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The dimensionality of a network’s collective activity is the
number of modes into which it is organized. This quantity is of
great interest in neural coding: small dimensionality suggests a
compressed neural code and possibly high robustness and gen-
eralizability, while high dimensionality suggests expansion of in-
put features to enable flexible downstream computation. Here,
for recurrent neural circuits operating in the ubiquitous bal-
anced regime, we show how dimensionality arises mechanisti-
cally via perhaps the most basic property of neural circuits: a
single number characterizing the net strength of their connec-
tivity. Our results combine novel theoretical approaches with
new analyses of high-density neuropixels recordings and high-
throughput synaptic physiology datasets. The analysis of elec-
trophysiological recordings identifies bounds on the dimension-
ality of neural responses across brain regions, showing that it
is on the order of hundreds – striking a balance between high
and low-dimensional codes. Furthermore, focusing on the vi-
sual stream, we show that dimensionality expands from primary
to deeper visual areas and similarly within an area from layer
2/3 to layer 5. We interpret these results via a novel theoretical
result which links dimensionality to a single measure of net con-
nectivity strength. This requires calculations that extend beyond
traditional mean-field approaches to neural networks. Our re-
sult suggests that areas across the brain operate in a strongly
coupled regime where dimensionality is under sensitive control
by net connectivity strength; moreover, we show how this net
connectivity strength is regulated by local connectivity features,
or synaptic motifs. This enables us to interpret changes in di-
mensionality in terms of changes in coupling among pairs and
triplets of neurons. Analysis of large-scale synaptic physiology
datasets from both mouse and human cortex then reveal the
presence of synaptic coupling motifs capable of substantially
regulating this dimensionality.

Introduction
Recurrent circuits implement important network functions
such as amplification, pattern completion (1–4), dimensional-
ity reduction and feature expansion (5–7), facilitating decod-
ing, categorization (8), and other computations. The connec-
tivity of these circuits has been quantified in both theoretical
(9–14) and experimental studies (15–18) in terms of synaptic
motifs between pairs or triplets of neurons. Several studies
have highlighted the potential function of these synaptic mo-
tifs for stabilizing encoded signals (19), gating circuits (20)
and memory formation (14, 21). This mechanistic approach

investigates how network computation arises from local con-
nectivity structures that are the blocks of neural circuits.
A complementary approach to studying network computa-
tion is to analyze the statistical properties of the neural activ-
ity. Prominent examples characterize the variability of neural
population responses in terms of average correlations (22–
24), dimensionality (25–28), recurrency (29) and other sta-
tistical features (30, 31). These studies investigate the signa-
tures of network computation in measurable features of neu-
ral activity.

Here we develop new theoretical tools that bridge these
mechanistic and statistical approaches. We show that a sin-
gle number measuring the effective network connectivity at a
given activity level, the spectral radius, is determined by local
synaptic motifs and regulates not only the degree of critical-
ity of network dynamics (32), but also the most basic aspect
of their statistics: their dimensionality. Previous theoretical
contributions linked average connectivity (33–37), the block
and spatial structure of connectivity (38–42) or connectivity
motifs (10, 11, 43–49) to activity correlations, linked con-
nectivity length and timescales (50) or low-rank structures
(51) to low-dimensional activity patterns or linked general
motifs and other network structures (5) to the spectral den-
sity of neural activity, emphasizing the consequence of recip-
rocal motifs for the dimension of network activity (52) (cf.
Suppl. Notes). Here we develop a novel closed-form expres-
sion that directly links all second-order network motifs to a
single, overall measure of recurrent coupling strength. This
provides, in turn, a new direct link between network motifs
and activity dimension in balanced networks, which allows us
to understand the role of local synaptic motifs in modulating
global network responses, and to show how their sensitivity
to local motifs arises in the strong coupling regime.

We apply our theory linking connectivity and dimensional-
ity to large scale electrophysiology recordings (53, 54) using
neuropixel probes to record from more than 30000 neurons.
First, we show that these recordings display the key signa-
tures of the strong coupling regime in which our theory pre-
dicts that dimensionality is sensitivity regulated by connec-
tivity. We then identify two important trends: dimensionality
expands from primary to deeper visual areas and similarly
within an area from layer 2/3 to layer 5. Finally, we ana-
lyze an allied synaptic physiology dataset in which synaptic
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connections among more than 22000 pairs of neurons were
probed (55). This allows us to validate the involvement of
local circuit motifs in modulating the dimensionality across
cortical layers.

Our results were previously reported in abstract form (56).
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Fig. 1. Estimation of recurrent coupling strength in electrophysiology recordings.
a) Sites of neuropixel recordings colored by brain region. b) Raster plot example of
neuropixel recordings for one experimental session (session id=715093703). c) Top
panels: Schematic of Latent Factor Analysis decomposition of the full covariance
into shared and intrinsic covariances. Full covariance was computed by first binning
spikes with 100ms windows to generate spike count vectors (cf. Fig. S3a). Bottom
panels: distribution of cross-covariances for the three matrices. d) Neural activity
of example session in the with coordinate axes given by the top Principal Compo-
nents (PC) for spontaneous (green) and evoked (red) conditions. Evoked condition
corresponds to drifting grating stimuli with 75 repeats per stimulus orientation. The
three panels represent respectively the total, shared and intrinsic activity. All plots
use PC coordinate axes for the full covariance across both conditions (cf. Methods,
Fig. S3). Operating points are defined as the average activity per condition. e) Anal-
ysis of strength of recurrent coupling. Left: Inferred spectral radius of from neural
data, as a function of the network size across brain areas and conditions. Right:
inferred spectral radius for network size 106 across conditions and brain regions.

Electrophysiology recordings display signa-
tures of strongly recurrent dynamics across
brain areas

Do brain networks operate in a strongly recurrent regime?
Recent theoretical work has developed a robust way to as-
sess the strength of recurrent coupling based on activity
measurements from neural circuits (32). We start by using
this method, previously applied only to a single brain area
(macaque motor cortex), to analyze large-scale neural activ-
ity data recorded across multiple regions of the mouse brain.
These data were recorded by the Allen Institute for Brain Sci-
ence using recently developed, very high density neuropixel
probes, Fig. 1a, and are freely and publicly available together
with software and online visualization tools (for details see
(53, 54)). We analyzed 32043 neurons across 15 brain ar-
eas (Table S1), recorded during sessions lasting on average
more than 3 hours (cf. sample of 2 minutes of recorded ac-
tivity, Fig. 1b). We focused on periods where either no stim-
ulus was presented to the animal (spontaneous condition) or
where drifting gratings were displayed (evoked condition, cf.
Methods), Fig. S1.
The method builds on the assumption that neural networks of
cortical and subcortical circuits operate in a balanced regime
(57, 58). This is characterized by the quasi cancellation of
excitatory and inhibitory synaptic currents (59), giving rise
to an asynchronous state (60) robust to noise (61). In this
regime the strength of the recurrent coupling, theoretically
corresponding to the radius R of the connectivity spectrum
underlying the neural dynamics (Fig. S2a), can be assessed
by measuring the relative dispersion of cross-covariances.
Specifically, this is s = σ(ci6=j)

c̄ii
, the ratio between the stan-

dard deviation of cross-covariances σ(ci 6=j) and the average
auto-covariance c̄ii, Fig. S2b. For a network consisting of N
recurrently connected neurons the radius R is given by

R=
√

1−
√

1/(1 +Ns2) (1)

so that the statistics of the network’s variability, quantified
by s, allows us to assess the network’s recurrent coupling
strength given its size N (32). Importantly, the above theo-
retical result for R relies on the internally generated intrin-
sic variability s, which is due to the reverberation of ongo-
ing fluctuations through the network (cf. the histogram of
intrinsic cross-covariances in Fig. 1c). In electrophysiology
recordings there is, however, typically a second contribution
to covariances due to shared variability across neurons that is
often linked to input signals to the network or behavioral low-
rank components of the activity (28). Assessing the statistics
of intrinsic variability from electrophysiology recordings is
therefore challenging. Here we build a robust method to esti-
mate s and thus R.
First, under a linear assumption for the network dynamics
around each network’s state, or operating point (cf. Sec. S4
and Fig. 1d), the shared and intrinsic variability contributions
independently influence the covariance matrix C of neural
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activity (Fig. 1c):

C = Cshared +Cintrinsic. (2)

To identify shared sources of variability in the neural activity
we exploited a cross-validated Latent Factor Analysis (LFA)
procedure (62) that yields the number of shared factors across
the neural populations (Figs. S3a to S3e) and allows us to
factor out their contribution to network activity.
Second, estimates of cross-covariances are biased due to fi-
nite sampling. To remove the bias in the estimation of s
(Fig. 1c) due to the limited number of neurons and samples
(cf. Sec. S3)) we split neural activities into shared and in-
trinsic components and then carried out a subsampling pro-
cedure to fit the dependence of cross-covariances based on
the number of samples. This yielded an unbiased estimate
of s, Figs. S3f to S3g. Importantly we also show that using
a cross-validated Principal Component Analysis, in place of
LFA, yielded similar results (Fig. S5). Applying this proce-
dure to our network model yielded a conservative estimate
of the recurrent coupling strength R, as shown in Fig. S6
(cf. Sec. S4).
A key fact is that Cintrinsic depends on the operating point,
identified by the activity profile of the neural population and
other neural properties (e.g. adaptation mechanisms, gain
modulation etc.). As a result, the recurrent coupling strength
is dependent on the underlying experimental condition, as
illustrated by the different working points in Fig. 1d. We
thus inferred the recurrent coupling strength R for each brain
region and experimental condition (spontaneous and evoked
activity). To do this we measured s as described above, in-
serted it in Eq. (1), and plotted the resulting value ofR corre-
sponding to different estimates of the overall size N of the
underlying recurrent network (Fig. 1e). For values of the
network size N ≥ 106 the spectral radius across all regions
and both conditions was predicted to be at least R = 0.95
on a scale from 0 to 1, with 1 marking the threshold to lin-
early unstable activity. As recent experiments report a cell
density across the mouse cortex to fall in between 0.48 ·
105 cells/mm3 in orbital cortex to 1.55 · 105 cells/mm3 in
visual cortex (63), these results are consistent with neural
activity being generated by neural networks operating in a
strongly recurrent regime.
Differences in inferred values of the recurrent coupling
strength R across conditions correspond to changes in the
operating point of the underlying neural networks. To verify
the robustness of such estimates we compared, in the evoked
condition, values of s obtained by selecting trials based on
stimulus orientation for drifting gratings confirming that our
results were consistent across orientations (Fig. S7). In the
spontaneous condition, known to be strongly influenced by
behavioral components (28) but lacking a trial structure, we
extracted periods of stationary activity by a cross-validated
Hidden Markov Model (HMM) procedure, Fig. S8. The
HMM analysis mapped intervals in the spontaneous activity
to a number of hidden latent states whose appearance corre-
lated with the change in behavior of the animal (Figs. S8a
to S8c). We then compared the values of R obtained sepa-

rately in stationary periods corresponding to the same latent
state, to the value ofR obtained in the entire interval of spon-
taneous activity. The values generally agreed, showing that
our analysis is robust to the influence of behavioral compo-
nents (Figs. S8d to S8e).

Sensitive controllability of dimensionality
In the previous section we presented evidence that neural net-
works across the mouse brain operate in the strongly recur-
rent regime. We now show that this corresponds to a funda-
mental statistic of neural activity – its dimensionality – being
under sensitive control of the recurrent coupling strength R.
To address this question we study the participation ratio
DPR, a measure of linear dimensionality which accounts for
the extent to which neural responses are spread along differ-
ent axes directions; in many often-encountered settings DPR
corresponds to the number of principal components required
to capture roughly 80% of a signal’s variability (27) (Fig. 2a).
DPR is given by

DPR(C) =
(
∑
iλi)

2∑
iλ

2
i

, (3)

where λi is the eigenvalue associated with the i−th princi-
pal component. This measure can be rewritten in terms of the
statistics of the covariance matrix (64) (Fig. S2b) and, in large
balanced networks of size N , its leading contribution comes
from the relative dispersion s of intrinsic cross-covariances
across neurons DPR = N

1+Ns2 (cf. Sec. S1). Combined
with Eq. (1), this yields a one-to-one relation between the
dimensionality of intrinsic covariances and the spectral ra-
dius DPR(Cintrinsic) = N(1−R2)2, Fig. 2b (for an alterna-
tive derivation based on the spectrum of covariance eigen-
values, see (52)). While we formally derived this relation
for homogeneous inhibitory networks of rate neuron models
(cf. Sec. S1), it robustly generalizes to more complex net-
work topologies as well as nonlinear spiking neuron models
(Fig. S9).
The relationship between DPR and R shows that the dimen-
sionality of the network smoothly decreases with increasing
spectral radius towards R = 1, which is the coupling level
at which the network becomes (linearly) unstable, Fig. 2b.
In strongly recurrent regimes like the one just highlighted
(R/ 1) the network’s dimensionality is substantially smaller
than its number of neurons. Networks close to linear instabil-
ity have previously been discussed in relation to chaos, and in
terms of computational properties as well as topological and
dynamical complexity (32, 65–70). The crucial property that
we highlight here, and later exploit, is that in strongly recur-
rent regimes relative change in dimensionality with respect to
R (Fig. 2c):

δDPR
DPR

= dDPR
dR

1
DPR

= 4R
R2−1 . (4)

is greatest. Thus, networks with strong recurrent coupling,
R / 1, achieve a sensitive control of their dimensionality as
a function of this coupling strength.
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The decreasing relationship between dimensionality and
spectral radius R of Eq. (4), together with the high values
of R estimated above for regions across the mouse brain
(Fig. 1e), suggest that the dimensionality will be low – and
hence in a regime where it is under sensitive control – for
these brain regions as well. We confirm this next.
To compare recordings where different numbers of neurons
were registered, we developed a theoretically unbiased ex-
trapolation of the dimensionality as a function of the number
of neurons recorded Nrec (cf. Sec. S2 and Fig. S10). This
enabled us to extrapolate the estimates of dimensionality up
to realistic values of the size of local circuits N = O(105)
shown in Fig. 1e. By construction, in balanced networks, this
extrapolation saturates at DPR = 1/s2 for the dimensional-
ity of intrinsic covariance, while it is a function of multiple
moments of the covariance statistics for the dimensionality of
the full covariance (cf. Sec. S1-2).
Applying the procedure above to the Allen Institute neuropix-
els data showed that the extrapolated dimensionality of the
full covariance (cf. Figs. 2d to 2e) saturated for network
sizes N = O(105), at values on the order of ∼ 100 dimen-
sions. On the other hand the dimensionality of intrinsic co-
variances saturated at higher values of several hundreds of
dimensions, Fig. 2f. These two estimates can be taken as a
lower and upper bound, respectively, of the dimensionality of
the network’s activity, which thus appears to be consistently
described by a few hundred dimensions – across all brain re-
gions. This is small number when compared to the number of
neurons in the network: indeed, for a network of 105 neurons
this corresponds to a dimensionality of less 1% of its size. We
note that the number of latent modes individuated by Latent
Factor Analysis for the shared covariance was consistently
lower 16 across all experimental sessions (Fig. S5d).
Before moving to a more detailed analysis and interpreta-
tion of dimensionality within brain areas, we confirm that our
techniques reproduce two established effects. The first is that
stimuli are known to reduce the dimensionality of responses
in cortical activity (64, 71). We found that in the evoked con-
dition, vs. the spontaneous, the dimensionality of activity
in visual cortex and hippocampus was indeed significantly
lower. The second is a recent estimate of the dimensionality
of cortical responses to visual stimuli (26). This measure was
based on a power law functional form for the n-th eigenvalue
of the covariance matrix that has been shown to emerge in the
strongly recurrent regime (52, 72): λn = βn−α. Our data ap-
pears to converge to such functional form (26, 72), and under
the assumption that the eigenvalues have a perfect power-law
distribution there exists a one-to-one relationship between the
dimensionality of Eq. (3) and the exponent α given by:

DPR =
(
∑
iλi)

2∑
iλ

2
i

= ζ(α)2

ζ(2α) , (5)

where ζ is the Riemann Zeta function that is obtained in the
limit Nrec →∞. The extrapolation procedure used to de-
termine the dimensionality DPR (Fig. 2f) is in correspon-
dence with the power law fit of the full spectrum of intrinsic
covariances (Fig. 2g). Inverting such relation allowed us to

compute the distribution of exponents α’s (Fig. 2h) match-
ing the values previously found (26). These results serve to
further validate our framework and techniques extending pre-
vious experimental findings to other brain areas. They also
open the door to a novel way to assess whether neural activ-
ity across the brain displays the characteristic features of a
physical system operating near criticality (26, 32, 66, 72).
We concluded that neural networks in regions across the
brain, and across experimental conditions, operate in a
regime where where their dimensionality is under sensitive
control by the net strength of recurrent coupling R. We can
interpret this as the ability to flexibly set the number of modes
that might participate in a computation, a feature which may
play a substantial functional role across the brain.

Dimensionality across the visual hierarchy
and cortical layers
Does dimensionality of neural responses underscore informa-
tion processing in neural circuits? We reason that in this case
the ability of local circuit connectivity to modulate the global
dimensionality of neural responses, described above, would
acquire a functional role in circuits across the brain.
Several studies in deep and recurrent artificial neural net-
works have highlighted how dimensionality modulation
(compression and expansion) in neural representations across
network layers (6, 73) and stages of learning (7, 74, 75) have
functional roles in information processing. We next compute
dimensionality on a finer scale that for the regions studied
above – here for areas that subdivide those regions – to test
this idea in data from diverse neural circuits. We focus first
on the dimensionality of the full covariance, and then on the
intrinsic dimensionality.
Specifically, we first studied the full activity of areas across
the visual functional hierarchy (54). Analyzing the full co-
variance for the neuropixels electrophsiology data revealed
a trend of dimensionality expansion from primary visual to
higher visual cortical areas, Figs. 3a to 3c and Fig. S11a.
Such a trend is consistent with the hypothesis that the visual
stream performs a stimulus-dependent dimensionality expan-
sion, akin to the trend described in artificial neural networks
and often explained in terms of feature expansion of the in-
put, Figs. S11a to S11b (6, 73, 76). We note that (77) recently
studied the related but distinct quantity of “object manifold
dimensionality” computed across transformations of a visual
object, in optical recordings from some of these same areas,
and found distinct trends for that quantity that are also consis-
tent with dimensionality playing a role in visual information
processing. These results underscore the functional value of
both dimensionality mechanisms and the visual hierarchy per
se (54).
The dimensionality of intrinsic covariances was consistent
with the hypothesis of visual cortical circuits being strongly
recurrent regime, where dimensionality is under sensitive
control. While the same trend of increasing dimensionality
across the visual cortex hierarchy was not present (Fig. 3d),
there were robust trends from thalamic to primary and sec-
ondary visual cortical areas (LGd and LP to VisP and VISs,
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Fig. 2. Dimensionality across brain regions. a) Schematic of activity of a network,
where each point represents the activity vector for a specific moment in time and
the axis labeled as λ’s represent the covariance principled axis on which the di-
mensionality (PR) is computed. b) Dimensionality as DP R for a balanced (green)
and excitatory (red) network as a function of the spectral radius R. Blue and green
curves overlap. c) Absolute value of the relative modulation of dimensionality as a
function of the spectral radius, Eq. (4). Blue and green curves overlap. d) Example
of extrapolation of dimensionality. Blue is from recordings and red is the theoretical
extrapolation. e) Left: Dimensionality extrapolation as a function of network size
for the full covariance before applying Latent Factor Analysis (LFA). Lines represent
mean values and error bars are shown in Fig. S4. Right: Dimensionality based on
full covariance across brain regions for a network of size N = 106 neurons. Boxes
capture lower and upper interquartile range of the variability across experimental
recording sessions. f) Left: Dimensionality extrapolation based on intrinsic covari-
ances upon applying LFA. Right: Dimensionality based on intrinsic covariances for
a network of size N = 106 neurons. g) Example estimation of critical exponent
alpha from the normalized spectrum of the full covariance matrix. h) Distribution of
critical exponents α across all sessions.

Fig. 3e) and across hippocampal areas (CA1, CA3, DG,
SUB), Fig. 3f, suggesting robust differences in their intrin-
sic connectivity. Overall, areas considered to be possible in-
put regions to broader circuits (LGd, LP and CA1) displayed
a high dimensionality corresponding to a less recurrent, and
potentially more feed forward, circuit, when compared with

their visual cortex and hippocampal counterparts. The area
CA3 in particular, known to have strong recurrent connec-
tions (78), appeared to have the lowest dimensionality of in-
trinsic covariances in line with such assumption.
Finally we considered whether different cortical layers could
carry out similar functional roles in expanding or reducing
the dimensionality of neural representations. We found that
layers 2 and 5 had respectively the lowest and highest dimen-
sionality. Intriguingly, this result is consistent with the hy-
pothesis that layer 2 performs computation through strongly
recurrent circuitry (29), Fig. 3g.
These systematic trends across brain areas and layers, in both
the full and intrinsic dimensionality, suggest that the modu-
lation of dimensionality across brain networks can be asso-
ciated with functional information processing. The robust
trends we described for intrinsic dimensionality reveal the
potential for local circuitry to tune this dimensionality, a topic
to which we turn in more detail next.

Local synaptic motifs enable tuning of recur-
rent couplings

We next asked how, on the level of circuit connectivity, neural
networks can regulate their local recurrent coupling strength
R and hence their dimensionality. We reasoned that the re-
current coupling strength is ultimately derived from proper-
ties of anatomical connectivity. We thus hypothesized that,
as for excitatory regimes in (5), local synaptic motifs would
regulate the dimensionality of the network’s activity.
It is well known that globally increasing or decreasing synap-
tic strengths in a neural network affects its spectral radius
(68). However, assessing overall network synaptic strengths
based on synaptic physiology datasets is challenging, and
strengths alone are not the only important aspect of connec-
tivity. Here we develop theoretical results to show how local
synaptic motifs, that can be more easily identified in synap-
tic physiology datasets, significantly modulate the spectral
radius over and above overall synaptic strengths. The spe-
cial case of networks with only reciprocal connections is well
studied (13, 79). Here we develop a general theory for ho-
mogeneous networks that takes full account of any second
order motif; these are statistics of the neural connectivity W
that involve dependencies between any pair of connections
(see Methods). A complimentary theoretical approach via
the spectrum of the covariance matrix (52) yields results con-
sistent with the theory developed here. Second order motifs
appear in four types: reciprocal, divergent, convergent, and
chain motifs, together with the variance of neural connec-
tions already present in purely random models (80). These
have been shown to cover important functional roles in cir-
cuit computations (5, 12, 14, 48) and emerge from learning
rules consistent with biological STDP mechanisms (81, 82).
Our theoretical analysis yielded a novel compact analytical
quantity:

R= σ
1− τdiv− τcon−2τch + τrec√

1− τdiv− τcon
, (6)
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Fig. 3. Dimensionality analysis across brain areas and cortical layers. a) Dimensionality extrapolation as a function of number of neurons in the network based on the full
covariance across areas involved in the visual hierarchy (54). b) Dimensionality analysis from the full covariance, across the visual hierarchy, extrapolated dimensionality for
106 neurons (left and middle panels display the same evoked statistics in the form of a box and bar plot respectively to visualize the full statistics and the significance of the
results). Right panel displays the dimensionality for the spontaneous condition showing a non-significant increase. c) Left: Ranked dimensionality analysis of full covariance
across areas of the visual hierarchy for the evoked condition. Box color shows fraction of recordings (on a total of number of session times number of stimulus orientation for
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where τrec, τch, τdiv, τcon denote correlation coefficients be-
tween pairs of synapses that capture the abundance of recip-
rocal, chain, divergent, and convergent motifs, respectively
(cf. Methods and Sec. S5-6). Here σ captures the variance of
network’s connections, which, similar to the motif statistics
τ , is assumed to be the same for all connections. This formula
describes how the spectral radius R is affected by increasing
or decreasing the statistics of second order motifs (Fig. 4a)
and thus links the modulation of auto- and cross-covariances
and the dimensionality of neural responses to the prevalence
of local circuit motifs, shown in Figs. 4a to 4b. This link be-
tween local anatomical features of the connectivity and the
global network property R opened the way for probing the
functional role of local circuit motifs, in synaptic physiology
datasets, in regulating the network’s recurrent coupling.

Cortical circuits employ local synaptic motifs
to modulate their recurrent coupling

We analyzed synaptic physiology datasets (55) to assess the
involvement of synaptic motifs in modulating the recurrent
coupling strength. The spectral radius defined by Eq. (6)
has an overall scaling term, σ, and a motif contribution term

given by Rmotifs = R/σ which encapsulates whether the
overall motif structure is contributing to increase (Rmotifs >
1) or decrease (Rmotifs < 1) the spectral radius R. While the
absolute value of synaptic strengths, and thus R, cannot be
robustly linked to the theory from neurophysiology datasets,
it is possible to assess the probability of occurrence of indi-
vidual motifs estimating Rmotifs, cf. Methods. Our theoret-
ical results and data analysis thus far led us to hypothesize
that if local circuit motifs modulate spectral properties of the
neural circuit, then their value must be sensitively different
from zero. In line with our findings, values of Rmotifs > 1
would point towards motifs being tuned to reduce the dimen-
sionality while Rmotifs < 1 would indicate an opposite con-
tribution; but either scenario would confirm the involvement
of motifs in regulating our estimates of recurrent coupling
strength and hence dimensionality.
We sought to verify these hypotheses in two ways: by re-
viewing existing studies of circuit connectivity, and by new
analyses of recently released, very large-scale, neurophysiol-
ogy data where all the synapses among 4 to 8 cells were si-
multaneously probed in-vitro. These new experiments were
carried out on both mouse and human cortex (55), and draw
up on the large-scale publicly available Synaptic Physiology
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Fig. 4. Motif analysis in synaptic physiology datasets. a Theoretical dependence
of spectral radius on motifs abundance, for individual motifs. b Theoretical
dependence of dimensionality on motif abundances for individual motifs. c Motif
abundances, measured by means of connection and motifs probability of
occurrence, in mouse V1 based on all synapses (both excitatory and inhibitory).
Inset: Motif abundances computed separately for just excitatory or inhibitory
synapses. d Same as c) for the human synaptic physiology dataset. e Estimation
of Rmotifs from data for 100 bootstraps, each based on a random subset of 50% of
experimental sessions. Shuffle of the synapses within each experimental session
and across all experimental sessions is shown, also based on 100 bootstraps of
50% of the experimental sessions. f Same as e for the human dataset.

Dataset from the Allen Institute for Brain Science (cf. Meth-
ods).
Existing literature on circuit motifs reports a consistent in-
creased prevalence of reciprocal connections across species
and brain areas (16, 83–85); indeed, to the best of our
knowledge only one study has not found a significant over-
expression of reciprocal motifs when compared to random
statistics (86). As reciprocal connections are the only ones
whose increased occurrence elevates Rmotifs, these results
are consistent with Rmotifs > 1. Only one of these studies
computed the statistics of all motifs up to third order (16)
and, reanalyzing their results, we found that the motif statis-
tics they reported pointed to Rmotifs = 1.38, in line with our
prediction.
We then turned to analyze a synaptic physiology dataset (55),
consisting of 1368 identified synapses from mouse primary

visual cortex (out of more than 22000 potential connections
that were tested) and 363 synapses from human cortex. We
first computed the statistics of individual motifs across both
datasets for all connections, shown in Figs. 4c to 4d, and then
restricted the computation to only excitatory and inhibitory
synapses for the mouse dataset where the statistics of the
available data allowed us to do so (Fig. 4c inset). We in-
ferred the motif contributions to the spectral radius for the
mouse dataset across all layersRmouse

motifs = 1.41±0.07, for the
human dataset Rhuman

motifs = 1.2±0.13 and also for the excita-
tory only connections in the mouseRmouse ex

motifs = 1.18±0.05,
confirming a substantial role for motifs in regulating the re-
current coupling strength of the networks, Figs. 4e to 4f.
While the statistics of the data did not allow the estimation
of Rmotifs in individual layers of the visual cortex due to
the low number of synapses measured within each layer (and
more specifically in layer 5), our theoretical analysis coupled
with our findings from the electrophysiology (Fig. 3e) led to
a clear experimental prediction: that the local effective recur-
rent coupling strength R would be stronger in layer 2 than
in layer 4 or 5. This prediction awaits confirmation in larger
synaptic physiology or circuit reconstruction datasets (87).

Conclusion
We showed that neural networks across the mouse brain op-
erate in a strongly recurrent regime. A feature of this regime
that may have an important impact on computation is that
neural circuits can sensitively modulate the dimensionality
of their activity patterns by modulating their recurrent cou-
pling strength. Indeed, novel analyses of massively par-
allel neuropixel recordings from areas within the thalamus
and hippocampus display clear trends in the dimensionality
of intrinsic covariances. Our theory links these findings to
clear predictions for recurrent coupling strength in these ar-
eas: a higher dimensionality suggests a lower recurrent cou-
pling strength and vice-versa. Our findings agree with cur-
rent knowledge of the function of these areas, in which LGd,
LP, CA1 serve as input areas to cortical and hippocampal ar-
eas with greater recurrent coupling. A similar trend arises by
comparing the activity dimension in layer 2 vs. deeper layers
in cortex.
We showed that the critical circuit features that determine a
circuit’s recurrent coupling strength R – and hence the di-
mensionality of its activity patterns – are not just its overall
synaptic strength, but also a tractable set of local synaptic
motifs that quantify how these synapses are arranged. This
follows from new theory based on beyond mean-field calcu-
lations. Experimental evidence for the role of motifs in reg-
ulating activity dimension arises from our analysis of synap-
tic physiology data. This shows that a measurable quantity
Rmotifs, quantifying the contribution of motifs to recurrent
coupling over and above that of synaptic strength, is signifi-
cantly increased in cortical circuits in both mouse and human
(Figs. 4e to 4f).
In sum, we provide new evidence that circuits across the
brain operate in a strongly coupled regime, and reveal a set
of mechanisms that they have at their disposal for regulating
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what may be the most fundamental feature of their collec-
tive activity: its dimensionality. Our theoretical advances en-
able a new connection between large-scale electrophysiology
and synaptic physiology datasets, and provide a new mea-
surable quantity Rmotifs as a target for upcoming connectiv-
ity datasets. This work advances new theory and brain-wide
experimental analysis that add to recent evidence for an at-
tractive and simplifying idea: that connectivity exerts control
over the network responses in a highly tractable manner, by
determining its global properties in terms of the statistics of
its local circuitry.
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Supplementary notes
As we were finalizing the writeup and experimental figures
in this manuscript, independent theoretical work (52) was
reported, as cited above. This independent work uses a
powerful but different approach – based on computing the
spectral density – to achieve complementary theoretical
results related to the ones we describe here. While full
details of the calculations underlying the results of (52) have
to our knowledge not yet appeared, we are confident that the
future will see interesting and productive further analyses
of the relationship between the work in (52) and the present
theoretical framework.
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Methods

Electrophysiology dataset. Data were obtained from the
public repository of the Allen Institute for Brain Science
(53, 54) where all details regarding mice, surgeries, intrin-
sic signal imaging, habituation, behavior training, implants,
recordings and spike sorting can be obtained – as well as
public-facing visualization and open software tools. We sum-
marize some of this information here. These recordings con-
tain 57 experimental sessions in adult mice. Each mouse
was implanted with a 204 stainless steel headframe with a
cranial window that was glued to a black acrylic photopoly-
mer. Mice underwent two weeks of habituation in sound-
attenuated training boxes containing a running wheel, a head-
frame holder, and stimulus monitor. At the beginning of the
experimental session the cranial coverslip was replaced with
an insertion 920 window containing holes aligned to six cor-
tical visual areas. Mice were lightly anesthetized with 921
with isoflurane. Neural recordings were performed with 6
Neuropixels probes each containing 960 recording sites pro-
viding a maximum of 3.84 mm of tissue coverage. Visual
stimuli were generated using scripts based on PsychoPy and
followed one of two stimulus sequences ("brain observatory
1.1" and "functional connectivity"), Table S1 and Fig. S1. Of
these we analyzed only those corresponding to "functional
connectivity" as they included a period of spontaneous activ-
ity which "brain observatory 1.1" didn’t include.

Electrophysiology data preprocessing. To perform the
analysis we used and extended the Allen SDK toolbox
https://github.com/AllenInstitute/AllenSDK. We extracted
periods in the stimulus presentation sequence corresponding
to the two conditions analyzed: spontaneous and evoked ac-
tivity. The latter corresponded to "drifting gratings 75 re-
peats". Each repeat, in one of 4 orientations and 2Hz tempo-
ral frequency, lasted 2sec with inter-trial intervals of 0.5sec.
Spontaneous activity was recorded for 30min while the ani-
mal was in front of a screen of mean grey luminance. While
for the spontaneous conditions we directly binned the entire
period of 30min into 100ms windows as a starting point of
our analysis (Fig. S3), for the evoked condition we consid-
ered, for each stimulus presentation, the window 0.4-2.0sec
after stimulus onset binning spikes in this window into 100ms
non-overlapping bins. Such a window was identified to avoid
transients in the neural activity evoked by the stimulus pre-
sentation. We then performed the intrinsic covariance anal-
ysis on 5 different sets of spike counts: one corresponding
to spontaneous activity and 4 corresponding to the 4 orienta-
tions of drifting gratings, each having 75 trials with 16 bins
of 100ms. Across all analysis we used only recordings, for a
specific brain region or brain area, where at least 20 neurons
were simultaneously recorded.

Dimensionality analysis. We analyzed the measure of di-
mensionality DPR given by Eq. (3). This measure can be
rewritten in terms of four moments of the entries of the co-
variance matrix (Fig. S2) and the number of neurons recorded
Nrec or, equivalently in terms of the network size N (cf.

Suppl.Mat.):

DPR = Nrec

1 +
(
σ(cii)
µ(cii)

)2
+ (Nrec−1)

((
σ(ci6=j)
µ(cii)

)2
+
(
µ(cii)
µ(cii)

)2
)

(7)

which is formally identical to Eq. (3) but with the network
size N being replaced by the number of recorded neurons
Nrec. The dimensionality DPR of the recorded activity
therefore depends on the number of recorded neurons. In the
absence of any bias in the subsampling procedure the statis-
tics of covariances, as extracted by means of our analysis,
are invariant (cf. Sec. S3) and Eq. (7) is adopted to extrapo-
late the dimensionality as a function of the neurons recorded,
Figs. 2d to 2f and Figs. 3a to 3c.

Bias correction in the statistics of covariances. We per-
formed a theoretical analysis of the bias, induced by sub-
sampling both neurons or trials, on the covariance statistics
(see Fig. S2 (cf. Suppl.Mat.)). Our analysis yielded that the
average of auto- and cross-covariances (µ(cii) and µ(ci 6=j)
are unbiased while the variances of both auto- and cross-
covariances have a bias which decays with the number of
trials T as ∼ 1

T :

a= â

c= ĉ

δa2 = NT −1
NT + 1

ˆ
δa2−

2
(
â

2− ĉ2
)

NT + 1 + 2δc2
NT + 1

δc2 = NT −1
NT

ˆ
δc2− â

2− ĉ2

NT
− 4
N + 1

ĉ
2− âĉ
NT

.

For readability we adopted the notation ā = µ(cii) and c̄ =
µ(ci 6=j) and δa= σ(cii) and δc= σ(ci 6=j), where ·̂ indicates
the empirical estimate and the non-hat quantities indicate the
true values. Based on such analysis we performed a bias cor-
rection.

Intrinsic covariance analysis. Under a linear assumption
the covariance matrix of neural activity splits into two con-
tributions Eq. (2): a shared and an intrinsic component (cf.
Sec. S4). In order to estimate these two components we
developed a three stage procedure that could be performed
by utilizing different algorithms at its core, here we use La-
tent Factor Analysis (LFA) and Principal Component Anal-
ysis (PCA). In the following we will explain this procedure
with LFA but it would equally work with PCA or other algo-
rithms. The first stage bins the spikes of neurons into spike
counts within non-overlapping windows. We used 100ms
bins, Fig. S3a. Then we performed LFA with an increased
number of hidden factors and computed the log-likelihood as
a function of factors with a 5-fold cross-validation technique,
Fig. S3b. We selected the number of factors by choosing
the corresponding point in the log-likelihood curve where the
cross-validated log-likelihood didn’t increase more than 5%
for the first time. This functioned as a robust estimation of
where the plateau or peak in the curve is found, Fig. S3b.
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The second stage estimated the activity of the shared neu-
ral activity and intrinsic neural activity by running LFA with
the selected number of components, Fig. S3c. The computed
shared and intrinsic covariance (Fig. S3d) yielded a first esti-
mate of the standard deviation of intrinsic cross-covariances
σ(ci 6=j), Fig. S3e. In the third stage 3 we removed the bias
on such estimates by subsampling the intrinsic neural activity
(Fig. S3f) and computing σ(ci 6=j) as a function of the num-
ber of used samples T (Fig. S3g). We then fit a dependence
σ̂(ci 6=j) = σ(ci 6=j) + a

T to extract the true value of σ(ci 6=j)
from the estimates σ̂(ci 6=j). All analyses were run through
custom scripts based on the scikit learn library.

Hidden Markov Model analysis. The Hidden Markov
Model (HMM) analysis of spontaneous activity followed a
two stage procedure and was performed by means of the
ssm toolbox (https://github.com/lindermanlab/ssm). In the
first stage we used the spike counts obtained in Fig. S3a
and ran a 5-fold cross-validated estimate of the number of
hidden states. For an increasing number of hidden states
(1 to 15) we fitted a cross-validated HMM and computed
the log-likelihood of the fit. We then selected the num-
ber of states with an elbow detecting algorithm using the
kneed toolbox (https://github.com/arvkevi/kneed) with pa-
rameter S = 1. We then fitted an HMM with the so found
number of states to the spike counts. The output of the HMM
analysis was a confidence (0-100%) for the neural activity in
each bin to be generated by each of the underlying hidden
factors. We thresholded this confidence (to 80%) so as to se-
lect only temporal intervals where the algorithm isolated a
specific hidden factor as responsible for the collected neural
activity, Fig. S8a. Overall we found that most factors would
coincide with the animal being either moving or still Fig. S8b.
Once all time points, and in turn spike-count population vec-
tors, were tagged with one or no hidden states we used all
such vectors tagged with the same state to compute a state
specific covariance capturing neural variability for each indi-
vidual state. We then averaged across all states in each ses-
sion to generate the estimates used in Figs. S8d to S8e.

Synaptic physiology dataset and analysis. We analyzed
publicly available data collected at the Allen Institute
for Brain Science ((55), Synaptic Physiology Dataset
https://portal.brain-map.org/explore/connectivity/synaptic-
physiology). The data consisted of over 22000 probed
synaptic connections resulting in 1368 chemical synapses
from mouse primary visual cortex and 363 from human
cortex, obtained via simultaneous patch clamp recordings.
Our theoretical analysis developed a measure of recurrent
coupling strength which was derived in the context of ho-
mogeneous networks where the motif statistics of excitatory
and inhibitory populations were assumed to be the same.
Because of this theoretical assumption we analyzed the
data both exploiting and omitting information regarding the
nature (excitatory or inhibitory) of individual synapses. For
each synapse the data reported the source and target neuron
type (excitatory and inhibitory) and a number of other vari-
ables. To estimate Rmotifs in each dataset or subset of data

(bootstraps) we proceeded as follows: We first computed
the probability p of having a synapse among two neurons
and estimated the variance to be σ = p(1− p) according to
Bernoulli statistics. We then computed the probabilities of
having a reciprocal, chain, convergent or divergent motif in
the data by computing the total amount of motifs in each
category and dividing by the total amount of neuron’s pairs
(or triplets) which could carry such motif. This returned the
raw probabilities for each motif which, after subtracting p2,
we divided by σ to obtain τrec, τchain, τdiv, τcon. Finally, we
applied the formula in Eq. (6) to obtain the spectral radius.
A more detailed description can be found in Suppl.Mat.
Error bars in Figs. 4c to 4d were obtained as 95% confidence
interval of the estimated mean of motif counts according to
standard error propagation techniques in count distributions
(see python statsmodel library proportion and propor-
tion_confint). Importantly the analysis just described didn’t
include information regarding whether the synapses were
excitatory or inhibitory if not for the inset in Fig. 4c, where
we show that the statistics of inhibitory and excitatory motifs
are not significantly different. For Figs. 4e to 4f we similarly
analyzed all synapses performing a bootstrap analysis. For
each bootstrap we subsampled the entire statistics 100 times
into 50% random sampling of all experimental sessions.
For each bootstrap we either directly computed the radius
Rmotifs as just described or shuffled the synapses within each
experimental session (shuffle within sessions in Figs. 4e
to 4f) or across all experimental sessions (shuffle across
sessions in Figs. 4e to 4f).

Network models and linear response theory. We made use
of the fact that correlations in spontaneous, asynchronous ir-
regular activity states of spiking networks can be well under-
stood using linear response theory (34, 88): starting from a
network of leaky integrate-and-fire (LIF) neurons (Fig. S9),
linearization around some stationary state maps the statistics
of fluctuations to an equivalent set of Ornstein-Uhlenbeck
processes coupled via some effective connectivity matrix
(89). Ornstein-Uhlenbeck processes are linear stochastic dif-
ferential equations that can be analyzed using statistical field
theory (32, 90). Fig. S9 shows that such theory faithfully
predicts the statistics of covariances and dimensionality as
a function of the spectral radius of the effective connec-
tivity in direct simulations of LIF neurons. For simplicity,
our theoretical derivations thereby focused on homogeneous
single-population networks, where recurrent inhibitory feed-
back balances external excitatory input to arrive at a balanced
state (35). Our dimensionality results, however, generalize
well to more complex network topologies Fig. S9d.

Theory of spectral radius in balanced networks with second
order motifs. Using the path-integral representation of cou-
pled Ornstein-Uhlenbeck processes (90), we performed an
average of the moment-generating function for the network
dynamics over the statistics of connections. Second-order
connection motifs were thereby incorporated via the covari-
ance tensor ∆ijkl = 〈WikWjl〉− 〈Wik〉〈Wjl〉 between con-
nections Wik from neuron k to neuron i and Wjl from neu-
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ron l to neuron j. Similar to the case of reciprocal connec-
tions (46, 79), the second-order connectivity statistics yield
non-Gaussian integrals that cannot be solved exactly. We
obtained good approximations to these integrals for large
networks by using a saddle-point approximation of auxil-
iary fields that were introduced for the terms related to the
various motif contributions. The associated self-consistency
equations for the saddle points showed parameter-dependent
divergence structures that we related to connectivity eigen-
values crossing the line of instability of the linear network.
By distinguishing between outlier and bulk eigenvalues, this
analysis allowed us to infer a theoretical prediction of the
spectral radius of the effective connectivity in relation to the
various motif abundances, cf. Sec. S5-6.

Numerical validation of motifs theory. Given the possi-
ble ranges for different motif abundances in homogeneous
single-population networks (cf. Suppl. Mat.), we validated
our theoretical predictions for the spectral radius and dimen-
sionality (Fig. 4a,b) using network creation algorithms shown
in Suppl. Mat. The spectral radius is well predicted for all
values of τ . The same holds true for the prediction of the
dimensionality, except for reciprocal motifs, where the pre-
diction is only correct on a qualitative level. The predic-
tion of the dimensionality relies - in addition to our results
on the motif dependence of the spectral radius - on the map-
ping between the spectral radius and the width the covariance
distribution that has been derived in (32) for homogeneous
random networks using beyond-mean-field techniques. This
relation is robust as long as eigenvalue spectra of connectiv-
ities show a circular organization in the complex plane (cf.
Suppl. Mat.). Convergent, divergent and chain motifs do not
strongly alter the shape of the bulk of connectivity eigenval-
ues (43). Therefore, the theory for homogeneous random net-
works yields correct quantitative results for these cases. Re-
ciprocal motifs, however, deform the bulk eigenvalues from
the circular to an elliptic shape, which causes the minor quan-
titative mismatch between theory and simulations.
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Stimulus examplea

Drifting gratings Gray mean luminance

Evoked condition Spontaneous condition Stimulus set #1 (Brain observatory)

Stimulus set #2 (Functional connectivity)

Time (min)

10 min

0 60 120 180

Stimulus presentationb

0 2.5 sec 5 sec 7.5 sec

2.0 sec
presentation

0.5 sec inter
trial interval

...trial block
continuation

Drifting gratings presentation
trial structurec

Natural images

Fig. S1. Statistics of stimuli. a) Example of screen displayed to the animal during the evoked condition (where the stimulus presented was a drifting grating) and the
spontaneous condition (gray screen). Drifting gratings were presented with four different orientations (0o,45o,90o,135o) and one temporal frequency (2Hz) for the
duration of 2sec with 75 repeats each. Spontaneous activity was recorded for the duration of 30min. b) Position of the two experimental conditions in the recordings for the
two stimulus trains ("brain observatory" and "functional connectivity"). Also natural images are shown in blue as they are for Supplementary analysis (Fig. S11). c) Example
drifting gratings presentations where each stimulus presentation lasts 2.0sec with 0.5sec on inter-trial interval.
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a

Excitatory outliers

Inhibitory feedback
mode

-1-4

Boundary of 
stability

Spectral
Radius diagonal 

terms Cii

off-diagonal 
terms Ci≠j

1.1 1.2 1.3 1.4 1.5 -0.2 -0.1 0 0.1 0.2

distribution of Cii distribution of Ci≠j

mean μ(cii)

variance σ2(cii)
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Inhibitory Spectrum

Excitatory Spectrum

Covariance matrix and entries distributions
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b

1-0.5 0 0.5

-0.5

0.5

Fig. S2. Connectivity, spectral radius and covariance statistics in balanced networks. a) Example of spectrum of the connectivity of balanced networks. The connectivity
between neurons is drawn at random from a Gaussian random distribution with negative mean. The green circle represents the bulk of eigenvalues of the connectivity matrix
with one outlier functioning as the inhibitory feedback mode. The radius of the bulk of eigenvalues is termed spectral radius R. Inset: example of the spectrum of a random
Erdos-Renyi excitatory network. b) Example of covariance matrix and statistics for a balanced network. The two distributions on the right capture respectively the statistics of
diagonal (auto-covariances) and off-diagonal (cross-covariances) entries of the covariance matrix. Of specific importance for our study are the variance of cross-covariances
and the mean of auto-covariances as their ratio, termed s in our study, is in one-to-one correspondence with the spectral radius R.
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Fig. S3. Method for estimating shared and intrinsic activity statistics. a) For each experimental recording the first step is to bin the spikes to obtain spike count vectors. We
use 100ms as a temporal binning window. b) We perform a 5 fold cross-validated latent factor analysis (LFA) with an increasing number of factors (from 1 to 25). For each
LFA the log-likelihood is computed and plotted as a function of the number of factors. We select the number of factors (#factors) where for the first time the cross-validation
curve has a relative increment which is lower than 5%. c) We perform LFA with the selected number of factors obtaining an estimate of the shared neural activity component
and the remaining intrinsic neural activity component. The total activity is given by the sum of the two components. d) We compute the covariance based on the neural
activity for both the shared and intrinsic component. e) We compute the distribution of cross-covariances and autocovariances (not-shown) for the two statistics (shared and
intrinsic). f) We subsample the intrinsic neural activity obtained at stage 2 c) and based on such subsampled statistics we recompute the standard deviation of
cross-covariances (std(ci6=j)) as a function of the number of trials (spike count vectors) used. g) We fit the dependence of std(ci6=j) on the number of trials to estimate
and remove the bias induced by the limited statistics.
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network size, cf Sec. S2. Shaded area indicates confidence interval for variability across sessions. b) Same as a) for the intrinsic covariance.
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Fig. S5. Dimensionality analysis across regions with cross-validated Principal Component Analysis (PCA). In this figure we represent the plots of Fig. 1 and Fig. 2
obtained by using a cross-validated PCA in place of a cross-validated LFA in the method used to estimate the shared and intrinsic activity components (cf. Fig. S3). a) Top:
dimensionality of intrinsic covariance extrapolation across brain regions and conditions. Same as plots shown in Fig. S4. Bottom left: Average of the dimensionality
extrapolation in each top panel. Same as Fig. 2d left. Bottom right: dimensionality of intrinsic activity across regions and conditions visualized as a box plot (the box displays
average and first top/low interquartile). b) Left: number of factors extracted by the cross-validated LFA technique across regions (cf. Fig. S3). Middle: number of factors
extracted by the cross-validated PCA technique across regions. Right: comparison between number of factors extracted by cross-validated LFA and cross-validated PCA.
There is a significant correlation (p-value 0.037) between the number of factors extracted with the two methods across experimental sessions.
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Fig. S6. LFA yields an upper bound on the dimensionality of intrinsic network activity in linear rate networks. Correlated external inputs can strongly alter
covariances within the network. A rank-one input (panels a,b), for example, can lead to broader distributions (panel a) and altered spectra (panel b) of covariances C (red)
with respect to intrinsically generated covariances Cintrinsic (blue). Applying LFA, inferred intrinsic covariances Ĉintrinsic (green) recover features of ground-truth intrinsic
covariances Cintrinsic well over a wide range of spectral radii and ranks of external input covariances, resulting in overall large correlation coefficients
ρ(Ĉintrinsic,Cintrinsic) (panel c), and well matching inferred spectral radii (panel d) and participation ratios (panel e). For large spectral radii R / 1, LFA wrongly
subtracts low-dimensional components of intrinsic covariances, which, however, consistently leads to conservative results, i.e. underestimated spectral radii and
overestimated dimensionalities. Note that color scales in panels d and e are cut at the value 2 for better visibility.
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Fig. S7. Analysis of quantity s across orientations for the evoked conditions (drifting gratings). a) Quantity s (defined as the ratio between the standard deviation of
cross-covariances and the average of autocovariances) for the full covariance of the activity. Left: spontaneous condition across regions. Right: evoked condition across
regions for different stimulus orientation and for all stimulus orientations together. Results in the main figures (Figs. 1 to 2) are computed, for each session, as the average
across the four different orientations presented here. b) Same as a) for the intrinsic covariance.
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Fig. S8. Hidden Markov Model (HMM) analysis of spontaneous activity. Here we analyse the spontaneous activity by detecting in the interval (30min) of spontaneous
activity periods where the neural activity was well captured by different discrete latent states (hypothesis underlying HMM algorithm). The HMM returns a parsing of such
periods (30min) into different underlying states by means of an unsupervised detection algorithm. a) Example raster plot during one of the sessions with overlaid running
speed of the animal (green). The HMM extracts different states whose appearance strongly correlates with the animal movement. b) Average speed of the animal in a HMM
state across all sessions. States appear to correspond to either static or moving conditions for the most part. c) Dimensionality of the neural activity in each state versus the
average speed in each state. There exists no significant correlation between the two. d) Dimensionality of the full covariance across regions computed for the entire period of
the spontaneous condition or for each individual state (cf. Methods) and averaged across all states and sessions in each brain region. The dimensionality computed over the
entire period is systematically higher as the HMM extracts periods where the neural activity tends to be stationary thus limiting the effect of shared variability modes on the
dimensionality of the full covariance. e) Dimensionality of intrinsic covariances computed across regions for the entire period or during states only. The dimensionality
computed in the two ways appears more in agreement than in panel d) suggesting that the LFA analysis (Fig. S3) successfully extracts components of shared variability
coherently in a way comparable to what is achieved by parsing the neural activity with a HMM. These plots confirm the robustness of our estimation method validating the
ability of the LFA analysis to capture sources of shared variability in the spontaneous condition.
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Fig. S9. Theory for homogeneous linear rate models predicts dimensionality for more complex network topologies and spiking neuron dynamics. The
participation ratio can be expressed in terms of three quantities: mean cross-covariances (panel a) as well as standard deviations of auto- (panel b) and cross-covariances
(panel c), each rescaled by mean autocovariances. In each panel, solid lines indicate simulations of homogeneous inhibitory networks with leaky integrate-and-fire neuron
models and dashed lines show analytical predictions using linear response theory. The matching theoretical predictions for the statistics of covariances yield an accurate
prediction for the participation ratio (panel d) for homogeneous single population inhibitory networks (blue) as well as homogeneous two-population excitatory-inhibitory
networks (red) and spatially organized single-population inhibitory networks (green).
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Fig. S10. Dimensionality extrapolation based on unbiased subsampling of covariances. a) Statistics of covariances based on activity from Nrec recorded neurons of
a homogeneous inhibitory network of N = 10000 leaky integrate-and-fire neurons. The participation ratio can be expressed in terms of three quantities: mean
cross-covariances (red) as well as standard deviations of auto- (blue) and cross-covariances (green), each rescaled by mean autocovariances. The covariance statistics
being independent of the number of recorded neurons Nrec allows for an unbiased dimensionality extrapolation based on subsampled covariances. b) Measured
dimensionality (black dots) based on statistics of covariances from different numbers Nrec of recorded neurons as well as extrapolated dimensionality (yellow curve) based
on covariance statistics of Nrec = 500 neurons (corresponding to yellow dot). The extrapolated dimensionality fits the true dimensionality well. Statistics of covariances are
averaged over 100 random subsamplings for each Nrec to avoid statistical fluctuations.
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Fig. S11. Dimensionality analysis across brain areas. In this figure we provide supplementary plots to the analyses shown in Fig. 3. Fig. S11a) Dimensionality of evoked
responses for the full covariance across all stimuli in the drifting gratings (i.e. across all orientations as for condition "all" in Fig. S7) and natural scenes (cf. Methods and
Fig. S1). Significant increase in dimensionality from primary to higher visual cortical areas. Fig. S11b) Extent analysis across the visual hierarchy. The increase in
dimensionality across the visual hierarchy has important connections with the processing of information in artificial deep neural networks classifying images (6, 73). To
provide further data for such comparison we analyze the measure of extent of neural representations across the hierarchy E(C) =

∑
i
λ2

i /
(∑

i
λi

)
. Such a measure

exploits the same statistics of the dimensionality Eq. (3) and can thus extrapolated with identical techniques. Here we plot the average extent across orientations for the
evoked drifting gratings condition and the average extent in the spontaneous condition (same as Fig. 3b). The significant decrease in extent for neural representations,
together with the increase in dimensionality across all conditions, suggests an increased separability of neural representations along the visual hierarchy. Fig. S11c)
Dimensionality of the full covariance across thalamic and visual areas. Secondary visual areas are here considered together (VISs). Fig. S11d) Dimensionality based on the
full covariance for hippocampal areas. Fig. S11e) Dimensionality based on the full covariances across visual cortical layers.
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Session id Type Thalamus Vis.Cortex Hippocampus Midbrain others LGd LP VISp VISl VISam VISpm VISrl VISal VIS CA1 CA3 DG ProS SUB APN lays1 lays2 lays4 lays5 lays6
715093703 brain observatory 1.1 297 258 185 26 117 82 139 60 42 30 50 76 145 14 26 26 42 51 41 14
719161530 brain observatory 1.1 193 166 178 176 19 71 28 52 40 37 18 10 9 108 14 14 42 176 15 23 57 19
721123822 brain observatory 1.1 72 214 122 15 69 41 27 39 46 37 24 71 10 41 10 28 62 50 9
732592105 brain observatory 1.1 365 459 110 40 66 64 85
737581020 brain observatory 1.1 142 410 40 22 13 67
739448407 brain observatory 1.1 278 347 19 36 56 70 97
742951821 brain observatory 1.1 339 554 33 52 23 79 44 108
743475441 brain observatory 1.1 207 185 60 34 42 131 45 19 53 68 20 5 12 1 22 34 38 33 58 11
744228101 brain observatory 1.1 185 275 165 20 1 84 35 26 26 41 147 112 9 10 34 20 1 15 20 49 8
746083955 brain observatory 1.1 65 213 12 292 34 14 17 115 35 32 7 5 13 17 2
750332458 brain observatory 1.1 4 295 38 558 4 63 38 60 19 44 71 16 15 7 4 7 16 11
750749662 brain observatory 1.1 325 287 149 82 142 52 20 64 64 41 46 113 10 26 30 51 111 43
751348571 brain observatory 1.1 331 279 177 40 55 137 49 27 71 37 95 78 16 37 46 37 41 67 93 29
754312389 brain observatory 1.1 28 275 197 1 27 102 14 64 22 41 32 135 15 47 26 52 71 24
754829445 brain observatory 1.1 429 192 158 45 90 170 92 47 21 32 123 12 23 45 12 23 40 25
755434585 brain observatory 1.1 118 361 121 17 25 44 27 75 39 94 62 49 42 45 8 15 53 14 4 55 33 122 23
756029989 brain observatory 1.1 168 318 168 27 60 27 51 30 72 90 24 51 113 10 37 8 21 62 46 117 42
757216464 brain observatory 1.1 305 352 215 55 6 114 85 53 64 37 53 60 112 13 42 7 41 47 31 63 94 19
757970808 brain observatory 1.1 184 304 218 48 45 58 80 70 46 54 130 4 37 47 26 46 77 21
758798717 brain observatory 1.1 115 199 181 68 39 47 49 23 80 116 40 1 24 53 33 22 68 29
759883607 brain observatory 1.1 94 205 137 38 23 58 55 48 44 82 3 15 2 35 30 11 25 91 20
760345702 brain observatory 1.1 64 274 148 5 37 17 72 49 55 44 54 91 30 27 2 24 36 106 34
760693773 brain observatory 1.1 406 420 88 70 54 66 128
761418226 brain observatory 1.1 103 373 197 6 12 41 44 36 41 111 185 145 11 41 6 55 91 156 35
762120172 brain observatory 1.1 332 385 84 74 33 91 50
762602078 brain observatory 1.1 32 303 138 25 27 75 52 60 116 101 5 6 26 19 22 27 49 14
763673393 brain observatory 1.1 87 278 193 50 6 77 3 73 36 74 44 51 131 32 30 48 18 35 78 23
766640955 functional connectivity 215 244 238 85 76 101 52 34 56 37 65 163 16 59 64 29 42 84 37
767871931 functional connectivity 119 342 195 49 83 101 52 64 33 46 100 19 32 1 43 41 22 41 100 32
768515987 functional connectivity 169 291 189 76 48 21 72 59 49 50 61 96 23 25 45 57 1 30 53 106 29
771160300 functional connectivity 49 450 369 1 8 6 43 85 87 58 108 21 269 42 29 26 3 1 59 42 110 42
771990200 functional connectivity 155 224 141 24 60 31 54 43 37 19 29 66 6 29 40 24 14 22 81 11
773418906 brain observatory 1.1 86 259 188 7 37 17 39 166 72 15 50 17 34 6 45 52 92 33
774875821 functional connectivity 31 279 264 27 69 53 45 40 72 190 58 16 27 1 33 40 118 18
778240327 functional connectivity 59 387 309 10 2 51 85 62 77 68 13 82 240 24 41 4 10 1 41 47 154 59
778998620 functional connectivity 113 364 224 57 12 77 75 74 58 45 51 61 130 40 14 40 55 30 64 134 61
779839471 functional connectivity 118 454 246 31 73 12 126 72 84 26 146 133 22 48 43 28 28 43 95 16
781842082 functional connectivity 128 355 165 58 11 2 83 58 42 172 112 18 27 2 51 25 68 132 47
786091066 functional connectivity 28 432 218 9 82 73 65 47 165 86 3 47 28 54 9 57 67 171 55
787025148 functional connectivity 76 272 295 21 38 68 66 11 54 8 185 42 18 17 33 20 19 33 58 21
789848216 functional connectivity 78 125 162 2 32 16 14 43 30 24 14 100 25 37 2 20 45 41 5
791319847 brain observatory 1.1 24 316 192 4 8 9 93 56 49 17 58 43 85 33 32 1 41 33 65 86 39
793224716 functional connectivity 134 313 246 61 15 101 80 39 171 23 151 27 27 41 56 26 65 78 41
794812542 functional connectivity 103 520 292 38 20 108 100 109 65 89 49 135 26 13 71 47 17 79 71 193 69
797828357 brain observatory 1.1 74 297 152 39 2 67 85 58 67 52 11 24 49 29 30 44 39 42 35 104 31
798911424 brain observatory 1.1 68 443 254 26 65 94 78 135 47 89 134 21 31 9 59 25 59 65 177 48
799864342 brain observatory 1.1 127 225 188 11 70 51 75 40 29 29 52 109 16 20 36 7 11 23 32 66 29
816200189 functional connectivity 100 297 183 17 55 61 65 51 76 44 120 8 20 35 13 48 36 72 36
819186360 functional connectivity 118 251 115 23 34 78 72 52 20 107 65 17 28 5 23 27 34 152 38
819701982 functional connectivity 128 242 182 15 31 44 66 78 98 125 6 27 15 9 9 1 30 73 99 39
821695405 functional connectivity 49 254 136 26 48 34 71 64 59 26 55 16 38 27 37 17 126 40
829720705 functional connectivity 371 143 52 78 77 75 89 79 18 46 50 53 174 42
831882777 functional connectivity 411 129 12 56 65 73 63 72 92 46 107 19 2 8 58 57 126 32
835479236 functional connectivity 29 318 160 21 8 79 76 87 76 103 9 33 15 3 34 81 80 41
839068429 functional connectivity 73 352 294 23 9 64 85 47 42 60 44 74 172 22 60 4 36 22 35 31 96 31
839557629 functional connectivity 36 219 193 1 36 53 48 38 38 42 107 11 48 27 1 21 26 97 22
840012044 functional connectivity 189 275 249 29 98 46 45 48 53 83 162 15 72 29 39 55 105 30
847657808 functional connectivity 55 346 389 66 53 50 76 65 55 45 55 184 5 64 97 39 63 1 45 68 143 39

Table S1. Statistics of recordings. The table shows the number of neurons recorded across sessions indicating the type of recording (Fig. S1) and grouping the neurons
into three categories: brain regions (light blue background), brain areas (light green background) and visual cortical layers (gray background). We include the recording of a
specific brain area or region in our analysis when the number of neurons recorded was at least 20.
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