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 2

ABSTRACT 38 

 Economic choice necessarily involves the transformation of abstract, object-based 39 

representations to concrete, action-based ones. This transformation is both determined and 40 

delimited by the neuroanatomical organization of the regions that implement it. In choice, the 41 

orbitofrontal cortex (OFC) plays a key role in both abstract valuation and cognitive mapping. 42 

However, determining the neural processes underlying this transformation has proven difficult. 43 

We hypothesized that difficulty stems from in part from the fact that the OFC consists of multiple 44 

functionally distinct zones that are distinguished by their differing contributions to the abstract-45 

concrete transformation, and that these functions reflect their differing long-range projections. 46 

Here we identify two such subregions, defined by stronger or weaker bidirectional anatomical 47 

connectivity with the posterior cingulate cortex (PCC). We call these regions OFCin and OFCout, 48 

respectively. We find that OFCin, relative to OFCout, shows enhanced functional connectivity 49 

with PCC, as indicated by both spike-field coherence and mutual information. We find 50 

converging evidence that the OFCin-PCC circuit, but not the OFCout-PCC circuit, relays choice 51 

signals from an abstract value space to a concrete action space. Moreover, the OFCin-PCC circuit 52 

shows a putative bidirectional mutually excitatory pattern. Together, these results support the 53 

hypothesis that OFC-PCC subareal organization is critical for understanding the implementation 54 

of offer-action transformation in economic choice. 55 
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INTRODUCTION 57 

 Among brain regions associated with economic choice, the orbitofrontal cortex (OFC) 58 

has attracted the lion’s share of attention (Bradfield & Hart, 2020; Kaplan et al., 2017; Padoa-59 

Schioppa & Conen, 2017; Schoenbaum et al., 2009; Stalnaker et al., 2015; Wallis, 2007; 60 

Wikenheiser & Schoenbaum, 2016; Wilson et al., 2014; Rudebeck and Murray, 2014 and 2018). 61 

This region is associated with evaluation, value comparison, cognitive mapping, and prospection 62 

(Padoa-Schioppa, 2011; Rushworth et al., 2011; Schuck et al., 2016; Wallis, 2007; Wang et al., 63 

2020; Wang & Hayden, 2017). Consequently, OFC is seen as playing a central role in 64 

choice. Furthermore, there is increasing attention being paid to functionally unique subdivisions 65 

of the OFC (Rudebeck & Murray, 2011 and 2018). For example, the medial OFC may be more 66 

associated with abstract valuation and learning processes (Noonan et al., 2010; Rushworth et al., 67 

2011; Levy & Glimcher, 2014), whereas central OFC may help to associate stimuli with 68 

outcomes or signal outcome desirability (Niv, 2019; Wilson et al., 2014; Rudebeck et al., 2017), 69 

and the lateral OFC may signal resource availability (Rudebeck et al., 2017). However, these 70 

distinctions are based on coarse parcellation, and may not reflect the subtleties of anatomical and 71 

functional differentiation within this broad swath of cortex. 72 

Economic choice requires the transformation of sensory and mnemonic information into 73 

actions (Cai & Padoa-Schioppa, 2014; Hare et al., 2011; Hayden & Moreno-Bote, 2018; Yim et 74 

al., 2019; Yoo et al., 2018). In other words, economic choice involves a transformation from an 75 

abstract (goods) space to a concrete (action) one (Padoa-Schioppa, 2011; Rangel et al., 2008). It 76 

is likely that the OFC plays a central role in this process. However, the nature of that role remains 77 

unclear. Many studies have emphasized the abstract side of OFC processing; however, a growing 78 

number of studies suggest that it may have an important spatial role as well (Yoo et al., 2018; Luk 79 

and Wallis, 2013; Strait et al., 2016; Roesch et al., 2006). The inconsistency across studies, along 80 

with the functional divisions explained above, raise the possibility that different parts of OFC 81 
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may have heterogeneous functions. Defining, and working with, that heterogeneity may allow for 82 

more precise delineation of OFC function. 83 

We hypothesized that the key to understanding the role of OFC in the transformation 84 

from abstract to concrete representations is through its connectivity with another region involved 85 

in economic choice: the posterior cingulate cortex (PCC). This region, located in the 86 

posteromedial cortex, has not received the same amount of scholarly scrutiny from decision 87 

neuroscientists as OFC. Nevertheless, the PCC has a confirmed spatial repertoire (Dean & Platt, 88 

2006; Hayden et al., 2008; Olson et al., 1996; Spreng et al., 2009; Dean et al., 2004) and plays a 89 

central economic role (Barack et al., 2017; Hayden et al., 2008; Heilbronner & Platt, 2013; Kable 90 

& Glimcher, 2007; Pearson et al., 2009; Young & Mccoy, 2015). That is, while PCC has 91 

consistent responses to outcomes, those responses are spatially selective, perhaps due to the 92 

strong interactions between this region and the parietal cortex (Morecraft et al., 2004; Cavada et 93 

al., 1989; Pandya & Seltzer 1982). Finally, PCC has direct bidirectional communication with 94 

OFC (Kobayashi & Amaral, 2003; Morecraft et al., 2004; Pandya et al., 1981; Parvizi et al., 95 

2006; Morecraft et al., 1992). We wanted to probe how the OFC-PCC circuit might facilitate 96 

transformations from abstract space to action space for choice. 97 

  98 
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RESULTS 99 

OFC-PCC anatomical connectivity 100 

We injected the tracer fluororuby in the PCC gyrus, centered at the border between area 101 

23a and 30 (with some involvement of area 29, Paxinos et al., 2009). This injection resulted in 102 

widespread retrograde and anterograde labeling throughout the anterior and posterior cingulate 103 

cortices, parietal lobe (precuneus and intraparietal sulcus), medial temporal lobe (hippocampal 104 

formation), and frontal cortex (primarily dorsolateral prefrontal and orbitofrontal cortices). 105 

Projections to the OFC were particularly interesting for their specificity: cells and terminal fields 106 

were clustered around the medial orbital sulcus (mainly area 13a, but also including lateral 14O 107 

and caudal 11, based on Paxinos et al., 2009; Figure 1A-C). There were projections to other OFC 108 

subregions, but these were noticeably less dense. These results are consistent with other, similarly 109 

placed cases from the literature (Kobayashi & Amaral, 2003; Morecraft et al., 2004; Pandya et al., 110 

1981; Parvizi et al., 2006; Morecraft et al., 1992). A second injection (Supplementary Figure 1) 111 

targeted the PCC sulcus, and also resulted in labeling around the medial orbital sulcus, although it 112 

was less specific. We concluded that although the PCC does connect with other OFC subareas 113 

(OFCout), its relationship with the subareas surrounding the medial orbital sulcus (from here on 114 

referred to as OFCin) is unique. We next sought to examine the functional properties of this 115 

circuit. 116 
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 117 

 118 
Figure 1. Anatomical connectivity between OFC and PCC and matching recording 119 
sites. A. Injection site (black, Case M1FR) is rendered in 3D and shown in a sagittal 120 
view (top) and on a coronal slice (bottom). B. Projections to the OFC rendered in 3D and 121 
shown on an orbital view. Red indicates dense terminal fields; pink indicates light 122 
terminal fields; gray spheres are labeled cells. The majority of OFC labeling is around 123 
the medial orbital sulcus. C. Coronal slices with full PFC labeling, colors are as in (B). A 124 
photomicrograph indicates label around the medial orbital sulcus. D. Coronal sections of 125 
example recording site from each of OFC (dark blue colored region), with OFCin on left 126 
and OFCout in the middle, and PCC (orange colored region). 127 
 128 
 129 

Behavior and electrophysiology 130 

We recorded neural activity in all three regions--PCC, OFCin, and OFCout (Figure 1D)-- 131 

while rhesus macaques (Macaca mulatta, Subjects P and S) performed a well-established 132 

economic choice task (Strait et al., 2014; Farashahi et al., 2018; Figure 2A). The critical features 133 

of the task are its asynchronous presentation of options (offer 1 and offer 2) and the random order 134 

of presentation of options by location (left vs. right), which allowed us to examine the 135 

relationship between encodings of offer both abstractly (by time of presentation) and concretely 136 
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(by side of presentation). As in our past studies using this task (e.g. Strait et al., 2014), both 137 

subjects reliably chose the option with higher expected value, indicating high choice accuracy 138 

(Supplementary Figure 2). We recorded neural ensembles with multiple linear probes 139 

simultaneously in both PCC (n=213 neurons) and OFC (n=98 neurons, 44 in OFCin and 54 in 140 

OFCout).  141 
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 142 

Figure 2. Task and functional connectivity. A. Two-option risky choice task. Black 143 
rectangles symbolize various task epochs subjects experience during task. Stakes are 144 
represented as different colors: small (gray), medium (blue), or large (green) reward. 145 
Losing the gamble (no reward) is represented in red. The height of the stakes-color 146 
region represents the probability of winning the gamble, and the height of the red-color 147 

8
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region represents the probability of losing the gamble. The white frame around the right 148 
option in the choice epoch represents the scenario where the subject chooses the right 149 
option with eye fixation. The water droplet symbol indicates that reward delivery (or lack 150 
thereof) occurs.  B. Trial-averaged spike-field coherence in OFCinspk-PCClfp circuit. X 151 
axis: time in a trial. Y axis: frequency. Color: strength of spike-field coherence on log10 152 
scale (warmer colors=higher coherence). Data from the first half of the trial (offer period) 153 
was aligned at offer 1 onset. Data from the second half of the trial (choice period) was 154 
aligned at choice execution. C. Spike-field coherence in OFCoutspk-PCClfp. Conventions 155 
as in (B). D-F. Difference in spike-field coherence between the two circuits (coherence in 156 
OFCinspk-PCClfp circuit minus coherence in OFCoutspk-PCClfp circuit), broken down into 157 
different frequency bands as a function of time (Methods), during (C) offer 1 epoch, (D) 158 
choice epoch, and (E) reward epoch. G. Mutual information (averaged across number of 159 
channels) in OFCin-PCC and OFCout-PCC circuits. SEM: standard error of the mean. 160 
Red shaded area: SEM of mutual information in OFCin-PCC circuit. Blue shaded area: 161 
SEM of mutual information in OFCout-PCC circuit. Magenta and cyan shaded areas: the 162 
middle 95% range of the randomly shuffled mutual information (500 times) for OFCin-163 
PCC and OFCout-PCC circuits, respectively. Thus, the original (non-shuffled) mutual 164 
information values outside of the shaded area is significantly higher/lower than expected 165 
by chance.  166 
 167 
Functional connectivity 168 

We asked whether the OFCin-PCC circuit shows greater functional (rather than 169 

anatomical) connectivity than the OFCout-PCC circuit. We employed spike-field coherence, 170 

which relates the recorded action potentials of one region to the local field potential (LFP) 171 

oscillations of another (Buzsáki, 2004; Dal Monte et al., 2020; Buzsaki & Draguhn, 2004; 172 

Pesaran, 2010; Scherberger et al., 2005; Widge et al., 2019; see Methods and Supplementary 173 

Figure 3). We found that broadband spike-field coherence between OFCin (spikes) and PCC 174 

(LFPs) is stronger than coherence between OFCout and PCC. Specifically, during the offer 175 

epoch, the broadband spike-field coherence in the OFCinspk-PCClfp circuit is higher than that in 176 

the OFCoutspk-PCClfp circuit (z=5.01, p<0.001, Wilcoxon signed rank test, Figure 2B-C). This 177 

effect appears to be broadband; it is significant within all five bands that we tested: delta, theta, 178 

alpha, beta, and gamma (Figure 2D). The same pattern occurs in the choice and outcome epochs 179 

(OFCinspk-PCClfp > OFCoutspk-PCClfp; choice: z=2.81, p=0.005; outcome: z=3.70, p=0.005). 180 

During choice, higher coherence occurs within the theta, alpha, and gamma bands, but not the 181 

delta or beta bands (Figure 2E). During outcome, higher coherence occurs in all but the beta 182 

band (Figure 2F).  183 
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 We next probed information exchange within our two newly identified circuits by 184 

comparing mutual information within each one (see Methods). We computed channels as the set 185 

of all possible pairs of trains from across the two regions (Timme & Lapish, 2018). Thus, we 186 

identified 9372 channels in the OFCin-PCC circuit and 11502 channels in the OFCout-PCC 187 

circuit and calculated the averaged mutual information per channel within each circuit. We found 188 

that the OFCin-PCC circuit shares higher mutual information than OFCout-PCC (7.44x10-4 vs. 189 

6.72x10-4 bits/channel; z=17.47, p<0.001, Wilcoxon signed rank test). Mutual information in both 190 

circuits increased significantly at task onset (p<0.025, shuffle test, see Supplement), suggesting 191 

that the observed mutual information effect reflects task-driven, rather than spontaneous, 192 

fluctuations (Figure 2G).   193 

 194 

Neural computation 195 

Functional connectivity results do not speak to the content of the information transmitted. 196 

We therefore analyzed encoding of task variables with a multiple linear regression model. All 197 

three regions encoded offer and outcome values in their respective epochs with similar 198 

proportions of neurons, encoding strengths, and latency (Supplement). They also all encoded the 199 

chosen option (offer 1 vs. 2) and chosen location (left vs. right). However, OFCin encoded the 200 

chosen option (offer 1 vs 2) with shorter latency (90 ms, F=3.35, p=0.037, GLM Gamma 201 

distribution; Methods) than both OFCout (170 ms, t=-2.14, p=0.033) and PCC (150 ms, t=-2.36, 202 

p=0.019), suggesting chosen option information arises first in OFCin. PCC appears to be more 203 

spatially sensitive than either OFC region: it showed a higher proportion of neurons encoding 204 

chosen location than chosen option (χ2=5.31, p=0.021, chi-square test); neither OFC region 205 

shows this pattern (Supplement). PCC and OFCin also encoded the chosen location with 206 

significantly shorter latencies than OFCout (F=5.71, p=0.004; Supplement), suggesting that PCC 207 

and OFCin, but not OFCout, negotiate chosen location encoding.  208 
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We next examined the negative correlation of regression coefficients for the two offers 209 

when offer 2 was revealed, a putative neural signature of value comparison (Azab & Hayden, 210 

2017; Strait et al., 2014). We performed this analysis using a 200-ms analysis window (350 ms 211 

after offer 2 onset; the same window identified by the Granger analysis, see below) and found 212 

that OFCin showed this putative mutual inhibition signal (r=-0.36, p=0.016, Spearman 213 

correlation; Figure 3A). We did not observe such an effect in OFCout (r=-0.18, p=0.190; Figure 214 

3B) or in PCC (r=0.02, p=0.943; Figure 3C). We also did not find this negative correlation 215 

during the later choice epoch (from 400 ms to 200 ms before choice action) in any of the three 216 

regions (Supplementary Figure 4A-C). The effect size of these negative correlations was not 217 

significantly different in OFCin vs. OFCout (z=-0.93, p=0.176; Fisher’s Transformation test) but 218 

was significantly larger in OFCin than in PCC (z=-2.32, p=0.010). These results suggest that both 219 

OFC subregions, moreso than PCC, were involved in value comparison between offer 1 vs. offer 220 

2 in a presentation order frame, although the effect did not reach significance in OFCout alone. 221 

To gain insight into the question of how effector-independent (order-based) value signals 222 

are transformed into effector-dependent (spatial-based) ones, we next asked whether regression 223 

coefficients for left and right offer values (EVl and EVr; as opposed to first and second as in the 224 

previous analysis) were negatively correlated. In other words, relaying the mutual inhibition 225 

signal to this framework would indicate that neurons carry a decision variable that could 226 

potentially be read out by downstream motor areas to guide actions. We found this negative 227 

correlation between EVl and EVr during the offer 2 epoch in PCC (r=-0.24, p<0.001; Figure 3F), 228 

but not significantly in OFCin (r=-0.16, p=0.293; Figure 3D) or OFCout (r=0.10, p=0.454, 229 

Figure 3E). Interestingly, the effect size of these negative correlations was not significantly 230 

different in OFCin vs. PCC (z=-0.49, p=0.313) but was significantly larger in PCC than in 231 

OFCout (z=-2.21, p=0.014). During the later choice epoch, we found the same signal in both PCC 232 

(r=-0.19, p=0.006) and OFCin (r=-0.33, p=0.029), but not OFCout (r=0.31, p=0.022) 233 
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(Supplementary Figure 4D-F). These results suggest that PCC and OFCin, but not OFCout, 234 

were involved in value comparison between left vs. right offers. 235 

To help understand whether the OFCin-PCC circuit transforms the mutual inhibition 236 

signals from a value-based comparison to an action-based comparison, we measured Granger 237 

causality between time series of mutual signals in OFCin and PCC calculated with a 200-ms 238 

sliding window (see Methods). We found that the strength of mutual inhibition for EV1-EV2 in 239 

OFCin Granger-caused the strength of mutual inhibition for EVl-EVr in PCC (gc=40.56, 240 

p=0.019), with a 240 ms (4.17 Hz) lag. In the reverse direction, the strength of mutual inhibition 241 

for EVl-EVr in PCC Granger-caused the strength of mutual inhibition for EV1-EV2 in OFCin 242 

(gc=59.75, p=0.014), but with a much longer lag (380 ms; 2.63 Hz). In contrast, the strength 243 

of mutual inhibition for EV1-EV2 in OFCout did not Granger-cause the strength of mutual 244 

inhibition for EVl-EVr in PCC with any time lag (see Methods for controls for confounding 245 

variables). These results suggest that through the communication in the OFCin-PCC circuit, but 246 

not the OFCout-PCC circuit, the computation for value comparison transformed from value space 247 

(in OFCin) to action space (in PCC).  248 

If the previous result holds, then we would expect to decode choice signal more strongly 249 

in value space (in the format of chosen option, offer 1 vs. 2) in OFCin but decode choice more 250 

strongly in action space (in the format of chosen location, L vs. R) in PCC. We tested for this 251 

using Linear Discriminant Analysis (LDA). Although chosen options (offer 1 vs. 2), chosen 252 

location (left vs. right), and EV1 (high vs. low) were all significantly decodable from all three 253 

regions, PCC indeed showed a significantly higher decodability for chosen location (χ2=8.12, 254 

p=0.004; Figure 3G-H; Supplementary Figure 5).  More importantly, we found that the 255 

decodability for chosen option (offer 1 vs. 2) in OFCin Granger-caused the decodability for 256 

chosen location (left vs. right) in PCC (gc=11.19, p=0.025) with a 200 ms (5 Hz) lag. This 257 

Granger-causal relation was absent on error trials (gc=3.04, p=0.552). In the reverse direction, the 258 

decodability for chosen location (left vs. right) in PCC Granger-caused the decodability for 259 
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chosen option (offer 1 vs. 2) in OFCin (gc=17.59, p=0.025), but with a longer lag (400 ms; 2.5 260 

Hz). In contrast, the decodability for chosen option (offer 1 vs. 2) in OFCout did not Granger-261 

cause the decodability for chosen location (left vs. right) in PCC at any time lag (see Methods for 262 

controls for confounding variables). These results suggest that the OFCin-PCC circuit, but not the 263 

OFCout-PCC circuit, mediates the transformation of choice readout from a value-based to an 264 

action-based framework. Speculatively, this transformation may be important for correct choice 265 

behavior, since the both the decodability for choice and the Granger causal relation between 266 

OFCin and PCC was disrupted in error trials (Supplement).  267 

 268 

Figure 3. Neural computations. A-F: Scatter plots demonstrating population spreads 269 
for regression coefficients. Each dot represents one neuron; abscissa and ordinate 270 
represent regression coefficients for distinct (and uncorrelated) regressions. Shaded 271 
area: 95% confidence interval. A-C: Putative mutual inhibition effects (Strait et al., 2014). 272 
Y-axis indicates regression coefficient for expected value of offer 2 regressed against 273 
firing rate in epoch 2. X-axis indicates regression coefficient for expected value of offer 1 274 

13
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against firing rate in epoch 2. D-F: Putative mutual inhibition effects for space (new 275 
analysis developed for this project): Y-axis: regression coefficient for expected value of 276 
right offer against firing rate in epoch 2. X-axis: regression coefficient for expected value 277 
of left offer against firing rate in epoch 2. A,D: OFCin. B,E: OFCout. C,F: PCC. G-H: 278 
Decoding accuracy of choice (G is accuracy for offer 1 vs offer 2; H is accuracy for left 279 
vs right) based on firing rates using linear discriminant analysis. Y-axis: probability of 280 
decoding correctly. X-axis: time in a trial. Error bar: standard error of the mean.  281 

 282 

We asked whether the population activity dynamics (Afshar et al., 2011; Bartolo & 283 

Averbeck, 2020; Churchland et al., 2012; Mante et al., 2013; Yoo and Hayden, 2020) also reflect 284 

the translation of choice from value space to action space in the OFCin-PCC circuit. Research in 285 

motor generation has found that population activity dynamics in the premotor area during the 286 

preparatory period determined the possible range of neural dynamics in the primary motor area 287 

(M1), and this range determined what hand motion can be generated in M1 (Afshar et al., 2011). 288 

To test whether this dynamical generative process of local neural computation could help explain 289 

the relayed choice dynamics from abstract value space in OFCin to concrete action space in PCC, 290 

we conducted PCA on trial-averaged population states for each region and then projected the 291 

trial-averaged population activity onto the top-N principal component (PC) space that 292 

cumulatively explained > 70% of the variance (Methods; we developed this approach in Wang & 293 

Hayden, 2017). The projected population trajectories reflect the generative temporal evolution of 294 

population dynamics (Figure 4A-F), and the separation between trajectories, which distinguished 295 

task parameters, became significantly higher than shuffled chance level as the trial unfolded 296 

(bottom shaded area). These distinctions diminished in error trials (Supplementary Figure 6), 297 

suggesting that the population dynamics and their separation are indeed crucial for generating 298 

correct choice behavior.  299 

We then projected the trial-by-trial population states onto this top-N PC space to obtain 300 

trial-by-trial population trajectories and used adjusted distance to measure the trajectory 301 

separation (Methods; Murray et al., 2017). We found significantly larger trajectory separation for 302 

chosen option (offer 1 vs. 2) in OFCin (χ2=11.51, p=0.003, Kruskal-Wallis test with Tukey-303 
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Kramer multiple comparison) than in OFCout (OFCin>OFCout: p=0.007) and PCC 304 

(OFCin>PCC: p=0.012; no significant difference between OFCout and PCC, p=0.988). This 305 

result highlights the specific role of OFCin in mediating abstract comparison.  306 

In contrast, we found significantly larger trajectory separation for chosen location (left vs 307 

right) in PCC (χ2=6.27, p=0.043, Kruskal-Wallis test with Tukey-Kramer multiple comparison) 308 

than in OFCout (PCC>OFCout: p=0.043) but not in OFCin (PCC≈OFCin: p=0.829; there was no 309 

significant difference between OFCin and OFCout, p=0.164). There was also no such cross-310 

region distinction for EV1 (high vs. low; Supplement; Supplementary Figure 6). The trajectory 311 

separation differences for chosen option and chosen location were also absent in error trials 312 

(Supplement), consistent with the intuitive idea that the areal difference in the unfolding 313 

trajectory separation contributes to correct choice behavior.  314 

The separation between population trajectories for chosen option (offer 1 vs 2) in OFCin 315 

Granger-caused the separation between population trajectories for chosen location (left vs. right) 316 

in PCC (gc=9.98, p=0.019), with a 150 ms (6.67 Hz) lag. In the reverse direction, the distance 317 

between population trajectories for chosen location (left vs. right) in PCC Granger-caused the 318 

distance between population trajectories for chosen option (offer 1 vs. 2) in OFCin (gc=17.28, 319 

p=0.016) but with a much longer lag (350 ms; 2.86 Hz). Interestingly, this “feedback” influence 320 

seems to amplify the OFCin to PCC input 300 ms after the first instance of Granger causal 321 

influence, by increasing the Granger-causality from OFCin to PCC (gc=38.29, p<0.001; 322 

lag=450ms; 2.22 Hz). In contrast, the distance between population trajectories for chosen option 323 

(offer 1 vs. 2) in OFCout did not Granger-cause the distance between population trajectories for 324 

chosen location (left vs. right) in PCC with any time lag (see Methods for the control for 325 

confounding variables). These results suggest that while local neural computation was generating 326 

choice representations, their unfolding population dynamics also interact with the generative 327 

dynamics in other regions. We found the dynamics in OFCin-PCC, but not those in OFCout-PCC, 328 
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morphed from developing the separation for choice in value space to developing the separation 329 

for choice in action space.  330 

 331 

332 

16
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Figure 4: Top plots: trial averaged population activity projected onto top-N PC space (only top-3 333 
PCs are shown here), separated by choice option (offer 1 vs 2) (A-C) or choice location (D-F), in 334 
OFCin (left column), OFCout (middle column), and PCC (right column). Warm colors: trial 335 
averaged population activity for choosing offer 1 (A-C) or left offer (D-F). Cool colors: trial 336 
averaged population activity for choosing offer 2 (a-c) or right offer (d-f). Colors indicate each of 337 
the following epochs: the ITI before the current trial, the offer 1 epoch, offer 2 epoch, choice 338 
epoch, outcome epoch, and the ITI after the current trial. Bottom plots: separation measured by 339 
Euclidean distance between averaged population trajectories (warm and cool colored lines). Y-340 
axis: Euclidean distance. X-axis: time in a trial. Dark line: distance between trial-averaged 341 
trajectories for choosing offer 1 vs. offer 2 (A-C) or choosing left vs. right offer (D-F). Shaded 342 
area: middle 95% trial-averaged Euclidean distance between population trajectories from 343 
condition-shuffled data. Shuffle was only based on the choice of offer 1 or offer 2 (A-C) or on 344 
the choice of left or right offer (D-F), the cell identities and temporal orders were not shuffled. 345 
Euclidean distance (i.e. separation; dark line) beyond the shaded area is significant (p<0.05). 346 
Specifically, the distance (dark line) larger than (above) the shaded area is where separation 347 
between population trajectories is significantly larger than expected by chance (p<0.025). These 348 
significant portions mark when the population activity dynamics significantly reflected the choice 349 
of offer 1 or offer 2 (A-C) or on the choice of left or right offer (D-F). G-H: Bottom: ranked trial-350 
by-trial adjusted distance. Kruskal-Wallis box plot. The red horizontal line: the median. The 351 
bottom and top edges of the box: the 25th and 75th percentiles. The whiskers extend to the 352 
most extreme data points not considered outliers. '+' individual outliers.  353 
  354 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 1, 2020. ; https://doi.org/10.1101/2020.09.01.277889doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.01.277889


 18

DISCUSSION 355 

Here we report the existence of two functionally distinct subregions within the OFC that 356 

can be differentiated by their connectivity with the PCC, both anatomically and functionally. 357 

OFCin, located on the banks of the medial orbital sulcus, seems to have stronger anatomical 358 

connectivity with PCC than OFCout, which for our electrophysiological recordings was situated 359 

lateral to OFCin. This boundary seems to correspond to a functional separation that relates to the 360 

negotiation between abstract (goods-based) and motor (action-based) modalities. The abstraction 361 

transformation is mediated by an OFCin-PCC circuit (that is anatomically and functionally 362 

connected) and is uncoverable using analyses of value comparison, decoding, and population 363 

dynamics. Crucially, instead of copying the more abstract choice signal from OFCin, computation 364 

within PCC (perhaps with assistance from other input structures) adopts a spatial framework, 365 

which allows it to compare and represent the choice in a more concrete, action-based manner. 366 

This influence is also bidirectional, with a later PCC (possibly feedback) influence that relays 367 

choice from action space back to value space in OFCin, and OFCin in turn exerts an even 368 

stronger influence of relaying choice from value space again to action space in PCC.  369 

We speculate that OFCin-PCC forms a bidirectional, mutually excitatory circuit. Our data 370 

support the hypothesis that within both regions, a mutually inhibitory local circuit exists to 371 

compare offers - in value space in OFCin but in action space in PCC. This circuit potentially 372 

locks its computation with theta and delta band oscillations to translate choice representation 373 

from abstract value space to concrete action space. Moreover, we did not see the information 374 

relay between OFCin and PCC in error trials, suggesting that the transformation of choice in the 375 

OFCin-PCC circuit is essential for generating a correct choice. Presumably, after the relay of 376 

information between OFCin and PCC, a downstream area could use the action-bounded choice 377 

signal to form an action plan.    378 

Searching for reward signals in the brain leads to an embarrassment of riches (Vickery et al., 379 

2011; Rushworth et al, 2011; O’Doherty, 2014). The abundance of value is itself mysterious – why would 380 
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the brain have so many seemingly redundant signals? One possibility is that different value correlates 381 

have subtly different roles. That is, they may help negotiate the transform from abstract to concrete spaces 382 

in different ways. Our results point to one possible case of this distinction, where some OFC value signals 383 

are relatively abstract and others are relatively concrete, but the concrete (motoric) aspects of OFC signals 384 

are derived from more specialized PCC signals. More speculatively, our results suggest that even apparent 385 

intra-areal redundancy of function may mask an underlying heterogeneity of function.  386 

 387 

  388 
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METHODS 389 

Neuroanatomy studies 390 

We injected the bidirectional tracer fluororuby into the PCC of two adult male rhesus macaque 391 

(Macaca mulatta) subjects.  In one (M1FR), the injection site was located at the border of areas 23 and 30 392 

(with some involvement of area 29). In another (M6FR), the injection site was located at the border of 393 

areas 23 and 31. We note that, although the PCC is often defined as areas 23 and 31, with areas 29 and 30 394 

instead defined as retrosplenial cortex (Vogt et al., 2006; Leech et al., 2011) , we were interested in the 395 

functionality of this entire caudal cingulate region. Thus, like some prior authors (Armstrong et al., 1986; 396 

Zilles et al., 1986; Mitelman et al., 2005; Vogt et al., 1992), here we defined PCC as areas 23, 31, 29, and 397 

30.  398 

 Prior to surgery, anatomical T1 and T2-weighted MRIs (3T for M1FR and 10.5T for M6FR) were 399 

obtained at University of Minnesota’s Center for Magnetic Resonance Research. Stereotaxic earbars were 400 

filled with Vitamin E solution to visualize on the MRI and guide tracer placement relative to stereotaxic 401 

zero.  402 

On the day of surgery, monkeys were tranquilized by intramusculuar injections of ketamine 403 

(10mg/kg), midazolam (0.25mg/kg) and atropine (0.04mg/kg). A surgical plane of anesthesia was then 404 

maintained via the administration of inhalation of isofluorane (1-3%). Monkeys were placed in a 405 

stereotaxic instrument (Kopf Instruments), a midline scalp incision was made, and the muscle and fascia 406 

were displaced laterally to expose the skull. A craniotomy (~2-3cm2) was made over the PCC, and small 407 

dural incisions were made only at injection sites. Both monkeys received injections of FR (50nl, 10% in 408 

0.1M PB, pH 7.4, Invitrogen) in the PCC, as well as injections of additional tracers (lucifer yellow, 409 

fluorescein, wheat germ agglutinin conjugated to horseradish peroxidase) in other regions not described 410 

here. These do not cross-react with FR and were made distant from the PCC site. Tracers were pressure-411 

injected over 10 min using a 0.5-μl Hamilton syringe. Following each injection, the syringe remained in 412 

situ for 20–30 min. Twelve to 14 days after surgery, monkeys were again deeply anesthetized and 413 

perfused with 4L of saline followed by 6L of a 4% paraformaldehyde/1.5% sucrose solution in 0.1 M PB, 414 
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pH 7.4. Brains were postfixed overnight and cryoprotected in increasing gradients of sucrose (10, 20, and 415 

30%). Serial sections of 50 μm were cut on a freezing microtome into cryoprotectant solution.  416 

One in eight sections was processed free-floating for immunocytochemistry to visualize the 417 

tracer. Tissue was incubated in primary anti-FR (1:6000; Invitrogen) in 10% NGS and 0.3% Triton X-100 418 

(Sigma-Aldrich) in PO4 for 4 nights at 4°C. After extensive rinsing, the tissue was incubated in 419 

biotinylated secondary antibody followed by incubation with the avidin-biotin complex solution 420 

(Vectastain ABC kit, Vector Laboratories). Immunoreactivity was visualized using standard DAB 421 

procedures. Staining was intensified by incubating the tissue for 5–15 s in a solution of 0.05% DAB 422 

tetrahydrochloride, 0.025% cobalt chloride, 0.02% nickel ammonium sulfate, and 0.01% H2O2. Sections 423 

were mounted onto gel-coated slides, dehydrated, defatted in xylene, and coverslipped with Permount.   424 

 Using a Zeiss M2 AxioImager, light microscopy was used to outline brain sections, PCC injection 425 

sites, frontal cortical terminal fields, and frontal cortical labeled cells on 1 in 24 sections (1.2mm apart). 426 

Terminal fields were outlined in darkfield using a 2.0, 4.0, or 10× objective with Neurolucida software 427 

(MicroBrightField Bioscience). Terminal fields were considered dense when they could be visualized at a 428 

low objective (2.6×) (Haber et al. 2006); otherwise, terminal fields were considered sparse. Thin, labeled 429 

fibers containing boutons were marked as terminating; thick fibers without boutons were considered 430 

passing. Retrogradely labeled cells were identified under brightfield microscopy (20×) using 431 

StereoInvestigator software (MicoBrightField Bioscience).  432 

Cases were registered and rendered in 3D in the following way. For each case, a stack of 2D 433 

coronal sections was created from its Neurolucida chartings. This stack was imported into IMOD 434 

(Boulder Laboratory for 3D Electron Microscopy, Kremer et al. 1996), and a 3D reconstruction that 435 

contained the injection sites, terminal fields, and cells was created for each case separately. To render 436 

these and merge cases together, we used a reference model from the NIMH Macaque Template (Seidlitz 437 

et al., 2017), imported into IMOD. Placement of all contours—injection sites, terminal fields, cells, area 438 

outlines—were assessed according to cortical and subcortical landmarks in the brain, then checked with 439 

the original case and corrected as needed. 440 
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 441 

Neurophysiology studies 442 

Subjects. Two male rhesus macaques (Macaca mulatta) served as subjects to the 443 

neurophysiology experiment. All animal procedures were approved by the University Committee 444 

on Animal Resources at the University of Rochester (neurophysiology studies) and by the 445 

Institutional Animal Care and Use Committee at the University of Minnesota (neurophysiology 446 

and neuroanatomy studies). The experiments were designed and conducted in compliance with 447 

the Public Health Service’s Guide for the Care and Use of Animals. These subjects were used in 448 

past studies involving set shifting and risky choice (Sleezer et al., 2016; Pirrone et al., 2018; 449 

Heilbronner and Hayden, 2016).  450 

 451 

Recording Sites. Two Cilux recording chambers (Crist Instruments) were placed over 452 

central OFC and PCC (Paxinos et al., 2009; see also Öngür & Price, 2000; Leech & Sharp, 2014; 453 

Mufson and Pandya, 1984; Figure 1D). Note that this posterior region is overlapping with but 454 

ventral to a region we have previously recorded in known as CGp (Heilbronner et al., 2013; 455 

Hayden et al., 2009; Hayden et al., 2010). Position was verified by magnetic resonance imaging 456 

with the aid of a Brainsight system (Rogue Research Inc.) for subject P and Cicerone system (Dr. 457 

Matthew D. Johnson at University of Minnesota) for subject S. Neuroimaging was performed at 458 

the Rochester Center for Brain Imaging, on a Siemens 3T MAGNETOM Trio Tim using 0.5 mm 459 

voxels. We confirmed recording locations by listening for characteristic sounds of white and gray 460 

matter during recording, which in all cases matched the loci indicated by the Brainsight system or 461 

Cicerone system. 462 

 463 

Recording techniques. Multicontact electrodes (V-probes, Plexon, Inc) were lowered 464 

using the same microdrive system until positioned within the OFC. Following a settling period, 465 

all active cells were recorded. Electrodes were lowered using a microdrive (NAN Instruments) 466 
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until the target region was reached. This lowering depth was predetermined and calculated with 467 

the aid of either Brainsight or Cicerone system to make sure the majority of the contacts on the V-468 

probe were in the gray matter of the recording region. Individual action potentials were isolated 469 

on a Ripple Grapevine system (Ripple, Inc.). Neurons were selected for study solely on the basis 470 

of the quality of isolation; we never pre-selected based on task-related response properties. Cells 471 

were sorted offline with Plexon Offline Sorter (Plexon, Inc.) by hand by MZW. No automated 472 

sorting was used. 473 

 474 

Eye Tracking and Reward Delivery. Eye position was sampled at 1,000 Hz by an infrared 475 

eye-monitoring camera system (SR Research). Stimuli were controlled by a computer running 476 

MATLAB (Mathworks) with Psychtoolbox (Brainard, 1997) and Eyelink (Cornelissen et al., 477 

2002) Toolbox. A standard solenoid valve controlled the duration of fluid reward delivery. For 478 

part of the behavioral training, subjects received grape juice or cherry coke instead of water as 479 

reward. However, water reward was used during all neural recording sessions. The relationship 480 

between solenoid open time and water volume was established and confirmed before, during, and 481 

after recording.   482 

 483 

Behavioral task. Subjects performed a two-option gambling task identical to the one we used in a 484 

previous investigation (Figure 1, Strait et al., 2014; see Heilbronner, 2017 for context). Two offers were 485 

presented on each trial. Each offer was represented by a rectangle 300 pixels tall and 80 pixels wide 486 

(11.35° of visual angle tall and 4.08° of visual angle wide). Options offered either a gamble or a safe 487 

(100% probability) bet for liquid reward. Gamble offers were defined by both reward size and probability, 488 

which were selected with uniform probabilities and independently of one another for each offer and for 489 

each trial. Each gamble rectangle had two sections, one red and the other either blue or green. The size of 490 

the blue or green portions indicated the probability of winning a medium (165 μL) or large reward (240 491 

μL), respectively (Figure 1). These probabilities were drawn from a uniform distribution between 0% and 492 
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100%. Safe offers (1 out of every 8 offers) were entirely gray, and selecting one would result in a small 493 

reward (125 μL) 100% of the time. 494 

Offers were separated from the central fixation point by 550 pixels (27.53° of visual angle). The 495 

sides of the first and second offer (left or right) were randomized each trial. Each offer appeared for 400 496 

ms followed by a 600 ms empty screen. After the offers were presented one at a time, a central fixation 497 

point appeared, and the monkey fixated on it for 100 ms. Then both offers appeared simultaneously and 498 

the animal indicated its choice by shifting gaze to its preferred offer, maintaining fixation on it for 200 499 

ms. Failure to maintain gaze for 200 ms would return the monkey to a choice state. Thus, subjects were in 500 

theory free to change their mind if they did so within 200 ms (although they seldom did). Following a 501 

successful 200-ms fixation, the gamble was immediately resolved and a liquid reward was delivered. 502 

Trials that took more than 7 sec were considered inattentive and were excluded from analysis (this 503 

removed <1% of trials). Outcomes that yielded rewards were accompanied by a white circle in the center 504 

of the chosen offer (see Figure 1B). Each trial was followed by an 800-ms inter-trial interval (ITI) with a 505 

blank screen. 506 

Probabilities were drawn from uniform distributions with resolution only limited by the size of 507 

the screen’s pixels, which let us present hundreds of unique gambles. Offer reward sizes were selected at 508 

random and independent of one another with a 43.75% probability of blue (medium reward) gamble, a 509 

43.75% probability of green (large reward) gambles, and 12.5% probability of safe offers. Note that this 510 

means two offers with the same reward size could be (and often were) presented in the same trial. 511 

 512 

Statistical analyses: Behavior. Only trials accompanying the recording sessions were analyzed for 513 

the current paper. For choice accuracy, we defined the correct choice as choosing the offer with expected 514 

value higher than or equal to that of the alternative offer. Expected value (EV) is the product of stakes 515 

multiplied by probability of winning (getting rewarded, in contrast to getting no reward). Probability of 516 

choosing offer 1 as a function of value difference (EV1-EV2) is fitted with generalized linear with logistic 517 
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transform function and binomial distribution. The error bars indicate 95% confidence intervals from the 518 

logistic regression model. 519 

 520 

Statistical analyses: Spectral analyses. Local field potentials (LFP) were collected during 521 

recording sessions along with spike data using the Ripple Grapevine system. LFP data from each contact 522 

of the Plexon v-probes were used. Raw data was low-pass filtered at 100Hz and notch-filtered at 60 Hz. 523 

All filtering and frequency-domain (spectral) analyses were conducted in Matlab with Chronux toolbox 524 

(Bokil et al., 2010). Power spectra in all three regions were calculated with all LFP channels. Spike-field 525 

coherence was calculated using every combination of each spike train in one area and each channel of 526 

LFP in another area. Coherence comparison used non-parametric statistics: Wilcoxon signed rank test and 527 

Kruskal-Wallis test, both conducted in Matlab. We used the following bandwidths for analyses: Delta 528 

(0.5-5 Hz), Theta (5-10 Hz), Alpha (10-15 Hz), Beta (15-30 Hz), and Gamma (>30 Hz). For coherence 529 

comparisons, we calculated the coherence with a frequency-resolved method, such that we re-adjusted the 530 

sliding calculation window widths to be four times the max length for each frequency band. We aligned 531 

data to either offer 1 or choice to achieve a better temporal resolution of the coherence tests. 532 

 533 

Statistical analyses: Mutual information. Mathematically, mutual information is defined as 534 

I[X;Y]=H[X]-H[X|Y]=I[Y;X], where I is the mutual information between random variables X and Y. It 535 

quantifies the information X gives upon observing Y and is the same as the information Y gives upon 536 

observing X. Equivalently, it captures how much uncertainty about X decreases after learning Y, and vice 537 

versa. We used the Neuroscience Information Theory Matlab toolbox to calculate the mutual information 538 

between two spike trains, one from each brain area of interest (Timme & Lapish, 2018).  539 

To test whether the mutual information in OFCin-PCC or OFCout-PCC during task was higher 540 

than expected chance, we shuffled each single-unit’s brain area identity to form shuffled ensembles with 541 

the same sizes as the original data. Then we shuffled temporal sequences within ITI and, separately, 542 

within active task-time. The temporal shuffling is to test whether the increase in mutual information was 543 
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above chance level and driven by engaging in the task. We then calculated mutual information based on 544 

these shuffled ensembles. We repeated this procedure 500 times and obtained the middle 95% range of 545 

the shuffled mutual information as a function of time (Figure 3F, shaded magenta and cyan for OFCin-546 

PCC and OFCout-PCC circuits, respectively). Thus, any value outside the shaded area is significantly 547 

higher/lower than expected by chance.  548 

 549 

Statistical analyses: Encoding. We used a sliding multiple linear regression to characterize the 550 

encoding of all task variables (stakes, probabilities, expected values of offer 1 and offer 2, chosen option, 551 

chosen location, whether offer 1 was presented on left vs. right, and choice outcome [win or lose * stakes 552 

]). To do so, we took the normalized firing rates (FR) of each neuron, averaged across a 200 ms time bin, 553 

and then regressed against task parameters. The sliding procedure slid forward with a 10 ms step size. For 554 

offer epochs, we used a multiple linear regression model with stakes, probabilities, and expected values 555 

(EV) as predictors. Expected value is defined as the product of stake and probability. For the rest of the 556 

epochs, we used a multiple linear regression model with stakes, probabilities, EV1, EV2, chosen option 557 

(offer 1 vs. 2), chosen location (left vs. right), outcome (received outcome, 0 for lost gamble, reward of 558 

the stake’s size for won gamble), and whether offer 1 appeared on the left or right side of the screen. For 559 

later tests looking the expected value tuning for left and right offers, we used a multiple linear regression 560 

model with stakes, probabilities, left EV (EVl), right EV (EVr), chosen option (offer 1 vs. 2), chosen 561 

location (left vs. right), outcome (actually received outcome, 0 for lost gamble, reward of the stake’s size 562 

for won gamble), and whether offer 1 (first appeared offer) appeared on the left or right side of the screen. 563 

All predictors were centered and converted to categorical variables when applicable. The response 564 

variable, firing rates, were normalized for each neuron across trials to avoid spurious correlation 565 

(Blanchard and Hayden, 2014).  566 

 Proportion of neurons was calculated based on whether neurons significantly encoded a single 567 

parameter of interest. Encoding strength was defined as the t-statistics of each predictor variable from the 568 

multiple regression. We used t-statistics since they are not influenced by the actual range of each variable 569 
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(even though we centered all predictor variables) and are comparable across variables. The comparison of 570 

encoding strength across all three regions used the nonparametric Kruskal-Wallis test. Latency was 571 

defined as, within the analyzed event window, the time lapsed until the encoding strength of the variable 572 

of interest reached the peak for each neuron. Then the peak time for a region was calculated as the median 573 

of each neuron’s peak time. Latency calculation was based on all neurons and not only the significantly 574 

tuned ones. Whether latencies from all three regions were significantly different from one another was 575 

tested with generalized linear model (GLM) with a Gamma distribution, due to the fact that timing data, 576 

such as latency or reaction time, are better described by a Gamma distribution than a Gaussian 577 

distribution. 578 

 For mutual inhibition, we took the regression coefficients from the above described multiple 579 

regression models for the offer 2 epoch and the choice epoch respectively. Then we correlated the 580 

coefficients for offer 1 vs. 2 or EVl vs. EVr with a Spearman correlation. Spearman correlation is chosen 581 

to avoid spurious correlation caused only by a few outliers. The strength of mutual inhibition signal is the 582 

Spearman correlation coefficient. 583 

 584 

Statistical analyses: Granger causality. Granger causality measures how one time series could 585 

predict (Granger-cause) another time series, after controlling for the fact that the later time series’s early 586 

sequences also predicts its own later sequences (Granger, 1969). Sometimes, calculation of Granger 587 

causality is also conditioned on simultaneously observing other potentially confounding time series 588 

(Lutkepohl, 2007). For all Granger causality tests, we first used the Augmented Dickey-Fuller test with 589 

the autoregressive model with drift variant (ARD) to determine whether a time series was stationary. 590 

Then we used the vector autoregression (VAR) model to determine the best time lag to use through model 591 

comparison (Akaike information criterion) with different time lags. Then the Granger causality test was 592 

used on stationary time series or with a correction for non-stationary time series. All Granger causality 593 

analyses in this paper tested the Granger-causal relation between two key variables but also included the 594 

conditional term with all other potentially confounding variables. That is, none of the potentially 595 
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confounding decodability could explain the effect we saw. All Granger causality tests were carried out in 596 

Matlab. Matlab functions used: adftest, varm, estimate, summarize, gctest, the Econometrics Toolbox. 597 

 598 

Statistical analyses: Decoding. We first organized population activity patterns for the training and 599 

testing of the linear discriminant analysis (LDA) decoder. For each trial, we aligned the normalized firing 600 

rates of each neuron at the onset of offer 1 presentation and took firing from 500 ms before this onset 601 

through 2500 ms after this onset as the offer period (including 500 ms ITI before offer 1, offer 1 epoch, 602 

offer 2 epoch, and the first 500 ms of decision-making). We also aligned the normalized firing rates of 603 

each neuron at choice execution (when eye-fixation on the chosen offer passed 200 ms and thus signaled 604 

commitment to the choice). Then we took the FR from 1500 ms before this onset through 1500 ms after 605 

this onset as the choice period (including 1500 ms pre-choice, outcome delivery, and ITI). We then slid 606 

through the offer and the choice periods and generated non-overlapping population activity patterns that 607 

were 50 ms in width and tiled the entire offer and choice periods.  608 

Then we followed a four-fold cross validation procedure, which involved training different LDA 609 

decoders on 75% of the correct trials to differentiate the chosen option (offer 1 vs. 2), the chosen location 610 

(left vs. right), and the expected value of offer 1 (EV1 high vs. low) on each trial. Then we tested the 611 

decoder on the other 25% of the correct trials. Decoding accuracy in error trials was obtained by using the 612 

same trained LDA decoders to decode all error trials (since none of the error trials were used for training). 613 

For EV1 high vs. low, we compared EV1 from each trial to the mean EV of all offers. If the EV1 was 614 

larger than or equal to the mean, then it was counted as a high EV1, otherwise low.  615 

 616 

Statistical analyses: Population dynamics. To measure the dynamics in population neural 617 

activities, we first organized our spiking data into population states. We defined the population state as 618 

the normalized firing rate of each of all simultaneously recorded neurons, averaged over a 200 ms time 619 

bin, in each region. Then we slid across all time points in each trial with a 50 ms step size to calculate 620 

population states at each sliding step. We calculated these series of population states for two sets of 621 
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simultaneously recorded ensembles in OFCin, OFCout, and PCC, one from each subject. We then applied 622 

principal component analysis (PCA) to identify a lower-dimensional space to then measure the population 623 

dynamics. We first selected and grouped all correct trials based on whether (1) offer 1 or offer 2 was 624 

chosen; (2) left or right offer was chosen; and (3) offer 1 was a higher or lower than average value of 625 

offers. Then we conducted PCA on the trial averaged population states for each pair of the above-626 

mentioned three pairs of conditions. To make the measures of population dynamics comparable across 627 

regions, we defined top-N PC space as the top N principal components that captured at least 70% of the 628 

variance. For subject P, N equals 6 in OFCin, 5 in OFCout, and 15 in PCC. For subject S, N equals 3 in 629 

OFCin, 5 in OFCout, and 3 in PCC. We then projected trial-averaged or trial-by-trial population states 630 

from correct or error trials and each pair of conditions onto this top-N PC space. This projection resulted 631 

in pairs of population trajectories corresponding to pairs of conditions in the top-N PC space expanding 632 

the whole trial length. We then measured the Euclidean distance at each time point in a trial between the 633 

pairs of population trajectories. We used a shuffle procedure in which trials were shuffled across 634 

conditions. This shuffle procedure was implemented 1000 times to generate 1000 randomized trial-635 

averaged trajectories for each trial condition, and significance cutoff were set at the top and bottom 2.5% 636 

of the shuffled results. For trial-by-trial population state projections that resulted in a pair of two sets of 637 

population trajectories (that is, each trajectory corresponded to a specific trial condition), we calculated 638 

the adjusted Euclidean distance. The adjusted Euclidean distance is the Euclidean distance across 639 

conditions (cross distance) normalized by the Euclidean distance within conditions. Cross distance was 640 

defined as the Euclidean distance from one point on one trajectory in one trial condition to all the 641 

trajectories’ corresponding time point in the other trial condition. Self distance/dispersion was defined as 642 

the Euclidean distance of one point on one trajectory in one trial condition to all the other trajectories’ 643 

corresponding time point in the same trial condition.  644 

 645 

Equation 1: �������� �	���
�� �
����� ����	
��

��� ����	
��
 646 
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 647 

Normalizing the cross distance with self distance controls for the “internal noise level” to make the 648 

distance comparable across regions (Murray et al., 2017). The distance, or separation, between population 649 

trajectories from pairs of trial conditions represents the population neural activity variance devoted to 650 

distinguish those trial conditions (Wang & Hayden, 2017). Intuitively, it can be interpreted as: the larger 651 

the distance/separation between trajectories for different conditions, the more information the variance in 652 

this neural population conveys to tell these conditions apart. PCA analysis and Euclidean distance 653 

calculation used pca and pdist2 functions in Matlab.  654 

  655 
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Supplementary material 656 

Neuroanatomy 657 

 A second injection, M6FR, targeted the PCC sulcus. There was anatomical connectivity with 658 

OFCin, although it was less specific than observed in M1FR (Supplementary Figure 1). 659 

 660 

Supplementary Figure 1: Anatomical connectivity in prefrontal cortex following an 661 

injection in the PCC sulcus. A. Injection site in PCC B. Terminal field labeling shown in pink; 662 

retrograde labeling shown as gray dots. 663 

 664 

Behavior of each subject in the gambling task   665 

        We examined the behavior of two male macaque subjects (Macaca mulatta, subjects P and S) 666 

performing a well-studied two-option risky choice task (Strait et al., 2014). The data and results we 667 

present here have not been published before, but qualitatively replicate our past findings. Specifically, 668 

behavioral data indicate that subjects understood the key elements of the task., They preferred offers with 669 

the larger expected value on 73.10% of the trials (for individual subjects, see below). This proportion is 670 

significantly higher than expected by chance (p<0.001, binomial test). It is also quantitatively similar to 671 

numbers we have found using the same task in other subjects (Strait et al., 2014; Strait et al., 2015). 672 

Subjects’ willingness to choose an offer varied as a function of the difference in values between the two 673 

offers (Supplementary Figure 2A-B). Both subjects slightly preferred offer 2, although the size of the 674 
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effect was small; choosing offer 1 46.90% of the time). Note that these behavioral results are restricted to 675 

trials in which our physiological recordings met criteria for analysis. Data collected in other sessions were 676 

not noticeably different (data not shown).     677 

         Behaviors of each individual subject closely resembled those of two subjects combined as 678 

reported in the main text. Subject P preferred offers with the larger expected value on 73.35% of the 679 

trials. This proportion is significantly higher than expected by chance (479 out of 653, p<0.001, binomial 680 

test). P shifted choices from offer 1 to offer 2 as the expected value difference of offer 1 minus offer 2 681 

decreased, even with a slight bias against offer 1 (psychometrics function slightly shifted towards right, 682 

choosing offer 1 45.18% of the time). Subject S preferred offers with the larger expected value on 72.39% 683 

of the trials. This proportion is significantly higher than expected by chance (367 out of 507, p<0.001, 684 

binomial test). S shifted their choice from offer 1 to offer 2 as the expected value difference of offer 1 685 

minus offer 2 decreased, even with a slight bias against offer 1 (psychometrics function slightly shifted 686 

towards right, choosing offer 1 45.18% of the time).  687 

 688 
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 689 

Supplementary Figure 2: Behavior of Each Subject. A. Choices of subject P.  B. 690 
Choices of subject S. EV, expected value (see Methods). Gray dotted lines represent visual 691 
reference for value 0 on X axis and value 50 on Y axis. Error bars on the fitted sigmoidal 692 
function represents 95% confidence interval from the model estimation. 693 
 694 

Functional connectivity 695 

 We first characterized the local field potentials in each of the OFCin, OFCout, and PCC regions. 696 

With multitaper spectral analyses, we show that power peaked around 10 Hz in OFCin and OFCout, and 697 

33
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around 10 and 20 Hz in PCC (Supplementary Figure 3A-C). It also shows that our notch filter 698 

effectively removed power around 60 Hz.  699 

 The higher coherence in the OFCinspk - PCClfp circuit was also observed within all specific bands 700 

that we tested: the delta (0.5-5 Hz) frequency band (z=2.53, p=0.012), the theta (5-10 Hz) band (z=3.55, 701 

p<0.001), the alpha (10-15 Hz) band (z=3.83, p<0.001), the beta (15-30 Hz) band (z=4.38, p<0.001), and 702 

the gamma (30-100 Hz) band (z=5.51 p<0.001). Comparing the coherence for each frequency band within 703 

each circuit during offer epoch, there was no significant difference among frequency bands within either 704 

the OFCinspk - PCClfp(χ2=3.95, p=0.413, Kruskal-Wallis test) or the OFCoutspk - PCClfp(χ2=2.28, p=0.685, 705 

Kruskal-Wallis test) circuit.  706 

We observed similar results in the choice epoch. We also found higher coherence in OFCinspk - 707 

PCClfp than in OFCoutspk - PCClfp circuit, within the theta (z=1.98, p=0.047), the alpha (z=3.14, p=0.002), 708 

and the gamma (z=3.73, p<0.001) bands, although not within the delta (z=1.10, p=0.271) or the beta 709 

(z=1.41, p=0.159) bands. Comparing the coherence for each frequency band within each circuit, during 710 

choice epoch, there was no significant difference among frequency bands within either OFCinspk - PCClfp 711 

(χ2=1.81, p=0.771, Kruskal-Wallis test) or OFCoutspk - PCClfp (χ2=2.53, p=0.640, Kruskal-Wallis test). 712 

Finally, we observed the same general pattern during the outcome epoch. We also found  higher 713 

coherence OFCinspk - PCClfp than in OFCoutspk - PCClfp circuit, within the delta (z=3.36, p<0.001), the 714 

theta (z=2.87, p=0.004), the alpha (z=3.70, p=0.002), and the gamma (z=2.05, p=0.040) bands, although 715 

not within the beta (z=1.27, p=0.204) band. Comparing the overall coherence for each frequency band 716 

during reward epoch, there was significant difference among frequency bands within OFCinspk - PCClfp 717 

(χ2=14.32, p=0.006, Kruskal-Wallis test with Tukey-Kramer multiple comparison) circuit. Specifically, 718 

within OFCinspk - PCClfp, the coherence in the beta band was significantly lower than that in the theta 719 

band (p=0.021) and that in the alpha band (p=0.009). Similarly, comparing the overall coherence for each 720 

frequency band during the reward epoch, there was a significant difference among frequency bands 721 

within OFCoutspk - PCClfp circuit (χ2=17.15, p=0.002, Kruskal-Wallis test with Tukey-Kramer multiple 722 
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comparison). Specifically, within OFCoutspk - PCClfp, the coherence in the alpha band was significantly 723 

lower than that in the theta band (p=0.007) and that in the gamma band (p=0.029). 724 

Together, we found greater coherence in OFCinspk - PCClfp than in OFCoutspk - PCClfp, suggesting 725 

stronger functional connectivity. This pattern of enhanced coherence was not found in the reverse 726 

direction (that is, in the PCCspk - OFCinlfp, PCCspk - OFCoutlfp circuits) or their comparison 727 

(Supplementary Figure 3D-J).  728 

We further compared the broadband spike-field coherence in the reverse direction to that reported 729 

in the main text. We found significantly higher broadband coherence in OFCinspk - PCClfp than PCCspk - 730 

OFCinlfp (z=4.83, p<0.001, Wilcoxon signed rank test, Supplementary Figure 3D). The broadband 731 

coherence was also higher in OFCoutspk - PCClfp than in PCCspk - OFCoutlfp (z=2.90, p=0.004, Wilcoxon 732 

signed rank test, Supplementary Figure 3E). We also found significantly higher broadband coherence in 733 

PCCspk - OFCinlfp  than in PCCspk - OFCoutlfp (z=2.76, p=0.006, Wilcoxon signed rank test; 734 

Supplementary Figure 3D-E) but no significant differences in broadband coherence between OFCinspk - 735 

OFCoutlfp  and OFCoutspk - OFCinlfp (z=0.15, p=0.883, Wilcoxon signed rank test; Supplementary 736 

Figure 3F-G). 737 

 Spike-field coherence is theorized to capture long-range input from the spiking region to the field 738 

region. Our results suggest that the enhanced synchronization for OFCin-PCC could be dominated by 739 

OFCin’s input to influencing PCC local neurocomputation.  740 
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    741 

36
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 742 

Supplementary Figure 3: Supplementary Functional Connectivity.  A-C. Power 743 
spectrum in OFCin (A), in OFCout (B), and in PCC (C). X axis: frequency (Hz). Y axis: power 744 
transformed with a 10 � ���10 function. Black line: mean power across channel and across 745 
trials. Red shaded area: 95% confidence interval. D-J. Spike-field coherence. X axis: time in a 746 
trial. Y axis: frequency. Color: strength of spike-field coherence on log10 scale. The warmer the 747 
color, the higher the coherence. Data from the first half of the trial (offer period) was aligned at 748 
offer 1 onset. Data from the second half of the trial (choice period) was aligned at Choice 749 
execution. (D) PCCspk-OFCinlfp coherence. (E) PCCspk-OFCoutlfp coherence. (F) OFCinspk-750 
OFCoutlfp coherence.  (G) OFCoutspk-OFCinlfp coherence. 751 

 752 
Greater mutual information between OFCin-PCC and OFCout-PCC circuits 753 

We found that the OFCin-PCC circuit shared more mutual information than OFCout-PCC 754 

(z=17.47, p<0.001, Wilcoxon signed rank test). Specifically, the OFCin-PCC circuit shared 7.44�10-4 bits 755 

of information per channel, while the OFCout-PCC circuit shared 6.72�10-4 bits per channel. This 756 

difference was observed during the offer 1 epoch (z=8.81, p<0.001), during the offer 2 epoch (z=8.34, 757 

p<0.001), during the choice epoch (z=9.42, p<0.001), and during the reward epoch (z=8.23, p<0.001). 758 

The difference was not observed during the inter-trial interval epoch (ITI, z=0.71, p=0.479).  759 

 760 

Encoding of offer, choice, and outcome 761 

We next examined neural encoding of task parameters and behavior in OFCin, OFCout, and PCC 762 

using the proportion of neurons, the encoding strength, and the latency to peak encoding strength 763 

(Methods). All three regions encoded offer and outcome values with similar proportion of neurons, 764 

encoding strength, and latencies. 765 

 During the presentation of the first offer, 18.18% (n=8/44, p=0.001, binomial test) of OFCin 766 

neurons, 16.67% (n=9/54, p=0.001) of OFCout neurons, and 13.62% (n=29/213, p<0.001) of PCC 767 

neurons encoded the value of offer 1. These proportions were not detectably different from one another 768 

(χ2=0.79, df=2, p=0.675, Chi-square test).  769 

We used the t-statistics of each predictor in a multiple regression model as a measure of encoding 770 

strength (Methods). Encoding strength of offer 1 value at the population level was not different among 771 
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OFCin, OFCout, and PCC (χ2=1.67, p=0.434, Kruskal-Wallis test). We then assessed response latencies 772 

using a generalized linear model with Gamma distribution (Bishop, 2006; MacKay, 2003). For the 773 

latency analysis, we used all neurons, because many neurons in a population can show encoding of task 774 

variables without passing statistical significance; considering all neurons improves accuracy. Among all 775 

neurons, the encoding strength of offer 1 value peaked at 290 ms in OFCin, 235 ms in OFCout, and 240 776 

ms in PCC, after offer 1 onset. We then used the distributions of single-neuron latencies to assess 777 

statistical significance; by this method, these latencies were not significantly different from one another 778 

(F=1.39, p=0.251, GLM with Gamma distribution; Methods). 779 

 During the outcome epoch, 34.09% (n=15/44, p<0.001, binomial test) of OFCin neurons, 35.19% 780 

(n=19/54, p<0.001, binomial test) of OFCout neurons, and 52.58% (n=112/213, p<0.001, binomial test) 781 

of PCC neurons encoded the value of received outcome. The proportion of such neurons in PCC was 782 

significantly higher than those of OFCin and OFCout (χ2=8.63, df=2, p=0.013, Chi-square test, cf. 783 

Hayden et al., 2008). The encoding strength of outcome value at the population level was significantly 784 

higher in PCC than both OFCin and OFCout (χ2=9.83, p=0.007, Kruskal-Wallis test with Tukey-Kramer 785 

multiple comparison). The encoding of outcome value peaked around 275 ms in OFCin, 360 ms in 786 

OFCout, and 450 ms in PCC, after reward onset. These latencies were not significantly different from one 787 

another (F=1.30, p=0.275, GLM with Gamma distribution).   788 

All three regions encoded chosen option (offer 1 vs. 2) and chosen location (left vs. right). 789 

However, OFCin encoded the chosen option with shorter latency than both OFCout and PCC. PCC, not 790 

OFCin nor OFCout, showed a higher proportion of neurons encoding chosen location than chosen option. 791 

PCC and OFCin also encoded the chosen location with significantly shorter latencies than OFCout. 792 

 We defined choice epoch as the period from 200 ms after offer 2 was presented until when choice 793 

was made via saccade and fixation on the chosen option. During this time, 18.18% (n=8/44, p=0.001, 794 

binomial test) of OFCin neurons, 16.67% (n=9/54, p=0.001, binomial test) of OFCout neurons, and 795 

12.21% (n=26/213, p=0.001, binomial test) of PCC neurons encoded chosen option (offer 1 vs. 2). These 796 
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proportions were not significantly different from one another (χ2=2.62, df=2, p=0.270, Chi-square test). 797 

Encoding strength of chosen option at population level was not significantly different across regions 798 

(χ2=1.35, p=0.510, Kruskal-Wallis test). The encoding of chosen option peaked at 90 ms in OFCin, 170 799 

ms in OFCout, and 150 ms in PCC into choice epoch. These latencies were significantly different from 800 

one another (F=3.35, p=0.037, GLM with Gamma distribution). Specifically, OFCin latency was 801 

significantly shorter than that in OFCout (t=-2.14, p=0.033, from the same GLM fit) or PCC (t=-2.36, 802 

p=0.019, from the same GLM fit), but there was no significant difference between OFCout and PCC  803 

(t=0.12, p=0.906, from the same GLM fit).  804 

 During the same choice epoch, 18.18% (n=8/44, p=0.001, binomial test) of OFCin neurons, 805 

12.96% (n=7/54, p=0.018, binomial test) of OFCout neurons, and 19.25% (n=41/213, p<0.001, binomial 806 

test) of PCC neurons encoded chosen location (left vs. right). These proportions were not significantly 807 

different from one another (χ2=1.15, df=2, p=0.562, Chi-square test). However, PCC (χ2=5.31, df=1, 808 

p=0.021, Chi-square test) but not OFCin (χ2=0, df=1, p=1, Chi-square test) or OFCout (χ2=0.07, df=1, 809 

p=0.787, Chi-square test) showed a higher proportion of neurons encoding chosen location than chosen 810 

option. Encoding strength of chosen location at the population level was not significantly different across 811 

the three regions (χ2=0.20, p=0.906, Kruskal-Wallis test). The encoding of chosen location peaked around 812 

150 ms in OFCin, 230 ms in OFCout, and 140 ms in PCC, into the choice epoch. These latencies were 813 

significantly different from one another (F=5.71, p=0.004, GLM with Gamma distribution). Specifically, 814 

OFCout latency was significantly longer than that in OFCin (t=2.36, p=0.019, from the same GLM fit) 815 

and PCC (t=3.47, p<0.001, from the same GLM fit), but there was no significant difference between those 816 

in OFCin and PCC  (t=0.07, p=0.944, from the same GLM fit). . 817 

 818 

Functional differences in decoding between OFCin-PCC and OFCout-PCC circuits 819 

 We then asked whether the relay of choice signal from value space to action space can be 820 

observed in decodability from population activities across all three regions. To answer this question, we 821 
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took the normalized firing rate of each neuron over a sliding window to get the population activity pattern 822 

from all simultaneously recorded neurons in each trial. Then we trained a linear discriminant analysis 823 

(LDA) decoder on the population activity patterns from 75% of the trials and tested the decoder on the 824 

remaining 25% of the trials following a four-fold cross-validation procedure (Methods). 825 

 We found that at the end of offer 2 presentation (500 ms epoch), the value of the chosen  option 826 

(offer 1 vs. 2) was decodable in all three of OFCin (χ2=7.41, p=0.006, chi-square test), OFCout (χ2=5.63, 827 

p=0.018), and PCC (χ2=12.45, p<0.001), on correct trials. These three proportions were not significantly 828 

different from one another (χ2=1.41, p=0.494), suggesting the decodability was similar across regions. 829 

The value of the chosen options was not decodable on error trials in OFCin (χ2=0.57, p=0.448) or PCC 830 

(χ2=0.25, p=0.613), although it was decodable in OFCout (χ2=6.83, p=0.009) (Supplementary Figure 831 

5A). Right before a saccade was used to select the chosen option, chosen location (left vs. right) was not 832 

decodable in OFCout (χ2=0.02, p=0.901), but was decodable in OFCin (χ2=0.25, p=0.049) and PCC 833 

(χ2=8.85, p=0.003,), on correct trials. These three proportions were significantly different from one 834 

another (χ2=8.37, p=0.015); the proportion in PCC was significantly higher than in OFCin (χ2=8.12, 835 

p=0.004). Chosen location was not decodable on error trials in OFCin (χ2=0.30, p=0.584, OFCout (χ2=0, 836 

p=1), or PCC (χ2=0.06, p=0.801; Supplementary Figure 5B).  837 

As a control test, we also tested decoding accuracy of EV1 high vs. low value. As shown in 838 

(Supplementary Figure 5C-D), both circuits / all three regions showed slightly but significantly higher 839 

than chance levels of decoding accuracy for whether EV1 was high or low in correct trials. Interestingly, 840 

decoding accuracies were not significantly different from the chance level in error trials during the offer 841 

period, and only reached slightly higher than chance level during outcome delivery. 842 

 Decodability for chosen location (left vs. right) was particularly prominent in PCC and was 843 

quenched on error trials. In addition, the decodability for chosen option (offer 1 vs. 2) in OFCin was also 844 

quenched on error trials. We wondered whether information in OFCin for chosen option, after being read 845 

out (decoded) by PCC, would influence the decodability of chosen location in PCC. In other words, does 846 
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the relay of choice in value space to that in action space happen through the information input from 847 

OFCin to PCC, and can it be read out from PCC? To answer this question, we applied the Granger 848 

causality test to the decodability of chosen option and chosen location across regions.  849 

We found that the decodability for chosen option (offer 1 vs. offer 2) in OFCin Granger-caused 850 

the decodability for chosen location (left vs. right) in PCC (gc=11.19, p=0.025) with a 200 ms (5 Hz) lag. 851 

This Granger-causal relation was absent on error trials (gc=3.04, p=0.552), suggesting the successful 852 

transform of choice signal in these two frameworks might be crucial for correct choice behavior. In the 853 

reverse direction, the decodability for chosen location (left vs. right) in PCC Granger-caused decodability 854 

for chosen option (offer 1 vs. 2) in OFCin (gc=17.59, p=0.025) but with a much longer time lag (400 ms; 855 

2.5 Hz). In contrast, the decodability for chosen option (offer 1 vs. 2) in OFCout did not Granger-cause 856 

the decodability for chosen location (left vs. right) in PCC at any time lag, nor did the chosen location 857 

(left vs. right) in OFCin at any time lag.  858 

  859 

Functional differences in population dynamics between OFCin-PCC and OFCout-PCC circuits 860 

After projecting trial-by-trial population states onto the top-N PC space, we found that in error 861 

trials, the overall distance between trial-by-trial population trajectories for chosen option (offer 1vs2) was 862 

significantly different across OFCin, OFCout, and PCC (χ2=59.88, p<0.001, Kruskal-Wallis test with 863 

Tukey-Kramer multiple comparison), with distance in OFCout significantly higher than in OFCin 864 

(p=0.036) and PCC (p<0.001) and distance in OFCin significantly higher than in PCC (p<0.001). The 865 

overall distance in error trials between trial-by-trial population trajectories for chosen location (left vs 866 

right) was not significantly different across OFCin, OFCout, and PCC (χ2=3.95, p=0.139). The overall 867 

distance between trial-by-trial population trajectories for high vs. low EV1 were significantly different 868 

across OFCin, OFCout, and PCC (χ2=8.83, p=0.012), with distance in OFCin significantly higher than 869 

that in OFCout (p=0.033) and PCC (p=0.023) but with no significant difference between OFCout and 870 

PCC (p=0.990).  871 
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We also compared the adjusted distance for trial-by-trial population trajectories between correct 872 

and error trials for different pairs of task parameters. In OFCin, adjusted distances between population 873 

trajectories for chosen option (offer 1vs2; χ2=61.82, p<0.001), chosen location (left vs right; χ2=111.99, 874 

p<0.001), and EV1 (high vs low; χ2=120.63, p<0.001) were significantly larger in correct than in error 875 

trials. In OFCout adjusted distances between population trajectories for chosen option (offer 1vs2; 876 

χ2=29.37, p<0.001), chosen location (left vs right; χ2=117.80, p<0.001), and EV1 (high vs low; 877 

χ2=137.78, p<0.001) were significantly larger in correct than in error trials. Similarly, in PCC, adjusted 878 

distances between population trajectories for chosen option (offer 1vs offer 2; χ2=93.01, p<0.001), chosen 879 

location (left vs right; χ2=137.49, p<0.001), and EV1 (high vs low; χ2
=149.19, p<0.001) were 880 

significantly larger in correct than in error trials. 881 

Simultaneously, all three regions showed larger dispersion (within-condition distance; see 882 

Methods) in error than in correct trials (Supplementary Figure 6). In OFCin, dispersion between 883 

population trajectories for chosen option (offer 1vs2; χ2=149.13, p<0.001, Kruskal-Wallis test), chosen 884 

location (left vs right; χ2=149.25, p<0.001), and EV1 (high vs low; χ2=149.25, p<0.001) were 885 

significantly larger in error than in correct trials. In OFCout, dispersion between population trajectories 886 

for chosen option (offer 1vs2; χ2=149.25, p<0.001), chosen location (left vs right; χ2=149.25, p<0.001), 887 

and EV1 (high vs low; χ2=149.25, p<0.001) were significantly larger in error than in correct trials. 888 

Similarly, in PCC, dispersion between population trajectories for chosen option (offer 1vs2; χ2=149.25, 889 

p<0.001), chosen location (left vs right; χ2=149.25, p<0.001), and EV1 (high vs low; χ2=149.25, 890 

p<0.001) were significantly larger in error than in correct trials. 891 
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892 

Supplementary Figure 4. Putative mutual inhibition effects. A-F: Scatter plots. Each dot 893 
represents one neuron. Shaded area: 95% confidence interval. A-C: Y-axis: regression 894 
coefficient for expected value of offer 2. X-axis: regression coefficient for expected value of offer 895 
1. D-F: Y-axis: regression coefficient for expected value of right offer. X-axis: regression 896 
coefficient for expected value of left offer. A,D: OFCin. B,E: OFCout. C,F: PCC. These figures 897 
are complementary to Figure 3A-F (main text) in that they are results from the same analysis in 898 
a later time window (from choice epoch instead of offer 2 epoch), to show the change and 899 
development of mutual inhibition signal.  900 
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902 

Supplementary Figure 5: Decoding accuracy. A-D: Y-axis: probability of decoding correctly. 903 
X-axis: time in a trial. Error bar: standard error of the mean. A: Decoding accuracy of choice 904 
option (offer 1 vs. offer 2) from error trial (choosing the offer with the smaller expected value). B: 905 
Decoding accuracy of choice location (left vs. right) from error trials. C-D: Decoding accuracy of 906 
whether the expected value of offer 1 was higher or lower than the average expected value of 907 
offer 1 from correct (C) and error (D) trials, respectively.  908 
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911 
Supplementary Figure 6: Population dynamics on error trials. Error trials are those in which 912 
the subject chose the offer with the smaller expected value. Trial averaged population activity 913 
projected onto top-N PC space (only top-3 PCs are shown here), separated by EV1 high vs. low 914 
(a-c), chosen option (offer 1 vs. offer 2; d-f), and chosen location (left vs. right; g-i), in OFCin 915 
(left column), OFCout (middle column), and PCC (right column). Warm color: trial averaged 916 
population activity for high EV1 (A-C), choosing offer 1 (D-F) or left offer (G-I). Cold color: trial 917 
averaged population activity for low EV1 (A-C), choosing offer 2 (D-F) or right offer (G-I). These 918 
figures are complementary to Figure 4. They show that the separate of trajectories based on 919 
EV1 and choices are diminished on error trials.  920 
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