well as the stochastic split of training examples into batches inherent to
stochastic-gradient-descent based methods as used here. In Fig. S10, we show the dynamics of a network trained
on the delay-match-to-sample task obtained for the same task parametrization and the same trained parameters.
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Figure S1. Theoretical analysis of reconstructed networks for the perceptual DM task. (a) Covariances between
patterns of reduced and trained networks. (b) Dynamics throughout trials. Left: dynamics in the recurrents
and input subspaces. Top-right: readouts. Bottom-right: neural gains averaged over the whole population. At
the beginning of the trials, the network state is around x = 0 and integrates inputs with Φ′ ' 1, and then
commits to a decision by flowing to one of two fixed points where Φ′ ' 0.6. (c) Bifurcation analysis of the
autonomous dynamics showing the value of the internal collective variable κ∗ at the stable fixed-points of the
network. (d) Time-scale of network dynamics around the network state at trial start x = 0 for σmm = σmn.
(e,f,g) Change in readout and internal collective variable dynamics as network connectivity is varied.

Similarly to the solution described in the main text, it relies on gain modulations through external inputs to
shape the autonomous dynamics of the network. However, such solution switches between two dynamical
landscapes with different sets of fixed points and separatrix between fixed points, while the solution in the main
text switches between a dynamical landscape with two fixed-points and one with a limit cycle.
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Figure S2. Theoretical analysis of reconstructed networks for the parametric working memory task. (a) Covari-
ances between patterns of reduced and trained networks. (b) Low-dimensional dynamics of internal collective
variables. Left: responses to the first stimulus (colors represent different values of f1). Right: responses through-
out the whole trial to a range of values for the second stimulation (f1 fixed at 30Hz, colors represent different
values of f2). (c) Dynamical landscape on which the two internal collective variables evolve. From yellow to

blue color, decreasing norm of the flow field
√
κ̇1(v = 0)2 + κ̇2(v = 0)

2
. Full lines depict two trajectories cor-

responding to f1 = 22Hz and f2 = 30Hz (blue) and f2 = 14Hz (orange) and the dashed line represents the
direction of the readout pattern w.
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Figure S3. Theoretical analysis of reconstructed networks for the context-dependent task. (a) Covariances
between patterns of reduced and trained networks. (b) Top row: Distribution of single neuron gains across the
two populations, in the two contexts. Middle-bottom row: contribution of the two populations to the dynamics
of the internal collective variable in the two contexts. Middle: contributions to the external inputs to the
internal collective variable. Bottom: contribution to the recurrent feedback on the internal collective variable.
(c,d) Changes in readout dynamics as network connectivity is varied.
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Figure S4. Theoretical analysis of reconstructed networks for the delay-match-to-sample task. (a) Covariances
between patterns of reduced and trained networks. (b) Trajectories of activities in the 2-dimensional space
spanned by internal collective variables. (c) Distributions of individual neuronal gains in each of the two
populations in the present of inputs. (d) Dynamical landscape in which the internal collective variables evolve
in the various stimulation conditions of the task.
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Figure S5 (previous page): Context-dependent decision-making: alternative implementation. A network of
N = 4096 neurons was trained on the same task as for figure 4, the only difference being that contextual input
patterns were not trained. The solution found here exhibits a mechanism based on 3 populations, although the
loading space statistics are better explained by taking into account a fourth population of neurons not involved
in the computations (here in gray). In the whole figure, population 4 implements the effective line attractor
for integration of evidence (similarly to the network exhibited in figure 2), while the populations 2 and 3 in
violet and yellow act as relays, respectively of inputs B and A, modulated by the contextual inputs. (a) Sizes
of the populations, and clustering stability analysis on loading space. (b) Some 2-dimensional projections of
the loading space. The N points are color coded according to the clustering analysis. (c) Empirical covariances
between patterns for each of the four populations. (d) Functional circuit explaining the role of the different
populations. (e) Directly inactivating the whole populations found on the loading space reveals their functional
role. Here, psychometric matrices are shown for the network with each of the populations inactivated. (f)
Distribution of neuronal gains in both contexts accross populations.
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Figure S6. Loss of trained networks as a function of rank for 4 different tasks. For each task, low-rank networks
in an exactly equivalent way, with a learning rate of 10−2 and a number of epochs much higher than what is
normally needed (around 200). Full-rank networks required a different learning rate (10−4).
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Figure S7. Performance of resampled networks extracted from higher rank solutions for the context-dependent
decision making tasks, as in figure 3c of the main text. Here, networks of rank respectively 2, 3, and 4 have been
trained on the same task, the statistics of the resulting connectivities have been extracted to define corresponding
mixture-of-gaussians low-rank RNNs. Those have been retrained to make sure that single population networks
would still not be able to recover the performance of both trained and 2 population networks, in spite of an
increased rank. Note that an increase in the performance of the 1 population networks with respect to figure
4c can be seen, probably because the network can take advantage of the higher rank to implement a diagonal
separatrix similarly to the contextual Go-NoGo task [Mastrogiuseppe and Ostojic, 2018]. However this is not
sufficient for a perfect performance in the forced choice task. Increasing the rank beyond 2 does not seem to
bring any more changes.
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Figure S8. Multi-sensory decision making task. A network of size N = 2048 was trained on an implementation
of a multi-sensory decision making task [Raposo et al., 2014], as described in the methods. (a) Top-bottom:
both input signals to the network in an example trial with positive evidence, activity of 4 randomly selected
neurons and of the readout unit to this stimulation. Grey background: stimulation period, brown background:
response period. (b) Top: covariances between input, connectivity and readout patterns. Bottom: Selected
two-dimensional projections of the loading space. (c) Top: psychometric performance of a trained rank one
solution and of a resampled network with one gaussian population. Bottom: accuracies of the trained network
and of ten resampled networks with one gaussian population (whisker plot). (d) Cumulative percentage of
variance of the network activity explained by projecting successively onto the patterns m, IA and IB
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Figure S9. Dynamics of the internal collective variables κ1 and κ2 for the rank 2 network of figure 5 on 4
different trial types and for each epoch of the task. The trajectories are superposed on the flow field of the
network as visible on an affine plane of the state space (see main figure 4i), dependent on the input present at
each epoch. Dotted lines indicate the parts of the trajectory from previous epochs.
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Figure S10. Alternative rank 2 solution to the Delay Match-to-Sample task. Here, a network of N = 500 units
was trained on the same task as the network of figure 5, and exhibits a different mechanism, based on 4 stable
fixed points. During the first stimulation period, the network reaches one of the 2 vertical fixed points, which
hence encode the memory of the first stimulation. Depending on the second stimulation, the network then
reaches one of the 2 horizontal fixed points, which thus encode the match or non-match categories.
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Figure S11. Measure of clustering stability to evaluate the presence and number of clusters in the loading spaces
of low-rank RNNs trained on 5 different tasks. For each number of clusters, a clustering algorithm is applied on
20 bootstrap samples of the same data, and stability between the obtained results accross samples is measured.
A value consistently near 1 implies that the given number of clusters is a good fit to the data (see Methods).
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