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Abstract

A fundamental challenge at the interface of machine learning and neuroscience is to uncover
computational principles that are shared between artificial and biological neural networks. In
deep learning, normalization methods, such as batch normalization, weight normalization, and
their many variants, help to stabilize hidden unit activity and accelerate network training, and
these methods have been called one of the most important recent innovations for optimizing
deep networks. In the brain, homeostatic plasticity represents a set of mechanisms that also
stabilize and normalize network activity to lie within certain ranges, and these mechanisms
are critical for maintaining normal brain function. Here, we propose a functional equivalence
between normalization methods in deep learning and homeostatic plasticity mechanisms in the
brain. First, we discuss parallels between artificial and biological normalization methods at four
spatial scales: normalization of a single neuron’s activity, normalization of synaptic weights of a
neuron, normalization of a layer of neurons, and normalization of a network of neurons. Second,
we show empirically that normalization methods in deep learning push activation patterns of
hidden units towards a homeostatic state, where all neurons are equally used — a process
we call “load balancing”. Third, we develop a neural normalization algorithm, inspired by a
phenomena called synaptic scaling, and show that this algorithm performs competitively against
existing normalization methods. Overall, we hope this connection will enable neuroscientists to
propose new hypotheses for why normalization works so well in practice and new normalization
algorithms based on established neurobiological principles. In return, machine learners can help
quantify the trade-offs of different homeostatic plasticity mechanisms in the brain and offer
insights about how stability may promote plasticity.
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Introduction

Since the dawn of machine learning, normalization methods have been used to pre-process input
data to lie on a common scale. For example, min-max normalization, unit vector normalization,
z-scoring, or the like, are all well known to improve model fitting, especially when different input
features have different ranges (e.g., age vs. salary). In deep learning, normalizing the input layer
has also proved beneficial; for example, “whitening” input features so that they are decorrelated
and have zero mean and unit variance leads to faster training and convergence [1, 2]. More recently,
normalization has been extended to hidden layers of deep networks, whose activity can be viewed
as inputs to a subsequent layer. This type of normalization modifies the activity of hidden units
to lie within a certain range or to have a certain distribution, independent of input statistics or
network parameters [3]. While the theoretical basis for why these methods improve performance
has been subject to much debate — e.g., reducing co-variate shift [3], smoothening the objective
landscape [4], de-coupling the length and direction of weight vectors [5], acting as a regularizer [6–8]
— normalization is now a standard component of state-of-the-art architectures and has been called
one of the most important recent innovations for optimizing deep networks [5].

In the brain, normalization has long been regarded as a canonical computation [9, 10] and occurs
in many sensory areas, including in the auditory cortex to varying sound intensities [11]; in the ol-
factory system to varying odor concentrations [12]; and in the retina to varying levels of illumination
and contrast [13–15]. Normalization is believed to help generate intensity-invariant representations
for input stimuli, which improve discrimination and decoding that occurs downstream [9].

But beyond the sensory (input) level, there is an additional type of normalization found ubiq-
uitously in the brain, which goes by the name of homeostatic plasticity [16]. Homeostasis refers to
the general ability of a system to recover to some set point after being changed or perturbed [17].
A canonical example is a thermostat used to maintain an average temperature in a house. In the
brain, the set point can take on different forms at different spatial scales, such as a target firing
rate for an individual neuron, or a distribution of firing rates over a population of neurons. This set
point is typically approached over a relatively long period of time (hours to days). The changes or
perturbations occur due to other plasticity mechanisms, such as LTP or LTD, that modify synaptic
weights and firing rates at much faster time scales (seconds to minutes). Thus, the challenge of
homeostasis is to ensure that set points are maintained on average without “erasing” the effects
of learning. This gives rise to a basic stability versus plasticity dilemma. Disruption of homeosta-
sis mechanisms has been implicated in numerous neurological disorders [18–23], indicating their
importance for normal brain function.

In this perspective, we highlight parallels between normalization algorithms used in deep learn-
ing and homeostatic plasticity mechanisms in the brain. Identifying these parallels can serve two
purposes. First, machine learners have extensive experience analyzing normalization methods and
have developed a sense of how they work, why they work, and when using certain methods may
be preferred over others. This experience can translate to quantitative insights about outstanding
challenges in neuroscience, including the stability versus plasticity trade-off, the roles of different
homeostasis mechanisms used across space and time, and whether there are parameters critical for
maintaining homeostatic function that have been missed experimentally. Second, there are many
normalization techniques used in the brain that have not, to our knowledge, been deeply explored in
machine learning. This represents an opportunity for neuroscientists to propose new normalization
algorithms from observed phenomena or established principles [24] or to provide new perspectives
on why existing normalization schemes used in deep networks work so well in practice.
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The benefits of load balancing (homeostasis)

In computer science, the term “load balancing” means to distribute a data processing load over
a set of computing units [25]. Typically, the goal is to distribute this load evenly to maximize
efficiency and reduce the amount of time that units are idle (e.g., for servers handling traffic on
the Internet). For neural networks, we define load balancing based on how frequently a set of
neurons are activated, and how similar their mean activation levels are, on average. Why might
load balancing in neural networks be attractive computationally? Three reasons come to mind:

First, load balancing increases the coding capacity of the network; i.e., the number of unique
stimuli that can be represented using a fixed number of resources (neurons). Suppose that under
standard training, a certain fraction (say, 50%) of the hidden units are just not used; that is, they are
never, or rarely ever, activated. This wasted capacity would reduce the number of possible patterns
the network could represent and would introduce unnecessary parameters that can prolong training.
Load balancing of neurons could avoid these problems by pressing more hidden units into service.
In the brain, equal utilization of neurons also promotes distributed representations, in which each
stimuli is represented by many neurons, and each neuron participates in the representation of many
stimuli (often called a combinatorial code [26, 27]). This property is particularly attractive when
such representations are formed independent of input statistics or structure.

Second, load balancing can improve fine-grained discrimination. Suppose there are two hidden
units that are similarly activated for the same input stimuli (e.g., images of dogs). The training
process could just choose one of them and turn off the other. But if both units are used, then the
door remains open for future fine-grained discrimination; e.g., discriminating between subclasses
of dogs, such as chihuahuas and labradoodles. In general, if more nodes are used to represent a
stimulus, then the nodes may better preserve finer details of the pattern, which can serve later as
the basis for discrimination, if necessary. Relatedly, if a neuron has a sigmoidal activation function,
normalization keeps the neuron in its non-saturated regime. This is believed to help the neuron be
maximally informative and discriminative [28–32].

Third, load balancing can serve as a regularizer, which is commonly used in deep networks to
constrain the magnitude of weights or the activity levels of units. Regularizers typically improve
generalization and reduce over-fitting [33], and can be specified explicitly or implicitly [34]. There
are many forms of regularization used in deep learning; for example, Dropout [35], in which a
random fraction of the neurons is set inactive during training; or weight regularization, in which
`1 or `2 penalties are applied to the loss function to limit how large weight vectors become [36,
37]. Although regularization is a powerful tool to build robust models, regularization alone is not
guaranteed to generate homeostatic representations.

Normalization methods across four spatial scales

We begin by describing artificial and neural normalization strategies that occur across four spatial
scales (Figure 1, Table 1): normalization of a single neuron’s activity via intrinsic neural prop-
erties; normalization of synaptic weights of a neuron; normalization of a layer of neurons; and
normalization of an entire network of neurons.
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Normalization of a single neuron’s activity

Here, we focus on normalization methods that directly modify the activity level of a neuron via
intrinsic mechanisms.

In deep learning, the current most popular form of single neuron normalization is called batch
normalization [3]. It has long been known that z-scoring the input layer — i.e., shifting and
scaling the inputs to have zero mean and unit variance — speeds up network training [1]. Batch
normalizaton essentially applies this idea to each hidden layer by ensuring that, for every batch of
training examples, the activation of a hidden unit over the batch has zero mean and unit variance.

Mathematically, let {z1, z2, . . . , zB} be the activations of hidden unit z for each of the i = 1 : B
inputs in a training batch. Let µB and σ2B be the mean and variance of all zi’s, respectively. Then,
the batch-normalized activation of z for the ith input is:

ẑi =
zi − µB√
σ2B + ε

,

where ε is a small constant.
In practice, the effect of this simple transformation is profound: it leads to significantly faster

convergence (larger learning rates) and improved stability (less sensitivity to parameter initializa-
tion and learning rate) [3, 4, 38, 39]. Numerous extensions of this method have since been proposed
with various tweaks and perks on a similar underlying idea (Table 1).

In the brain, normalizing the activity of a neuron has long been appreciated as an important
stabilizing mechanism [40]. For example, if neuron u drives neuron v to fire, the synapse between
them may get strengthened by Hebbian plasticity. Then, the next time u fires, it is even more
likely that v fires, and this positive feedback loop can lead to excessive activity. Similarly, if the
synapse undergoes depression, then it is less likely for v to fire in the future, and this negative
feedback can lead to insufficient activity. The job of homeostasis is to prevent neurons from being
both over-utilized (hyperactive) and under-utilized (hypoactive) [41].

Modifying a neuron’s excitability — e.g., its firing threshold or bias — represents one intrinsic
neural mechanism used to achieve homeostasis [42–44]. The idea is simple (Figure 1A); each neuron
has an approximate target firing rate at which it prefers to fire. A neuron with sustained activity
above its target will increase its firing threshold, such that it becomes harder to fire, and likewise, a
neuron with depressed activity below its target will decrease its firing threshold, thus becoming more
sensitive to future inputs. The net effect of these modifications is that the neuron hovers around
its target firing rate, on average over time. Several parameters are involved in this process, such
as the rate at which thresholds are adjusted, which affects how quickly homeostasis is approached,
and the value of the target itself, which may be cell-type specific. Other intrinsic mechanisms, such
as modifying ion channel density, can also be used to intrinsically regulate firing rates (Figure 1).

Both of these methods are unsupervised; they adjust the activity of a neuron to lie within a
preferred, narrow range with respect to recently observed data.

Normalization of synaptic weights

Here, we focus on normalization methods that indirectly modify the activity of a neuron by chang-
ing its weights.
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In deep learning, one popular way to normalize the inputs to a unit (post-synaptically) is called
weight normalization [45]. The main idea is to re-parameterize the conventional weight vector w
of a unit into two components:

w =
c

‖v‖
v,

where c is a scalar and v is a parameter vector, both of which are learned. This transformation fixes
the length (Euclidean norm) of the weight vector, such that ‖w‖ = c, for any v. Backpropagation
is then applied to c and v, instead of to w. Thus, the length of the weight vector (c) is de-coupled
from the direction of the weight vector (v/‖v‖). Such “length-direction” decoupling leads to faster
learning and exponential convergence in some cases [5].

In the brain, the most well-studied type of weight normalization is called synaptic scaling [41]
(Figure 1B, Left). If a neuron is on average firing above its target firing rate, then all of its
incoming excitatory synapses are downscaled (i.e., multiplied by some factor, 0 < α < 1), to reduce
its future activity. Similarly, if a neuron is firing far below its target, then all its excitatory synapses
are upscaled (α > 1); in other words, prolonged inactivity leads to an increase in synaptic size [46].
These rules may seem counter-intuitive, but remember that these changes are happening over longer
time scales than the changes caused by standard plasticity mechanisms. Indeed, it is hypothesized
that one way to resolve the plasticity versus stability dilemma is to temporally segregate Hebbian
and homeostatic plasticity so that they do not interfere [47]. This could be done, for example, by
activating synaptic scaling during sleep [48, 49].

Interestingly, synapse sizes are scaled on a per neuron basis using a multiplicative update rule
(Figure 1B, Left). For example, if a neuron has four incoming synapses with weights 1.0, 0.8, 0.6,
and 0.2, and if the neuron is firing above its target rate, then the new weights would be downscaled to
0.5, 0.4, 0.3, and 0.1, assuming a multiplicative factor of α = 1/2. Critically, multiplicative updates
ensure that the relative strengths of synapses are preserved, which is believed to help maintain
synapse-specificity of the neuron’s response caused by learning. The value of the multiplicative
factor need not be constant, and could depend, for example, on how far away the neuron is from
reaching its target rate. Thus, synaptic scaling keeps the firing rate of a neuron within a range
while preserving the relative strength between synapses.

Another form of weight normalization in the brain is called dendritic normalization [50–52],
which occurs locally on individual branches of a neuron’s dendritic arbor (Figure 1B, Right). The
idea is that if one synapse gets strengthened, then its neighboring synapses on the arbor compen-
sate by weakening. This process is homeostatic because the total strength of all synapses along
a local part of the arbor remains approximately constant. This process could be mediated by a
shared resource, for example, a fixed number of post-synaptic neurotransmitter receptors available
amongst neighboring synapses [53]. Computationally, this process creates sharper boundaries be-
tween spatially adjacent synapses receiving similar inputs, which could enhance discrimination and
contrast.

Normalization of a layer of neurons

Here, we focus on normalization schemes that modify the activity of an entire layer of neurons, as
opposed to just a single neuron’s activity.
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In deep learning, layer normalization [54] was recently proposed to overcome several drawbacks
of batch normalization. In batch normalization, the mean and variance statistics of each neuron’s
activity is computed across a batch of training examples, and then each neuron is normalized with
respect to its own statistics over the batch. In layer normalization, the mean and variance is instead
computed over an entire layer of neurons for each training example, and then each neuron in the
layer is normalized by the same mean and variance. Thus, layer normalization can be used online
(i.e., batch size of one), which makes it more amenable to training recurrent neural networks [54].

In the brain, layer-wise normalization has most prominently been observed in sensory systems
(Figure 1C, Left). For example, in the fruit fly olfactory system, the first layer of (receptor) neurons
encode odors via a combinatorial code, in which, for any individual odor, most neurons respond at a
low rate, and very few neurons respond at a high rate [26]. Specifically, the distribution of firing rates
over all receptor neurons is exponential with a mean that depends on the concentration of the odor
(higher concentration→ higher mean). In the second layer of the circuit, projection neurons receive
odor excitation from receptor neurons, as well as inhibition from lateral inhibitory neurons [12]. The
result is that the concentration-dependence is largely removed; i.e., the distribution of firing rates
for projection neurons follows an exponential distribution with approximately the same mean, for all
odors and all odor concentrations [55] (Figure 1C, Right). Thus, while an individual neuron’s firing
rate can change depending on the odor, the distribution of firing rates over all neuron’s remains
nearly the same for any odor. This process is dubbed divisive normalization and is believed to
help fruit flies identify odors independent of the odor’s concentration. Divisive normalization has
also been studied in the visual system, for example, light adaptation in the retina, or contrast
adjustment in the visual cortex [9].

Overall, layer normalization helps maintain some invariant response property of a layer of neu-
rons by dividing the responses of individual neurons by a factor that relates to the summed activity
of all the neurons in the layer. These normalizations can be considered “homeostatic” because they
preserve, for any input, properties of a distribution of firing rates (e.g., the mean or variance). In the
brain, other non-linear transformations are also used alongside these transformations, for example,
to adjust saturation rates of individual neurons and to amplify signals prior to normalization [9].

Normalization of a network of neurons

In the brain, recent work has challenged the conventional view that homeostasis applies at the
level of a single neuron or a strict layer of neurons, and have instead attributed homeostasis prop-
erties to a broader network of neurons. In one experiment, the firing rates of individual neurons
in a hippocampal network were monitored for two days after applying baclofen, a chemical agent
that suppresses neural activity. After two days, the distribution of firing rates over the population
was compared to the distribution of firing rates for a control group of neurons that received no
baclofen. Strikingly, both were approximated by the same log-normal distribution. Moreover, the
firing rates of many individual neurons, in both conditions, significantly changed from day 0 to
day 2 [56, 57] (Figure 1D), suggesting that homeostasis may not strictly apply at the level of an
individual neuron but is rather maintained at the population level. Similar observations have been
made in the stomatogastric ganglion of crabs and lobsters, where rhythmic bursting is robustly
maintained despite many perturbations to the circuit [58]. This remains a beautiful yet mysterious
property of network stability implemented by neural circuits, and the mechanisms driving this level
of network regulation remain poorly understood [59].
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In deep learning, we are not aware of a normalization strategy that is applied across an entire
network of units, or even across a population of units beyond a single layer. Network homeostasis
could in principle be an emergent property from local homeostasis rules implemented by individual
units, or could be a global constraint intrinsically enforced by some unknown mechanism. Either
way, we hypothesize that network homeostasis may be attractive in deep networks because it allows
for more flexible local representations while still providing stability at the network level.

An empirical comparison of normalization algorithms

The empirical results in this section serve two purposes. The first is to show that two popular
normalization methods generate homeostatic representations, thus offering a new perspective on the
benefits of normalization in deep learning. The second is to show that a method inspired by synaptic
scaling also generates homeostatic effects and performs competitively against existing normalization
methods. These results are not meant to represent a full-fledged comparison between normalization
methods across multiple architectures, datasets, or hyper-parameter settings. Rather, these results
are simply meant to demonstrate a proof-of-concept of the bi-directional perspective argued here.

We define homeostasis based on two properties: 1) The probability or frequency that each unit
is activated (i.e., outputs a value > 0) over all inputs in a batch; and 2) The average activation
value of each unit when activated. At homeostasis, each unit should be activated with a similar
probability (i.e., no units are over- or under- utilized), and the average response magnitudes of
units should lie within a narrow range.

Experimental setup. For our basic architecture, we used the original LeNet5 [60] with two
convolutional layers and three fully connected layers with ReLU activation functions. Like neurons,
ReLU units include a firing threshold; only nodes with a value greater than a threshold can fire.

We experimented with two datasets. The first is CIFAR-10, a standard benchmark for clas-
sification tasks, which contains 60,000 color images, each of size 32 × 32, and each belonging to
one of 10 classes (airplanes, cats, trucks, etc.). The second dataset is SVHN (Street House View
Numbers), which contains 73,257 color images, each of size 32 × 32, and each belonging to one of
10 classes (digits from 0–9). SVHN is analogous to MNIST but is more difficult to classify because
it includes house numbers in natural scene images taken from a street view.

Each normalization method is applied to every layer, except the input and output layers, with all
affine parameters trainable. For each dataset, all methods used Adam optimization using PyTorch
with default parameters. Additional hyper-parameters were fixed for each dataset: CIFAR-10
(batch size of 32, learning rate of 0.003, train for about 45,000 iterations), SVHN (batch size of
256, learning rate of 0.01, train for about 8,000 iterations). Batch statistics are calculated using
training data during training and testing data during testing.

Table 2 provides the equations for each normalization algorithm.

A synaptic-scaling-inspired normalization algorithm. Of the many normalization methods
discussed above, we choose to model synaptic scaling because it is one of the most well studied and
widely-observed mechanisms across brain regions and species.

We propose a simplified model of synaptic scaling that captures two keys aspects of the under-
lying biology: multiplicative scaling of synaptic weights, and constraining a node to be activated
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around a target activation probability on average. In the first step, the incoming weight vector w
for a hidden unit is multiplied by a factor α, i.e., w = αw. Each hidden unit has its own α value,
which is made learnable during training. The α values are initialized to 1. In the second step,
for each hidden unit, we subtract its mean activation (over a batch) from its actual activation for
each input in the batch. This process ensures that each unit has a mean activation (before ReLU)
of 0 and hence, a probability of activation (output value > 0) of around 50%, and thus resembles
the biological observation that no neuron is over- or under- utilized. This step is also the same
as mean-only batch normalization [45]. One advantage of this synaptic scaling model compared
to batch normalization is that it removes the division by the variance term, which can lead to
exploding gradients when the variance is close to zero.

An “ideal” model of synaptic scaling might only multiplicatively scale the weights of a hidden
unit such that a given target activation probability is achieved on average. Instead, we first scale
the weights by a learnable parameter (α), which allows the network to learn the optimal range of
activation values for the unit, and we then constrain the unit to hit its target in step two. Similarly,
batch normalization does not simply use z-scored activation values for each hidden unit (Table 2),
but rather includes two learnable parameters (γ, β) per unit to shift and scale its normalized
activation. In both cases, this flexibility likely increases the representation power of the network [3].

Mathematically, for each hidden unit, the forward-pass operations for synaptic scaling are:

w = αw

zi = wxi + b

yi = ReLU(zi − µB),

where the subscript i indicates the ith example in a batch of size B (i = 1 : B); w, xi, b, zi, yi are
the incoming weights to the hidden unit, the inputs for the ith example from the previous layer, the
bias of the unit, the value of the unit before activation, and the output of the unit, respectively;
µB is the average of all zi’s over a batch.

To explore how the two steps independently affect classification performance, we tested each of
them without the other. We call these models “Mean-only” and “Scale-only”, respectively (Table 2).

Existing normalization methods generate homeostatic representations

First, we confirmed that two state-of-the-art normalization methods — batch normalization (Batch-
Norm) and weight normalization (WeightNorm) — improve classification accuracy on CIFAR-10:
from 59.3± 1.4% for the original version of LeNet5 without normalization (Vanilla) to 63.8± 0.9%
(WeightNorm) and 65.8±0.5% (BatchNorm) (Figure 2A). Normalized networks also learned faster;
i.e., they required fewer training iterations to achieve high accuracy.

Second, we show that BatchNorm and WeightNorm demonstrate load balancing effects. For
the first property of homeostasis, Figure 2B shows that hidden units in normalized networks had
more similar activation probabilities than in Vanilla: the coefficients of variation of activation
probabilities across hidden units were 0.20 (BatchNorm) and 1.38 (WeightNorm) compared to 1.65
(Vanilla). BatchNorm and WeightNorm also used more units in the network; for example, in the
first fully-connected layer, BatchNorm and WeightNorm activated 41.3± 2.6% and 18.7± 2.4% of
units per iteration, respectively, compared to Vanilla (10.3 ± 2.2%) (Figure 2C). For the second
property, Figure 2D shows that when active, the activation values of hidden units were more similar
when normalized compared to than without; the coefficients of variation of activation values across
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hidden units were 0.16 (BatchNorm) and 0.30 (WeightNorm) compared to 0.55 (Vanilla). The
average output value for hidden units was also significantly reduced in BatchNorm (0.89 ± 0.14)
and WeightNorm (0.76± 0.23) compared to Vanilla (13.36± 7.36).

Together, hidden units in BatchNorm- and WeightNorm- trained networks are activated with
a more similar probability and have activation values constrained to a narrower ranger, compared
to hidden units in Vanilla networks.

Synaptic scaling performs load balancing and obtains competitive performance

We next tested the Synaptic Scaling method and found that its classification accuracy (66.0±0.7%)
was very similar to BatchNorm (65.8 ± 0.5%) on CIFAR-10 (Figure 2A). In contrast, Mean-only
and Scale-only performed worse than Synaptic Scaling, suggesting that both steps — multiplicative
scaling of synapses and setting target activation probabilities — are better when combined.

Synaptic Scaling also generates homeostatic representations that are on par or slightly better
than those of BatchNorm. For the first property, Figure 2B shows that each hidden unit had a
very similar probability of being activated; coefficient of variation of 0.11 for Synaptic Scaling and
0.20 for BatchNorm, compared to 1.65 for Vanilla. Synaptic Scaling activated 50.7 ± 0.3% of the
hidden units total in each iteration, which is slightly higher than BatchNorm (41.3 ± 2.6%) and
much higher than Vanilla (10.3±2.2%) (Figure 2C). For the second property, Figure 2D shows that
the activation values across hidden units were similar after normalization; coefficient of variation
of 0.17 for Synaptic Scaling and 0.16 for BatchNorm, compared to 0.55 for Vanilla. The average
output value for hidden units was also reduced in Synaptic Scaling and BatchNorm (0.63 ± 0.11
versus 0.89± 0.14, respectively) compared to Vanilla (13.36± 7.36).

Interestingly, the learned α parameters for Synaptic Scaling are all positive, meaning no weights
flipped sign during training, and all the α < 1, meaning the weights are all scaled down (Figure 2E).
We did not set any upper or lower bounds on α, and the fact that the learned values stay within
[0, 1] indicates that down-scaling of weights, which in turn reduce activation values, may generally
be beneficial for this classification task.

Validation on a second dataset. To ensure these results were not specific to one dataset, we
ran all methods on a second dataset (SVHN) and found similar trends (Figure 3). To summarize,
Synaptic Scaling and BatchNorm improve classification accuracy compared to all other methods
(Figure 3A), and generate more homeostatic representations (Figure 3B–D) than Vanilla.

Discussion

We showed that widely used normalization methods in deep learning are functionally equivalent
to homeostatic plasticity mechanisms in the brain. While the implementation details vary, both
ensure that the activity of a neuron is centered around some fixed value or lies within some fixed
distribution, and both are temporally local in the sense that changes only depend on recent behavior
(recent firing rate or recent data observed). In summary, both attempt to stabilize and bound neural
activity in an unsupervised manner, and both are critical for efficient learning.

We showed that two state-of-the-art normalization methods (BatchNorm and WeightNorm), as
well as a new normalization algorithm inspired by scaling scaling, generate homeostatic representa-
tions in artificial neural networks and improve classification accuracy on two datasets. Interestingly,
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WeightNorm achieves lower accuracy and generates representations that are less homeostatic, com-
pared to both BatchNorm and Synaptic Scaling (Figures 2 and 3). This suggests that learning
algorithms are more efficient when coupled with homeostatic load balancing, and either without
the other degrades performance. This perspective contributes to the growing list of explanations
for why normalization is so useful in deep networks [3–6, 8], and a natural next step is to develop a
theoretical understanding for why stability (i.e., creating homeostatic representations) may actually
promote plasticity (i.e., improving classification accuracy and learning efficiency), as opposed to
being in conflict.

Moving forward, there are several challenges that remain in bridging the gap between normal-
ization in the artificial and biological neural networks. First, the implementation details of both
types of networks are well-acknowledged to be different [61]. For example, unlike most artificial
networks, the brain has a strict division of excitatory and inhibitory neurons, which means differ-
ent homeostasis rules can be applied to excitatory and inhibitory synapses [62]. Second, our model
of synaptic scaling assumed that each hidden unit had the same target “fixed point”, whereas in
reality, adjustable fixed points might further improve performance. Indeed, batch normalization
allows the fixed points to be learned through the affine parameter, β. In artificial networks, fixed
points could vary based on the dataset, network architecture, or other hyper-parameters. In the
brain, different cell types may use different fixed points, or fixed points of a single cell may change
during different phases of training. Third, it is unclear how the time-scales of homeostasis in the
brain map to time-scales of learning in artificial networks. Normalization is typically applied per
input or per batch in deep learning, but other time scales remain unexplored [48, 49, 63]. Similarly,
normalization that operates simultaneously across different spatial scales (e.g., combining batch
normalization and layer normalization) have also not been analyzed. Fourth, there are different
constraints between what a hidden unit can store and compute and what a neuron can (likely)
store and compute. For example, it seems plausible for a neuron to track its own mean firing rate
over a given time window, but tracking its own variance seems trickier.

There are also several challenges in understanding the neuroscience of homeostasis that remain
outstanding. For example, network-wide homeostasis, which goes beyond fixed points for individual
neurons, has been observed in the brain, but the circuit mechanisms that give rise to these effects
remain elusive. Further, it remains unclear what the advantages and disadvantages of different
homeostatic mechanisms are, and when to use which. For example, many homeostatic plasticity
mechanisms reset a neuron’s firing rate to a target firing rate on average; but when would it be
appropriate to achieve this goal by modifying intrinsic excitability versus modifying pre- or post-
synaptic weights? Indeed, there may be multiple means towards the same end, and it remains
unclear what the trade-offs are among these different paths.

We hope these insights provide an avenue for building future collaborations, where computer
scientists can use quantitative frameworks to evaluate how different plasticity mechanisms affect
neural function; indeed, understanding the advantages and disadvantages of homeostatic plasticity
from a machine learning perspective could shed new light on the biological mechanisms that enable
homeostasis and could help identify parameters important for maintaining homeostatic function
that have not been measured experimentally. In return, neuroscientists can provide new per-
spectives on the benefits of normalization in neural networks and inspiration for designing new
normalization algorithms based on neurobiological principles.

Acknowledgements. The authors thank Sanjoy Dasgupta, Alexei Koulakov, Vishaal Krishnan,
Ankit Patel, and Shyam Srinivasan for helpful comments on the manuscript.
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Table 1: Correspondences between normalization mechanisms in artificial and biological neural
networks across four spatial scales. See also reviews: [47, 64–66].

Scale Deep learning Refs. Neural circuits Refs.

Single neuron

Batch normalization [3] Firing thresholds [42–44]
Ion channel density [67, 68]
Cell-type specificity [16]

Group normalization [69] — —
Instance normalization [70] — —
Self-normalization [71] — —
Normalization propagation [72] — —

Synaptic weights Weight normalization [45] (Post) synaptic scaling [16, 41]
— — (Pre) release probability [16, 46]
— — (Branch) dendritic normalization [50–52]

Layer of neurons
Whitening [1, 2, 73] Decorrelation / whitening [74–78]
Layer normalization [54] Divisive normalization [9]

Network of neurons — — Network homeostasis [56, 79]
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Table 2: Normalization algorithms. All equations show the forward-pass update equations for a single
hidden unit. For Weight normalization, backpropagation is performed on c and v, instead of w.

Algorithm Equations Notation

Batch normalization

zi = wxi + b i : ith example in a batch of size B

ẑi =
zi − µB√
σ2B + ε

zi : value of the unit (before activation) for i

yi = ReLU(γẑi + β) yi : value of the unit (after activation) for i

Weight normalization
yi = ReLU(wxi + b) w : incoming weights to the unit

w =
c

||v||
v xi : inputs to the unit for i

Synaptic scaling
w = αw b : bias of the unit
zi = wxi + b
yi = ReLU(zi − µB) µB : average of zi’s over the batch

Mean-only
zi = wxi + b σ2B : variance of zi’s over the batch
yi = ReLU(zi − µB) γ, β : trainable parameters (BatchNorm)

Scale-only
w = αw c,v : training parameters (WeightNorm)
zi = wxi + b α : trainable parameter (Synaptic Scaling)
yi = ReLU(zi) ε : a small constant
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Figure 1: Neural homeostatic plasticity mechanisms across four spatial scales. A) Normalization
of a single neuron’s activity. Left: Neuron X has a relatively low firing rate and a high firing threshold,
θX , and vice-versa for neuron Y . Right: Both neurons can be brought closer to their target firing rate by
decreasing θX and increasing θY . B) Normalization of synaptic weights. Left (synaptic scaling): If a neuron
is firing above its target rate, its synapses are multiplicatively decreased, and vice-versa if the neuron is
firing below its target rate. Right (dendritic normalization): If a synapse size increases due to strong LTP,
its neighboring synapses decrease their size. C) Normalization of a layer of neurons. Left: Two layers of
neurons with feed-forward connections, and other feed-back inhibitory connections (not shown). Right: The
cumulative distribution of firing rates for neurons in the first layer is exponential with a different mean for
different inputs. The activity of neurons in the second layer are normalized such that the means of the
three exponentials are approximately the same. D) Left: Example of a neural circuit with the same units
and connections, but different activity levels for neurons (purple bars) and different weights (pink arrow
thickness) under two different conditions. Right: Despite local variability, the global distributions of firing
rates and synaptic weights for the network remains stable (log-normally distributed) under both conditions.
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B

Synaptic Scaling
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Figure 2: [CIFAR-10] Normalization increases performance and drives neural networks towards
a “homeostatic” state. A) Test accuracy (y-axis) versus training iteration (x-axis). Error bars show
standard deviation over 10 random initializations. BatchNorm and Synaptic Scaling achieve higher accuracy
at the beginning and at the end of training compared to all other methods, including Vanilla. B) The
frequency of each hidden unit (columns) being activated over all inputs in a batch, computed on every 100th

training iteration (rows). Heatmaps are shown for hidden units in both fully-connected (FC) layers. C)
Histogram of the fraction of activated hidden nodes, averaged over each batch. Lighter and darker colored
histograms show the first and second FC layers, respectively. D) Histogram of the mean activation values
for hidden units in the first FC layer, calculated using the test dataset. E) Distribution of the trained α
parameters for Synaptic Scaling, for each FC layer.
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Figure 3: [SVHN] Similar benefits of normalization on a second dataset. Synaptic Scaling and
BatchNorm have the highest classification accuracy (A), and generate homeostatic representations (B,C:
fraction of activated hidden units; D: mean activation values for hidden units). See Figure 2 caption for
detailed panel descriptions.
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