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Most neurophysiological signals exhibit slow continuous trends over time. Because standard correlation analyses
assume that all samples are independent, they can yield apparently significant "nonsense correlations" even for

signals that are completely unrelated.

Here we compare the performance of several methods for assessing

correlations between timeseries, using simulated slowly drifting signals with and without genuine correlations. The
best performance was obtained from a "pseudosession method", which relies on one of the signals being randomly
generated by the experimenter, or a "session perturbation" method which requires multiple recordings under the
same conditions. If neither of these is applicable, we find that a "linear shift method can work well, but only when
one of the signals is stationary. Methods based on cross-validation, circular shifting, phase randomization, or
detrending gave up to 100% false positive rates in our simulations. We conclude that analysis of neural timeseries is
best performed when stationarity and randomization is built into the experimental design.

In neuroscience we often aim to correlate
variables that depend on time. For example, we
might correlate neuronal population activity
on each trial of a task with behavioral variables
such as choices. The statistical analysis of such
data is difficult because the recorded variables
often show slow changes in activity, which can
lead to apparent correlations between them
even if they are completely unrelated.

This phenomenon was given the memorable
name of “nonsense correlation” by statistician
G. Udny Yule (Yule, 1926). The problem of
nonsense correlations has been discussed
extensively in fields such as econometrics (Box,
2008; Granger and Newbold, 1974; Haugh,
1976; Phillips, 1986), but despite its importance
to understanding neurophysiology data, has
seen little discussion in this field (but see Elber-
Dorozko and Loewenstein, 2018).

Here, we evaluate ten possible solutions to the
problem, by applying them to simulated neural

data. We find that two methods (the
pseudosession and session permutation
methods) do not produce nonsense

correlations, they cannot be used in all
situations. The remaining methods (linear
shift, shift, phase

circular and wavelet

randomization, cross-validation) can all
produce nonsense correlations, although linear
shift appears to do so least often. We end with
conclusions for how to design experiments that
allow pseudosession and session permutation

methods to be used.

What are nonsense correlations?

To illustrate the phenomenon of nonsense
correlations, we consider a simulated
experiment (Figure 1). Imagine we have
recorded a population of N =10cells and
computed their firing rate on T = 200
behavioral trials. To simulate the case that the
neurons encode no information about
behavior, we generate their rates randomly,
independent of each other and of the simulated
behavioral variables. We simulate slow rate
drifts by summing logistic sigmoid functions
centered on random times, together with pink

noise (Methods; Figure 1A1,1A2).

We consider two types of simulated behavioral
variable. First, we consider a binary “block”
variable, which switches pseudo-randomly
during the experiment; for example, this could
indicate which of two stimuli or actions is most
likely to reward (Figure 1B1). Even though this
was generated independently of the neural
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Figure 1 | Simulation of nonsense correlations. A1-A4: firing rates of 3 out of 10
simulated neurons as a function of trial number. In columns 1 and 2 the simulated

firing rates are uncorrelated with the behavioral variable. In column

randomly weighted copy of the behavioral variable has been added to the firing rates
to produce a correlation. B1-B4: behavioral variable (black) and prediction of it from
neural firing (red dots), using multiple linear regression with weights constant across
the simulation. C1-C4: histogram of F-test p-values measuring significance of the

linear rearession. over 1000 simulations.

activity, it is possible to predict it accurately
from neural activity, since by chance some of
the neurons showed rate shifts at times close to
the block switches (e.g. the green cell in Figure
1A1).

The second type of simulated behavioral
variable was a continuous one, simulated the
same way as the neural variables (Figure 1B2);
for example this could measure running speed
on each trial. Again, this variable could be
predicted almost perfectly from the simulated
neural activity, even though it was generated
independently.

To simulate a situation where neuronal firing

rates do encode information about the
behavioral variable, we added a small multiple
of the behavioral variable to each neuron’s
firing rate, with a random weight (Figure 1A3,
1A4). Throughout the paper we therefore

consider four scenarios: a binary or continuous

0.0 0.5

i 1.0
F test p value

each of 1000 simulations (Figure
1).

s 3 and 4, a small

The F-test thus always produced
a false-positive error even when
there was no
relationship between neural

genuine

activity and the behavioral variable. This is
because the F test assumes that the data on each
timestep are statistically independent.
However, both the predictor firing rates and
the target behavioral variable are correlated
across timesteps, and the test gives false
significance.

Defining correlation between time series
Before considering potential solutions to the
problem of nonsense correlations, we must
first clearly define what we mean by a
correlation between time series. To do so, we
recall some basic concepts of probability
theory, working here within the classical
“frequentist” framework.

A fundamental concept in probability theory is
the sample space. The sample space defines the
set of all possible outcomes of an experiment,
and a point in the sample space determines the
of everything measured the

value in
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experimental session. Throughout this paper
we consider a simultaneous recording of
N neurons and one behavioral variable, both
measured on T trials. A point in the sample
space is therefore defined by (N +1)T
numbers: the firing rate of each neuron and the
behavioral variable on each trial. We will
denote the firing rate of neuron n on trial t as
Xne, and gather them together into an NT-
dimensional vector x; and we will denote the
behavioral variable on trial t as y,, gathered
together into a T-dimensional vector Y.
Importantly, the sample space is defined by the
entire history of these variables on all trials, not
by their values on a single trial.

In the frequentist framework, we consider
experiments to be repeatable, at least in
principle: even if we only performed the
experiment once, we consider it as part of an
ensemble of repeats we could have performed.
A probability distribution P(x,y) measures the
frequency with which the experiment yields a
particular outcome, over the infinite ensemble
of possible repetitions of the experiment.

We say that neural activity is uncorrelated with
behavior if the entire history of neural activity
in an experiment (summarized by the vector x)
is statistically independent of the history of
behavioral variables summarized in y, i.e. if
Pixy) = PGKP(y).

Importantly, this definition allows neural
activity to be autocorrelated: the firing rate of
neuron n on trial t can be correlated with the
firing rate of neuron m on trial u. Behavior can
also be autocorrelated: the value of the
behavioral variable at one time can be
correlated with the value at another. Instead,
independence requires that there be no cross-
correlation: the activity of any neuron at any
time is independent of behavior at any time.
Thus, P(xpe, ) = P(x,:)P(y,), for any neuron
n and any pair of times t and u.

A correlation between timeseries is therefore
relationship that holds
consistently across multiple repeats of the
experiment, rather than across timepoints
within a single experimental
Predicting behavior from neural activity
within a single session (Figure 1) does not
show that neural activity is correlated with

defined as a

session.

behavior. Instead, it must be possible to predict
behavior from activity for all experimental
sessions, using the same set of prediction
weights for each session.

Does this mean that to show a correlation
between neural activity and behavior one must
record from the same neural population over
multiple experimental sessions? Luckily, the
answer is no, provided we make certain further
assumptions. We next discuss how different
assumptions allow different methods for
detecting true correlations between time series.
We focus on the simple case of testing whether
neural and behavioral variables are correlated:
more complex questions such as testing
whether neural activity correlates with some
behavioral variables after taking others into
account, are discussed at the end of the
manuscript.

Pseudosession method

The “pseudosession method” is simple,
requires only a single experimental session,
and is the only method we describe here that
can show a causal relationship between two
timeseries. However it has the strongest
requirement: that one of the timeseries is
randomly generated by the experimenter
according to a known probability distribution.
This method could be used for example to test
whether neural activity differs between
behavioral blocks, in an experiment where the
block structure is generated randomly without
dependence on the subject’s choices.
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Figure 2 | Pseudosession method. A: a test statistic V(x,y) is computed that
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could predict a randomly
generated one.

measures the strength of relationship between the neural and behavioral data for an

experiment. This is compared against a null distribution of V(x,y;) obtained by
repeatedly generating other behavior data y; drawn from the same distribution as y.
B: ensemble of behavioral variables for 10 pseudosessions, drawn from the same
probability distribution as the original. C: histogram of log prediction error {V (x,y;)} of
null distribution (blue), with V (x, y), the value for original data superimposed (orange).
D: histogram of p-values obtained by comparing the predictability of the actual
behavioral variable against a null ensemble of predictability of pseudosessions, from

1000 simulations.

Let x and y denote the history of neural activity
and of the behavioral variable in a single
session. The pseudosession method requires a
“test statistic” V(x,y), a single real number
which quantifies the degree of association
between x and y in that session. A good choice
is the non-cross-validated error of a classifier
trained to predict y from x or vice versa. Any
choice of V gives a valid test; poor choices can
only result in false-negative errors. In this
paper we use the squared error of linear
regression summed over time points. But any

Applying the method to our
four scenarios (Figure 2), we
observe that p-values
evenly distributed when there
is no true correlation but
concentrated near zero when
there is. We conclude that the pseudosession

are

method works reliably when the behavioral
variable is generated randomly from a known
distribution.

Session permutation method

Because the pseudosession method requires
the behavioral variable to have been randomly
generated by the experimenter, it cannot be
used to correlate neural activity with variables
such as the subject’s choices or running speed,
which are not under the experimenter’s
control. The session permutation method can
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Figure 3 | Session permutation method. A: a test statistic is computed by summing
the predictability of behavioral from neural data over each of S total sessions. This is
compared to a null ensemble obtained from each of the S! possible permutations of
the sessions. B: histogram of log prediction error of permuted sessions (blue), with
C: Histogram of p-values
obtained with this method, over 1000 simulations. Columns 1-4 correspond to the

value for unpermuted data superimposed (orange).

same scenarios as in Figure 1.

analyze these cases but requires data from
multiple sessions recorded under identical
conditions.

The session permutation method asks whether
neural activity predicts the behavioral variable
on the same session more accurately than on
other sessions. We denote the vectors
containing the history neural activity and
behavioral variables on the s session as X
and y;. We sum the association measure over
sessions to obtain a test statistic V =

S_1V(xs,¥s). We compare this test statistic to
a null ensemble in which the neural data of
each session is compared to behavioral data
from a randomly Vi =
5, V(xs, yn(s)), where m runs over all of the

chosen session:
S! permutations of the S sessions. To obtain
statistical significance needs at least 5 sessions
(since 5! = 120).

0
0.0

. .
0.5 10
permutation p value

to which the recorded
population predicts behavior,
and this can be computed
different
on

neural
different
sessions. If one cannot return
to the same neurons on each

using
populations

session, however, it is not possible to say which
neurons correlate with the behavioral
variables; it is only possible to conclude that
the population as a whole does.

Some caution is required in interpreting results
of the session permutation method. Without a
randomized experimental design, one cannot
infer causality as there may be a third factor
affecting the neural and behavioral recordings.
For example, if the S sessions were recorded
sequentially from the same subject, and
consecutive experiments showed both a
degradation in both the quality of neuronal
recording and in behavioral performance, one
might observe a correlation between neural
activity and behavior simply for this reason.

Linear shift method
We have defined correlation between neural
activity and behavior as a relationship holding
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Figure 4 | Linear shift method. A,B: To create a null distribution, a segment of the
neural data is time shifted and used to predict behavioral data starting at a different
time. The example shows a segment of length 100 trials, linearly shifted by 75 trials.
C: Prediction error as a function of time shift magnitude. D: histogram of p-values
obtained for the method, over 1000 simulations. The four columns refer to the four

scenarios of Figure 1.

consistently across sessions. Nevertheless, we
can infer such a correlation from just one
session if we make further assumptions. As we
saw above, the pseudosession method makes
an inference from one session, assuming a
known probability distribution for the
behavioral variable. If this distribution is
unknown, we can still obtain an approximate
measure of significance by making further
assumptions of stationarity and ergodicity.

A probability distribution for time series is
stationary if it is invariant to time shifting: for
any T, ty,tp, ..ty IP’(xt1+T,xt2+T, ...xtn+T)=
[P’(xtl,xtz, ...xtn). Stationarity is a property of
the ensemble of all possible histories, rather
than of any one session. Stationarity does not
mean that the timeseries has a consistent

linshift p value subjects typically respond
faster at the beginning of a
session experiment than at the
end, then the timeseries of
reaction times would be

nonstationary.

A probability distribution over timeseries is
ergodic if expectations over the ensemble of
possible histories can be found by averaging
over time: given any ¢4, ty, ... t, and function ¢,
B[ (xe,r Xty e, )] =

1\1,1_{{}0 2N1+1 T=-N ¢(xr+ t1r XT+tyr - x‘c+tn)-
Ergodicity means that after enough time,
anything that can happen, will happen.
Stationarity does not imply ergodicity: an

example of a time series that is stationary but
not ergodic is one where every history is
constant over time, but its constant value varies
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Figure 5 | Linear shift method: analysis of false
positives. A: a stationary distribution for block structure was
generated by starting at a random point of a long block
sequence. Three examples are shown, vertically offset for
clarity B: histogram of p-values for linear shift method, for
neural series independent of these blocks. C: examples of
pink noise target series with three different autocorrelation
time constants. D: fraction of simulations for which the linear
shift method gave p<.05 despite no genuine correlation, as
a function of target autocorrelation time constant. Colored
points reflect timescales shown in panel C. E: Similar plot for
F-test of multiple linear regression. Note the different y-axis
scale to panel D.

randomly between sessions. In practice,
methods that rely on ergodicity will only work
given enough data that the limit in the above

equation  has  converged to  good
approximation.
The linear shift method tests the null

hypothesis that time series are independent,
and that one of them is stationary and ergodic
(in this case y). Denote by x[n:m] the N(m —
n)-dimensional vector containing the firing
rates of all N neurons between trials n and m.

Given an integer parameter s < T, the linear
shift method compares a test
V(x[0:s],y[0:s])to a null distribution
{(v(x[0:s],yl[t:t+s])|t=0..T —s}. In other
words, it asks whether neural activity predicts
simultaneous behavior better than behavior
taken from a different part of the experiment.

statistic

If x and y are independent and y is stationary,
the probability distribution of V (x[0: s], y[z: 7 +
s]) does not depend on t. Nevertheless,
stationarity is not sufficient for the test to work:
this empirical null distribution will only
approximate the distribution over sessions if y
is ergodic and T — s is sufficiently large.

We evaluated the linear shift method on the
same four scenarios as before (Figure 4), using
s = T /2. The method gave few false negatives,
but produced approximately double the rate of
false positives than should occur. There are
two possible explanations for this problem.
First, although the scenario 2 target is
stationary, the scenario 1 target is not. Second,
while both types of behavioral data are
ergodic, T — s might not be large enough for
accurate results.

To investigate which of these possibilities
could be causing the false positives in scenario
1, we repeated the simulation but now using a
block that stationary by
construction, by creating a long block sequence

structure was
and starting at a random point within it (Figure
5A). After doing this, we found that the rate of
false positives had returned to the correct value
(Figure 5B).

The excess false positives in scenario 2 can only
result from insufficient data, as the data are
stationary ergodic by construction.
Indeed, examining the plot of prediction error
vs. shift length (Figure 4C2) we see an
approximately monotonic function, indicating

and

that the session is not long enough for the
ergodic limit to converge. If this curve were
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strictly monotonic, the fit quality for 0 shift
would always be either the smallest or largest
possible, with 50%  probability.
Approximate monotonicity of this curve thus
implies that the p-value histogram should
show peaks at both 0 and 1, which is indeed
seen (Figure 4D2), consistent with the
hypothesis that the inflated false-positive rates

value

in scenario 2 come from insufficiently long
recording times.

The false positive error rate of the linear shift
method depends on the temporal structure of
the timeseries. To show this, we reran the
simulations with the target variable given by
pink noise of varying autocorrelation time
constants (Figure 5C). As the time constant
decreases, fast fluctuations come to dominate
over slow trends (Figure 5D), and error rates

No correlation

Correlation

decrease from ~10% to the correct level of 5%.
In all cases, performance was still much better
than the naive F-test of multiple linear
regression, which assumes independence, and
produced a false positive in close to 100% if the
autocorrelation time constant exceeded 1 trial.

Thus, the linear shift method will have inflated
false positive errors on insufficiently long
experiments containing slow drifts, but is still
much better than traditional tests. In a case of
insufficient data, the plot of fit quality vs. shift
may be approximately monotonic (Figure
4C2).

Circular shift method

An alternative to the linear shift method is to
generate a null ensemble by circularly shifting
one of the timeseries: to replace x[0: T] with the
concatenation of X[s: T] and x[0: s]. This has the
advantage of using all the
data, unlike the linear shift

method which discards some.
However, in our simulations
circular shifting showed much

“20  greater inflation of false-

positive errors than linear

shifting (Figure 6).
target The reason for this problem is
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Figure 6 | Circular shift method. A,B: To create a null distribution, the neural data
is circularly time shifted and used to predict behavioral data. The example shows a
circular shift of 75 trials, where a discontinuity is visible. C: Prediction error as a

circshift p value

this is unlikely to hold is that
unless the start and end values
of the timeseries are identical,

function of circular shift magnitude. D: histogram of p-values obtained for the method,

over 1000 simulations. Columns refer to the four scenarios of Figure 1.

cyclic shifting will introduce a
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predict behavioral data. C: histogram of p-values obtained for the inverse transforming. We found that
method, over 1000 simulations. Columns refer to the four scenarios of
Figure 1.
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transforms continuous timeseries into C: histogram of p-values obtained for the method, over 1000
simulations. Columns refer to the four scenarios of Figure 1.
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Figure 9 | Cross-validation method. A: Trials were divided into 10 random sets,
with 9 used to train a classifier (green dots) and the last to test the prediction (red
dots). Black dots indicate a null prediction made without access to the neural
variables (the training set mean). B: histogram of predictability (mean error of
prediction without neural variables minus mean error with them), over 1000 simulated
sessions. C,D: same analysis, with blocks chosen to be temporally continuous. E,F:
forecasting method, where the training set (green) is strictly before the test set (red).
Columns correspond to the four scenarios in Figure 1.

this method performed better than Fourier
randomization, but still gave substantially
more false positives than linear shift (Figure 8).

Cross validation

Cross validation does not solve nonsense
correlations: slow autocorrelations mean that a
predictor function learned on one part of the
data will still be valid on another part of the
data, even if these training and test sets are

temporally segregated.

To demonstrate
applied 10-fold
validation to our four
scenarios (Figure 9). When
the training and test sets
consisted of random time
points,  performance
abysmal: test-set predictions

of the

this, we

Cross-

was

behavioral variable
were more accurate than
predictions made without
access to the simulated neural
variables 100% of
simulations, even when the

in

neural and behavioral
variables were unrelated
(Figure 9A,B). When training
and test sets consisted of
blocks of sequential trials,
false-positives errors were less
common but still occurred in
54% of simulations of the
block behavioral variable and
92%
continuous variable (Figure
9C,D).

of simulations of the

An alternative approach to
time series cross-validation is
forecasting (Tashman, 2000).
In the approach, we predict
the target timeseries in the n'"
block using a predictor

learned only from temporally prior blocks. As
such predictions are extrapolation rather than
an interpolation, one might expect false

predictability to therefore be lower. This
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approach worked for the block variable,
reducing the false positive rate to 1%; but it did
not work for the continuous target, for which
false-positives still occurred 61% of the time.
(Figure 9C,D).
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Figure 10 | Auto-decorrelation. A: the simulated neural data was preprocessed by
fitting a first-order autoregressive model to each timeseries, and calculating a
residual at each timestep. Due to the nonlinear nature of these timeseries, this does
not result in white noise. B: the behavioral variables were preprocessed the same

1
F test p value

To evaluate auto-
decorrelation, we fit a first-
order autoregressive model to

our simulated neural and

way (black) and predicted from the preprocessed neural data (red dots) using multiple

linear regression. C: histogram of F-test p-values measuring significance of the linear

regression, over 1000 simulations.

We conclude that cross-validation does not in
general avoid nonsense correlations, although
forecasting cross-validation can help in some
circumstances. The use of cross-validation to
avoid nonsense correlations must therefore be
justified on a case-by-case basis.

Auto-decorrelation

A commonly-suggested approach to eliminate
nonsense correlations is to preprocess the data
to remove correlations within a single
timeseries (Haugh, 1976). If we could remove
these autocorrelations, then standard statistical
tests that assume independent samples could
safely be applied to the auto-decorrelated

timeseries.

The usual way to perform auto-decorrelation is
with an autoregressive model: one predicts the
value of x; by linear regression from previous
values X;_, ..X;—;, and performs all further
analyses on this residual. Simpler approaches
are to take the time derivative of each
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behavioral variables, then
applied a standard F-test to
measure significance (Figure
10). Because these timeseries are nonlinear,
however, the autoregressive model did not
fully decorrelate the data: slow trends were
still observed in the neural data (Figure 10A,B)
although smaller than prior to preprocessing.
For the binary block variable, auto-
decorrelation replaced the step functions with
impulses at the start and end of each block.

Even after this preprocessing, the F-test
produced inflated false positive rates, although
this was less bad for the block variable (Figure
10C).

Thus, it is not safe to apply statistical tests that
assume independence auto-
decorrelation, unless one has strong evidence
that the auto-decorrelation method really
worked to high accuracy. Nevertheless, auto-
decorrelation could still be a useful tool used in
conjunction with other approaches such as the

linear shift method. Even if it only works

even after
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partially, decorrelating the data cannot
increase false positives found by the linear shift

method, and may decrease them (Figure 5).

More complex analyses: partial correlation

So far, we have discussed the simple case of
detecting a correlation between two timeseries,
such as neural activity and a behavioral
variable. One often wants to ask more complex
questions. For example, if a subject’s choices
differ between behavioral blocks, one might
ask whether the correlation of neural activity
and behavioral block is stronger than would be
predicted from an encoding of choice alone: in
other words, is there a partial correlation of
neural activity and block, after accounting for
the common correlate of choice.

Many such questions can be transformed into
questions about independence of timeseries. In
the above example, we could predict neural
activity from choice, and then test a null
hypothesis that the residual of this correlation
is independent of the behavior block. The
approaches described above, therefore, can
also be used to test more complex hypotheses
such as partial correlation.

Implications for experimental design

This survey of methods for establishing
genuine correlations between neural and
behavioral timeseries yields a familiar lesson
for experimental design: whenever possible,
use a randomized experiment.

The power of randomized experiments to
enable statistical analysis has long been
recognized (Fisher, 1935). Of the methods
described above, the one that is most reliable,
powerful, and accurate is the pseudosession
method, which can only be applied when one
of the timeseries to be correlated is randomly
controlled by the experimenter. Thus,
whenever possible, experiments should be
designed with randomized covariates. To test

12

if neural population activity differs between
behavioral blocks, the timing of these blocks
should be randomized between sessions.
Furthermore, because statistical power
increases the more variable the block structure
is across sessions, it may be worth using
stationary block distributions (Figure 5A). To
test if neural activity correlates with running,
the best experimental design would be one that
requires the subject to run at random times
controlled by the experimental apparatus.

Summary

We have reviewed and simulated methods for
detecting  correlations between neural
timeseries. Statistical tests that assume

independence between timepoints result in
“nonsense correlations” of erroneous statistical
significance, due to autocorrelations within
timeseries. The most reliable method for
detecting genuine correlations, the
pseudosession method, requires that one of the
timeseries be randomly generated by the
experimenter. The permutation
method requires the experiment be replicated
at least 5 times under identical conditions, and
can provide reliable results although
correlations could reflect a common effect of
session-to-session variability. Other methods
reduce but not eliminate the risk of false

session

positive errors; of these, the linear shift method
appears to perform best. If possible,
experiments should be designed so that time
series of interest are randomized.

Methods

To generate a firing rate sequence, we added
together a random number of logistic sigmoid
functions. The center times t;,...t, of these
functions were drawn from a homogeneous
Poisson process of rate 1/100, so the mean
number of sigmoids in T=200 trials was 2; their
widths were always 10, and directions g; were
random signs +1 with equal probability. A
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pink noise sequence p, was added, generated
by passing white Gaussian noise through an
IR filter with parameters a = [1,—Va|,b =
[V1—a], where @ = e72/% and T = 5000. The
final sequence was

n
1
x; = 0.1p; + Z—l T o t0/100;
i=

To simulate behavioral binary blocks (column
1 of the figures), we generated alternating
blocks of Os and 1s, of lengths independently
uniformly distributed between 50 and 70; the
first 0 block always began at the first sample.
To make a stationary block sequence (Figure 5),
we generated a longer sequence (1000 blocks)
and started it at a random time. To simulate
continuous behavioral signal (column 2 of the
figures), we generated another sequence from
from the same distribution as the neural
activity.

To simulate the case where the neurons
encoded information about the behavioral
variables (columns 3 and 4), the behavioral
signal was added to each neuron’s activity,
Gaussian

with  weight drawn from a

distribution of mean 0, SD 0.1.

Finally, each neuron’s activity timeseries
scaled between 0 and 1, although this will not
have affected the linear regressions.

Code to perform the simulations is available at
https://github.com/kdharris101/nonsense-
correlations/ and can be run online at
https://colab.research.google.com/github/kdha
rris101/nonsense-
correlations/blob/main/nonsense.ipynb
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