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Abstract 

Brain connectome fingerprinting is rapidly rising as a novel influential field in brain             
network analysis. Yet, it is still unclear whether connectivity fingerprints could be            
effectively used for mapping and predicting disease progression from human brain data.            
We hypothesize that dysregulation of brain activity in disease would reflect in worse             
subject identification. Hence, we propose a novel framework, ​Clinical Connectome          
Fingerprinting​, to detect individual connectome features from clinical populations. We          
show that “clinical fingerprints” can map individual variations between elderly healthy           
subjects and patients undergoing cognitive decline in functional connectomes extracted          
from magnetoencephalography data. We find that identifiability is reduced in patients as            
compared to controls, and show that these connectivity features are predictive of the             
individual ​Mini-Mental State Examination (MMSE) score in patients. We hope that the            
proposed methodology can help in bridging the gap between connectivity features and            
biomarkers of brain dysfunction in large-scale brain networks. 
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Introduction 
 
Alzheimer’s disease (AD) is the most common form of dementia worldwide. It is well              
known that the pathophysiological processes start years, and possibly decades, before           
the clinical onset ​( ​1​) ​. Consequently, the identification of subjects carrying a high risk of              
developing the disease is necessary to study the early stage of AD pathophysiology and              
to adopt new and more successful therapeutic approaches. This led to the definition of              
the clinical construct of ​mild cognitive impairment (MCI) ​( ​2​) ​. According to the first             
conceptualization, MCI has been regarded as a clinical condition characterized by an            
objective memory impairment not yet encompassing the definition of dementia, but with            
a higher risk of developing severe cognitive decline ​( ​2​) ​. Currently, MCI patients are             
classified according to type and number of affected cognitive domains. This clinical            
classification is particularly relevant because each subtype is linked to a presumed            
etiology, in fact the amnestic subtypes (aMCI) seems to represent the prodromal form of              
AD ​( ​2​) ​. 
 
Typically, the main symptom in aMCI is memory impairment. However, when this            
condition progresses toward the overt dementia phase, several cognitive functions          
become compromised, such as comprehension, communication, problem-solving,       
abstraction, imagining, planning, logic ​reasoning and abstract thought. To date, it has            
not been possible to link such functions to the malfunctioning of any specific area. This               
could be due to the fact that such complex abilities might not stem from a single                
dysfunctional area, but rather from the coordinated activity of multiple brain regions,            
which can be represented as a brain network or connectome ​( ​3​) ​.  
 
In brain networks, nodes correspond to grey-matter regions (based on brain atlases or             
parcellations), while links or edges correspond to connections (either structural or           
functional) among them ​( ​4​) ​. Recent advances in functional neuroimaging have provided           
new tools to measure these connections, by exploiting the statistical dependencies           
between brain signals, giving rise to the field of functional connectivity or functional             
brain connectomics ​( ​5​) ​. Examining functional connectivity in the human brain offers           
unique insights on how integration and segregation of information relates to human            
behavior and how this organization may be altered in diseases ​( ​6​) ​. Indeed, considerable             
evidence has confirmed that anomalies in either the co-activations, the synchronization           
and/or the topology of the brain network are likely occurring in MCI ​( ​7​, ​8 ​) ​.  
 
Despite the progress made in this direction, two main problems have arisen when using              
brain network models as a way to detect functional connectivity alterations in AD and/or              
MCI. Firstly, the clinical interpretation became more challenging, and behavioral          
correlates necessary to interpret the findings. Secondly, lack of replicability hindered the            
generalization of the results ​( ​9​) ​. Hence, despite considerable efforts from the           
community, reliably linking functional alterations to the MCI condition in a           
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methodologically reliable and clinically valid way has been proven elusive ​( ​10​) ​.           
However, recent work on fMRI and EEG data showed that the individual connectivity             
does allow reliable single-subject identification in the healthy ​( ​11​– ​13​) ​, given that good            
enough test-to-test reliability is provided ​( ​14​) ​. Nevertheless, the relationship between          
reliability (“connectivity fingerprinting”) and validity (associations with disease-related        
biomarkers) still lacks definitive answers. In other words, how does connectivity           
fingerprinting relate to alterations in the diseased connectomes?  
 
Here, we introduce a methodology to test for the reliability/validity relations in clinical             
populations, that we named ​Clinical Connectome Fingerprinting (CCF)​. The key          
distinction between CCF and “standard” connectome fingerprinting is that, in the CCF            
framework, we compare each patient’s connectivity profile against the healthy controls’           
functional connectomes (FCs), obtaining individual similarity scores for each patient. We           
use these similarity scores as biomarkers for prediction of clinical scores associated            
with the disease at hand. This idea is based on the consideration that the individual               
similarity scores obtained from CCF might provide a summary of large-scale           
dysregulation taking place in diseased connectomes. Starting from this assumption, we           
further hypothesised that individual alterations in the connectivity profiles, as          
summarized by CCF, might be associated with clinical outcomes of widespread           
cognitive decline, such as ​Mini-Mental State Examination (MMSE)​.  
 
We applied the CCF technique to source-reconstructed magnetoencephalographic        
(MEG) data in aMCI subjects and matched healthy subjects (HS). We started with             
comparing the identification performance of a variety of connectivity/synchronization         
metrics that are commonly used to derive functional connectomes from MEG data. We             
selected the best performing one for further analysis, namely the phase linearity            
measurement (PLM) ​( ​15​) ​. Then, in order to test reliability/validity relationships in our            
dataset, we used intra-class correlation coefficient (ICC) to rank the edges according to             
their reliability in connectome fingerprinting. This analysis was carried out for different            
frequency bands separately, likely pinpointing specific circuitry ​( ​8​) ​. We observed a           
consistent drop in connectome fingerprinting when transitioning from healthy to aMCI.           
We hence conjectured that the same links responsible for the lack of identifiability in the               
MCI cohort might be also the ones implicated in clinically observable alterations. We             
conclude by showing that the most reliable links in the healthy (and whose reliability              
drops in the MCI population) are indeed the ones predicting cognitive global impairment             
in the cohort, as measured by the Mini Mental State Examination (MMSE) scores.  
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Results 
 
We tested the Clinical Connectome Fingerprinting (CCF, Fig. 1) framework on a            
resting-state MEG dataset acquired from an elderly cohort of 69 subjects, 34 healthy             
controls and 35 affected by amnestic Mild Cognitive Impairment. The test-retest           
sessions were acquired during the same day, with a ~1-minute break from each other              
(see Methods for details). From the initial population of 69 subjects we excluded those              
who: ​1) ​were affected by noise or ​2) did not have two test-retest sessions. This left us                 
with 30 subjects per group, a total of 60 subjects.  
 
Clinical connectome fingerprinting builds upon recent work on maximization of          
connectivity fingerprints in human functional connectomes (FCs) in health ​( ​11​) and           
disease ​( ​16​) ​. The first step of CCF is to construct the “Identifiability” or “Identification”              
matrix ​( ​11​) ​, see also Fig. 1A and Methods), for the “combined” clinical and healthy              
population. In this case, the Identifiability matrix becomes a block matrix, where the             
number of blocks equals the number of groups (i.e. two in the case of this work, Fig. 1A                  
and Methods). On one hand, each block represents identification within a specific            
clinical group (blue and red blocks in Fig. 1A). On the other hand, the between blocks                
(groups) elements (i.e. in the case of this paper, the two gray blocks in Fig. 1A) encode                 
the similarity (or distance) between connectomes of subjects belonging to different           
groups (i.e., I​clinical​, see Methods for details), for both the test and retest session. In a                
nutshell, for each patient, I​clinical provides the (average) score of how similar her/his             
connectome is with respect to the control subjects in the population, as well as across               
test-retest sessions (Fig. 1A). The major hypothesis behind this work is that the I​clinical              
scores can be representative of the connectome degeneration associated with the           
disease, and therefore associated with the behavioral/clinical scores at hand (Fig. 1B,            
1C). 
 
In order to test for that, the first step was to select the best metric for fingerprinting the                  
MEG functional connectomes. We therefore evaluated the fingerprinting capacity of six           
popular network metrics for MEG connectomics. Three of these were amplitude-based           
(Amplitude based correlation (AEC, ​( ​17​) ​); AEC corrected for spatial leakage (AECc,           
( ​18​) ​); Pearson correlation), and three were phase-based measurements (Phase Lag          
Index (PLI, ​( ​19​) ​); weighted PLI (wPLI, ​( ​20​) ​); Phase Linearity Measurement (PLM, ​( ​15​) ​)).            
In this regard, differential Identifiability (I​diff, ​( ​11​) ​, see also Methods) provides a good             
score to test the robustness and reliability of each connectivity measurement across            
sessions.  
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Fig. 1 Clinical connectome fingerprinting scheme. A) The Identifiability (Identification) matrix ​(​11​) is             
computed for each group, using the test-retest individual connectomes; in case of two or more groups                
(see also ​(​16​)​), the resulting block matrix is composed of “standard” identification matrices (red and blue                
blocks), plus the off-block elements which encode the individual similarity between subjects from different              
groups and sessions (gray blocks). Starting from this new concept one can define the “​Clinical               
Identifiability” or I​clinical for a patient ​k as the average similarity of the individual connectome of a patient                  
with respect to the healthy control population (green row and column). Note that I​clinical ​can be computed                 
either from full individual connectomes, but also from specific targeted subnetworks (or submatrices) of              
interest (e.g. connectivity within visual area, etc.). ​B) ​One can then evaluate the association of Clinical                
Identifiability scores extracted from the patients’ individual connectomes ​with clinical scores of interest for              
the specific disease, ​using for instance a multi-linear model that accounts for several nuisance variables               
and predictors. ​C) Finally, the prediction and generalization power of the model can be tested by checking                 
the performance in a leave-one out cross validation fashion.  
 
 
Figure 2 shows the results of the fingerprinting test (Fig. 2): PLM seems to be the most                 
reliable connectivity measurement among those, across all frequency bands (Fig. 2B).           
Interestingly, there is also a consistent drop in I​diff ​scores when comparing the MCI              
group with the HS (Fig. 2A). We therefore selected PLM as the most robust method for                
the connectivity fingerprinting on this MEG dataset. 
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Fig. 2 Data-driven selection of the most reliable connectivity metric for clinical connectome             
fingerprinting. A) ​Identifiability matrices for the HS and MCI group, for each of the six connectivity                
metrics tested: Phase Lag Index (PLI), weighted PLI (wPLI), Phase Linearity Measurement (PLM),             
Amplitude Envelope Correlation (AEC), AEC corrected for spatial leakage (AECc), Pearson’s correlation            
(FC ​r​). Here only the alpha band is shown (the other bands are reported in Fig. S1). The differential                  
identification score ​(​11​) is used to select the best metric for clinical connectome fingerprinting in this MEG                 
dataset. ​B) ​The I​diff scores across bands and connectivity metrics are summarized for the two groups;                
note how PLM outperforms all the other methods in all the frequency bands evaluated. We hence                
selected PLM connectomes for the fingerprinting analyses that follow.   
 
We then explored the local specificity of MEG fingerprinting in PLM-based individual            
connectomes, by using intraclass correlation (ICC) on the functional connectome edges           
(see ​( ​11​) or Methods for details), across frequency bands. Note that, in order to ease               
the visualization of the results, hereafter we will only show results from the three              
frequency bands that are most interesting to MCI, namely theta, alpha, and beta. The              
results for the other two (delta and gamma) are reported in SI.  
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The analysis on the spatial specificity of the connectome fingerprinting is depicted in             
Fig. 3 for the three frequencies of interest. For the control group, PLM connectivity              
shows the main peaks of ICC in frontoparietal and occipital regions in all bands.              
Somatomotor cortices show high ICC values especially in the alpha band. Note the             
consistent drop in ICC values when comparing the ICC edgewise patterns of the HS              
group to the MCI group (Fig. 3).  
 

 
 
Fig. 3. Spatial specificity of MEG connectivity fingerprints. Left: Reliability analysis of MEG             
connectivity fingerprints as measured via edgewise intra-class correlation (ICC), across all frequency            
bands (here only three are shown: theta, alpha, beta; delta and gamma are reported in Fig. S2). Right:                  
brain renders show ICC Nodal strength of most reliable edges (greater than 75 percentile of ICC group                 
distribution). Note the drop in the ICC distribution values when comparing the healthy control group to the                 
MCI one. 
 
The results reported in Fig. 3 made us speculate that a decrease in fingerprinting might               
be also associated with cognitive decline in the MCI population. Specifically, we sought             
to test the hypothesis that the individual patient’s connectome similarity/distance scores           
from healthy (i.e. I​clinical​, see Methods), particularly when restricted between subsets of            
highly reliable edges, could be used as biomarkers of cognitive decline. 
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We therefore tested the clinical connectome fingerprinting framework on the individual           
PLM matrices computed for the two groups, across all frequency bands. Briefly, we tried              
to predict MMSE scores from the I​clinical similarity scores obtained from comparing            
connectivity subsets of most reliable edges (in an iteratively increasing fashion, from 50             
to the entire functional connectomes, adding 50 edges at each iteration, analogously to             
( ​11​) ​) between each MCI patient and the HS population. These I​clinical scores were             
added into an additive multi-linear model to account for the possible confounds and             
nuisances in the dataset (Fig. 4B, see Methods for details). To test for the              
generalization of the prediction, similarly to Connectome Predictive Modeling ​( ​21​) ​,          
leave-one out cross validation was performed at each iteration, and the prediction score             
(Spearman’s ⍴ between predicted vs. observed MMSE, Fig. 4) was tested against the             
prediction score derived from the null model obtained by randomly permuting the edge             
subset at each iteration 1000 times  (Fig. 4A, see also Methods for details).  
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Fig. 4 Clinical Connectome Fingerprinting for Mini Mental State Examination (MMSE) prediction. A)             
Feature selection based on ICC. At each frequency band, subset of edges are added iteratively (from 50                 
to whole-brain, in step of 50) based on their ICC values, from most to least reliable (x-axis), and prediction                   
performance (Leave-one out cross validation, see Methods) of the multi-Linear model based on Clinical              
Identifiability (I​clinical​) ​is evaluated (y-axis), and compared against a null model obtained by randomly              
choosing the subset edges 1000 times at each step (shaded red line denotes one standard deviation). ​B)                 
Multi-linear model at peak. The performance of the model training set is shown for the peak prediction                 
(300 edges, alpha band). ​Left: The additive linear model consists of five nuisance variables (Gender,               
Age, Education, Meg scan, number of Epochs), and three predictors (Fazekas index, Diagnosis, I​clinical,              
see also Methods). Significant predictors are indicated by the ​x (p<0.05, Bonferroni corrected across              
frequency bands); β+ indicates that the beta coefficients for I​clinical are positive (i.e. the higher I​clinical​,                
the higher the correspondent MMSE score). ​Center: Scatter plot of the Observed MMSE scores versus               
the MMSE scores predicted by the multi-linear regression model. ​Right: Scatter plot of the standardized               
residuals versus the predicted MMSE scores for the multi-linear model. Note how the residuals are               
symmetrically distributed, tending to cluster around 0, and within 2.5 standard deviations of zero. ​C)               
Nodal degree of most predictive brain regions. Figure shows prediction scatter plot for the Leave-one out                
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test set, at peak (300 edges, alpha band) and at another local maximum (700 edges, alpha bands). The                  
correspondent brain renders represent the nodal degree associated with the selected edge mask at 300               
and 700 edges, respectively.  
 
We found that the I​clinical​-based linear model significantly predicts the MMSE in the             
alpha band, with a peak in prediction when using the top 300 most reliable edges (Fig.                
4A). I​clinical scores in the training set are significantly associated with the MMSE scores              
(p=0.0005,R​2 0.6, Fig. 4B), with positive beta coefficients. That is, the higher I​clinical≃             
score of the MCI patient (i.e. the more similar to the HS cohort her/his selected               
subnetwork), the higher her/his MMSE score. Interestingly, despite the use of a simple             
linear model, the LOOCV results show good generalization and prediction capacity of            
MMSE from connectome features, both at peak (300 edges, Spearman’s ⍴=0.55,           
p<0.05 Bonferroni corrected across bands), or when including more edges in the            
selected subnetwork (e.g. 700 edges, ⍴=0.51, p<0.05 Bonferroni corrected, Fig. 4C).           
Notably, the brain regions involved in the maximal prediction spread over the entire             
brain network: from frontolateral cortices, to occipital, to even cerebellar connections           
(Fig. 4C).  
 
 
Discussion  
 
In the current manuscript, we aimed to test the hypothesis that the regulation of the               
pattern of large-scale brain interactions is weakened in amnestic mild cognitive           
impairment (aMCI). Hence, we reasoned that, if the features of the functional            
connectome are less efficiently regulated in MCI, then the connectomes might be less             
easily recognizable or “identifiable”. We therefore defined a novel framework, namely           
Clinical Connectome Fingerprinting (Fig. 1), to extract individual features from diseased           
connectomes (or relevant subnetworks), and use them as biomarkers for prediction of            
cognitive decline in an MEG dataset of elderly population. 
 
Firstly, we compared the identification performance of a number of commonly used            
MEG connectivity metrics in both the healthy and aMCI cohort. Specifically, the metrics             
chosen were the phase lag index (PLI) ​( ​19​) ​, the weighted phase lag index (wPLI), the               
amplitude envelope correlation (AEC) ​( ​17​) ​, the orthogonalized amplitude envelope         
correlation (AECc) ​( ​18​) ​, the Pearson correlation directly computed on the time series            
(FC ​r​), and the phase linearity measurement (PLM) ​( ​15​) ​. Of these metrics, the FC ​r ​, AEC              
and AECc are amplitude-based, while the PLI, wPLI and PLM are phase-based.            
Furthermore, FCr and AEC do not correct for volume conduction, while AECc, PLI, wPLI              
and PLM do (although AECc uses a different approach to do so – i.e. orthogonalization               
( ​18​) ​). We used source-reconstructed, resting-state MEG signals, and compared the          
fingerprinting capacity of the aforementioned metrics (Fig. 2). The PLM performs           
significantly better than the other metrics (Fig. 2). As previously known,           
amplitude-based metrics tend to outperform phase-metrics in terms of noise-resiliency          
( ​22​) ​, and metrics that do not correct for volume conduction outperform those who do in               
terms of identifiability ​( ​23​) ​, perhaps because they include information that is           
subject-specific though unrelated to genuine brain activity. However, PLM seems to be            
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an exception to these trends, being a purely phase-based metric that corrects for             
volume conduction. One could speculate that the good resiliency of the PLM against             
noise ​( ​15​) allows to extract phase information which is useful to identify subject-specific             
features. These features might be more related to genuine neural activity and less             
influenced by the geometry of the head ​( ​22​) ​. 
 
Once we spotted the best connectivity metric, inspired by recent work on connectome             
fingerprinting ​( ​11​, ​16 ​) ​, we tested if subject identification would be harder to perform on              
the MCI group as compared to controls. As shown (Fig. 3, Fig. S1), the identifiability of                
the patients drops drastically as compared to controls. Previous evidence showed that            
the large-scale activity in the healthy brain is fine-tuned to achieve both efficient             
communication and functional reconfiguration, which underpins complex, adaptable        
behavioural responses ​( ​24​, ​25 ​) ​. Therefore, this finding might be framed within the            
dysregulation of large-scale activity due to the pathological processes. Less regulated           
activity might imply less stable or reliable activity, which might induce lower similarity             
between test-retest connectomes of MCI subjects. In turn, this might imply the reduced             
edgewise identifiability that we observed (Fig. 3, Fig. S1).  
 
The ICC nodal strength plots complement the picture on MCI altered connectivity in             
terms of regional activity, as not all the brain regions equally contribute to subject              
identification (Fig. 3, Fig. S2). Interestingly, the pattern of regions that contribute the             
most to identifiability varies according to the frequency band. However, some constant            
trends appear within fronto-lateral, occipital and anterior-parietal regions (Fig. 3). It is            
noteworthy that some of these regions overlap consistently with previous findings in            
fMRI fingerprinting ​( ​11​) ​. However, some other areas, such as associative visual cortices            
(Fig. 3), which exhibit high identification power in this dataset, are not so important for               
fMRI fingerprinting ​( ​12​) ​. This led us to speculate that connectivity fingerprinting might            
also depend on the modality used to measure it (e.g. MEG as opposed to fMRI), which                
might also reflect the specific time scale of neuronal interactions/synchronies. Future           
studies should deepen the investigation on the relationships between fingerprinting and           
neuroimaging modalities.  
 
More importantly, the main fingerprinting regions highlighted in Fig. 3 are typically            
associative from the functional point of view: that is, they are believed to integrate              
multiple information sources and to plan coherent, complex behavioural responses ​( ​26​,           
27 ​) ​. We then hypothesized that impaired regulation of the interaction of such brain             
regions should lead to poorer cognitive performance, as well as poorer identification. If             
this is the case, the harder it is to identify a subject, the worse its cognitive performance                 
should be. It is reasonable to assume that not every edge is equally important for brain                
fingerprinting, and that not every edge is equally affected by the pathological processes             
occurring in MCI. However, there might exist an overlap between these two subsets.             
This was indeed our working hypothesis for clinical identification. 
 
In MCI and Alzheimer’s disease, the Mini Mental State Examination (MMSE) is one of              
the most widely used bedside assessments of cognitive function among the elderly ​( ​28​) ​.             
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We use clinical connectome fingerprinting to show that there is a strong correlation             
between MMSE score and clinical identification in the alpha band (Fig. 4A), even when              
taking into account confounders such as age, education, time of the acquisition, length             
of the scan and subject-specific vascular burden (Fig. 4B). Furthermore, the linear            
model based on clinical fingerprinting scores significantly predicts the MMSE scores on            
leave-one out subjects (Fig. 4A, Fig. 4C). Notably, the optimal prediction is achieved             
when considering the first 300 most reliable edges (shown in Fig. 4). As one can               
observe, after including all the other covariates, the R ​2 of the model drastically             
increases when Clinical identifiability is taken into account (Fig. 4B). This shows that             
Clinical Fingerprinting might capture some processes related to cognitive performance          
( ​14​) in MCI. Moreover, our results on Clinical Fingerprinting are obtained from a             
phase-based connectivity metric (PLM), which might represent specific mechanisms of          
communication, i.e. phase synchronization ​( ​29​) ​. Furthermore, the alpha band, where          
the best prediction occurs (Fig. 4, Fig. S3), had been previously shown to be altered in                
MCI ​( ​8 ​, ​10 ​) ​.  
 
The result that the most reliable edges (high ICC ​( ​14​) ​) are also predictive of an               
MCI-related cognitive outcome (MMSE, Fig. 4) is an interesting one. Keep in mind that,              
with our data-driven methodology purely based on ICC, one cannot have control over             
the kind of features that are being selected for the subsequent prediction of clinical              
outcomes ​( ​30​) ​. In fact, one can see that adding a few edges – despite them being the                 
most reliable ones, as edges are being added sequentially according to their ICC –              
does not guarantee the best prediction. Notably however, once a sufficient number of             
edges has been added, one reaches the best prediction (Fig. 4A). Presumably, this             
prediction includes a set of edges that underpin the cognitive decline tested with MMSE.              
Similarly, adding further edges does not improve the prediction further, but rather makes             
it slowly decline (Fig. 4A). Hence, adding further (less identifiable) edges means to be              
adding irrelevant information for the prediction of the behavioral outcome under study.            
Again, our results in this MCI cohort show that the most reliable edges are also the most                 
predictive ones, clinically. If these edges were not specifically related to the cognitive             
output, then a randomly selected subset of edges should perform similarly in terms of              
predictive power on the MMSE score. This does not seem to be the case, as the null                 
model results show (Fig. 4A, red shaded line). In fact, when considering random edge              
selections, the quality of the prediction drops drastically, showing that the ICC selects             
those edges that are informative with respect to cognitive performance tested through            
MMSE (Fig. 4A, red shaded line). 
 
The findings of this study make it essential to lay out several methodological             
considerations. The first one relates to the reliability/validity “dichotomy” ​( ​14​) ​. Here we            
show that edges that are most reliable possess a strong clinical validity for cognitive              
impairment prediction (Fig. 4). However, the reader should keep in mind that robust             
edges in MEG data can be associated with several factors, not all of them necessarily               
neuronal-related: motion artifacts, gray matter atrophy, individual source reconstruction         
parameters, epochs length, and so on. Despite our efforts in controlling for all these (as               
detailed in the Methods and shown in Fig. 4B), further studies should dig into the               
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fingerprinting “causes” and properties of MEG data. The same applies to the clinical             
validity part of our findings: the link found between reliability/validity might be dataset             
and/or disease dependent, and should be explored in different populations and clinical            
conditions. Also, here we use a data-driven method to select the best edge features for               
clinical prediction, as they turn out to be significantly better than random selected             
features (Fig. 4A). Nevertheless, we encourage further work to explore edge selection            
based on a-priori hypothesis for the disease at hand, which might outperform the             
proposed data-driven feature selection for clinical connectome fingerprinting.  
 
Another important caveat of this study is that, in MEG source-reconstructed data, the             
signal-to-noise ratio is heavily dependent on the depth distance between the source and             
the sensor, and hence is not homogeneous for all the sources. However, recent             
evidence showed that signals reconstructed from the basal ganglia contain reliable           
information about brain activity ​( ​31​, ​32 ​) as well as those from the cerebellum ​( ​33​) ​. On               
the one hand, MEG signals derived from the cerebellum are 30-to-60 % weaker as              
compared to the cortical surface ​( ​34​) ​. On the other hand, the cerebellum is an important               
structure in both motor and cognitive processes, and hence excluding it all along is              
likely discarding some information ​( ​35​) ​. In this work we tried to account for this by               
excluding within-cerebellar links from ICC edge selection (see Methods for details).           
However, we observed that our predictions are maintained when including          
within-cerebellar links, while they drastically drop when excluding the cerebellum          
altogether from the individual connectomes (MMSE maximal prediction ⍴=0.3, Fig. S4).           
One should keep in mind that our predictions involve a clinical outcome. The fact that               
cortical-cerebellar links are needed to improve MMSE prediction, after controlling for all            
nuisance factors and after benchmarking it against an appropriate null-model for edge            
selection, implies that they contain relevant information associated with the individual           
cognitive decline, that should not be discarded. We encourage further research to avoid             
the underestimation of cerebellar connectivity in MCI and AD, and explore further the             
role of these cortico-cerebellar pathways.  
 
In conclusion, we have defined ​Clinical Connectome Fingerprinting​, a novel approach to            
extract individual connectivity features from diseased functional connectomes. We         
applied this framework for clinical identification of MEG connectomes extracted from an            
elderly population of subjects undergoing cognitive decline (i.e., amnestic MCI). We           
showed that most identifiable edges are also the most predictive of the level of cognitive               
impairment of each patient, as measured by their correspondent Mini-Mental State           
Examination score. We hope that future studies will exploit further the potential of             
Clinical Connectome Fingerprinting as a preclinical diagnostic tool, as well as a way to              
empirically link, in a data-driven fashion, specific sub-networks to given cognitive           
functions or brain states. 
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Materials and Methods 
 
Participants  
 
For this study, eighty-six patients referring to the Center for Cognitive and Memory             
Disorders of Hermitage Capodimonte Clinic in Naples were consecutively recruited. All           
subjects, aged 53 to 81, were right handed (none of them had any left-handed relatives)               
and native Italian speakers. Thirty-four age- gender- body mass index (BMI)- and            
education- matched subjects among patients spouses or friends were enrolled as           
control group (HSs). Exclusion criteria were the presence of neurological or systemic            
illness that could affect the cognitive status, and contraindications to MRI or MEG             
recording.  
Both patients and HS underwent the following screening: neurological examination,          
extensive neuropsychological assessment (see Table 1), MRI scan (including         
hippocampal volume evaluation) and MEG recording. MCI diagnosis was formulated          
according to the National Institute on Aging-Alzheimer Association (NIA-AA) criteria          
( ​36​) ​, which include: (i) cognitive concern reported by patient or informant or clinician, (ii)              
objective evidence of impairment in one or more cognitive domains, typically including            
memory, (iii) preservation of independence in functional abilities, (iv) not demented.           
Reduced hippocampal volume detected by structural MRI, gives our aMCI cohort an            
intermediate likelihood of being due to AD ​( ​36​) ​. 
Screened subjects with either MRI alterations (traumatic brain injury, meningioma,          
lacunar infarction), diagnosis of depression, dementia or non-amnestic MCI were          
excluded from further analysis. The subjects included in the study were 35 patients             
affected by aMCI (mean±SD age 71.20±6.67 years; 18 men and 17 women) compared             
to 34 age, educational level and gender matched healthy subjects (mean±SD age            
69.88±5.56 years;  19 men and 15 women).  
The study was approved by the Local Ethics Committee “Comitato Etico Campania            
Centro” (Prot.n.93C.E./Reg. n.14-17OSS), and all subjects gave written informed         
consent. All methods included in the protocol were carried out in accordance with the              
Declaration of Helsinki​.  
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Test Explored function 

MMSE Global cognitive status 

FAB Frontal efficiency 

BDI Depression 

MDB 

Rey’s 15 word immediate recall Short and long-term verbal episodic memory 

Rey’s 15 word delayed recall 

Word fluency Ability to access lexical-semantic memory store 

Phrase construction Language 

Raven’s 47 progressive matrices Conceptual reasoning 

Immediate visual memory Short-term visuoperceptual recognition memory 

Freehand copying of drawings Constructive apraxia 

Copying drawings with landmarks 

FCSRT 

FCSRT immediate free recall  
 
 

“Hippocampal” episodic memory 
  

FCSRT immediate total recall 

FCSRT delayed free recall 

FCSRT delayed total recall 

FCSRT index of sensitivity of cueing 

 
Table 1 ​Neuropsychological evaluation  
MMSE: Mini Mental State Examination ​(​28​)​; FAB: Frontal Assessment Battery ​(​37​)​; ; BDI: Beck Depression               
Inventory ​(​38 ​)​; MDB: Mental Deterioration Battery ​(​39 ​)​; FCSRT: Free and Cued Selective Reminding Test ​(​40 ​)​.  
 
  
Magnetic Resonance Imaging acquisition 
 
For 24 HS and 32 MCI patients, MR images were acquired using a 3T Biograph mMR                
tomograph (Siemens Healthcare, Erlangen, Germany) equipped with a 12 channels          
head coil. The scan was performed after the MEG registration or at least 21 days before                
(within 1 month). The MR registration protocol was: (i) three-dimensional T1-weighted           
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Magnetization-Prepared Rapid Acquisition Gradient-Echo sequence (MPRAGE, 240       
sagittal planes, 214 × 21 mm2 Field of View, voxel size 1 × 1 × 1 mm3, TR/TE/TI                  
2,400/2.5/1,000 ms, flip angle 8◦); (ii) Three-dimensional T2-weighted Sampling         
Perfection with Application optimized. Contrasts using different flip angle Evolution          
sequence (SPACE, 240 sagittal planes, 214 × 214 mm2 Field of View, voxel size 1 × 1                 
× 1 mm3, TR/TE 3,370/563); (iii) Two-dimensional T2- weighted turbo spin echo Fluid             
Attenuated Inversion Recovery sequence (FLAIR, 44 axial planes, 230 × 230 mm2 Field             
of View, voxel size 0.9 × 0.9 × 0.9 mm3, TR/TE/TI 9,000/95/25,00, flip angle 150◦).  
The volumetric analysis was performed using the Freesurfer software (version 6.0) ​( ​41​) ​,            
specifically the normalization of the volumes was made by the estimated total            
intracranial volume (eTIV) while the Fazekas scale was used to evaluate the vascular             
burden ​( ​42​) ​. For the remaining participants who refuse or did not complete the MR scan               
we used a standard MRI model. 
 
 
MEG Acquisition and Preprocessing  
 
The data were acquired using a MEG system equipped by 163 magnetometers SQUID             
(Superconducting Quantum Interference Device) ​( ​43​) ​. 154 of them are located to be as             
close as possible to the head of the subjects, the remaining, organized into three              
triplets, are positioned more distant from the helmet to measure the environmental            
noise.  
MEG data were acquired during two eyes-closed resting state segments, each 3.5            
minutes long, with a minute distance between them. During the acquisition, subjects            
were seated inside a magnetically shielded room (AtB Biomag, Ulm, Germany) in order             
to reduce the external noise. Using Fastrak (Polhemus​®​) we digitalized the position of             
four anatomical landmarks (nasion, right and left pre-auricular points and vertex of the             
head) and the position of four reference coils (attached to the head of the subject), in                
order to define the right positions of the head under the helmet. The coils were activated                
and the position of the head was checked before each segment of registration. During              
the acquisition, we recorded also the cardiac activity and the eyes movements in order              
to remove physiological artefacts. After an anti-aliasing filter, the data were sampled at             
1024 Hz. 
The MEG data were filtered in the band 0.5-48 Hz using a 4th-order Butterworth IIR               
band-pass filter, implemented offline using Matlab scripts within the Fieldtrip toolbox           
( ​44​) ​. As described previously ​( ​45​) ​, Principal Component Analysis was applied to           
reference SQUID signals to remove the environment noise. Subsequently, noisy          
channels and bad segments of acquisition were identified and removed through visual            
inspection by an experienced rater. Finally we removed physiological artifacts, such as            
eye blinking and heart activity, by means of Independent Component Analysis. 5 MCI             
patients and 4 HS were excluded due to their low-quality recordings.  
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Source reconstruction 
 
Firstly, to reconstruct time series related to the centroids of 116 regions-of-interest            
(ROIs), derived from the Automated Anatomical Labeling (AAL) atlas, we used Nolte’s            
volume conduction model and the Linearly Constrained Minimum Variance (LCMV)          
beamformer algorithm (for details see ​( ​46​) ​). Then, we filtered the time series in the five               
classical frequency bands (delta (0.5 - 4.0 Hz), theta (4.0 - 8.0 Hz), alpha (8.0 – 13.0                 
Hz), beta (13.0 – 30.0 Hz) and gamma (30.0 – 48.0 Hz)). ​Figure 4 shows the data                 
analysis pipeline​.  
 

 

Figure 4 ​Data analysis pipeline.  
(A) Raw MEG signals recorded by 154 sensors (a subset displayed here). (B-C-D) Respectively noisy               
channel, cardiac artifact, blinking artifact, removed during preprocessing phase. (E) MEG signals after             
noise cleaning and artifact removal. (F) Co-registration between MEG signals and MRI. (G) Source              
reconstruction (beamforming). 
 
 
Functional connectivity measurements  
 
As connectivity measurements we used three amplitude-based and three phase-based          
metrics. Specifically, as amplitude-based metrics we used i) the classical functional           
connectivity based on the Pearson’s correlation between brain signals (FCr); ii)           
Amplitude envelope correlation (AEC) ​( ​17​) which computes the amplitude envelope by           
means of the Hilbert transform and then determines functional connectivity between           
brain signals through the Pearson correlation coefficient; iii) the orthogonalized          
Amplitude Envelope Correlations (AECc) with signal leakage correction ​( ​18​) ​.  
As phase-based metrics we considered i) the Phase Lag Index (PLI) which estimate the              
asymmetry of the distribution of the phase differences between the brain signals ​( ​19​) ​; ii)              
the weighted Phase Lag Index (wPLI) which weights the PLI by the magnitude of the               
imaginary component of the cross-spectrum ​( ​20​) ​; iii) the Phase Linearity Measurement           
(PLM) which measures the synchronization between brain regions by monitoring their           
phase differences in time ​( ​15​) ​.In conclusion, for each subject and each metric, we             
obtained two-test retest connectomes. 
 
Towards Clinical Connectome Fingerprinting 
 
The methodology for clinical connectome fingerprinting is inspired by recent work on            
maximization of connectivity fingerprints in human functional connectomes in health ​( ​11​)           
and disease ​( ​16​) ​. Briefly, it starts from defining the mathematical object known as             
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“Identifiability” or “Identification” matrix ​( ​11​) ​see also Fig. 1A ​), which is a similarity matrix              
encoding the information about the self similarity (I​self, ​main diagonal elements) of each             
subject with herself/himself, across the test/retest sessions, and the similarity of each            
subject with the others (or I​others, off diagonal elements​) ​( ​11​) ​. The difference between             
I​self and I​others (denominated ​“Differential Identifiability” or ​“Differential Identification” -          
I​diff ​ ​( ​11 ​) ​) provides a robust score of the fingerprinting level of a specific dataset ​( ​11​) ​. 
This framework can easily be extended in scenarios where multiple clinical groups are             
present ( ​( ​16​) see also Fig. 1A ​). In this case, the Identifiability matrix becomes a block               
matrix, where the number of blocks equals the number of groups (i.e. two in the case of                 
this work, Fig. 1A). On one hand, each block represents the Identifiability matrix ​within a               
specific clinical group (blue and red blocks in Fig. 1A). On the other hand, the between                
blocks (groups) elements (i.e. in the case of this paper, the two gray blocks in Fig. 1A)                 
encode the similarity (or distance) ​between connectomes of subjects belonging to           
different groups, for both the test and retest session.  
Taking advantage of the new piece of information provided by the between groups             
blocks, we define the “Clinical Identification” or “Clinical Identifiability” (I​clinical) ​as:  
 
clinical  Iclinical (test), Iclinical (retest) , where k , ...N  patients in clinical group G I k =  <  k  k >  = 1 .  

 
Where <> in the equation stands for the average between the test and retest of the                
I​clinical ​ scores, and:  
 

clinical (test)   ;  Iclinical (retest) , where i , ...N  subjects in group CI k =  1
NC

∑
 

 k, i∈C
I ik  k = 1

NC
∑
 

 k, i∈C
Iki  = 1 .   

  
Where group ​C refers to the healthy control group. In a nutshell, for each patient ​k​,                
I​clinical provides the (average) score of how similar is her/his connectome with respect             
to the control subjects in the population, as well as across test-retest sessions.  
 
 
 
From Clinical Connectome Fingerprinting to prediction of clinical scores 
 
Edgewise Intraclass correlation. For each group (HS and MCI) we quantified the            
edgewise reliability of individual connectomes using intraclass correlation (ICC, ​( ​47​) ​),          
similarly to previous work ​( ​11​) ​. ICC is a widely used measure in statistics, normally to               
assess the percent of agreement between units of different groups. It describes how             
strongly units in the same group resemble each other. The stronger the agreement, the              
higher its ICC value. We used ICC to quantify to which extent the connectivity value of                
an edge (functional connectivity value between two brain regions) could separate within            
and between subjects. In other words, the higher the ICC, the higher the “fingerprint” of               
the connectivity edge. 
 
Multilinear model specification. ​To test for the hypothesis that clinical connectome           
identification is associated with clinical scores, we performed a multi-linear regression           
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analysis to predict the MMSE scores based on I​clinical ​and two other predictors.             
Specifically, a categorical variable encoding diagnosis (amnestic MCI and multi domain           
MCI) membership, and the Fazekas index which quantifies the amount of white matter             
T2 hyperintense lesions. Five nuisance variables were also included to account for any             
potential effects of age, sex, education, different day of MEG scans, and different             
number of epochs. 
 
Edge selection and prediction of clinical scores. ​The Clinical Identification scores           
defined earlier (Fig. 1A) can be computed from full individual connectomes, but also             
from their subnetworks or submatrices (i.e. by computing Patient/Controls similarity only           
on a subset of edges). Therefore, we tested the spatial connectome specificity of the              
prediction, as well as the generalization capacity of our model, by using a leave-one out               
cross validation (LOOCV) approach. The approach detailed below has some similarities           
with the Connectome Predictive Modeling methodology (CPM, ​( ​48​) ​), with two major key            
differences.  
Firstly, in this work the connectome mask for edge selection is based on the edgewise               
ICC value computed on the control group, sorted in descending order (similarly to ​( ​11​) ​).              
Note that, in order to improve the signal-to-noise ratio and avoid source reconstruction             
artefacts, edges within the cerebellum were not included in the analysis. LOOCV was             
then performed iteratively by adding 50 edges at the time, starting from the most reliable               
edges (as measured by ICC), and ending with the least robust ones, until eventually              
taking into consideration the full individual connectomes. Secondly, as aforementioned,          
the connectome features to be associated with MMSE are the I​clinical scores ​relative to              
the connectivity subsystem specified at each iteration by the ICC mask. Hence,            
depending on the number of edges included in the mask (100, 200 or 1000), the I​clinical                
will represent the similarity with (or distance from) the control group relative to the              
specific connectome subcircuit spanned by the correspondent ICC mask. Finally, the           
prediction scores between the ML model with I​clinical and MMSE clinical scores were             
evaluated for each of the five frequency bands studied.  
 
Null model for prediction. ​In order to make sure that the edge selection based on the                
ICC scores is significantly different from a random edge selection, at each step of the               
LOOCV model we shuffled the ICC mask 1000 times, and recomputed the prediction             
scores between the Iclinical multi-linear model and MMSE. This was meant to give a              
“null distribution” of prediction rates, entirely based on a randomized edge selection,            
however based on the real functional connectomes.  
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