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ABSTRACT6

Sequential behaviour is often compositional and organised across multiple time scales: a set of7

individual elements developing on short time scales (motifs) are combined to form longer functional8

sequences (syntax). Such organisation leads to a natural hierarchy that can be used advantageously9

for learning, since the motifs and the syntax can be acquired independently. Despite mounting10

experimental evidence for hierarchical structures in neuroscience, models for temporal learning11

based on neuronal networks have mostly focused on serial methods. Here, we introduce a network12

model of spiking neurons with a hierarchical organisation aimed at sequence learning on multiple13

time scales. Using biophysically motivated neuron dynamics and local plasticity rules, the model14

can learnmotifs and syntax independently. Furthermore, themodel can relearn sequences efficiently15

and store multiple sequences. Compared to serial learning, the hierarchical model displays faster16

learning, more flexible relearning, increased capacity, and higher robustness to perturbations. The17

hierarchical model redistributes the variability: it achieves high motif fidelity at the cost of higher18

variability in the between-motif timings.19

INTRODUCTION20

Many natural behaviours are compositional: complex patterns are built out of combinations21

of a discrete set of simple motifs (Tresch et al. 1999; Bizzi et al. 2008; Wiltschko et al. 2015).22

Compositional sequences unfolding over time naturally lead to the presence of multiple time23
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scales—a short time scale is associated with the motifs and a longer time scale is related to the24

ordering of the motifs into a syntax. How such behaviours are learnt and controlled is the focus25

of much current research. Broadly, there are two main strategies for the modeling of sequential26

behaviour: serial and hierarchical. In a serial model, the long-term behaviour is viewed as a chain27

of motifs proceeding sequentially, so that the first behaviour in the chain leads to the second and28

so on (’domino effect’). Serial models present some limitations (Lashley 1951; Houghton and29

Hartley 1995). Firstly, serial models have limited flexibility since relearning the syntax involves30

rewiring the chain. Secondly, such models lack robustness, e.g., breaking the serial chain halfway31

means that the later half of the behaviour is not produced. It has been proposed theoretically that32

hierarchical models can alleviate these problems, at the cost of extra hardware.33

Evidence for the presence of hierarchical structures in the brain is mounting (Tanji 2001; Kiebel34

et al. 2008; Murray et al. 2014). Furthermore, experiments are increasingly shining light on the35

hierarchical mechanisms of sequential behaviour. An example is movement sequences in multiple36

animal models, such as Drosophila (Seeds et al. 2014; Berman et al. 2016; Jovanic et al. 2016),37

mice (Jin and Costa 2015; Geddes et al. 2018; Markowitz et al. 2018) and C. elegans (Kato et al.38

2015; Kaplan et al. 2020). Simultaneous recordings of behaviour and neural activity are now39

possible in order to relate the two together (Vogelstein et al. 2014; Berman 2018). Songbirds40

are another example of animals that produce stereotypical sequential behaviour: short motifs are41

strung together to form songs. In this case, a clock-like dynamics is generated in the premotor42

nucleus HVC of the bird’s brain, such that neurons are active in sequential bursts of ∼ 10 ms43

(Hahnloser et al. 2002). This activity is thought to control the timing of the spectral content of the44

song (the within-motif dynamics). The between-motif dynamics has a different temporal structure45

(Glaze and Troyer 2006; Glaze and Troyer 2013); hence the ordering of the motifs into a song (the46

syntax) might be controlled by a different mechanism. Supporting this view, it has been found47

that learning the motifs and syntax involves independent mechanisms (Lipkind et al. 2017). The48

computational study of hierarchical structures and compositional behaviour can also lead to insights49

into the development of human locomotion and language as there are striking conceptual parallels50
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(Dominici et al. 2011; Lipkind et al. 2013; Ding et al. 2015; Lipkind et al. 2019).51

Here, we present a model for learning temporal sequences on multiple scales implemented52

through a hierarchical network of bio-realistic spiking neurons and synapses. In contrast to cur-53

rent models, which focus on acquiring the motifs and speculate on the mechanisms to learn a54

syntax (Stroud et al. 2018; Logiaco et al. 2019; Maes et al. 2020), our spiking network model55

learns motifs and syntax independently from a target sequence presented repeatedly. Furthermore,56

the plasticity of the synapses is entirely local, and does not rely on a global optimisation such57

as FORCE-training (Nicola and Clopath 2017; Hardy and Buonomano 2018; Nicola and Clopath58

2019) or backpropagation through time (Werbos 1990). To characterise the effect of the hierarchical59

organisation, we compare the proposed hierarchical model to a serial version by looking at their60

learning and relearning behaviours. We show that, contrary to the serial model, the hierarchical61

model acquires the motifs independently from the syntax. In addition, the hierarchical model has62

a higher capacity and is more resistant to perturbations, as compared to a serial model. We also63

investigate the variability of the neural activity in both models, during spontaneous replay of stored64

sequences. The organisation of the model shapes the neural variability differently. The within-65

motif spiking dynamics is less variable in a hierarchical organisation, while the time between the66

execution of motifs is more variable.67

The paper is organised as follows. We start by describing the proposed hierarchical spiking68

network model and the learning protocol. We then analyse the learning and relearning behaviour of69

the proposed model, and compare it to the corresponding serial model. Next, we investigate several70

properties of the model: (i) the performance and consistency of spontaneous sequence replays on a71

range of learnt sequences; (ii) capacity, i.e., how multiple sequences can be stored simultaneously;72

(iii) robustness of the sequence replays.73

RESULTS74

Hierarchical model of spiking neurons with plastic synapses for temporal sequence learning75

We design a hierarchical model by combining the following spiking recurrent networks (Fig. 1):76

1) A recurrent network exhibiting fast sequential dynamics (the fast clock); 2) a recurrent network77
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exhibiting slow sequential dynamics (the slow clock); 3) a series of interneuron networks that78

store and produce the to-be-learnt ordering of motifs (the syntax networks); 4) a series of read-out79

networks that store and produce the to-be-learnt motif dynamics (the motif networks). We assume80

that there are a finite number of motifs and each motif is associated to a separate read-out network81

(e.g., in Fig. 1 there are 2 read-out networks corresponding to motifs � and �). The goal of the82

model is to learn a complex sequence, with the motifs arranged in a certain temporal order, such83

that the motifs themselves and the temporal ordering of the motifs are learnt using local plasticity84

rules.85

Neuronal network architecture All neurons are either excitatory or inhibitory. Excitatory86

neurons follow an adaptive exponential integrate-and-fire dynamics and inhibitory neurons follow87

a standard integrate-and-fire dynamics (see Methods).88

The model has two recurrent networks that exhibit sequential dynamics: the fast and slow89

clocks. The design of the clock networks follows Ref. Maes et al. 2020. Each clock is composed90

of clusters of excitatory neurons coupled in a cycle with a directional bias (i.e., neurons in cluster 891

are more strongly connected to neurons in cluster 8 + 1) together with a central cluster of inhibitory92

neurons coupled to all the excitatory clusters (Fig. 1). This architecture leads to sequential dynamics93

propagating around the cycle and the period can be tuned by choosing different coupling weights.94

The individual motifs are not longer than the period of the fast clock and the total length of the95

sequence is limited to the period of the slow clock. In our case, we set the coupling weights of the96

fast clock such that a period of ∼ 200 ms is obtained, whereas the weights of the slow clock are set97

to obtain a period of ∼ 1000 ms.98

The fast clock neurons project directly onto the read-out networks associated with each motif,99

which are learnt and encoded using a supervisor input. Hence the fast clock controls the within-100

motif dynamics. The slow clock neurons, on the other hand, project onto the interneuron network101

of inhibitory neurons. The interneuron network is also composed of clusters: there is a cluster102

associated with each motif, with coupling weights that inhibit all other motif networks, and one103
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Fig. 1. A cartoon of the model. Dynamics in the read-out networks (A and B) is learnt and
controlled on two time scales. The fast time scale network (fast clock) exhibits sequential dynamics
that spans individual motifs. This acts directly on the read-out networks through plastic synapses.
These synapses learn the motifs. The slow time scale network (slow clock) exhibits sequential
dynamics that spans the entire sequence of motifs. This acts indirectly on the read-out networks
through an interneuron network. The synapses from the slow clock to the interneurons are plastic
and learn the right order of themotifs, or the syntax. The plastic synapses follow a simple symmetric
STDP rule for potentiation, with a constant depression independent of spike time.

cluster associated with the ’silent’ motif, with couplings that inhibit all motif networks and the fast104

clock. Hence the temporal ordering of the motifs (the syntax) can be encoded in the mapping that105

controls the activity of the interneurons driven by the slow clock. As a result of this hierarchical106

architecture, the model allows for a dissociation of within-motif dynamics and motif ordering. The107

two pathways, from the fast clock to the read-out and from the slow clock to the interneurons, each108

control a different time scale of the spiking network dynamics.109
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Plasticity Learning is accomplished through plastic synapses under a simple biophysically plau-110

sible local STDP rule (see Methods) governing the synapses from the fast clock to the read-out111

networks (motif synapses) and from the slow clock to the interneurons (syntax synapses). The112

STDP rule has a symmetric learningwindow and implements aHebbian ’fire together, wire together’113

mechanism.114

All other weights in the model are not plastic and are fixed prior to the learning protocol. The115

weights in the fast and slow clocks and the interneuron wiring are assumed to originate from earlier116

processes during evolution or early development. Previous computational studies have shown that117

sequential dynamics can be learnt in recurrent networks, both in an unsupervised (Jun and Jin 2007;118

Zheng and Triesch 2014) and supervised (Murray and Escola 2017; Maes et al. 2020) fashion.119

Learning scheme During learning, a target sequence is presented. We design a target sequence120

by combining motifs in any order, e.g., ���. A time-varying external current, corresponding to121

the target sequence, projects to the excitatory neurons in the read-out networks. Additionally, a122

short external current activates the first cluster in the fast clock to signal the onset of a new motif123

(see Methods for more details). During the presentation of the target sequence, the plastic synapses124

change. When no target sequence is presented, spontaneous dynamics is simulated. Spontaneous125

dynamics replays the stored sequence. In this case, there is only random external input and no126

external input corresponding to a target sequence.127

The model allows for independent learning of motifs and syntax128

We first show how a non-trivial sequence can be learned emphasising the role that each network129

plays. As an example, consider the target sequence ���. This sequence is non-trivial as both130

the within-motif dynamics and syntax is non-Markovian (Fig. 2.A). Non-Markovian sequences are131

generally hard to learn, because they require a memory about past dynamics (Brea et al. 2013).132

First, we present the target sequence repeatedly to the read-out networks (as shown in Fig. S1).133

After learning is finished, we test whether learning was successful by checking that the sequence134

is correctly produced by spontaneous dynamics (Fig. 2.B-E). Note that the slow clock spans the135
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entire sequence (Fig. 2.C) and activates the interneurons in the correct order (Fig. 2.E), whereas the136

interneuron dynamics in turn determines the activation of the fast clock (Fig. 2.B) and the selection137

of a read-out network (Fig. 2.D). Through the learning phase, the motif weights (from the fast clock138

to the read-out networks) evolve to match the target motifs (Fig. 2.F), and, similarly, the syntax139

weights (from the slow clock to interneurons) evolve to match the ordering of the motifs in the target140

sequence (Fig. 2.G). Crucially, as shown below, these two sets of plastic weights are dissociated141

into separate pathways so that compositional sequences can be learnt efficiently through this model.142

Note that this conceptual model can be implemented in various ways (Appendix I) but can serve as143

a general framework for the learning and replay of stereotypical compositional behaviour.144

The hierarchical model enables efficient relearning of the syntax145

We next demonstrate the ability of the model to relearn the ordering of the motifs. In general, we146

wish relearning to be efficient, i.e., the model should relearn the syntax without changing the motifs147

themselves. To test this idea, we perform a re-learning scheme ���→ ��� (Fig. 3). An efficient148

model would only learn the switch in the syntax without the need to relearn the two motifs � and �.149

Starting from a network where no sequence was stored, we begin with a learning phase where the150

sequence ��� is presented (as in Fig. 2) until it is learnt. We then switch to presenting the sequence151

��� in the relearning phase. To quantify the progress of learning throughout both phases, we152

simulate spontaneous dynamics after every fifth target sequence presentation and compute the error153

between the spontaneous dynamics and the target sequence (see Methods and Fig. 3).154

Our results show that the motifs are not re-learnt when switching between the first and second155

target sequences—the within-motif error keeps decreasing after we switch to the relearning phase156

indicating that there continues to be improved learning of the motifs common to both target157

sequences (Fig. 3.A). In contrast, the model relearns the temporal ordering of the motifs after158

the switch to the new target sequence—the syntax error relative to ��� decreases during the159

learning phase and then grows during relearning at the same time as the syntax error relative to160

��� decreases (Fig. 3.B). Therefore, the hierarchy of the model allows for efficient relearning:161

previously acquired motifs can be reordered into new sequences without relearning the motifs162
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Fig. 2. Learning sequence ���. A. The target sequence is repeatedly presented to the read-out
networks corresponding to motifs � and �. � and � are 200 ms long motifs. Between the
motifs, we assume a silent period of 150 ms. B-E. Spontaneous dynamics after learning (50 target
presentations). Red dots: excitatory neurons; blue dots: inhibitory neurons. B. The fast clock,
controlled by interneurons 201 to 300. C. The slow clock, spanning and driving the entire sequence
replay. D. The read-out networks, driven by the fast clock and controlled by the interneurons. E.
The interneurons, driven by the slow clock. Neurons 1 − 100 inhibit motifs �. Neurons 101 − 200
inhibit motifs �. Neurons 201 − 300 shut down both the fast clock and read-out networks. F.
The motif synapses show that the target motifs � (neurons 1 − 300 on the y-axis) and � (neurons
301 − 600 on the y-axis) are stored. The weights for motif � are stronger because there are two
�s in the target sequence and only one �. G. The syntax weights store the temporal ordering
�-silent-�-silent-�-silent.
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Fig. 3. Relearning syntax: ��� → ���. Brown shaded areas: presentation of target sequence
���; dark green shaded areas: presentation of target sequence ���. Brown dots: error of
spontaneous dynamics with target sequence ��� (3 trials); dark green dots: error of spontaneous
dynamics with target sequence ��� (3 trials). Lines guide the eye and are averages of the dots. See
the methods for the details of the error measurements. A. The within-motif error keeps decreasing
independent of the motif ordering. B. The motif ordering error (syntax error) switches with a delay.

themselves.163

To investigate the role of the hierarchical organisation, we next studied how the relearning164

behaviour compares to a serial model with no dissociation between motifs and syntax. The serial165

model contains only one clock network and the read-out networks associated with each motif,166

with no interneurons (Fig. S2.A). In this serial architecture, motifs and syntax are both learnt and167

replayed by a single pathway (Fig. S2.B and Fig. S2.C), and, consequently, when relearning the168

syntax, the motifs are also re-learnt from scratch even when there is no change within the individual169

motifs. This leads to a slower decay of the sequence error during learning and relearning in the170

serial model as compared to the hierarchical model (Fig. S3).171

The above results illustrate the increased efficiency of the hierarchical model to learn composi-172

tional sequences. The separation of motifs and syntax into two pathways, each of them associated173

with a different time scale and reflected in the underlying neuronal architecture, allows for the174

learning and control of the different aspects of the sequence independently.175
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The hierarchical organisation leads to improved learning speed and high motif fidelity176

We now study the effects of having a hierarchical organisation on the speed and quality of177

learning. To do so, we consider three target sequences of increasing complexity, where each target178

sequence is comprised of a motif presented three times (Fig. 4.A).179

First, we studied the speed at which the pattern is learnt by the hierarchical model as compared180

to the serial model. The hierarchical model is roughly three times faster than the serial model in181

learning patterns consisting of three repetitions (Fig. 4.B). This is expected: in the hierarchical182

model, the same motif synapses are potentiated three times during a single target presentation,183

whereas no such repeated learning takes place in the serial model. Furthermore, the speed and184

quality of the learning also depends on the complexity of the target sequence, i.e., target sequences185

with rapid temporal changes are harder to learn. Learning target sequences with faster-changing,186

more complex temporal features leads to a degradation of the performance of both models, but187

the hierarchical model consistently learns roughly three times faster than the serial model for all188

patterns (Fig. 4, left to right).189

Another important quality measure of learning is the reliability and consistency of the pattern190

replayed by the model under spontaneous dynamics. To study this, we generated repeated trials in191

which the three target sequences learnt (in Fig. 4) were replayed spontaneously, and we compared192

the variability of the read-out dynamics across the trials for both the hierarchical and serial models.193

We first computed the within-motif and between-motif variability in the spontaneous trials. The194

hierarchical model leads to low within-motif variability and higher variability in the between-motif195

timings. This follows from the spiking in the read-out networks, with highly variable time gaps196

between motifs in the hierarchical model (Fig. 5.A). On the other hand, the spike trains within the197

three motifs correlate strongly with each other for the hierarchical model (Fig. 5.B). This is the case198

for the three target sequences.199

We then studied the consistency of the motif as it is repeated (three times) within a target200

sequence. We observe that a high degradation of the repeated motif towards the end of the201

sequence in the serial model, which is milder in the hierarchical model (Fig. 5.C). In summary,202
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Fig. 4. Learning speed and performance of hierarchical and serial models on three target sequences
of increasing temporal complexity. A. Each target sequence consists of three presentations of the
samemotif (200ms long) but with increasing complexity from left to right. Left: the simplest motif
consists of five 40 ms stimulation. Middle: the motif consists of eight 25 ms stimulations. Right:
the motif consists of ten 20 ms stimulations. B. Learning curves for the three target sequences for
both the hierarchical and serial models. The same plasticity parameters are used for both models
(see Methods). The shaded area indicates one standard deviation from the mean (50 trials). Note
that the x-axis has two scales to show the three-fold increase in learning speed of the hierarchical
model (i.e., for each learning iteration of the hierarchical model there are three iterations of the
serial model). The performance degrades from left to right, as a more difficult target sequence is
presented.

the hierarchical model produces accurate motifs that persist strongly over time, but with higher203

variability in the timing between them. The high reliability of the motifs is due to the stronger204

learning on the motif synapses discussed above. The higher variability in the inter-motif times is a205

result of the underlying variability of the periods of the clock networks. As discussed in Ref. Maes206

et al. 2020, the sequential dynamics that underpins the clock networks operates by creating clusters207

of neurons that are active over successive periods of time. In that sense, the network uses neuron208

clusters to discretise a span of time (its period) into time increments. The variability of the period209

of the clock depends on the number of clusters, the number of neurons per cluster in the network,210
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and the time span to discretise. A fast clock will thus have low variability in its period, whereas211

the slow clock is highly variable. The variability of the period of the serial clock is between212

the fast and slow clocks (Fig. 5.D). Consequently, within-motif temporal accuracy is maintained213

quasi-uniformly over the sequence in a hierarchical model. The price to pay is the addition of214

appropriately wired interneurons.215

The hierarchical organisation increases the capacity of the model to store different sequences216

As shown above, the plasticity of the model allows it to relearn single sequences, yet the217

relearning process might be too slow for particular situations. In general, animals acquire and store218

multiple sequences to be used as needed. Motivated by this idea, we explore the capacity of the219

hierarchical model to learn, store and replay more than one sequence, and we compare it to the220

alternative serial model. First, we note that a new sequence can be stored in the hierarchical model221

by adding another interneuron network in parallel. The additional interneuron network is a replica222

of the existing one, with the same structure and connection weights to the rest of the system.223

Each interneuron network learns one syntax, in the same way as one read-out network learns224

one motif. As an illustration, we learn the sequences ��� and ���� (Fig. 6.A), by presenting225

the target sequences alternately. We then simulate spontaneous dynamics to test that the learning226

is successful. The spiking dynamics (Fig. 6.B-E) show that the model is able to replay the227

two sequences. To select between the two sequences, we use an attentional external current to228

the interneuron networks during learning and spontaneous dynamics (shaded areas in Fig. 6.E).229

Depending on the interneuron activity, the fast clock (Fig. 6.B) and read-out networks (Fig. 6.D)230

are active. Note that the motifs are encoded in the motif weights (Fig. 6.F) and syntax weights231

encode both target motif orderings (Fig. 6.G). These results show that the hierarchical model can232

learn, store and replay multiple sequences. Importantly, the motifs are still flexibly re-used: when233

motifs � and � are learnt by presenting sequence ���, they can immediately be re-used when a234

different syntax (e.g., ����) is presented.235

We then compare the capacity of the hierarchical model to the serial model (Fig. S4). In the236

serial model, read-out networks have to be added in order to learn and store multiple sequences.237
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Fig. 5. Measuring variability and performance in the read-out dynamics. A. The time between
motifs 1 and 2 andmotifs 2 and 3 is measured during spontaneous dynamics. We plot the coefficient
of variation of these times (50 trials) on the y-axis, for the three target sequences in Fig. 4.A. B.
The cross correlation between the spike trains in the first motif and the second and third motif is
measured, normalized by the auto-correlation of the spike trains in motif 1. The maximum of the
cross correlation is recorded in each trial (50 trials). This is repeated for the three target sequences in
Fig. 4.A. C. We measure the error between the target sequence with 25 ms stimulations in Fig. 4.A
and spike trains in motif 1, 2 and 3. In both models, the performance degrades towards later
occurring motifs. The degradation is significantly worse in the serial model: a linear regression
yields a slope of 0.0163 for the serial model and a slope of 0.0048 for the hierarchical model
(? < 10−5 using t-test). D. The serial clock (48 clusters) is obtained by adding the slow (28
clusters) and fast (20 clusters) clocks together. Sequential dynamics is simulated 50 times for each
clock. The time at which each cluster is activated in the sequential dynamics is measured. The
standard deviation of these activation times is plotted as a function of the cluster index. The serial
clock has a maximal variability of about 9 ms. The fast and slow clock have a maximal variability
of about 3 and 35 ms respectively.
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This is inefficient for two reasons: 1) The samemotif might be stored in different read-out networks;238

2) The addition of new read-out networks in the serial model requires more ‘hardware’ (i.e. neurons239

and synapses) than the addition of an interneuron network in the hierarchical model. Our results240

show that the hierarchical model can learn and store multiple sequences by addingmore interneuron241

networks in parallel. This hierarchical organisation thus exploit the compositional nature of the242

sequences in a way the serial model cannot leading to increased capacity.243

The hierarchical model displays increased robustness to perturbations of the sequential dy-244

namics245

We next investigate the role of the hierarchy in enhancing the robustness of the model to246

perturbations in the target sequence. Behavioural perturbation experiments have shown that indi-247

vidual motifs can be removed mid-sequence without affecting later-occurring motifs (Geddes et al.248

2018). This is a useful feature which can dramatically improve the robustness of responses, since249

later-occurring behaviour does not critically depend on the successful completion of all previous250

behaviours. To examine this issue, we have carried out simulations on the serial and hierarchical251

models under perturbations in the firing of the neurons in the clock; specifically we remove the252

external input to excitatory neurons in the clock network. In the serial model, the perturbation253

leads to the breakdown of the remaining parts of the sequence (Fig. 7.A), whereas when the same254

perturbation is applied to the fast clock of the hierarchical model, we see that later motifs are pre-255

served (Fig. 7.B). The reason is that the dynamics in the slow clock is intact and continues to drive256

the behaviour. Perturbing the slow clock, and keeping the fast clock intact, has less predictable257

outcomes for the dynamics. Random activity in the interneurons can cause motifs to be played258

in a random order (Fig. S5). Overall, the hierarchical model improves the robustness. Indeed, at259

any point in time, a single cluster of neurons is active in the clock of the serial model, whereas260

there are two active clusters of neurons (one in the fast clock and another in the slow clock) in the261

hierarchical model. This separation of time scales is fundamental to preserve the robustness of the262

model.263

DISCUSSION264
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Fig. 6. Spontaneous dynamics after learning two sequences alternately (80 learning iterations). A.
The target sequences. B-E. Red dots: excitatory neurons; blue dots: inhibitory neurons. Brown
shaded area: sequence ��� is played by inhibiting the interneurons related to the second sequence;
light green shaded area: sequence ���� is played by inhibiting the interneurons related to the first
sequence. B. Spike raster of the fast clock. C. Spike raster of the slow clock. D. Spike raster of
the two read-out networks. E. Spike raster of the interneurons. An external attentional inhibitory
current selects which sequence is played. F. The motif weights encode the two motifs. Note the
similarity with Fig. 2.F: the same motifs are re-used in both sequences. G. The syntax weights
encode the two motif orderings. Note the difference with Fig. 2.G: an additional syntax is stored.
All motif and syntax synapses are plastic at all times during the sequence presentations.
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A. Serial model perturbation B. Fast clock perturbation

Fig. 7. Perturbing the dynamics. We learn sequence ��� and then apply a perturbation. Blue shade
indicates the perturbation time, and neurons perturbed. A. 250ms perturbation of the serial network
clock. The targeted neurons (neurons 1000 to 2000) have no excitatory external input during the
perturbation. The sequential activity breaks down completely. B. 250 ms perturbation of the fast
clock in the hierarchical model. The targeted neurons (neurons 1 to 1000) have no excitatory
external input during perturbation. The sequential activity breaks down but is reactivated for the
final motif through the interneurons.

Summary of results We have presented here a hierarchical neuronal network model for the265

learning of compositional sequences. We demonstrated how motifs and syntax can be learnt266

independently of each other. The hierarchical structure has direct implications for the learning and267

is contrasted with a serial architecture. The hierarchical structure leads to an increased learning268

speed and the possibility to efficiently relearn the ordering of individual motifs. The replays269

of individual motifs are more similar to each other as compared to replays in the serial model.270

Separating the motifs and syntax into two different pathways in the hierarchical model has also271

implications for the capacity and robustness. The motifs can be re-used in the hierarchical model,272

leading to a significantly higher capacity when the number of interneurons is much smaller than273

the number of read-out neurons. Finally, the serial model has a single pathway, as opposed to two,274

and is therefore more prone to perturbations.275
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From serial to hierarchical modelling Modelling studies so far have either focused on the study276

of sequential dynamics (Chenkov et al. 2017; Billeh and Schaub 2018; Setareh et al. 2018; Spreizer277

et al. 2019) or on motif acquisition (Stroud et al. 2018; Logiaco et al. 2019; Maes et al. 2020). This278

paper introduces an explicitly hierarchical model as a fundamental building block for the learning279

and replay of sequential dynamics of a compositional nature. Sequential dynamics is omnipresent280

in the brain and might be important in time-keeping during behaviour (Hahnloser et al. 2002;281

Ikegaya et al. 2004; Harvey et al. 2012; Peters et al. 2014; Katlowitz et al. 2018; Adler et al. 2019).282

When temporal sequences are compositional (i.e., formed by the ordering of motifs), they lead283

to the presence of different time scales associated with the motifs and their ordering (or syntax).284

From the perspective of learning, such multiscale temporal organisation lends itself naturally to a285

hierarchical organisation, where the different scales are associated with different groups of neurons286

in the network (see also Schaub et al. 2015).287

Hierarchical temporal structures might arise during development in a variety of ways (Dominici288

et al. 2011; Yang et al. 2019). One way is that a single protosequence is learnt first. The289

protosequence covers the entire behaviour learning the most crude aspects. This might then be290

followed by splitting the protosequence into multiple sequences specialized to different aspects of291

the behaviour. A similar splitting of sequences has been observed in birdsong (Fiete et al. 2010;292

Okubo et al. 2015). Hierarchical motor control has also been studied in the artificial intelligence293

field (Merel et al. 2019). A recent model works towards closing the gap from a machine system to a294

biological system (Logiaco and Escola 2020) but remains non-trivial to implement using dynamics295

and plasticity that are considered to be more realistic in a biological sense.296

A storage and replay device The proposed model can be viewed as a biological memory device297

that stores sequences by means of supervised learning and replays them later by activating the298

device with spontaneous activity. However, it is important to note that during spontaneous activity299

there is no input to the device other than the random spike patterns that keep the dynamics of the300

system going. This mode of operation is therefore distinct from computational machines, such as301
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the liquid state machine (Maass et al. 2002; Maass 2011) or the tempotron (Gütig and Sompolinsky302

2006), where different input patterns are associated with and transformed into different output303

patterns. Such computational machines, where spiking patterns are inputs to be transformed or304

classified, are thus complementary to our autonomous memory device.305

Hierarchies in other tasks Hierarchies exist beyond the somewhat simple learning of com-306

positional sequences, and it is expected that hierarchical models share common basic features307

despite solving highly distinct problems. For instance, a recent example of a hierarchical model308

for working memory uses two different networks: an associative network and a task-set network309

(Bouchacourt et al. 2020). In our setting, the associative network could be identified with the310

motifs (fast clock+read-out) whereas the task-set network would correspond to the syntax (slow311

clock+interneurons). Navigation is another typical example of a task where hierarchy is used (To-312

mov et al. 2020), and the discovery of structure in an environment is closely related to the presence313

of a hierarchy (Karuza et al. 2016).314

Relating the model to experiments As mentioned above, there are qualitative similarities be-315

tween the proposed hierarchical model and experimental studies. Experimental studies have pointed316

increasingly at the importance of hierarchical organisation both in structural studies as well as in the317

learning and execution of movement and auditory sequences. For example, behavioural re-learning318

has shown that birds can re-order motifs independently from the within-motif dynamics (Lipkind319

et al. 2017). Optogenetical perturbation in the striatum of mice has shown that individual motifs320

can be deleted or inserted mid-sequence, without altering the later part of the behavioural sequence321

(Geddes et al. 2018). The proposed model aims to provide a conceptual framework to explain such322

behavioural observations while simultaneously using biophysically realistic spiking networks and323

plasticity rules.324

However, a quantitative link between model and experiment is not trivial. This is true for325

behaviour, but even more so for neural activity. Indeed, our model has free parameters, includ-326

ing topology and plasticity, which need to be tuned to the task at hand. Nevertheless, there are327
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two recent advances that may help future work in this direction. Firstly, there have been recent328

technological improvements in recording of behaviour (Egnor and Branson 2016; Berman 2018)329

and neural activity (Jun et al. 2017) along with the possibility to apply perturbations (Geddes330

et al. 2018). Secondly, there has been progress in decoding meaningful information from large331

observational datasets (Williams et al. 2018), e,g„ the extraction of sequences from neural record-332

ings (Mackevicius et al. 2019) and the analysis of learning behaviour of songbirds (Kollmorgen333

et al. 2020). In this vein, an interesting question to pursue is whether one could rediscover the334

hierarchical structure from temporal data generated by our model. For instance, one could observe335

a randomly chosen subset of neurons in the model: could the hierarchical organisation and function336

of the network be inferred from those partial observations by using data analysis?337

Conclusion Using realistic plasticity rules, we built a spiking network model for the learning338

of compositional temporal sequences of motifs over multiple time scales. We showed that a339

hierarchical model is more flexible, efficient and robust than the corresponding serial model for the340

learning of such sequences. The hierarchical model concentrates the variability in the inter-motif341

timings but achieves high motif fidelity.342

METHODS AND MATERIALS343

Excitatory neurons (�) aremodelledwith the adaptive exponential integrate-and-firemodel (Brette344

and Gerstner 2005). A classical integrate-and-fire model is used for the inhibitory neurons (�).345

Motifs and syntax are learnt using simple STDP-rules (see for example Kempter et al. 1999) without346

need for additional fast normalization mechanisms.347

Model architecture348

The hierarchical model consists of four recurrent networks. Each network and their parameters349

are described below. Synaptic weights within each recurrent network are non-zero with probability350

? = 0.2. The synaptic weights in the recurrent networks which produce sequential dynamics are351

scaled using a scaling factor 5 ∼ 1/
√
# , i.e., it scales with the corresponding network size # .352
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TABLE 1. Fast clock network parameters

Constant Value Description
#�
�2

2000 Number of recurrent E neurons
# �
�2

500 Number of recurrent I neurons
5 0.6325 Scaling factor
F��
�2

5 5 p� Baseline E to E synaptic strength
F ��
�2

3.5 5 p� E to I synaptic strength
F��
�2

110 5 p� I to E synaptic strength
F � �
�2

36 5 p� I to I synaptic strength

Fast clock (Fc) The fast clock network has #�
�2
= 2000 excitatory and # �

�2
= 500 inhibitory353

neurons recurrently connected with parameters shown in Table 1. Sequential dynamics is ensured354

by dividing the excitatory neurons in 20 clusters of 100 neurons. The baseline excitatory weights355

F��
�2

within the same cluster are multiplied with a factor of 25, whereas the excitatory weights from356

cluster 8 to cluster 8 + 1mod 20 (8 = 1..20) are multiplied by a factor of 12.5. Previous studies have357

shown that such a weight structure leads to sequential dynamics and can be learnt in a biologically358

plausible way (Zheng and Triesch 2014; Murray and Escola 2017; Maes et al. 2020). The fast clock359

receives excitatory external random Poisson input and inhibitory input from the interneurons, and360

projects to the read-out networks.361

Read-out networks (R) Each read-out network codes for one individual motif. There are no362

overlaps or connections between the different read-out networks. The read-out networks are363

identical and balanced (see Table 2 for the parameters). The read-out networks receive excitatory364

input from the fast clock and inhibitory input from the interneurons. They also receive external365

inputs: a supervisor component (only during learning) and a random input.366

Slow clock (Sc) The slow clock network has #�
(2
= 2800 excitatory and # �

(2
= 700 inhibitory367

neurons, recurrently connected. It is essentially a scaled copy of the fast clock. Table 3 shows368

the parameters of this network. Sequential dynamics is ensured by dividing the excitatory neurons369

in 28 clusters of 100 neurons. The baseline excitatory weights F��
�2

within the same cluster are370

multiplied with a factor of 25, and the excitatory weights from cluster 8 to cluster 8 + 1mod 28371
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TABLE 2. Read-out network parameters

Constant Value Description
#�
'

300 Number of recurrent E neurons
# �
'

75 Number of recurrent I neurons
F��
'

3 p� E to E synaptic strength
F ��
'

6 p� E to I synaptic strength
F��
'

190 p� I to E synaptic strength
F � �
'

60 p� I to I synaptic strength

TABLE 3. Slow clock network parameters

Constant Value Description
#�
(2

2800 Number of recurrent E neurons
# �
(2

700 Number of recurrent I neurons
5 0.5345 Scaling factor
F��
(2

5 5 p� Baseline E to E synaptic strength
F ��
(2

3.5 5 p� E to I synaptic strength
F��
(2

110 5 p� I to E synaptic strength
F � �
(2

36 5 p� I to I synaptic strength

(8 = 1..28) are multiplied by a factor of 4.7. The slow clock receives excitatory external random372

Poisson input and projects to the interneuron networks.373

Interneuronnetworks (In) Each interneuron network codes for one syntax. There are no overlaps374

between the interneuron networks. Each interneuron network is balanced with parameters given in375

Table 4. Neurons within each interneuron network are grouped into 3 groups of 100 neurons: one376

group per motif and one group for the ’silent’ motif. The interneuron networks receive excitatory377

input from all other networks. They also receive random excitatory external input.378

TABLE 4. Interneuron network parameters

Constant Value Description
# �
�=

300 Number of recurrent I neurons
F � �
�=

25 p� I to I synaptic strength
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TABLE 5. Connections between four networks

Constant Value Description
F"0 0.3 p� Initial motifs synaptic strengths
F(0 0.1 p� Initial syntax synaptic strengths
F'�= 50 p� In to R synaptic strength of lateral inhibition
F'�= 20 p� In to R synaptic strength of silencing motif
F �' 0.4 p� R to I synaptic strength
F�2�= 20 p� In to Fc synaptic strength of silencing motif
F �=�2 1.5 p� Penultimate Fc cluster to In synaptic strength
F �=�2 0.4 p� Last Fc cluster to In synaptic strength
F �=�2 0 p� Other Fc clusters to In synaptic strength

Connections between recurrent networks The recurrent networks are connected to each other379

to form the complete hierarchical architecture. All excitatory neurons from the fast clock project380

to all excitatory neurons in the read-out networks. These synapses, F"0 , are plastic. All excitatory381

neurons from the slow clock project to all the interneurons. These synapses, F(0 , are also plastic.382

To signal the end of a motif, the penultimate cluster of the fast clock activates the interneurons of383

the ’silent’ motif. The last cluster is also connected to the ’silent’ motif which silences all other384

clusters in the fast clock and all neurons in the read-out networks. Each read-out network gives385

excitatory input to its corresponding interneuron group. This interneuron group laterally inhibits386

the other read-out network(s). Table 5 gives all the parameters of the connections between the387

different networks.388

Serial model (Sm) The hierarchical model is compared with a serial model. The serial model389

has one large clock (with the same number of neurons as the fast and slow clocks combined) and390

no interneurons. Sequential dynamics is generated by clustering the neurons in the network in 48391

clusters of 100 neurons. The baseline excitatory weights F��
(<

of the same cluster are multiplied392

with a factor of 25, and the excitatory weights from group 8 to group 8 + 1mod 48 (8 = 1..48) are393

multiplied by a factor of 6. Table 6 shows the network parameters. The read-out network is kept394

unchanged (Table 2).395
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TABLE 6. Serial model clock network parameters

Constant Value Description
#�
(<

4800 Number of recurrent E neurons
# �
(<

1200 Number of recurrent I neurons
5 0.4082 Scaling factor
F��
(<

5 5 p� Baseline E to E synaptic strength
F ��
(<

3.5 5 p� E to I synaptic strength
F��
(<

110 5 p� I to E synaptic strength
F � �
(<

36 5 p� I to I synaptic strength

Neural and synaptic dynamics396

All neurons in the model are either excitatory (�) or inhibitory (�). The parameters of the397

neurons do not change depending on which network they belong to. Parameters are consistent with398

Ref. Litwin-Kumar and Doiron 2014.399

Membrane potential dynamics The membrane potential of the excitatory neurons (+� ) has the400

following dynamics:401

3+� (C)
3C

=
1
g�

(
��! −+� (C) + Δ�) exp

(
+� (C) −+�

)

Δ�
)

))
+ 6�� �

� −+� (C)
�

+ 6�� �
� −+� (C)
�

− 0
�

�

(1)402

where g� is the membrane time constant, ��
!
is the reversal potential, Δ�

)
is the slope of the403

exponential, � is the capacitance, 6�� , 6�� are synaptic input from excitatory and inhibitory404

neurons respectively and �� , � � are the excitatory and inhibitory reversal potentials respectively.405

When the membrane potential diverges and exceeds 20 mV, the neuron fires a spike and the406

membrane potential is reset to +A . This reset potential is the same for all neurons in the model.407

There is an absolute refractory period of g01B. The parameter +�
)
is adaptive for excitatory neurons408

and set to +) + �) after a spike, relaxing back to +) with time constant g) :409

g)
3+�

)

3C
= +) −+�) . (2)410
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The adaptation current 0� for excitatory neurons follows:411

g0
30�

3C
= −0� + U(+� − ��! ). (3)412

where g0 is the time constant for the adaptation current. The adaptation current is increased with a413

constant V when the neuron spikes.414

The membrane potential of the inhibitory neurons (+ �) has the following dynamics:415

3+ � (C)
3C

=
� �
!
−+ � (C)
g�

+ 6�� �
� −+ � (C)
�

+ 6� � �
� −+ � (C)
�

. (4)416

where g� is the inhibitorymembrane time constant, � �
!
is the inhibitory reversal potential and �� , � �417

are the excitatory and inhibitory resting potentials respectively. 6�� and 6�� are synaptic input418

from excitatory and inhibitory neurons respectively. Inhibitory neurons spike when the membrane419

potential crosses the threshold +) , which is non-adaptive. After this, there is an absolute refractory420

period of g01B. There is no adaptation current (see Table 7 for the parameters of the membrane421

dynamics).422

Synaptic dynamics The synaptic conductance, 6, of a neuron 8 is time dependent, it is a convo-423

lution of a kernel with the total input to the neuron 8:424

6-.8 (C) =  . (C) ∗
(
,-
4GC B

-
8,4GC +

∑
9

,-.
8 9 B.9 (C)

)
. (5)425

where - and . can be either � or �.  is the difference of exponentials kernel:426

 . (C) = 4
−C/g.

3 − 4−C/g.A
g.
3
− g.A

,427

with a decay time g3 and a rise time gA dependent only on whether the neuron is excitatory428

or inhibitory. The conductance is a sum of recurrent input and external input. The externally429

incoming spike trains B-4GC are generated from a Poisson process with rates A-4GC . The externally430
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TABLE 7. Neuronal membrane dynamics parameters

Constant Value Description
g� 20 ms E membrane potential time constant
g� 20 ms I membrane potential time constant
g01B 5 ms Refractory period of E and I neurons
�� 0 mV excitatory reversal potential
� � −75 mV inhibitory reversal potential
��
!

−70 mV excitatory resting potential
� �
!

−62 mV inhibitory resting potential
+A −60 mV Reset potential (both E and I)
� 300 pF Capacitance
Δ�
)

2 mV Exponential slope
g) 30 ms Adaptive threshold time constant
+) −52 mV Membrane potential threshold
�) 10 mV Adaptive threshold increase constant
g0 100 ms Adaptation current time constant
U 4 nS Adaptation current factor
V 0.805 pA Adaptation current increase constant

TABLE 8. Synaptic dynamics parameters

Constant Value Description
g�
3

6 ms E decay time constant
g�A 1 ms E rise time constant
g�
3

2 ms I rise time constant
g�A 0.5 ms I rise time constant
,�
4GC 1.6 pF External input synaptic strength to E neurons

A�4GC 4.5 kHz Rate of external input to E neurons
, �
4GC 1.52 pF External input synaptic strength to I neurons

A �4GC 2.25 kHz Rate of external input to I neurons

generated spike trains enter the network through synapses ,-
4GC (see Table 8 for the parameters of431

the synaptic dynamics).432

Plasticity433

Motif plasticity The synaptic weight from excitatory neuron 9 in the fast clock network to434

excitatory neuron 8 in the read-out network is changed according to the following differential435

equation:436

3,"
8 9
(C)

3C
= −�"34? + �

"
?>C

(
H8 (C) B 9 (C) + H 9 (C) B8 (C)

)
. (6)437
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TABLE 9. Motif plasticity parameters

Constant Value Description
�"?>C 0.03 pFHz Amplitude of potentiation
�"34? 2/3 × 10−6 pF Amplitude of depression
g" 5 ms Time constant of low pass filter
,"
<8=

0 pF Minimum I to I weight
,"
<0G 1 pF Maximum I to I weight

where �+?>C and �+34? are the amplitude of potentiation and depression, B8 (C) is the spike train of438

the postsynaptic neurons, and B 9 (C) is the spike train of the presynaptic neurons. Both pre- and439

post-synaptic spike trains are low pass filtered with time constant g" to obtain H(C):440

g"
3H(C)
3C

= B(C) − H(C). (7)441

The synapses from the fast clock to the read-out network have a lower and upper bound [,"
<8=
,,"

<0G].442

Table 9 shows parameter values for the motif plasticity rule.443

Syntax plasticity Similar to the motif plasticity rule, the syntax plasticity rule has a symmet-444

ric window. The dynamics is as such governed by the same equations, with slightly different445

parameters:446

3,(
8 9
(C)

3C
= −�(34? + �

(
?>C

(
H8 (C) B 9 (C) + H 9 (C) B8 (C)

)
. (8)447

where B8 (C) is the spike train of the postsynaptic neurons, and B 9 (C) is the spike train of the448

presynaptic neurons. The spike trains are low pass filtered with time constant g( to obtain H(C) (as449

in equation 7). The synapses from the slow clock to the interneurons have a lower and upper bound450

[,(
<8=
,,(

<0G]. Table 10 shows parameter values for the syntax plasticity rule. Note that the time451

constants are longer than the time constants in the motif plasticity.452

Measuring the error453

Motif and total error The spontaneous dynamics of the excitatory read-out neurons is compared454

to a binary target sequence to measure the error during learning. The target sequence is the455
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TABLE 10. Syntax plasticity parameters

Constant Value Description
�(?>C 0.025 pFHz Amplitude of potentiation
�(34? 0.10 × 10−5 pF Amplitude of depression
g( 20 ms Time constant of low pass filter
,(
<8=

0 pF Minimum I to I weight
,(
<0G 0.3 pF Maximum I to I weight

sequence of motifs or a single motif depending on which error is computed. The spontaneous456

spiking dynamics is first convolved using a Gaussian kernel of width ∼ 10 ms. This gives a457

proxy to the firing rates of the neurons. The firing rates are then normalized between 0 and 1.458

Dynamic timewarping is finally used to compare the normalized spontaneous dynamics to the target459

sequence. Dynamic time warping is needed to remove the timing variability in the spontaneous460

dynamics. We computed dynamic time warping using the built-in Matlab function dtw. Dynamic461

time warping was not used to compute the error in Fig. 5.462

The ordering error The target sequence is now the binary target dynamics of the interneurons.463

Similarly as before, the spontaneous dynamics of the interneurons is convolved and normalized to464

compute the error with the target using dynamic time warping.465

Numerical simulations466

Protocol - learning A start current of 5 kHz is given for 10 ms to the first cluster of the slow467

clock to initiate a training session. Strong supervising input (50 kHz) to the read-out networks468

controls the dynamics in the read-out networks. The weights from the read-out networks to the469

interneurons make sure that also the interneurons follow the target ordering: there is no need for470

an explicit target current to the interneurons. At the start of each motif the fast clock is activated471

by giving a strong current of 50 kHz to the first cluster for 40 ms. The high supervisor currents are472

assumed to originate from a large network of neurons, external to this model.473

Protocol - spontaneous dynamics A start current of 5 kHz is given for 10 ms to the first cluster474

of the slow clock to initiate a spontaneous replay. The slow clock determines which interneurons475
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are active, together with an external attention mechanism (if multiple sequences are stored). The476

interneurons then determine which read-out network is active. The fast dynamics in the read-out477

networks is controlled by the input from the fast clock.478

Simulations The code used for the training and testing of the spiking network model is built in479

Matlab. Forward Euler discretisation with a time step of 0.1 ms is used. The code will be made480

available after publication.481
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SUPPLEMENTARY FIGURES651
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Fig. S1. Dynamics of the hierarchical model during target sequence presentation. A. The first
cluster of the fast clock receives a high input current at the start of each motif presentation. B.
The first cluster of the slow clock receives a high input current at the beginning of the sequence
presentation. C. The high input current forces spiking in the read-out neurons. D. The read-out
neurons activate the interneurons.
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Fig. S2. The serial network model. A. A single recurrent network clock (left) produces sequential
dynamics and drives the dynamics in the read-out networks (right). The weights from the serial
clock to the read-out network are plastic. B.We learn target sequence ���. Spontaneous dynamics
is simulated after 90 target sequence presentations. C. The read-out weights after learning. Both
motif and syntax information are stored in the same weights.
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Fig. S3. Total sequence error for hierarchical and serial model, during relearning: ��� → ���.
Spontaneous dynamics is simulated every fifth training iteration and compared with target sequence
��� (brown line) and target sequence ��� (dark green line) to compute the total sequence error.
A. Total sequence error for the hierarchical model. Note how the total sequence error (which is
the combination of within-motif error and syntax error) relative to ��� decreases for about 30
iterations after target ��� is presented for the first time due to the continued improvement in the
within-motif dynamics. After this, there is a marked increase in the syntax error and the total error
relative to ���. B. Total sequence error for the serial model. The lack of hierarchy in the serial
model implies that both the within-motif dynamics and motif ordering has to be relearned. This
leads to a more gradual and slower relearning (note the longer x-axis).

37

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 8, 2020. ; https://doi.org/10.1101/2020.09.08.287748doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.08.287748
http://creativecommons.org/licenses/by-nc/4.0/


Slow clock

Motif synapses

Syntax 
synapses

Fast clock

Interneurons

Motif B

Motif A

Interneurons

AAB

BAAB

S
upervisor in

put for
both A

A
B

 and B
A

A
B

Serial 
clock

Motif B

Motif A

Motif B

Motif A

Supervisor input AAB

Supervisor input BAAB

Hierarchical model 

Serial model 

Fig. S4. Learning two sequences. The hierarchical model requires an additional interneuron
network. An external current is assumed to inhibit the interneurons for sequence ���� when
sequence ��� is presented and vice versa. The serial model duplicates the entire read-out network.
Here also, an external current is assumed to inhibit the read-out networks for sequence ���� when
sequence ��� is presented and vice versa.
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Fig. S5. Perturbing the slow clock of the hierarchical network. Blue shade indicates the perturbation
time, all excitatory neurons receive no external input for 250 ms. The sequential dynamics in the
slow clock breaks down (top right) but random activity in the interneurons (bottom right) leads to
sequences in the fast clock (top left), which in turn leads to motif replays (bottom left).
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APPENDIX I. CHANGING THE SLOW CLOCK INTO AN ALL-INHIBITORY NETWORK652

The hierarchical model is composed of four networks. These networks can be implemented653

in various ways. Here, we implement the slow clock differently to illustrate this (Fig. I.1, to be654

compared with Fig. 1). Sequential dynamics can also be obtained by having an all-inhibitory655

network (see for example Murray and Escola 2017). Learning the sequence ��� with this656

differently implemented hierarchical model leads to similar results (Fig. I.2, to be compared with657

Fig. 2). Table I.1 shows the new slow clock inhibitory network parameters. We conserve the other658

networks. Sequential dynamics in the slow clock is ensured by grouping the inhibitory neurons in659

20 clusters of 100 neurons. The inhibitory weights F � � of the same group are multiplied with a660

factor of 1/30. The inhibitory weights from group 8 to group 8 + 1mod 20 (8 = 1..20) are multiplied661

by a factor of 1/2. This weight structure does not lead to sequential dynamics by itself, some form662

of adaptation has to be introduced. To this end, short-term depression is used:663

gG3
3G3 (C)
3C

= 1 − G3 (C) (9)664

where G3 is a depression variable for each neuron in the all-inhibitory network. This variable665

is decreased by 0.07G3 (C) when the neuron spikes. The outgoing weights of each neuron in the666

network are multiplied with this depression variable. The slow clock receives excitatory external667

random Poisson input and projects to the interneuron networks. The syntax synapses follow the668

same dynamics as equation 8, but the right hand side of the equation is multiplied by−1 (an inverted669

STDP window). The parameters are summarized in Table I.2.670

TABLE I.1. Slow clock inhibitory network parameters

Constant Value Description
# � 2000 Number of recurrent I neurons
F � � 30 p� I to I synaptic strength
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Fig. I.1. The networks in the model can have different components. Here, the slow clock is
replaced by an all-inhibitory network. The syntax synapses follow the same STDP rule as the motif
synapses, only inverted.

TABLE I.2. Syntax plasticity parameters

Constant Value Description
�(?>C 0.03 pFHz Amplitude of potentiation
�(34? 0.25 × 10−5 pFHz Amplitude of depression
g( 25 ms Time constant of low pass filter
,(
<8=

0 pF Minimum I to I weight
,(
<0G 0.3 pF Maximum I to I weight
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Fig. I.2. We learn sequence AAB with an inhibitory slow clock network. The simulation shows
spontaneous dynamics after training the model for 85 iterations on the sequence ���. The
inhibitory neurons of the slow clock inhibit the interneurons now in the correct order (same caption
as for Fig. 2).
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