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The medial temporal lobe (MTL) supports a constellation of memory-related behaviors. Its1 1

involvement in perceptual processing, however, has been subject to an enduring debate. This2 2

debate centers on perirhinal cortex (PRC), an MTL structure at the apex of the ventral vi-3 3

sual stream (VVS). Here we leverage a deep learning approach that approximates visual be-4 4

haviors supported by the VVS. We first apply this approach retroactively, modeling 29 pub-5 5

lished concurrent visual discrimination experiments: Excluding misclassified stimuli, there is6 6

a striking correspondence between VVS-modeled and PRC-lesioned behavior, while each are7 7

outperformed by PRC-intact participants. We corroborate these results using high-throughput8 8

psychophysics experiments: PRC-intact participants outperform a linear readout of electro-9 9

physiological recordings from the macaque VVS. Finally, in silico experiments suggest PRC10 10

enables out-of-distribution visual behaviors at rapid timescales. By situating these lesion, elec-11 11

trophysiological, and behavioral results within a shared computational framework, this work12 12

resolves decades of seemingly inconsistent experimental findings surrounding PRC involvement13 13

in perception.14 14

1 Introduction15 15

Animal behavior is informed by previous experience1. To understand how the mammalian brain16 16

supports this ability, neuroscientific data are often interpreted using two distinct cognitive con-17 17

structs: ‘perception’ transforms ongoing sensory experience into behaviorally relevant abstractions18 18

(e.g. objects), while ‘memory’ enables retrieval of prior task-relevant experience. These informal,19 19

descriptive accounts of animal behavior have enabled researchers to characterize the role of the20 20

ventral visual stream (VVS) in visual perception2,3,4, as well as the role of the medial temporal21 21

lobe (MTL) in memory-related behaviors5,6,7. Nonetheless, identifying the neuroanatomical—and,22 22

by proxy, the computational—distinction between ‘perceptual’ and ‘mnemonic’ processing has been23 23

subject to an enduring debate8,9.24 24

This debate centers on perirhinal cortex (PRC), an MTL structure situated at the apex of the25 25

primate VVS10,11 (Fig. 1a). Lesion, electrophysiological, and imaging data have documented the26 26

role of PRC in memory-related behaviors11,12,13,14. This includes early observations that PRC-27 27

related memory impairments were modulated by item-level stimulus properties15,16,17,18, motivat-28 28

ing perceptual experiments in PRC-lesioned primates18,19,20,21. A perceptual-mnemonic hypothesis29 29

emerged to account for these data, suggesting that PRC jointly supports perceptual and mnemonic30 30

behaviors22,23. Critically, PRC-related perceptual impairments were only evident in tasks that31 31

required sufficiently ‘complex’ representations (original schematic of PRC dependence in Fig. 1b).32 32

Methodological concerns were raised with this interpretation of these data24,25,26, however, suggest-33 33

ing that PRC-related deficits are a consequence of extra-perceptual task demands (e.g. memory).34 34

Additionally, there were concerns that concurrent damage to PRC-adjacent sensory cortices—not35 35

to PRC, per se—may explain perceptual deficits in lesioned subjects. Together, these concerns36 36

reinforced a purely mnemonic interpretation of PRC function.37 37

To resolve these competing interpretations, experimentalists on both sides of the perceptual-38 38

mnemonic debate have converged on the use of concurrent visual discrimination (i.e. ‘oddity’) tasks.39 39

In each trial, participants freely view a stimulus screen containing multiple objects (Fig. 1d), then40 40

choose the item whose identity does not match the others (i.e. the ‘odd one out’). Diagnostic41 41

trials are designed to require putatively ‘complex’ perceptual representations while control trials42 42

are designed to require perceptual processing that only depends on canonical VVS structures.43 43

These studies intend to isolate perceptual and extra-perceptual task demands, as well as evaluate44 44

the integrity of PRC-adjacent sensory cortices. Nonetheless, concurrent visual discrimination tasks45 45

administered to PRC-lesioned and -intact participants have generated a seemingly inconsistent body46 46

of experimental evidence: results from these studies have been used both to support27,28,29,30,31,3247 47

and refute33,34,35,36 the perceptual-mnemonic hypothesis (schematized in Fig. 1e left and right,48 48
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respectively). While there is no discernible pattern of PRC-related deficits across these studies,49 49

interpreting these data has been forced to rely on informal, descriptive interpretations of these50 50

diverse stimulus sets.51 51

We suggest that these apparent inconsistencies can be resolved by situating experimental behav-52 52

ior in relation to perceptual processing supported by the VVS. Experimental accuracy supported53 53

from a linear readout of the VVS (i.e. ‘VVS-supported performance’ Fig. 1f) offers a direct54 54

assessment of perceptual processing in the absence of extra-perceptual task demands. Stimulus55 55

‘complexity,’ in this framework, is continuous and inversely related to VVS-supported performance56 56

(Fig. 1f: bottom). A perceptual-mnemonic hypothesis would predict that this approach organizes57 57

the available experimental observations into three distinct distributions. First, PRC-lesioned be-58 58

havior is approximated by VVS-supported performance (Fig. 1f: purple). Second, PRC-intact59 59

participants outperform the VVS (Fig. 1f: grey). And third, experiments where VVS-supported60 60

performance is at ceiling. This third distribution may help identify ‘misclassified’ experiments that61 61

have been described as ‘complex’ yet are not relevant to the perceptual-mnemonic debate: Because62 62

VVS-supported performance is at ceiling, the perceptual-mnemonic hypothesis predicts no PRC-63 63

lesioned deficits. Any below-ceiling performance can only be due to extra-perceptual task demands64 64

(Fig. 1f: white). Thus, situating human behavior in relationship to VVS-supported performance65 65

may provide a unified account of PRC involvement in visual object perception.66 66

Here we evaluate this unified account by situating lesion, electrophysiological, and behavioral67 67

results within a shared computational framework. As neural recordings from the VVS are not68 68

available from human participants in previous studies, we leverage a model class that is able to69 69

predict neural activity throughout the VVS, directly from experimental stimuli: task-optimized70 70

convolutional neural networks37,38,39. We use this model as a computational proxy for the VVS,71 71

developing an analytic approach that generates trial-by-trial predictions of VVS-supported perfor-72 72

mance on concurrent visual discrimination tasks (Fig. 1c). We first make use of this approach73 73

retroactively, collecting stimuli and behavioral data from published concurrent visual discrimina-74 74

tion studies administered to PRC-intact and -lesioned participants. In this ‘retrospective dataset’ of75 75

29 experiments, we deploy this modeling approach to estimate mean VVS-supported performance76 76

for each published stimulus set: after excluding misclassified stimulus sets on both sides of the77 77

perceptual-mnemonic debate, we observe a striking correspondence between a computational proxy78 78

for the VVS and PRC-lesioned performance, yet each are outperformed by PRC-intact participants.79 79

Next, we directly compare human behavior with neural responses at multiple levels of the VVS80 80

hierarchy (areas V4 and inferior temporal (IT) cortex) using a novel stimulus set. Results reveal81 81

that PRC-intact human participants outperform a linear readout of electrophysiological recordings82 82

collected from high-level visual cortex in the macaque, validating the computational results from83 83

the retrospective dataset. Finally, given the model’s correspondence with IT and PRC-lesioned84 84

behavior, we conduct experiments in silico to evaluate two prominent theories of PRC-dependent85 85

perceptual processing. Taken together, this computational framework enables us to compare the86 86

results from multiple experimental settings—lesion, electrophysiological, and in silico—providing a87 87

unified account of PRC involvement in perception.88 88

2 Results89 89

2.1 Retrospective Analysis90 90

Through a comprehensive literature review we identify published, concurrent visual discrimina-91 91

tion studies administered to PRC-intact and -lesioned participants (Methods: Literature Review).92 92

Through correspondence with the original authors we acquired a ‘retrospective dataset’ composed93 93

of stimuli and behavioral data for 29 experiments that have collectively been used as evidence both94 94

for and against the perceptual-mnemonic hypothesis (Methods: Retrospective Dataset). Using one95 95

instance of a task-optimized convolutional neural network, we estimate the model’s cross-validated96 96

fit to previously collected electrophysiological responses40, identifying a model layer that best fits97 97

high-level visual cortex (Methods: Model Fit to Electrophysiological Data). We use an unweighted,98 98

linear decoder off of model responses from this layer to solve each trial in the retrospective dataset,99 99

then compute the average performance across trials for a given experiment (Methods: Model Per-100 100

formance on Retrospective Dataset). Thus, for each experiment in the retrospective dataset, we101 101

have a single value corresponding to the averaged performance that would be expected by a linear102 102

readout of high-level visual cortex which we refer to here as ‘model performance.’103 103

2.1.1 Multiple stimulus sets have been misclassified on both side of the debate104 104

We identify 14 experiments in the retrospective dataset that appear to have been misclassified:105 105

Experimentalists have claimed these experiments are diagnostic of PRC involvement in perception,106 106

yet model performance is 100% accurate (as schematized in Fig. 1f: white), suggesting no need107 107
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for perceptual processing beyond the VVS. This includes eight experiments in which performance108 108

did not differ between PRC-intact and -lesioned participants (1 experiment in Buffalo et al., all 7109 109

experiments in Knutson et al.; Supplemental Figure S2a-b), leading the authors to suggest these110 110

experiments provide evidence against perirhinal involvement in perception26,36. However, our com-111 111

putational results suggest no perceptual processing beyond the VVS is required for the experiments.112 112

In another six experiments performance differed between PRC-lesioned and -intact subjects (all 3113 113

‘Fribble’ experiments in Barense et al., all 3 ‘Face Morphs’ in Inhoff et al.; Supplemental Figure114 114

S2c-d), leading the authors to suggest these experiments provide evidence in support of PRC in-115 115

volvement in perception31,32. However, our modeling results suggest the observed divergence is116 116

better attributed to extra-perceptual task demands. After excluding all stimulus sets where model117 117

performance is at ceiling, including these misclassified experiments, there remain 14 experiments,118 118

which were used as evidence on both sides of the perceptual-mnemonic debate. This includes 10119 119

experiments described by the original authors as ‘diagnostic’ and 4 experiments labeled as ‘controls.’120 120

2.1.2 PRC-lesioned subjects are impaired on concurrent visual discrimination tasks121 121

To make claims about PRC involvement in concurrent visual discrimination behaviors, we are122 122

principally interested in the comparison between PRC-lesioned behavior and their non-lesioned, age123 123

and IQ matched controls (i.e. ‘PRC-intact’). However, human PRC lesions are often accompanied124 124

by damage to other prominent structures within the MTL, such as the hippocampus (HPC). To125 125

ensure that behavioral impairments are a consequence of damage to PRC and not HPC we also126 126

compare the behavior of participants with selective hippocampal damage (i.e. ‘HPC-lesioned’) to127 127

their non-lesioned, age and IQ matched controls (i.e. ‘HPC-intact’)—where both HPC-lesioned128 128

and HPC-intact participants have an intact PRC. This is standard practice in the MTL literature.129 129

Across the 14 experiments in the retrospective dataset, PRC-lesioned participants are significantly130 130

impaired relative to PRC-intact participants (paired ttest, β = .14, t(13) = 2.68, P = .019),131 131

while HPC-lesioned participants show no such impairment (paired ttest, β = .01, t(13) = .73,132 132

P = .479). Directly comparing the difference between PRC-intact/lesioned participants with HPC-133 133

intact/lesioned participants, there is a significant difference between lesioned groups (PRC-intact134 134

– PRC-lesion vs. HPC-intact – HPC-lesion: β = .13, F (1, 26) = 2.34, P = .028). PRC-intact135 135

participants perform significantly better than PRC-lesioned participants, while there is no such136 136

difference between HPC-intact and -lesioned participants.137 137

2.1.3 A computational model of the VVS approximates PRC-lesioned performance138 138

The previous section demonstrates a coarse distinction between PRC-lesioned and -intact perfor-139 139

mance. A stronger test of the perceptual-mnemonic hypothesis would be to predict the relative140 140

impairments observed across different experiments, using our computational proxy for the VVS. To141 141

this end, we directly compare model performance with human performance across eligible experi-142 142

ments in the retrospective dataset (Methods: Model Performance on Retrospective Dataset). We143 143

observe a striking correspondence between PRC-lesioned behavior and model performance (Fig. 2a,144 144

purple; β = .85, F (1, 12) = 5.59, P = 1x10−4). Conversely, PRC-intact participants are not pre-145 145

dicted by a computational proxy for the VVS (Fig. 2a, grey: β = .85, F (1, 12) = 2.05, P = .063);146 146

these participants significantly outperform the model (β = .35, t(13) = 7.32, P = 6x10−6). Criti-147 147

cally, there is a significant interaction between PRC-intact and PRC-lesion groups when predicting148 148

human accuracy from model performance (β = .63, F (3, 24) = 2.82, P = .010), which is not ob-149 149

served for the hippocampal groups (HPC-lesion/HPC-intact F (3, 24) = .28, P = .781). To make150 150

the correspondence between model performance and PRC-lesioned behavior more explicit, for each151 151

experiment we take the difference between PRC-intact and -lesioned participants, resulting in a152 152

difference score for each experiment. This difference is predicted by model performance (β = −.63,153 153

F (1, 12) = −3.17, P = .008) with the sign indicating that as model performance is degraded, the154 154

difference between PRC-intact and -lesioned participants increases. These results suggest that as155 155

IT-supported performance on a given experiment decreases, the divergence between PRC-lesioned156 156

and -intact performance increases. The low sample size in this analysis encourages caution when157 157

interpreting these results41. Nonetheless, these results offer a stimulus-computable account of why158 158

the magnitude of PRC-related deficits might vary across published studies, clarifying PRC contri-159 159

butions to concurrent visual discrimination behaviors.160 160

2.1.4 Available experiments do not enable focal claims about VVS dependence161 161

As the final and most stringent test of the perceptual-mnemonic hypothesis, we determine whether162 162

high-level visual cortex uniquely explains PRC-lesioned performance. This requires not only that163 163

PRC-lesioned behavior reflects a linear readout of high-level visual cortex, but that high-level164 164

visual cortex predicts PRC-lesioned behavior significantly better than earlier stages of processing165 165

within the VVS. To address this uncertainty, we leverage the differential correspondence between166 166
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model layers with early and late stages of processing within the VVS (Methods: VVS Reliance).167 167

Borrowing from electrophysiological data previously collected40, we first generate a metric for each168 168

layer’s differential fit to IT cortex (∆IT−V 4, Fig. 3a). Next, we estimate model performance on169 169

the retrospective dataset from all model layers, not only for the layer that best fits IT cortex170 170

(Fig. 3b: PRC-lesion/intact top, HPC-lesion/intact bottom). With these model performance-171 171

by-layer estimates we generate a metric for the differential fit to PRC-lesioned (∆prc) and HPC-172 172

lesioned (∆hpc) performance. We then relate these human behavioral metrics from the retrospective173 173

dataset to the electrophysiological metrics from the non-human primate. Across layers, differential174 174

correspondence with IT cortex predicts differential fit to PRC-lesion behavior (Fig. 3c, purple, top:175 175

β = .95, F (1, 17) = 13.20, P = 2x10−10). In addition to these aggregate (i.e. across all layers)176 176

analyses, we determine whether there is a significant interaction between lesioned groups at each177 177

layer (i.e. PRC-lesioned vs. PRC-intact, repeating previous analyses in Fig. 2a). After correcting178 178

for multiple comparisons, there is only a significant interaction in more ‘IT like’ layers (e.g. fc7:179 179

P = .00257). Conversely, there are no layers with a significant interaction between HPC-lesioned180 180

and -intact participants, even at a liberal (uncorrected) threshold (all p > .05, e.g. fc7: P = .773).181 181

Nonetheless, model performance from an IT-like layer is not significantly better at predicting PRC-182 182

lesioned behavior than a V4-like layer (conv5 1 and pool3, respectively: β = .05, F (2, 25) = .86,183 183

P = .400), which is evident in the similarity across layers in 6b. Taken together, these results184 184

suggest that while PRC-lesioned behavior is best fit by later stages of processing within the VVS,185 185

the available stimuli do not clearly separate V4 from IT supported behaviors.186 186

2.1.5 Retrospective summary & limitations187 187

Modeling and behavioral results from the retrospective dataset suggest that PRC-lesioned perfor-188 188

mance reflects a linear readout of the VVS. In contrast, PRC-intact behaviors outperform both189 189

PRC-lesioned participants and a computational proxy for the VVS; this includes both PRC-intact190 190

participants (i.e. no lesion to the MTL/PRC), and participants with selective damage to the hip-191 191

pocampus that spared PRC. These results suggest that above VVS performance in concurrent visual192 192

discrimination tasks is dependent on PRC. While this analysis resolves fundamental questions at193 193

the center of the perceptual-mnemonic debate, there are multiple limitations to consider. First,194 194

extant stimulus sets do not differentiate V4- from IT-Supported behavior, leaving open what neu-195 195

roanatomical structures within the VVS PRC-lesioned behavior is reliant on. Second, the available196 196

stimulus sets only offer a sparse sampling of the range of VVS-supported behaviors. This is due,197 197

in part, to reliance on experimental averages when fitting to human behavior, low experimental198 198

Ns (both experiments and participants), and stimulus sets that were designed to result in cate-199 199

gorical PRC-related impairments. Finally, there is a considerable amount of hypothesis-orthogonal200 200

variability across these studies. For example, the number of stimuli used on each trial varies from201 201

3-9 objects across experiments in the retrospective dataset. Instead of developing a deeper under-202 202

standing of how these off-hypothesis factors relate to the results presented here, we develop a novel,203 203

model-based experimental approach.204 204

2.2 Novel Dataset205 205

To address limitations in the retrospective analysis, we design a novel experiment that enables206 206

item-level performance estimates, continuously samples the space of stimulus ‘complexity,’ and207 207

clearly disentangles multiple stages of processing across the VVS from PRC-intact behavior. Ad-208 208

ditionally, these experiments minimize off-hypothesis experimental variance, using the minimum209 209

configuration of objects in each trial (N = 3) across all levels of stimulus ‘complexity.’ We leverage210 210

our computational approach to generate this stimulus set, then evaluate it using computational,211 211

electrophysiological, and behavioral methods.212 212

2.2.1 High-throughput human psychophysics experiments213 213

We begin with stimuli that have been previously shown to separate V4- from IT-supported be-214 214

havior40, reconfiguring these images into 3-way, within-category, oddity trials (Methods: Novel215 215

Stimulus Set Generation; for examples see Fig. 4a). We develop a novel estimate of ‘model per-216 216

formance’ on these oddity tasks: a weighted, linear readout from an ‘IT-like’ model layer, learned217 217

via a leave-one-out cross-validated protocol (Methods: Model Performance on Novel Stimuli). We218 218

administer these stimuli to PRC-intact human participants (N = 297) via high-throughput psy-219 219

chophysics experiments (Methods: High-throughput Psychophysics Experiments). Finally, using220 220

the approach developed to estimate a weighted model performance, we determine the performance221 221

on these oddity trials that would be supported from a weighted readout of macaque IT and V4.222 222

Thus, for the same stimuli, we are able to compare model performance and PRC-intact human223 223

behavior, alongside the accuracy supported by a weighted, linear readout of electrophysiological224 224

responses collected from macaque IT and V4 (Fig. 4b).225 225

4

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 8, 2020. ; https://doi.org/10.1101/2020.10.07.327171doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.07.327171
http://creativecommons.org/licenses/by-nc/4.0/


2.2.2 PRC-intact participants outperform electrophysiological recordings from IT226 226

PRC-intact human behavior outperforms a linear readout of IT on this novel stimulus set (Fig 5c:227 227

β = .24, t(31) = 9.50, P = 1x10−10) while IT significantly outperforms V4 (Fig. 5a: β = .18,228 228

t(31) = 6.56, P = 2x10−7). This three-way dissociation enables us to disentangle early and late229 229

stage processing within the VVS from PRC-supported behaviors. A computational proxy for IT230 230

demonstrates the same pattern, predicting IT-Supported Performance (Fig 5d, purple: β = .81,231 231

F (1, 30) = 13.33, P = 4x10−14), outperforming V4 (Fig 5d, grey: β = .26, t(31) = 8.02, P =232 232

5x10−9), and being outperformed by PRC-intact participants (Fig 5d, teal: β = .16, t(31) = 5.38,233 233

P = 7x10−6). Finally, we find that the PRC-intact human reaction time for each item is a reliable234 234

predictor of IT-supported performance, such that greater RTs are observed for items with lower235 235

IT-supported accuracy (β = −.88, t(31) = −10.00, P = 4x10−11). Framed more explicitly, for each236 236

item, the difference between IT-supported and PRC-intact performance is predicted by reaction237 237

time (Fig. 5e, purple: β = .81, F (1, 31) = 7.44, P = 3x10−8). This relationship is also observed238 238

for model performance (β = .72, F (1, 31) = 5.62, P = 4x10−6) but not V4-supported performance239 239

(Fig. 5e, grey: β = −.08, F (1, 31) = −0.41, P = .682). These results demonstrate that PRC-intact240 240

human participants require more time to choose among items that are not linearly separable in IT,241 241

in a way that scales inversely with IT-supported performance.242 242

2.3 In Silico Experiments243 243

Here we address two prominent theories around why the VVS—and, by proxy, PRC-lesioned244 244

subjects—fail to perform ‘complex’ discriminations. The first hypothesis posits that PRC pro-245 245

vides another layer of processing within the VVS22: Just as IT supports discrimination behaviors246 246

not linearly separable in V4, PRC supports discrimination behaviors not linearly separable in IT.247 247

In this case, PRC is thought to integrate information from neural populations in IT in order to gen-248 248

erate a ‘complex’ or ‘configural’ representation—using computations that are common across the249 249

VVS. More concretely, this implies that adding VVS-like layers “on top” of an IT-like model should250 250

improve performance on concurrent visual discrimination experiments with ‘complex’ stimuli. The251 251

second hypothesis suggests that PRC dependence is not due to stimulus properties, per se (that is,252 252

properties of the stimulus that can be computed directly from the image itself—i.e. pixels) but the253 253

interaction between perceptual properties and task-relevant perceptual experience42. This implies254 254

that canonical VVS structures are fully capable of performing ‘complex’ perceptual discriminations,255 255

but that this requires extensive, content-specific training. This suggests that subjecting a VVS-like256 256

model to perceptual training over a putatively ‘complex’ stimulus type should enable these models257 257

to approximate PRC-intact performance on this stimulus class.258 258

2.3.1 Changing model architecture does not enable PRC-intact performance259 259

We first identify experiments in the retrospective dataset for which model performance increases260 260

with the ‘depth’ that model responses are extracted from (Methods: Model Depth & Architecture261 261

Analyses). We observe depth-dependent performance enhancements for some experiments (e.g.262 262

‘Low Snow‘ stimuli in Stark et al. 2000, β = 0.78, F (1, 19) = 2.62, P = .017) but not others263 263

(‘Family High Ambiguity‘ stimuli in Barense et al. 2007, β = −0.00, F (1, 19) = −0.05, P = .959).264 264

PRC-lesioned participants performed significantly better (t(6) = 5.17, P = 4x10−4) on experiments265 265

that exhibited depth improvements (n = 7, µ = .88) than those that did not (n = 7, µ = .52);266 266

experiments that did not exhibit depth-dependent improvements are those with the most substantial267 267

PRC-related deficits. Can changing the model architecture—in this case, adding layers ‘on top’268 268

of IT-like layers—increase performance on these experiments? To test this, we repeat previous269 269

analyses (Methods: Model Performance on Retrospective Dataset) but estimate model performance270 270

from numerous models, each of which has an increasingly deep architecture (from 18 to 152 layers,271 271

Methods: Model Depth & Architecture Analyses). These architectural modifications do not lead to272 272

increased correspondence with PRC-intact behavior (β = −.55, t(4) = −1.33, P = .255). Moreover,273 273

just as in the original model, for each of these architectures we observe an interaction between PRC-274 274

lesioned and -intact participants (Fig. 6, e.g. 152 layers: β = −.54, F (3, 24) = −3.97, P = 6x10−4).275 275

Increasing the number of VVS-like computations over a given stimulus does not better predict PRC-276 276

supported behaviors. Finally, we repeat this analysis for numerous convolutional architectures (e.g.277 277

inception-v3, squeezenet, alexnet, densenets, etc.), taking responses from a penultimate model278 278

layer to estimate model performance on the retrospective dataset. The interaction between PRC-279 279

lesioned and -intact participants is consistent across all competitive architectures evaluated; no280 280

model better approximates PRC-intact performance, suggesting that our findings are robust across281 281

instances within the convolutional neural network model class.282 282
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2.3.2 Content-specific training enables VVS models to achieve PRC-intact accuracy283 283

Faces are an example of a putatively ‘complex’ stimulus category. In the retrospective analysis, faces284 284

are an object class in which PRC-intact participants outperform both PRC-lesioned participants285 285

(β = .20, t(3) = 4.25, P = .024) and model performance (β = .46, t(3) = 8.47, P = .003).286 286

Similarly, for face stimuli in the novel high-throughput experiment, PRC-intact participants reliably287 287

outperform both IT-supported performance (β = .41, t(41) = 15.36, P = 1x10−18) and model288 288

performance (β = .35, t(41) = 14.04, P = 3x10−17). Thus, faces are an example of putatively289 289

‘complex’ experimental stimuli where computational models, PRC-lesioned participants, and IT-290 290

supported performance fail to approximate PRC-intact behavior. We optimize a computational291 291

proxy for the VVS to perform these putatively ‘complex’ stimuli by changing the distribution of292 292

its training data (Methods: Content-Specific Optimization Procedure): in short, we train this293 293

model to perform face discrimination, instead of object classification. On the retrospective dataset,294 294

this content-specific optimization procedure leads to an increase in model performance on these295 295

putatively ‘complex’ stimuli (Fig. 7a, left red; paired t(3) = 4.75, P = .018). Moreover, this296 296

optimization procedure results in performance on face experiments that is not significantly different297 297

from PRC-intact participants (Fig. 7a, bottom right, red; β = .16, t(3) = 1.91, P = .153).298 298

However performance is degraded on all other (i.e. non-face) stimuli (β = −.14, t(9) = −2.67,299 299

P = .026). This reveals a significant interaction between training data and testing performance,300 300

as a function of stimulus type (Fig. 7a, left greys; β = .44, F (3, 24) = 2.53, P = .018). We can301 301

state the results more generally: content-specific optimization leads to increased model performance302 302

on ‘within distribution’ stimuli, while not demonstrating these same levels of performance ‘out of303 303

distribution.’ Given the low sample size, these results should be interpreted with caution. To304 304

address this shortcoming, we conduct the same analysis as above using the novel experimental305 305

dataset (Methods: Content-Specific Optimization Procedure). When comparing between models,306 306

performance is significantly better on within distribution stimuli at the single-trial level for both307 307

the face- (Fig. 7b, red: β = 0.33, t(46) = 11.24, P = 9x10−15) and object-trained models (Fig.308 308

7b, greys: β = 0.15, t(167) = 8.04, P = 2x10−13). Critically, content-specific optimization leads to309 309

model performance on these putatively ‘complex’ stimuli that is now statistically indistinguishable310 310

from item-level performance of PRC-intact human participants (Fig. 7b, bottom right, red; β = .03,311 311

t(46) = .91, P = .369). Nonetheless, model performance is degraded on ‘out of distribution’ stimuli,312 312

with a significant interaction between training data and testing performance, as a function of313 313

stimulus type (Fig. 7b, left greys: β = −.48, F (3, 426) = −9.51, P = 6x10−20). Interestingly, unlike314 314

models optimized for object classification, which predict IT-supported performance (Fig 7c, top left:315 315

β = .86, F (1, 30) = 9.13, P = 4x10−10) as well as reaction times inherent in supra-IT performance316 316

(Fig 7c, top right; β = −.80, F (1, 30) = −7.37, P = 3x10−8), there is no correspondence between317 317

face-optimized model performance and IT-supported performance (Fig 7c, bottom left; β = −.08,318 318

F (1, 30) = −.42, P = .679) or reaction time (Fig 7c, bottom right; β = −.16, F (1, 30) = −.88,319 319

P = .386). These results demonstrate that a content-specific optimization procedure enables VVS-320 320

like architectures to perform perceptual discriminations on putatively ‘complex’ stimuli. However,321 321

VVS-like architectures achieve this level of performance in a manner that is a biologically and322 322

behaviorally implausible approximation of PRC-intact performance.323 323

3 Discussion324 324

We have provided a unified account of PRC involvement in concurrent visual discrimination tasks.325 325

We began this work by developing a computational proxy for VVS-supported performance on326 326

concurrent visual discrimination tasks; this approach enables us to formalize perceptual demands327 327

in these experiments, directly from their stimuli. We first deploy this approach on a ‘retrospective328 328

dataset’ composed of 29 published, concurrent visual discrimination experiments administered to329 329

PRC-lesioned and -intact participants. We find a number of experiments that appear to have been330 330

misclassified: while they have been described as ‘complex,’ the model performs them at ceiling,331 331

suggesting that there is no need for perceptual processing beyond the VVS. Across the remaining332 332

experiments we observe a striking correspondence between this computational proxy for the VVS333 333

and PRC-lesioned human behavior. Critically, PRC-intact behavior outperforms this VVS-like334 334

model and PRC-lesioned participants; this is true for PRC-intact participants with an entirely335 335

intact MTL and those with selective damage to the hippocampus that spared PRC. Accordingly,336 336

PRC-lesioned behavior only diverges from PRC-intact performance to the degree that the model337 337

fails to perform these tasks. Together, these results suggest that PRC-lesioned human behavior338 338

reflects a linear readout of the VVS, PRC-intact human behaviors on these tasks outperform the339 339

VVS, and this behavior is dependent on PRC.340 340

To address limitations inherent in the retrospective analysis, we next generate a novel con-341 341

current visual discrimination stimulus set. We evaluate these stimuli using data collected via342 342

high-throughput psychophysics experiments administered to PRC-intact human participants, elec-343 343
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trophysiological data previously collected from the non-human primate, as well as our own compu-344 344

tational approaches. We find that PRC-intact behavior diverges from IT-Supported Performance345 345

in this novel stimulus set, validating the main finding from the retrospective analysis. Additionally,346 346

there is a clear separation between multiple structures throughout the VVS: not only do PRC-intact347 347

participants outperform a weighted readout of electrophysiological responses from IT, but IT out-348 348

performs V4. Moreover, model performance provides a close approximation for a linear readout349 349

of IT on these concurrent visual discrimination tasks—a well validated example of how computa-350 350

tional proxies for the VVS can be integrated in future experimental work that aims to formalize351 351

the involvement of MTL structures in perceptual processes. Interestingly, in this well-controlled352 352

experimental setting, reaction time is a reliable predictor of the divergence between PRC-intact353 353

and IT-supported behavior: supra-IT performance in the human scales, parametrically, with time.354 354

Using in silico experiments we address two prominent theories surrounding why the VVS (and,355 355

by proxy, PRC-lesioned behavior) fails to support discrimination of increasingly ‘complex’ visual356 356

stimuli. The first hypothesis posits that PRC provides another layer of processing within the VVS.357 357

However, we observe that increasing model depth (i.e. increasing the number of VVS-like layers)358 358

does not enable better correspondence with PRC-intact behaviors. To the contrary, all instances359 359

of this model class exhibited the same pattern of differential fit to PRC-lesioned behaviors. A360 360

second hypothesis suggests that PRC dependence emerges through the interaction between stimulus361 361

properties and task-relevant experience. To address this claim, we subject VVS-like models to362 362

‘perceptual training’ (i.e. content-specific optimization) over a putatively ‘complex’ stimulus type:363 363

faces. This optimization procedure leads to PRC-intact performance levels on ‘within distribution’364 364

stimuli, while model performance degrades for out-of-distribution (i.e. not face) stimuli. These365 365

computational results suggests that PRC-dependence on ‘complex’ stimuli is not about stimulus366 366

properties, per se (i.e. VVS-like architectures can perform these tasks with training), but the367 367

interaction between stimulus properties and stimulus-relevant experience.368 368

Given these behavioral, neural, and computational results, how might we characterize PRC369 369

involvement in concurrent visual discrimination tasks? We must first acknowledge that the VVS370 370

provides a basis space for visual perception, generating linearly separable representations that sup-371 371

port many downstream behaviors43. However, not all visual inputs are linearly separable in this372 372

space—they remain ‘entangled,’ even in high-level visual regions. Achieving accuracy above what373 373

is linearly separable within the VVS requires time. Extensive training can slowly disentangle these374 374

representations within the VVS itself; our in silico experiments corroborate a rich literature on375 375

perceptual learning44,45 and make explicit the temporal dynamics/advantages in consolidating per-376 376

ceptual information within the VVS46. However, PRC can disentangle task-relevant information377 377

from VVS responses within a single trial, enabling out-of-distribution visual behaviors at rapid378 378

timescales. Interestingly, the degree to which stimuli are not linearly separable within the VVS379 379

scales with the amount of time required for supra-VVS performance. We do not interpret these380 380

PRC-dependent temporal dynamics as either ‘perceptual’ or ‘mnenomic;’ neither of these terms381 381

elucidates the computations that enable this behavior. Instead, what we offer is a tractable, exten-382 382

sible framework to formalize how experimental variables relate to PRC-dependent behaviors. We383 383

believe this biologically plausible computational approach will continue to offer novel insights into384 384

how the MTL supports such enchanting—indeed, at times, indescribable—behaviors.385 385

4 Methods386 386

4.1 Literature Review387 387

Criteria for inclusion in the retrospective analysis was threefold. First, behavioral data from PRC-388 388

lesioned and PRC-intact participants must have been collected. Second, the experiment must have389 389

been administered to either human or non-human primate participants. Third, participants must390 390

have performed concurrent visual discrimination tasks. The initial Google Scholar search terms used391 391

were “perirhinal lesion oddity” resulting in 425 results. The terms “human” or “primate” were not392 392

included in this search as experimental participants in human primate research are often referred393 393

to simply “subjects.” Instead of “concurrent visual discrimination task” we used “oddity” as it is394 394

a more commonly used shorthand in the literature, and the extended task description is applied395 395

irregularly. After candidate experiments were identified from these 425 results, the references cited396 396

in each of these candidate papers were used as a source of candidate papers missed in the initial397 397

search. An additional exclusion criterion was incorporated, as one concurrent visual discrimination398 398

experiment (Lee & Rudebeck 2010) required that participants reference real-world shape properties399 399

of objects not presented on the stimulus screen alongside the stimuli. This experiment was not400 400

included in further analysis. The corresponding authors in each experiment were contacted via401 401

email and asked to provide experimental materials necessary to the current computational approach.402 402

This included, first, behavioral data from PRC-lesioned and -intact participants with the finest403 403

granularity that could be collected (e.g. trial, subject, or group level data). When available, this also404 404

7

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 8, 2020. ; https://doi.org/10.1101/2020.10.07.327171doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.07.327171
http://creativecommons.org/licenses/by-nc/4.0/


included behavioral data from hippocampal-lesioned and hippocampal-intact participants. Second,405 405

the stimuli corresponding to these behavioral data; ideally, the exact stimuli presented in each406 406

experiment conducted. For all studies, the corresponding authors (or their associates) responded407 407

promptly and were eager to provide the data requested. The complete list of experiments identified408 408

through this search is presented below.409 409

Studies Requested410 410

– Buffalo, E. A., Reber, P. J., & Squire, L. R. (1998). The human perirhinal cortex and411 411

recognition memory. Hippocampus, 8(4), 330-339.412 412

– Stark, C. E., & Squire, L. R. (2000). Intact visual perceptual discrimination in humans in413 413

the absence of perirhinal cortex. Learning & Memory, 7(5), 273-278.414 414

– Buckley, M. J., Booth, M. C., Rolls, E. T., & Gaffan, D. (2001). Selective perceptual impair-415 415

ments after perirhinal cortex ablation. Journal of Neuroscience, 21(24), 9824-9836.416 416

– Levy, D. A., Shrager, Y., & Squire, L. R. (2005). Intact visual discrimination of complex and417 417

feature-ambiguous stimuli in the absence of perirhinal cortex. Learning & memory, 12(1),418 418

61-66.419 419

– Lee, A. C., Buckley, M. J., Pegman, S. J., Spiers, H., Scahill, V. L., Gaffan, D., ... & Graham,420 420

K. S. (2005). Specialization in the medial temporal lobe for processing of objects and scenes.421 421

Hippocampus, 15(6), 782-797.422 422

– Lee, A. C., Bussey, T. J., Murray, E. A., Saksida, L. M., Epstein, R. A., Kapur, N., ... &423 423

Graham, K. S. (2005). Perceptual deficits in amnesia: challenging the medial temporal lobe424 424

‘mnemonic’view. Neuropsychologia, 43(1), 1-11.425 425

– Lee, A. C., Buckley, M. J., Gaffan, D., Emery, T., Hodges, J. R., & Graham, K. S. (2006).426 426

Differentiating the roles of the hippocampus and perirhinal cortex in processes beyond long-427 427

term declarative memory: a double dissociation in dementia. Journal of Neuroscience, 26(19),428 428

5198-5203.429 429

– Shrager, Y., Gold, J. J., Hopkins, R. O., & Squire, L. R. (2006). Intact visual perception in430 430

memory-impaired patients with medial temporal lobe lesions. Journal of Neuroscience, 26(8),431 431

2235-2240.432 432

– Barense, M. D., Gaffan, D., & Graham, K. S. (2007). The human medial temporal lobe433 433

processes online representations of complex objects. Neuropsychologia, 45(13), 2963-2974.434 434

– Knutson, A. R., Hopkins, R. O., & Squire, L. R. (2012). Visual discrimination performance,435 435

memory, and medial temporal lobe function. Proceedings of the National Academy of Sci-436 436

ences, 109(32), 13106-13111.437 437

– Inhoff, M. C., Heusser, A. C., Tambini, A., Martin, C. B., O’Neil, E. B., Köhler, S., ...438 438

& Davachi, L. (2019). Understanding perirhinal contributions to perception and memory:439 439

Evidence through the lens of selective perirhinal damage. Neuropsychologia, 124, 9-18.440 440

4.2 Retrospective Dataset441 441

Across all of the obtained experiments, we were able to reliably secure experiment-level behavioral442 442

data (i.e. averaged across trials) for each group within a given study (e.g. the performance of PRC-443 443

lesioned participants performing condition A, B, etc., within a given study). In order to compare444 444

model and human behaviors, we compare behavior at the level of the experiment (i.e. averaged445 445

across trials). For most of the obtained experiments, the exact trial-level stimuli presented to446 446

participants were used in the modeling approach. However, there were two experiments (Stark et447 447

al. 2000 and Lee et al. 2006) where the distribution of all stimuli was obtained, but the specific448 448

trials shown to each subject had to be approximated. For Stark et al. 2000, the authors randomly449 449

selected stimuli to be used in each trial, from a set of all possible stimuli. They could not recover the450 450

exact trial-by-trial stimuli shown to experimental participants. Instead, the corresponding authors451 451

provided all stimuli used across faces and “snow” (partially occluded object) experiments, as well452 452

as the pseudo-random protocol used to generate each experiment: For each “typical” item, five453 453

different viewpoints were drawn from all available stimuli of this item. Faces had a total of six454 454

items, each corresponded to different (but common across faces) viewpoints. For each object, there455 455

were a total of five viewpoints, such that all viewpoints of this item were used in each trial. In456 456

‘snow’ conditions, for each trial, the typical object was selected at random, and all of its exemplars457 457

are used; the oddity object is selected at random, and one of its exemplars is selected at random to458 458

be that trial oddity. For faces, after selecting a typical face, and a subset of 5 of its exemplars, the459 459

oddity identity was sampled randomly, with a viewpoint distinct from that present in the typical460 460

faces. Consequently, each face trial included an oddity that was always from a different viewpoint461 461

from all typical faces. For Lee et al. 2006, the corresponding authors were able to provide all462 462
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stimuli. However, as with Stark et al. 2000, in experiment two only a subset of the stimuli were463 463

presented to participants. Across participants, the number of trials in this subset was constant464 464

(31/40), but the exact items presented to each subject was drawn randomly from all available465 465

stimuli. For both the Stark et al. 2000 and Lee et al. 2006 we approximate the stimuli presented466 466

to participants by generating a population of experiments (N=100) that adhered to the protocols467 467

outlined above. We then compare the model performance across this population of experiments (i.e.468 468

averaged performance across all N iterations generated by this sampling protocol) to the obtained469 469

human behavior for each experiment.470 470

4.3 Model Fit to Electrophysiological Data471 471

We use one instance of a task-optimized convolutional neural network (VGG1647), implemented472 472

in tensorflow and pre-trained to perform object classification on a large-scale object classification473 473

dataset48. To identify a model layer that best fits IT cortex, we utilize previously collected40
474 474

electrophysiological responses from macaque V4 and IT cortex, along with the stimuli that elicited475 475

these responses. Using ‘medium’ and ‘high’ variation images from this data set, we convert each476 476

image from greyscale to RGB then resize it to accommodate model input dimensions (224x224x3).477 477

We pass each image to the model and extract responses from all layers (e.g. convolutional, pooling,478 478

and fully connected layers), vectorize each layer’s output. We randomly segment these model479 479

responses to each image into training and testing data using a 3/4th split. Thus, we use multi-480 480

electrode responses from macaque V4 and IT to a set of image, and model responses to those same481 481

images. For each layer, we learn a linear mapping between vectorized model responses and a single482 482

electrode’s responses to the training images, using sklearn’s implementation of PLS regression (with483 483

five components). We evaluate this mapping between model and neural responses by computing the484 484

Pearson’s correlation between model-predicted responses and observed responses for each electrode485 485

across all test images. For each layer, this results in a single correlation value for each electrode,486 486

which we repeat over all electrodes. This results in a distribution corresponding to that layer’s487 487

cross-validated fits to population-level neural responses, both for electrodes in IT and V4. We488 488

compute the split half reliability for V4 (r = .63 ± .22STD) and IT (r = .73 ± .24STD) across489 489

neurons in each region. We then divide the distribution of cross-validated fits to IT and V4 by the490 490

reliability in each region—as a noise-corrected adjustment. This results in a single score—the noise-491 491

corrected, median cross-validated fit to both IT and V4—which we repeat across all layers (Fig.492 492

3a: black and dotted lines for IT and V4 fits across layers, respectively). We determine also each493 493

layer’s differential fit with primate IT, ∆IT−V 4, by taking the difference between the model’s fit to494 494

IT and V4 (Fig. 3a: hollow line). Early model layers (i.e. first half of model layers) better predict495 495

neural responses in early (V4) regions of the visual system (t(8) = 2.70, P = .015), with peak V4496 496

fits occuring in pool3 (noise-corrected r = .95 ± .30STD) while later layers (e.g. second half of497 497

model layers) better predict neural responses in more anterior (IT) regions (t(8) = 3.70, P = .002),498 498

with peak IT fits occuring in con5 1 (noise-corrected r = .88 ± .16STD). We use model responses499 499

at this layer, con5 1, as an ‘IT-like’ model layer in subsequent analyses.500 500

4.4 Model Performance on Retrospective Dataset501 501

For each trial, in each available experiment, the stimulus screen containing N objects was segmented502 502

into N object-centered images, using one of three protocols. For some experiments (e.g. Stark et al.503 503

2000) stimuli were already segmented, requiring no additional processing. For other experiments504 504

(e.g. Lee et al. 2006) the stimulus screen was segmented using a kmeans clustering approach that505 505

automatically identified the centroid of each object, defined a bounding box around each of these506 506

centroids, and extracted each object from the coordinates of each bounding box. There were a507 507

final class of experiments with more irregular dimensions (e.g. “familiar” objects in Barense et508 508

al. 2007); these stimuli were segmented by splitting the original stimulus screen into quadrants of509 509

equal size. We passed these object-centered N images to the model, then extracted model responses510 510

from an ‘IT like’ layer. These layer responses were flattened into length F vectors, resulting in an511 511

FxN response matrix for each trail. To identify the item-by item similarity between objects in this512 512

trial, were used Pearson’s correlation between items in this FxN response matrix, generating an513 513

NxN (item-by-item) correlation matrix. The item with the lowest mean off-diagonal correlation514 514

was the model-selected oddity (i.e. the item least like the others) which we labeled as either correct515 515

or incorrect, depending on its correspondence with ground truth. After repeating this protocol (for516 516

visualization see Supplement: Fig. S1) for each trial in the experiment, we computed the average517 517

accuracy across all trials. This single value, “model performance”, represents the performance that518 518

would be expected from a uniform readout of IT.519 519
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4.5 Misclassified Experiments520 520

By definition, experiments that are fully supported by canonical VVS regions are not informative521 521

as to PRC involvement in perception; if the VVS enables 100% accuracy on a given experiment, no522 522

further perceptual processing is necessary. This does not, however, imply that human performance523 523

on these VVS-supported tasks will also be at ceiling: While a lossless readout of the VVS should524 524

perform these tasks at ceiling, a lossy readout—due to, for example, attentional or memory-related525 525

demands of maintaining those perceptual representations—will be systematically below ceiling. In526 526

this way, below-VVS performance on these trails can be attributed to extra-perceptual task de-527 527

mands that are orthogonal to the perceptual-mnemonic hypothesis. As a validation, we observe that528 528

all color experiments in the retrospective dataset adhere to this logic: model performance achieves529 529

100% accuracy on all trials (both ’Easy’ and ’Difficult’ experiments) and PRC-lesioned performance530 530

on these conditions is statistically indistinguishable from PRC-intact behavior31. Nonetheless, hu-531 531

man performance on ‘difficult’ trials is significantly lower than ‘easy’ trials. These results corrobo-532 532

rate researchers’ expectations that these control stimuli are not diagnostic of PRC function, while533 533

the difficulty manipulation imposes extra-perceptual task demands.534 534

We estimate model performance for all experiments in the retrospective dataset and, using535 535

the logic outline above, we exclude all stimulus sets where model performance is 100% accurate.536 536

As expected, this eliminates control experiments (e.g. color experiments in Barense et al. 2007).537 537

But it also eliminates many experiments that the original authors described as ‘complex’ stimu-538 538

lus sets, used to evaluate the role of PRC in perception. These ‘misclassified’ experiments be-539 539

long to two groups. The first group contains experiments that were argued as evidence against540 540

perirhinal involvement in perception25,36 because performance did not significantly differ between541 541

PRC-intact and -lesioned participants. However, model performance suggests that canonical VVS542 542

regions should be sufficient for ceiling performance (Supplemental Figure S2a-b); consequently, the543 543

matched PRC-lesion/intact performance is expected, and entirely consistent with predictions from544 544

the perceptual-mnemonic hypothesis. The second group contains experiments that were argued545 545

to reveal evidence in support of perirhinal involvement in perception31,32 because PRC-lesioned546 546

subject behavior was impaired relative to PRC-intact controls. However, the model suggests that547 547

canonical VVS regions should be entirely sufficient for performance on these tasks (Supplemental548 548

Figure S2c-d); consequently, the observed divergence may not be due to perceptual demands in549 549

these tasks. After excluding these experiments, we find 14 experiments that are able to adjudicate550 550

the involvement of PRC in concurrent visual discrimination tasks. This includes 10 experiments551 551

the original authors identified as diagnostic (all ‘snow’ experiments in Stark et al. 2000, ‘high am-552 552

biguity’ experiments, both ‘novel’ and ‘familiar’ experiments in Barense et al. 2007, ‘novel objects’553 553

and ‘faces’ experiments in Lee et al. 2005, and ‘different faces’ experiments in Lee et al 2006).554 554

Additionally, this includes 4 experiments that were designated as ‘control trials’ by the original555 555

authors (‘low ambiguity novel objects’ and ‘low ambiguity familiar objects’ in Barense et al. 2007,556 556

‘familiar objects’ in Lee et al. 2005, and ‘different scenes’ in Lee et al. 2006). Note that the only557 557

criteria for this analysis is that model performance is not at ceiling: This selection procedure makes558 558

no claim about whether each individual experiment will exhibit PRC-related deficits.559 559

4.6 VVS Reliance560 560

Using electrophysiological data from prior work40, we estimate the cross-validated fit to neural561 561

data in macaque IT and V4, for each layer (Fig. 3a: solid black and dashed lines for IT and V4,562 562

respectively; Methods: Model Fit to Electrophysiological Data). We then compute each layer’s563 563

differential fit to IT by computing the difference between noise-corrected IT and V4 neural fits564 564

(Fig. 3a: ∆IT−V 4, hollow). The differential fit to IT cortex increased in ‘deeper’ layers (β = .98,565 565

F (1, 17) = 21.75, P = 10−13). Using the retrospective stimulus set (Fig. 3b top and bottom panels566 566

for PRC- and HPC-lesioned groups, respectively), we determine each layer’s’ fit to human behavior,567 567

across all subject groups, using the mean squared prediction error (MSPE) between subject and568 568

model behavior: MSPEs
`

= 1
n

∑n
i=1

(
gs(xi)−ĝ`(xi)

)2
where xi is each experiment, ` is a single layer569 569

within the model, ĝ` is the function (Methods: Model Performance on Retrospective Dataset) that570 570

operates over all trials in xi, resulting in model performance on this experiment, for this layer of the571 571

model, while gs(xi) is the performance of participants in group s on experiment xi, averaged across572 572

trials. We compute the average of the difference between Model (ĝ) and Human (g) Performance573 573

across all experiments, resulting in a single value for the fit to each subject group s, for each layer574 574

(e.g. MSPEprc.lesion). We then compute the difference between lesioned and intact model fits at575 575

each layer
(
∆group = MSPEintact −MSPElesion

)
for both PRC- and HPC-lesioned groups (e.g.576 576

∆prc = MSPEprc.intact − MSPEprc.lesion

)
. Additionally, we determine whether the interaction577 577

between lesioned and intact subject behavior is significant, repeating previous analyses across all578 578

layers, for each patient group. To assess whether PRC-lesioned behavior is better fit by late-stage579 579

processing within the VVS we relate the model’s differential fit with lesioned performance (for both580 580
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∆prc and ∆hpc) to the model’s differential fit to IT cortex (∆IT−V 4). Model layers that better fit IT581 581

cortex (∆IT−V 4) are better predictors of differential fit with PRC-lesioned behavior (∆prc, Fig. 3c:582 582

top). Moreover, only ‘IT-like’ layers demonstrate significant interactions between subject groups583 583

(e.g. PRC-lesioned vs PRC-intact) after correcting for multiple comparisons across layers (Fig. 3c:584 584

black outlines). There is no correspondence with HPC-lesioned behavior (∆hpc, Fig. 3c: bottom).585 585

4.7 Novel Stimulus Set Generation586 586

We utilize stimuli and electrophysiological data from a previous experiment40 consisting of 5760587 587

unique images, each with population-level electrophysiological responses recorded from primate588 588

V4 and IT. Every black and white image contains one of 64 objects, each belonging to one of589 589

eight categories, rendered in different orientations and projected onto random backgrounds—for a590 590

total of 90 images per object. We reconfigure these stimuli into within-category concurrent visual591 591

discrimination tasks. Each trial is designed to have the minimal configuration of objects (n = 3)592 592

required to be an oddity task: two of the three objects share an identity (two images of the ‘typical’593 593

objecti, presented from two different viewpoints and projected onto different random backgrounds)594 594

and the other is of a different identity (one image of the ‘oddity’, objectj , e.g. two animals, where595 595

‘elephant’ and ‘hedghog‘ are objecti and objectj , respectively). We generate a sample trialij for the596 596

pairij of objects i and j by randomly sampling two different objects from the same category, then597 597

sampling two images of objecti (without replacement) and one image of the oddity of objectj , all598 598

with random orientations and backgrounds. These three images comprise sampleij of the pairij .599 599

4.8 Model Performance on Novel Stimuli600 600

For each (N = 448) unique within-category object pairing in the novel stimulus set we estimate601 601

model performance in two ways. First, we use a modified leave-one-out cross validation strategy.602 602

For a given sampleij trial we construct a random combination of three-way oddity tasks to be603 603

used as training data; we sample without replacement from the pool of all images of objecti and604 604

objectj , excluding only those three stimuli that were present in sampleij . This yields ‘pseudo605 605

oddity experiments’ where each trial contains two typical objects and one oddity that have the606 606

same identity as the objects in sampleij and are randomly configured (different viewpoints, different607 607

backgrounds, different orders). These ‘pseudo oddity experiments’ are used as training data. We608 608

reshape all images, present them to the model independently, and extract model responses from609 609

an ‘IT-like’ model layer (in this case, we use fc6 which has a similar fit to IT as conv5 1 but fewer610 610

parameters to fit in subsequent steps). From these model responses, we train an L2 regularized611 611

linear classifier to identify the oddity across all (N = 52) trials in this permutation of pseudo oddity612 612

experiments generated for sampleij . After learning this weighted, linear readout, we evaluate the613 613

classifier on the model responses to sampleij . This results in a prediction which is binarized into614 614

a single outcome { 0 | 1} , either correct or incorrect. We repeat this protocol across 100 random615 615

sampleijs, for each pairij . Second, we determine model performance using a uniform, linear (i.e.616 616

the distance metric used in the retrospective analyses) readout of model responses: For each pairij ,617 617

we generate 100 random sampleijs, determine the item with the lowest off-diagonal correlation618 618

as the model-selected oddity, which is binarized into a single outcome { 0 | 1} , either correct or619 619

incorrect. Thus, we have 100 binarized outcomes for each randomly generated sampleij for both620 620

the uniform and non-uniform readouts for each pairij . We average across sampleijs to estimate621 621

the expected performance on pairij as our measures of uniform (model performanceuniform) and622 622

weighted (model performanceweighted) readouts. As expected, the more expressive weighted readout623 623

of model responses outperforms a uniform distance metric (paired ttest, t(447) = 33.55, P = 10−123;624 624

Fig. S3a: points on the y axis consistently above the diagonal). For both uniform and weighted625 625

readouts we order each pairij according to accuracy, then compute the difference between each626 626

adjacent pairij (∆pair); together, these 448 unique pairs (Fig. S3a: black) densely and continuously627 627

span the range of model performance (averaged uniform ∆̄pair = .0018, averaged weighted ∆̄pair =628 628

.0017). Additionally, we learn a linear transform (β = 1.01, F (1, 446) = 23.28, P = 10−79) that629 629

projects model performanceuniform to the expected value for (model performanceweighted Fig. S3a:630 630

green). We can use this transform to project model performanceuniform in the retrospective analysis631 631

into the performance that would be expected from model performanceweighted. This transformed632 632

model performancetransformed does significantly better at predicting PRC-lesioned behavior than633 633

the original model performanceuniform (β = −.20, F (2, 25) = −4.26, P = 2x10−4; Fig. S3b),634 634

motivating the need for novel experimental designs that enable model performance to be estimated635 635

with learned, weighted readouts of model responses. We select 4 categories that continuously span636 636

the space of model performanceweighted (min = .26,max = 1.0, ∆̄pair = .003 Fig. S3b: Faces,637 637

Chairs, Planes, and Animals), which contains a total of 224 unique typical-oddity pairs. We use638 638

these 224 objects in subsequent analyses.639 639
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4.9 High-throughput Psychophysics Experiments640 640

We create concurrent visual discrimination tasks composed of stimuli containing these 224 objects641 641

identified in the preceding analyses. To create each trial, we adopt the same the protocol used to642 642

generate each sampleij . We use this protocol for each of the 224 pairijs: we generate 5 random643 643

combination of trials from each pairij and fix these trials across all experiments (i.e. trialij1 , trialij2 ,644 644

..., trialij5), resulting in (224 x 5) 1120 unique trials. We administer a randomized subset (N = 100)645 645

of these concurrent visual discrimination trials to 297 human participants (which can be viewed646 646

online at https://stanfordmemorylab.com:8881/high-throughput data collection/index.html). In647 647

each trial, one of 1120 oddity stimuli is presented for 10 seconds. participants are free to respond648 648

with a button press at any point to indicate the location of the oddity (right, left, bottom). If649 649

participants respond before 10 seconds, their responses are recorded and the trial terminated. If650 650

participants fail to respond within 10 seconds, the trial is marked as incorrect and terminated. After651 651

an initial trial phase (5 trials) to acclimate participants to the task, no further feedback is given652 652

at any point during the experiment. Each trial is self paced, such that participants initiated the653 653

beginning of the next trial with a button press (spacebar). All participants are compensated with654 654

a initial base rate for participating in this study. Additionally, each subject is given a monetary655 655

bonus for each correct answer, and receives a monetary penalty for each incorrect answer. This656 656

monetary incentive structure was titrated to ensure that participants are encouraged to attempt657 657

even the most difficult perceptual trials, while ensuring that all participants are compensated fairly658 658

(at least earning California’s minimum wage for the time they participate in the experiment) given659 659

average performance. At the end of each experiment, participants are informed of their performance,660 660

alongside their total bonus; participants complete these tasks and received compensation through661 661

Amazon’s Mechanical Turk. Given the truly random experimental generation procedure—and,662 662

subsequently, the highly variable nature of the stimuli used to compose each trial—there is no663 663

guarantee that one given trialijn will contain the information sufficient to complete the task. All664 664

of the faces, for example, may be rotated out of view in a given trial, such that the correct oddity665 665

can not be determined. To address this, of the 5 stimuli presented, for each of the 224 pairijs, we666 666

restrict our analysis to 1 trialij . We select this exemplar for each pairij using a single criterion:667 667

the item whose average accuracy (across participants) is closest to the average accuracy measured668 668

across all trials (across participants) belonging to other categories. This procedure enables us to669 669

exclude outliers (due to, for example, the objects not being fully visible on the viewing screen) while670 670

not biasing the results in future analyses. For all analyses, performance estimates are computed671 671

across the population of human participants. In this pooled population behavior, accuracy was672 672

reliable at the category (r = .97 ± .03), object (r = .69 ± .07), and image level (r = .24 ± .05)673 673

when estimated using the averaged correlation over 1000 split halves. This effect was even more674 674

prominent in the estimates of reaction time at the category (r = .99± .01), object (r = .91± .02),675 675

and image level (r = .76 ± .02). In order to relate human performance on these oddity tasks676 676

with model performanceweighted, we employ the same pseudo experimental leave-one-out cross-677 677

validation strategy as outlined above, but now perform 100 train-test splits for each trialij , across678 678

all (N = 224) unique typical-oddity pairings. In order to relate human and model performance679 679

with the electrophysiological data, we repeat the leave-one-out cross-validation strategy developed680 680

for determining model performance, but in place of the fc6 model representations, we run the same681 681

protocol on the population level neural responses from IT and V4 cortex to those same images.682 682

We perform all analyses comparing human, electrophysiological, and model performance at the683 683

object level: for each objecti we average the performance on this object across all oddities (i.e.684 684

objectj , objectk, ...) resulting in a single estimate of performance on this item across all oddity685 685

tasks (N = 32). Results from this analysis are plotted in Fig. 5.686 686

4.10 Model Depth & Architecture Analyses687 687

To examine the effect of model depth, we first ask whether model performance on the retrospective688 688

dataset varies depending on the readout layer used within the original architecture. For each exper-689 689

iment, we determine whether there is a significant positive relationship between model performance690 690

and model depth using ordinary least squares linear regression. Model performance increases with691 691

depth for some experiments in the retrospective dataset (‘Low Snow‘ stimuli in Stark et al. 2000,692 692

β = .01, F (1, 19) = 6.17, P = 10−5; ‘Medium Snow‘ stimuli in Stark et al. 2000, β = .01, F (1, 19)693 693

= 7.37, P = 10−6, ‘Low Ambiguity Familiar‘ stimuli in Barense et al. 2007, β = .02, F (1, 19)694 694

= 13.61, P = 10−10, ‘Low Ambiguity Novel‘ stimuli in Barense et al. 2007, β = .02, F (1, 19) =695 695

5.84, P = 10−4, ‘Novel Objects‘ in Lee et al. 2006, β = .01, F (1, 19) = 3.91, P = 10−3; ‘Familiar696 696

Objects‘ in Lee et al. 2006, β = .02, F (1, 19) = 4.56, P = 10−3, ‘Different Scences‘ in Lee et al. 2005,697 697

β = .01, F (1, 19) = 6.09, P = 10−5) but not others (‘Faces‘ stimuli in Stark et al. 2000, β = .01,698 698

F (1, 19) = 2.62, P = .05, ‘High Snow‘ stimuli in Stark et al. 2000, β = .00, F (1, 19) = .06, p > .05,699 699

‘High Ambiguity Familiar‘ stimuli in Barense et al. 2007 β = −.00, F (1, 19) = −.05, p > .05, ‘High700 700
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Ambiguity Novel‘ stimuli in Barense et al. 2007, β = −.01, F (1, 19) = −3.31, P = 4x10−3, ‘Faces‘701 701

in Lee et al. 2006, experiment 1, β = −.01, F (1, 19) = −4.38, P = 3x10−4, ‘Faces‘ in Lee et al.702 702

2006, experiment 2, β = .00, F (1, 19) = .07, p > .05 ‘Different Faces‘ in Lee et al. 2005, β = −.00,703 703

F (1, 19) = −.38, p > .05). We inspect the behavior of PRC-lesioned participants across all experi-704 704

ments, separated according to whether each experiment exhibited depth-dependent improvements.705 705

PRC-lesioned participants performed significantly better (t(6) = 5.17, P = .001) on experiments706 706

that exhibited depth improvements (µ = .88) than those that did not (µ = .52). This latter group707 707

of experiments are those experiments with the most substantial differences between PRC-lesioned708 708

and -intact behaviors. We then determine whether deeper architectures are able to better per-709 709

form these experiments with the biggest difference between PRC-intact and -lesioned behavior. We710 710

recruit a family of deep residual neural networks49 (i.e. “resnets“) optimized to perform object711 711

classification on a large-scale image classification task (ImageNet48). The model enables us to712 712

preserves the same computational motif across models while increasing the number of layers from713 713

18 to 152 in an effort to examine the effect of depth on model performance. We implement this714 714

analysis using pretrained architectures from pytorch‘s model zoo, and conduct the retrospective715 715

analysis (Methods: Model Performance on Retrospective Dataset) using the penultimate layer as716 716

the readout used to determine model performance. The MSPE between model performance and717 717

PRC-intact behavior (Methods: VVS Reliance) decrease with model depth (t(4) = 2.56, p > .05),718 718

nor does the slope of the line of best fit (a measure of how ‘on diagonal‘ PRC-intact behavior is719 719

from model performance) change with model depth (t(4) = 2.76, p > .05). More directly, the main720 720

findings observed in the original model are replicated across these novel, deeper architectures, such721 721

that the interaction between PRC-intact and -lesioned participants is observed in all models (18722 722

layers: β = −.51, F (3, 24) = −3.32, P = .005; 34 layers: β = −.45, F (3, 24) = −3.07, P = .005; 50723 723

layers: β = −.49, F (3, 24) = −3.25, P = .005; 101 layers: β = −.56, F (3, 24) = −3.66, P = .005;724 724

152 layers: β = −.55, F (3, 24) = −3.97, P = .005). Deeper models do not perform these behaviors725 725

more like PRC-intact participants.726 726

4.11 Content-Specific Optimization Procedure727 727

We optimize a computational proxy for the VVS to perform putatively ‘complex’ tasks (e.g. face728 728

discrimination) by changing the distribution of training data: instead of training to perform an729 729

object classification task on a dataset with millions of common objects, as per prior models used730 730

in this study, we use a large-scale face-classification dataset which approximates a face individua-731 731

tion task50. With a pytorch implementation, we use a pretrained model to extract features from732 732

experimental stimuli as in prior analyses. In the retrospective dataset, we extract face-trained733 733

model responses and determine model performance as outlined in model performance on Retro-734 734

spective Dataset (Fig. 7a-c). In the novel stimulus set, we first employ the same leave-one-out735 735

cross-validation strategy to determine model performance, simply using the face-trained model in736 736

place of the object-trained model. However, this results in model performance on faces that is not737 737

statistically different from object-trained model performance (t(46) = 1.23, p > .05)—that is, there738 738

appears to be no improvement for faces and significantly worse performance for all other objects739 739

(t(167) = 10.65, p = 1.51−19; S4d). Additionally, there is a complete lack of correspondence be-740 740

tween face-trained model performance and human performance (β = .25, F (1, 30) = 1.50, p > .05;741 741

S4f), IT-supported performance (β = .30, F (1, 30) = .61, p > .05; S4h), and human reaction time742 742

(β = −884.36, F (1, 30) = −.71, p > .05: S4i). We note that the dataset used to optimize the743 743

face-trained model presents all stimuli at central field of view with cropped backgrounds, while744 744

the novel stimulus set presents stimuli at random locations and sizes. To address this, we add745 745

one additional image preprocessing step in order to make the testing data more closely resemble746 746

the viewing conditions in the training dataset: ‘foveating’ the object within the image, prior to747 747

presenting it to the model. Using meta-data available for this stimulus set, the center of the object748 748

is identified and a bounding box is placed around the object, with minimal backgroud included.749 749

This serves to crop the image, creating a synthetic ‘foveating’ process. The centered, cropped750 750

object is then rescaled to match the dimensions of the model inputs and passed to the model. In751 751

the main results section, we report results from this ‘foveated’ face-trained model performance and752 752

observe a significant increase in the performance of these models on face tasks. For consistency, we753 753

perform this additional ‘foveating’ step for both the object-trained model reported in these data as754 754

well (Fig. 7e, g, i). We can conclude that while this content-specific optimization procedure leads755 755

to increased performance on ’within distribution’ tasks, this procedure does not generalize across756 756

these viewing conditions, further corroborating the restricted performance enhancements observed757 757

with this approach.758 758
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Figure 1: Resolving seemingly inconsistent experimental findings with a computational
proxy for the ventral visual stream. (a) Perirhinal cortex (PRC) is a neuroanatomical struc-
ture within the medial temporal lobe (MTL) situated at the apex of the ventral visual system
(VVS), downstream of ‘high-level’ visual structures such as inferior temporal (IT) cortex. (b) A
perceptual-mnemonic hypothesis posits that PRC enables perceptual behaviors not supported by
canonical sensory cortices, in addition to its mnemonic functions. Critically, PRC-related percep-
tual impairments are only expected on so-called “complex” perceptual stimuli. (c) Our trial-level
protocol formalizes perceptual demands on PRC in concurrent visual discrimination (i.e. ‘oddity’)
tasks. We segment each stimulus screen containing N objects into N independent images, pass them
to a computational proxy for the VVS, and extract N feature vectors from an ‘IT-like’ layer. After
generating a item-by-item covariance matrix for each trial, the item with the least off-diagonal
covariance is marked as the ‘oddity.’ Critically, this is a lossless decision-making protocol which
is agnostic to extra-perceptual task demands (i.e. memory, attention, motivation). (d) Exam-
ple stimuli used to evaluate the perceptual-mnemonic hypothesis that span the range of stimulus
‘complexity.’ (e) Evaluating PRC involvement in perception has historically been formatted in
categorical terms, and been forced to rely on with descriptive accounts of stimulus properties (e.g.
stimulus “complexity”). This has generated seemingly inconsistent experimental evidence both for
(left) and against (right) PRC involvement in perception. (f) Here we propose to resolve these ap-
parent inconsistencies using this null model of PRC involvement in oddity tasks by identifying three
distinct distributions in the literature: PRC-lesioned behavior that is predicted by a linear readout
of the VVS, PRC-intact behavior that outperforms a linear readout of the VVS, and stimuli for
which non-perceptual task demands result in sub-optimal performance. We consider experiments
described as ‘complex’ but which the model performs at ceiling (i.e. x=1) to be misclassified.
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Figure 2: After excluding PRC-irrelevant stimuli, a computational proxy of the VVS
predicts PRC-lesioned performance directly from experimental stimuli, while each are
outperformed by PRC-intact participants. We collect previously published ‘oddity’ tasks
administered to PRC-lesioned and -intact human participants. We then build a linear decoder
off ‘IT-like’ layers from a computational proxy for the VVS in order to determine the average
performance across all trials in each experiment. This single value, model performance, corresponds
to the experimental accuracy expected from a linear readout of IT cortex under a lossless decision-
making protocol. Stimuli where model performance is at ceiling (x=1, open dots) are not relevant for
evaluating the role of PRC in perception: As VVS responses should support perfect discrimination
between these stimuli, any below ceiling performance in the human is attributed to extra-perceptual
task demands (i.e. memory). (a) This computational proxy for IT cortex predicts the behavior
of PRC-lesioned participants, while PRC-intact participants outperform both model and PRC-
lesioned participants. (b) HPC-lesioned and intact participants all outperform this computational
model on relevant stimuli; both for participants with an entirely intact medial temporal lobe, which
includes PRC, as well as participants with selective damage to the hippocampus that spare PRC.
Together, these results suggest that PRC-lesioned behavior reflects a linear readout of the VVS,
neurotypical behaviors on these tasks outperform the VVS, and this behavior is dependent on PRC.
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Figure 3: VVS reliance in a PRC-lesioned state: While ‘IT-like’ model layers predict
perirhinal-lesioned behaviors, the available stimuli do not clearly separate IT- from
V4-supported performance. There has long been concern that concurrent damage in PRC-
adjacent cortical structures (such as IT) leads to perceptual deficits, not damage to PRC per
se. These concerns are allayed by the observation that IT-like layers fail to perform ‘complex’
oddity tasks. Nonetheless, a question remains: where in the VVS is PRC-lesioned behavior reliant
on? To address this question, we leverage the model’s differential correspondence with V4 and IT
electrophysiological responses across layers. (a) For each layer, we estimate the noise-corrected,
cross-validated fit to electrophysiological responses in macaque IT and V4. We then compute
each layer’s differential fit to IT (∆IT−V 4: hollow). (b) Using the retrospective stimulus set,
we determine each layer’s differential fit to lesioned behavior, both for PRC- and HPC-lesioned
participants (top and bottom panels, respectively), using the mean squared prediction error (MSPE)
between human and model behavior. We then compute the difference between lesioned and intact
model fits at each layer (∆lesion = MSPEintact - MSPElesion), for both PRC- and HPC-lesioned
groups (e.g. ∆prc = MSPEprc.intact - MSPEprc.lesion). Additionally, we determine whether the
interaction between lesioned and intact subject behavior is significant, repeating previous analyses
(from Fig. 2a) across all layers. (c) Model layers that better fit IT cortex (∆IT−V 4) are better
predictors of differential fit with PRC-reliant behavior (∆prc, top). Additionally, the interaction
between PRC-intact and -lesioned performance is only significant in ‘IT-like’ layers, after correcting
for multiple comparisons (black outlined circles). There is no correspondence between (∆IT−V 4)
and HPC-lesioned behavior (∆hpc, bottom). However, when directly comparing the model fit to
PRC-lesioned participants in ‘IT-like’ and ‘V4-like’ model layers, there is not a significant difference,
as can be seen in the relative similarity in the model fit to PRC-lesioned behaviors across all layers
in (b). While these data suggest that PRC-lesioned behavior is reliant on high-level visual cortex,
the available stimuli in the retrospective dataset do not enable focal anatomical claims.
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Figure 4: Parallel data processing streams enable comparison of VVS-supported per-
formance, model performance, and PRC-Intact Performance on novel experimental
stimuli (a) Example stimuli from four categories used in the novel, model-driven concurrent visual
discrimination experiment: together, this stimulus set contains 32 unique objects used to gener-
ate 224 unique within-category object combinations. (b) For each trial, given the same object and
oddity images (left), there are parallel data processing streams to estimate human performance and
Reaction time (RT), model performance, as well as V4- and IT-Supported Performance. Human
data (bottom) are collected via high-throughput psychophysics experiments online: for a given trial,
accuracy and RT data are collected, which are averaged across participants. To estimate model
performance on these same stimuli (middle), objects are segmented and presented to the model,
responses are extracted from an IT-like layer, a prediction is made using a modified leave-one-out
cross-validated approach, and the average accuracy across iterations is taken as this trial’s esti-
mate of model performance. To estimate V4- and IT-Supported Behavior (top), we use the same
protocol developed for the model, but predictions are made over electrophysiological recordings
collected from the macaque40 instead of model responses. (c) To estimate performance on each
unique object in this stimulus set (n=32), we take the average value collected across that object
with all seven of its oddities. This yields human performance, model performance, as well as V4-
and IT-Supported Performance on the same experimental stimuli. Colors matched to Fig. 5.
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Figure 5: A model-driven stimulus set separates perirhinal-dependent behaviors from
multiple stages of processing throughout the ventral visual system. Here we evaluate
the relationship between model, electrophysiological, and human performance on a novel stimulus
set, generated within this modeling approach. (a) A weighted, linear readout of IT outperforms
V4, clearly separating early from late stage processing within the VVS. (b) Model performance
on these stimuli corresponds to IT-Supported Performance, validating the use of this model as a
computational proxy for IT in oddity tasks. (c) Neurotypical (i.e. PRC-intact) human participants
outperform V4- and IT-supported behavior, replicating findings from the retrospective analysis with
a stimulus set that more densely and continuously samples the space of VVS-supported behavior.
Additionally, these predictions are at the item level (averaged across oddities, N = 7), not experi-
mental averages. (d) The model provides a basis space to situate human behavior in relationship
with VVS-supported performance, enabling more focal neuroanatomical claims about VVS-reliance
in this and future experiments. (e) The difference between PRC-intact and IT-supported perfor-
mance on each item scales with reaction time. These data suggest that in order to outperform a
linear readout of IT cortex, PRC-intact participants require more time.
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Figure 6: Increasing architecture depth does not achieve PRC-intact performance. Here
we repeat previous analyses but systematically vary model ‘depth’ from 18-152 layers. For each of
these architectures, we determine model performance for each experiment within the retrospective
dataset. First we determine the model-selected oddity in each trial by identifying the item with the
lowest off-diagonal correlation to the other items—as described in the retrospective analysis—using
a penultimate, ‘IT-like’ model layer; we then average the model’s accuracy across all trials within
an experiment. We compare model performance to PRC-intact (greys), HPC-lesioned (blues) and
PRC-lesioned (purples) behavior for each model. Solid lines correspond to the best fit across all
experiments. The interaction between PRC-intact and -lesioned subject behavior is persistent
across all models. Increasing the number of VVS-like computations over a given stimulus–that is,
by adding more layers–does not appear to approximate PRC-supported behaviors.
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 Retrospective Stimuli 

 Novel Model-Generated Stimuli 

Figure 7: A computational proxy for the VVS achieves PRC-intact performance on
‘complex’ stimuli, with training, but fails to generalize. Faces are an example of putatively
‘complex’ experimental stimuli: VVS-like models, PRC-lesioned participants, and IT-supported
performance all fail to approximate PRC-intact behaviors on this stimulus class. We optimize a
computational proxy for the VVS to perform these ‘complex’ tasks by changing the distribution
of its training data (i.e. using a dataset with millions of faces) and compare its behavior with a
model optimized for a more domain general task of object categorization. (a) This content-specific
optimization leads to increased model performance on ‘within distribution’ stimuli in the retro-
spective dataset, while not generalizing to out-of-distribution stimuli; models optimized for face
discrimination perform face-oddity tasks better than models optimized to perform object classifica-
tion (red, left), while models optimized for objects classification better perform object-oddity tasks
(grey, left). Comparing to human performance on faces in the retrospective dataset, object-trained
models are significantly outperformed by PRC-intact participants (top right), while face-trained
models exhibit performance that is not significantly different from PRC-intact behavior (bottom
right). This pattern of results suggests that performance gains scale with the relative similar-
ity of testing and training data, not stimulus properties, per se. (b) We replicate findings from
the retrospective analysis using the novel, model-driven experimental stimuli: Models optimized
for ‘complex’ visual content significantly outperform other models on ‘within distribution’ stimuli
in the novel experiment (red, left), while exhibiting degraded performance on out-of-distribution
stimuli (grey, left). Comparing to human performance on faces in the novel experiment, while
object-trained models are significantly outperformed by PRC-intact participants (top right), face-
trained models exhibit performance that is not significantly different from PRC-intact behavior
(bottom right). (c) Model’s optimized for object classification recapitulate the performance sup-
ported by IT (top left) and reaction time of PRC-intact human subjects (top right). In contrast,
this content-specific optimization breaks the correspondence between the model and IT-supported
behavior (bottom left) and reaction time (botom right); while this optimization procedure leads to
performance comparable to PRC-intact behavior on the trained stimulus type, these models should
be considered to offer a solution to these tasks unlike PRC-dependent computations. Together,
these results demonstrate that a content-specific optimization procedure enables VVS-like archi-
tectures to discriminate between ‘complex’ stimuli, reflecting numerous findings from perceptual
learning in the biological system. These computational results suggests that PRC-dependence on
‘complex’ stimuli is not about stimulus properties, per se, but the interaction between stimulus
properties and stimulus-relevant experience.
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Example trial from Knutson et al. 2012
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Supplementary Figure S1: Experimental protocol for retrospective analyses. (a) Each
trial consists of a stimulus screen containing N objects. (b) These N objects are segmented into N
object-centered images. (c) We pass these N object-centered images to the model, independently.
(d) Using an “IT like” layer of the model, we extract model responses to the N objects, which are
flattened into length F vectors, resulting in an FxN response matrix for each trail. (e) To identify
the item-by-item similarity between objects, we use the Pearson’s correlation between items in this
FxN response matrix, generating an NxN correlation matrix. (f) We average over each item’s
off-diagonal correlations, generating a single vector that corresponds to each items correlation with
all other items. (g) We select the item with the lowest value as the model-selected oddity (e.g.
bottom, the item least like the others). This model-selected oddity is labeled as either correct or
incorrect, depending on its correspondence with ground truth.
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Supplementary Figure S2: Stimulus sets appear to have been misclassified in the retro-
spective dataset, on both sides of the perceptual-mnemonic debate. While the original
authors described these experiments as ‘complex,’ we find that they are perfectly computable by
a computational proxy for the VVS (i.e. accuracy = 100%). Below ceiling human performance
on these experiments can be attributed to extra-perceptual task demands (e.g. memory), and so
these experiments are not able to adjudicate PRC-involvement in perception. We separate these
misclassified experiments into two categories. (a-b) There are eight experiments across two studies
that were argued as evidence against perirhinal involvement in perception because performance
did not significantly differ between PRC-intact and -lesioned participants. For these experiments,
modeling results suggest that canonical VVS regions should be sufficient to meet the perceptual
demands in these tasks, and thus the observed matched performance is expected. (c-d) There
were six experiments that were argued to reveal evidence in support of perirhinal involvement in
perception. While the authors argued that the observed deficits in PRC-lesioned participants are
due to the perceptual demands imposed by these stimulus sets, the model revealed that they are
perfectly computable by a computational proxy for the VVS, and so these deficits can be attributed
to extra-perceptual task demands. Data in a-d are presented in Fig. 2 at x=1.
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Figure S3: Learning a weighted, linear readout of model features on trial-by-trial
concurrent visual discrimination tasks improves the correspondence between model
performance and PRC-lesioned behavior. (a) A novel concurrent visual discrimination stim-
ulus set densely and continuously spans the space of model performance defined using an unweighted
linear (i.e. distance-based) readout of model responses (x axis), as per the original retrospective
dataset analysis, and a weighted, linear readout of model responses learned through a leave-one-
out cross-validation strategy (y axis). As expected, the learned, weighted readout outperforms the
distance metric. We learn the transformation that projects the unweighted performance into the
performance expected for the same stimuli using a learned, weighted readout (green). (b) Using the
transform learned in (a), we project model performance supported by a uniform readout of model
responses (i.e. the original retrospective analysis) into the performance that would be expected
were it possible to learn a weighted readout on these stimuli. This improves the correspondence be-
tween model performance and human performance, motivating the need to use stimuli that enable
a learned, weighted readouts of model performance.
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Supplementary Figure S4: Without ‘foveating’ stimuli before being presented to the
model, content-specific optimization does not improve performance on ‘complex’ ex-
perimental stimuli. We optimize a computational proxy for the VVS to perform a ‘complex’
visual discrimination task—face identification—through perceptual training. In this approach, the
images are presented to the model at central field of view, and encompass much of the avail-
able image. This is unlike the (previous) model trained through object classification, which
receives images with objects whose locations and viewpoints are highly variable across images.
The novel stimulus set, however, contains faces and other objects that are located at random
locations across the stimulus screen—unlike the distribution of training data in the face-trained
model. (a) Model performancefaces is not better on face discrimination in the novel dataset than
model performanceobjects—and it is significantly worse on all other object types. (b) While model
performanceobjects is outperformed by PRC-intact participants across many items (top left), it
nonetheless provides a good fit to IT-supported behavior (top center), and predicts human sub-
ject reaction time on these tasks (top right). Conversely, model performancefaces is outperformed
by PRC-intact participants across all items (bottom left), outperformed by IT-supported behavior
across many items (bottom center), and demonstrates no correspondence with human reaction time
on these tasks (bottom right). This content-specific optimization procedure fails to generalize to
images with higher variance in object location, regardless of their stimulus type. These results
further corroborating the restricted (i.e. ’near transfer’) performance enhancements observed with
this approach. All data reported in the main results, and in Fig. 7b-c are determine by ‘foveating’
the images in the novel dataset before presenting them to the model, rendering them more similar
to the images used during model optimization.
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