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Abstract 
 
Calcium imaging has led to discoveries about neural correlates of behavior in subcortical neurons,              
including dopamine (DA) neurons. However, spike inference methods have not been tested in most              
populations of subcortical neurons. To address this gap, we simultaneously performed calcium imaging             
and electrophysiology in DA neurons in brain slices, and applied a recently developed spike inference               
algorithm to the GCaMP fluorescence. This revealed that individual spikes can be inferred accurately in               
this population. Next, we inferred spikes ​in vivo from calcium imaging from these neurons during               
Pavlovian conditioning, as well as during navigation in virtual reality. In both cases, we quantitatively               
recapitulated previous ​in vivo electrophysiological observations. Our work provides a validated           
approach to infer spikes from calcium imaging in DA neurons, and implies that aspects of both tonic                 
and phasic spike patterns can be recovered.  
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Introduction 
 
The use of genetically encoded calcium indicators like GCaMP has made it possible to record neural                
activity from large populations of neurons with cell-type-specificity ​(1–3)​. These advances have spurred             
development of spike inference methods to estimate the underlying spikes from the imaged calcium              
(4–14)​, but to date their application has been largely limited to cortical and hippocampal neurons               
(15–21)​. Thus, it is unclear how well these algorithms perform on other cell-types, particularly those               
with tonic levels of baseline activity. One population of particular interest is midbrain dopamine (DA)               
neurons, given the shift in recent years to record from these neurons through calcium imaging ​(22–27)​,                
combined with the lack of established and validated methods to relate calcium and electrophysiology              
data in these neurons.  
 
Two challenges arise when trying to infer spike rates from a new cell-type. The first is the acquisition of                   
ground-truth data (simultaneous imaging and electrophysiology data from the same neurons), which is             
needed to validate a spike inference method in a new cell-type. The second is that spike inference                 
algorithms rely on tuning parameters, and it is unclear how to select them, especially on a new                 
cell-type. For example, DA neurons have distinct calcium currents ​(28–30) and buffering properties             
(31–33) compared to cortical neurons, which may affect the relationship between calcium fluorescence             
and spikes. 
 
Because of these challenges, most imaging studies focused on subcortical neurons such as DA              
neurons have directly correlated calcium fluorescence to behavioral variables without accounting for the             
slow calcium dynamics ​(22–27,34,35)​. This approach risks introducing inaccuracies in characterizing           
the relationship between neural activity and behavior, and makes it difficult to relate findings from               
calcium imaging to those arising from electrophysiology. 
 
Thus, to first address the lack of ground-truth data in the case of midbrain DA neurons, we collected                  
simultaneous GCaMP imaging and cell-attached electrophysiology recordings ​in vitro ​(given the           
technical limitation of simultaneous ​in vivo measurements of these two signals). We then used these               
data to validate a recently-developed spike inference algorithm in these neurons ​(4)​.  
 
Next, to address the issue of how to select the tuning parameters on new datasets when ground-truth                 
spikes are not available (which is inevitably the case for subcortical ​in vivo ​imaging data), we made use                  
of the fact that this spike inference algorithm depends on only two tuning parameters, both of which                 
have a biophysical interpretation. The first corresponds to the decay rate of the calcium indicator, which                
we measured in our ​in vitro data. The second determines the average estimated firing rate of the                 
recorded neurons, which we selected based on mean firing rates previously observed in midbrain DA               
neurons ​in vivo ​(36–39)​, and which can be measured by phototagging a new cell type of interest.  
 
Using this straightforward approach to select the tuning parameters, we were able to quantitatively              
recapitulate multiple published properties of DA spiking from ​in vivo imaging data. During delivery of               
unexpected reward, inferred firing rates are of the appropriate magnitude and duration when compared              
to ​in vivo electrophysiology data. During omission of expected reward, pauses in firing in response to                
reward omission can be detected. Underscoring the utility of spike inference, inferred spikes, but not               
the calcium fluorescence itself, recapitulates the previously reported relationship between reward           
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delivery and reward omission. In addition to these fast response properties, slow upward and              
downward ramps in inferred tonic firing rate as animals approach rewards can also be detected. On the                 
other hand, inference does not capture certain features of previously published data, including the              
reported variability in tonic firing rates across DA neurons. Thus, we describe strengths as well as                
limitations of a simple approach for inferring spikes in DA neurons. We expect this approach to                
generalize to other subpopulations of genetically identified subcortical neurons.  
 
 
Results 
 
Validation of spike inference using simultaneous calcium imaging and electrophysiology ​in vitro 
 
To determine the efficacy of spike inference in ventral tegmental area (VTA) DA neurons, we generated                
a ground-truth dataset by performing simultaneous calcium imaging and cell-attached          
electrophysiological recordings of spontaneously active, burst-firing DA neurons expressing either          
GCaMP6f or GCaMP6m ​(​Fig. 1a, Supp. fig. 2​; GCaMP6f at 30 ​°​C, n=12 recordings from 9 total cells;                 
GCaMP6f at 37 ​°​C, n=9 recordings from 5 total cells; GCaMP6m at 37 ​°​C, n=19 recordings from 9 total                 
cells). We performed these simultaneous measurements ​in vitro​, given that combining these            
approaches ​in vivo ​in the VTA, which is located deep in the brain, is not currently feasible. In addition to                    
the data presented in ​Fig. 1​, we also recorded from pacemaker cells which had faster GCaMP decay                 
kinetics (​Supp. fig. 1​).  
 
To estimate spike times on the basis of calcium fluorescence, and to compare to the corresponding                
ground-truth spike measurements, we leveraged a generative model of the calcium dynamics resulting             
from spikes ​(8,14) (​Fig. 1b​). In this model, the fluorescence trace at the th time step is a noisy                    
observation of the underlying calcium concentration , which is assumed to decay with rate              

unless there is a spike. A spike causes an instantaneous increase in the calcium               
concentration (​Fig. 1b​). As previously discussed ​(5)​, we fit the model by minimizing the difference               
between the observed fluorescence and modeled calcium, while applying an L0 regularization penalty             
on the total number of inferred spikes. A recently-developed dynamic programming approach is used to               
efficiently solve this non-convex optimization problem (​Fig. 1b;​ also see Methods).  
 
This spike inference algorithm depends on only two parameters, which are both easily interpretable: i)               
the calcium decay rate , and ii) the tuning parameter from the regularization, which controls the               
total number of inferred spikes in a recording - in other words, the average inferred firing rate. The                  
decay rate was selected based on fitting an exponential curve to the GCaMP fluorescence in               
segments without spikes (​Fig. 1c-e​; see Methods for curve fitting).  
 
To assess the agreement between the inferred spikes and the true spikes, we calculated the van                
Rossum distance metric for the inferred and true spikes for each neuron across a range of values of the                   
tuning parameter ​(​Fig. 1f​; see Methods) ​(40,41)​. This distance was smallest when the inferred               
average firing rate (computed as the number of inferred spikes divided by the length of the recording)                 
equaled the true average firing rate, indicating that the true firing rate provides the optimal choice of .                  
Based on this observation, to select for each neuron, we matched the inferred firing rate to the true                   
firing rate of each neuron for our ​in vitro ​data.  
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Figure 1. Spike inference applied to VTA DA neurons ​in vitro​. a. Example data trace of simultaneous GCaMP6f (top) and raw cell-attached                      
electrophysiology trace (bottom). ​b. Generative model of calcium dynamics. Simulated data (left) from this model (right) shows the underlying                   

calcium (purple line) decays at rate until at time there is a spike, so that (red vertical lines below). GCaMP observations                        
(black dots) are noisy realizations of the underlying calcium concentration. ​c. Example of decay estimation using multiple spike-free                   

segments (“Decay segs.”, light blue). Observed GCaMP (black) decays at the same rate between spikes (black vertical lines below). The rate                     
of exponential decay, , was estimated by fitting an exponential decay model to the observed GCaMP in the spike-free segments. ​d.                     
Estimated decay rate per timestep for GCaMP6f at 30​°​C (median = 0.987, Q1 = 0.982, Q3 = 0.988), GCaMP6f at 37​°​C (median = 0.975, Q1 =                          
0.964, Q3 = 0.982), and GCaMP6m at 37​°​C (median = 0.986, Q1 = 0.983, Q3 = 0.990). ​e. Decay time (half life, t​1/2​) for GCaMP6f at 30​°​C                           
(median = 0.780 s, Q1 = 0.593 s, Q3 = 0.894 s), GCaMP6f at 37​°​C (median = 0.403 s, Q1 = 0.283 s, Q3 = 0.565 s), and GCaMP6m at 37​°​C                               
(median = 0.75 s, Q1 = 0.61 s, Q3 = 1.03 s). ​f. van Rossum distance for each experimental condition and for each neuron, using the median                           
decay rate across all recordings for that type of GCaMP and temperature, as a function of the difference between the average inferred firing                       
rate and average observed firing rate. The distance is minimized when the average firing rate between the inferred and observed spikes is                      
similar. ​g. Example of correspondence between observed GCaMP (black line, top) and estimated calcium (blue line, top), and observed spikes                    
(black vertical dashes, bottom) and inferred spikes (blue vertical dashes, bottom) in a single cell expressing GCaMP6f measured at 30​°​C. ​h.                     
Example of correspondence between observed GCaMP (black line, top) and estimated calcium (green line, top), and observed spikes (black                   
vertical dashes, bottom) and inferred spikes (green vertical dashes, bottom) in a single cell expressing GCaMP6f measured at 37​°​C. ​i.                    
Example of correspondence between observed GCaMP (black line, top) and estimated calcium (orange line, top), and observed spikes (black                   
vertical dashes, bottom) and inferred spikes (orange vertical dashes, bottom) in a single cell expressing GCaMP6m measured at 37​°​C. 
 
Using this approach, inferred spike times tended to match true spike times in the ​in vitro dataset, during                  
periods of tonic as well as burst activity (​Fig. 1g-i, Supp. figs. 3-5​). However, some patterns of activity                  
were not well-recovered using this approach (​Supp. figs. 3-5​). There were occasional inaccuracies             
when estimating timing of the final spikes of a burst, or the first tonic spikes following a burst, when the                    
GCaMP signal is still decaying (as seen in ​Fig. 1i​). Additionally, inferred spikes cannot recreate the                
timing of recorded spikes at frequencies above double the sampling frequency (67 Hz; see Methods).  
 
In summary, our spike inference method appears well-suited to estimate both tonic and phasic activity               
in DA neurons, with some limitations on estimating exact spike placement during and immediately after               
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burst activity, and with a limit to the maximum inferred firing rate. Given these successes, as well as                  
limitations, in this ​in vitro ​data, we next asked whether our spike inference method could reproduce                
previously reported patterns of phasic and tonic activity in identified DA neurons ​in vivo​.  
 
Application of spike inference to ​in vivo imaging data during the presentation of unexpected              
reward 
 
While unexpected reward is known to generate widespread phasic responses in DA neurons based on               
electrophysiology data ​(39,42–45)​, the extent to which spike inference can quantitatively recapitulate            
the magnitude and duration of the unexpected reward response has not been determined. Thus, we               
applied this spike inference algorithm to recently published ​in vivo two-photon calcium imaging data              
from VTA DA neurons during unexpected reward delivery ​(22) (​Fig. 2a​,​b​), and compared to the firing                
rates obtained from ​in vivo electrophysiology recordings from VTA DA neurons in a previously              
published dataset from other mice performing a different conditioning task ​(39)​. For these spike              
estimates, the decay was set to the median decay rate from the ​in vitro measurements at 37 ​°​C (​Fig.                  
1d​), whereas the tuning parameter was set to correspond to a mean firing rate of 6 Hz, consistent                   
with previous ​in vivo​ measurements of average DA neuron firing rates ​(36,38,39,46)​. 
 
We first compared the magnitude of the phasic response to unexpected reward in inferred spikes with                
spikes previously measured via electrophysiology in DA neurons in another group of mice             
(electrophysiology data from ​(39)​). The unexpected reward response was defined as the baseline             
subtracted mean firing rate over a 600 ms window following reward onset (baseline calculated over a                
1s period before reward) ​(39)​. We found that inferred spikes showed a similar increase in firing rate                 
following reward compared to the Eshel et al. electrophysiology data (inferred spikes median = 9.7 Hz,                
Q1 = 5.9 Hz, Q3 = 12.0 Hz; electrophysiology spikes median = 9.5 Hz, Q1 = 6.3 Hz, Q3 = 12.0 Hz ; ​Fig.                        
2e-g​). The peak amplitude of the unexpected reward response based on inferred spikes was also               
similar to those in the electrophysiology dataset (inferred spikes median = 28.7 Hz, Q1 = 22.7 Hz, Q3 =                   
38.3 Hz; electrophysiology median = 30.5 Hz, Q1 = 22.6 Hz, Q3 = 40.9 Hz; ​Fig.​ ​2h​).  
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Figure 2. Spike inference    
applied to ​in vivo ​calcium     
imaging in VTA DA during     
presentation of  
unexpected reward  
generates firing rate   
modulations comparable  
to those previously   
reported in other animals    
via electrophysiology. a.   
Top: Schematic of the    
surgical strategy, where   
GCaMP6 is expressed in    
VTA DA neurons and a     
GRIN lens is implanted for     
imaging. Bottom: Schematic   
of recording setup, where    
the mouse is headfixed and     
VTA DA neurons are    
recorded via 2-photon   
calcium imaging. ​b.   
Schematic of spike   
estimation approach as   
applied to the ​in vivo data,      
where the observed ​∆​F/F is     
used to generate estimated    
calcium and inferred spikes    
using the decay parameter    

from ​in vitro experiment     

and a selected to     
target a 6 Hz average     
estimated firing rate. ​c. Left:     
Schematic showing  
unexpected reward is   
delivered after random   
inter-trial intervals. Middle:   
Example of an unexpected    
reward trial from a single     
cell, showing observed   
GCaMP (orange) and   
inferred spikes (black   
vertical lines). Right: All    

unexpected reward trials from an example cell, showing observed GCaMP (top) and inferred spikes (bottom). ​d. Mean observed GCaMP from                    
population around presentation of unexpected reward (n = 65 cells). ​e. Mean population firing rate from inferred spikes from population around                     
presentation of unexpected reward (n = 65 cells). ​f. Mean population firing rate from spikes recorded via electrophysiology (from Eshel et al.,                      
2016; n = 40 cells) around presentation of unexpected reward. ​g-j. Comparison of inferred and electrophysiology spikes from Eshel et al.,                     
2016. ​g. ​Unexpected reward response, where reward response is the mean firing rate over the first 600 ms following reward presentation,                     
baseline subtracted using the mean firing rate over a 1 s period before reward presentation (inferred spikes over baseline median = 9.7 Hz, Q1                        
= 5.9 Hz, Q3 = 12.0 Hz; electrophysiology spikes over baseline median = 9.5 Hz, Q1 = 6.3 Hz, Q3 = 12.0 Hz). ​h. Peak reward response                           
amplitude in inferred and electrophysiology spikes, where peak is maximum value of PSTH in the first 600 ms period following reward                     
presentation (inferred spikes median = 28.7 Hz, Q1 = 22.7 Hz, Q3 = 38.3 Hz; electrophysiology median = 30.5 Hz, Q1 = 22.6 Hz, Q3 = 40.9                           

Hz)​. ​i. Full duration at half max of reward response peak in inferred and electrophysiology spikes (inferred spikes median full duration at half                       
max= 190.6 ms, Q1 = 162.2 ms, Q3 = 221.4 ms; electrophysiology median full duration at half max = 153.5 ms, Q1 = 120.4 ms, Q3 = 272.5                            
ms). ​j. Mean tonic firing rates prior to presentations of unexpected reward, where tonic firing rates are calculated as the mean firing rate over a                         
1 s period prior to reward presentation (inferred spikes tonic firing rate median = 5.7 Hz, Q1 = 5.3 Hz, Q3 = 6.1 Hz; electrophysiology tonic                          
firing rate median = 5.6 Hz, Q1 = 4.3 Hz, Q3 = 7.5 Hz). Vertical bars are interquartile range (Q1 and Q3). 
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In contrast to the prolonged ​∆​F/F modulation to unexpected reward (​Fig. 2c,d​), inferred spikes              
displayed a subsecond, phasic modulation (​Fig. 2c,e​). In fact, the duration of the unexpected reward               
response was similar between inferred spikes and electrophysiology spikes (inferred spikes median full             
duration at half max = 190.6 ms, Q1 = 162.2 ms, Q3 = 221.4 ms; electrophysiology median full duration                   
at half max= 153.5 ms, Q1 = 120.4 ms, Q3 = 272.5 ms; ​Fig. 2i​).  
 

However, the electrophysiology population average firing rate displayed a biphasic response which was             
not evident in the inferred spikes (​Fig. ​2f​). It is unclear if this difference reflects a limitation of spike                   
inference to detect the time course of a biphasic burst, or is instead due to differences in the                  
experimental design between the calcium imaging and the electrophysiology datasets. In the calcium             
imaging experiment, reward size was constant (reward size 8 ​μ ​L), whereas for the electrophysiology              
dataset, reward size varied (ranging from 0.2 to 20 ​μ ​L). Thus, it is possible that the second bump of the                     
reward response is due to receiving a larger-than-expected reward (10 ​μ ​L reward, the closest volume               
to our experiment) ​(43)​.  
 
The median tonic firing rate of the inferred spike dataset was similar to that of the electrophysiology                 
dataset (inferred spike tonic firing rate median = 5.7 Hz, Q1 = 5.3 Hz, Q3 = 6.1 Hz; electrophysiology                   
tonic firing rate median = 5.6 Hz, Q1 = 4.3 Hz, Q3 = 7.5 Hz; tonic firing rate calculated as the mean                      
firing rate over a 1 s window prior to reward; ​Fig. 2g​). This implies that spike inference correctly assigns                   
the total number of estimated spikes (which is dictated by ) to phasic versus tonic firing. However,                 
across neurons, the inferred spikes displayed less variability than the electrophysiology data in the tonic               
firing rates, presumably as a result of applying the same tuning parameter for all neurons, when in                  
reality DA neurons exhibit a range of average ​in vivo​ firing rates between 1-10  Hz ​(36–38)​.  
 
Taken together, our spike inference applied to ​in vivo DA imaging data closely recapitulates the median                
magnitude and duration of phasic activity to unexpected reward, as previously measured via             
electrophysiology, as well as the median level of tonic activity. However, the approach did not               
reproduce cross-neuron variability in tonic firing rates, and there may also be limitations to detecting a                
biphasic reward response. 
 
Application of spike inference to ​in vivo ​ imaging data during Pavlovian conditioning 
 
We next inferred spikes from VTA DA calcium imaging data taken during Pavlovian conditioning (​Fig.               
3a​; 2 s tone presentation followed immediately by reward delivery). This is one of the most commonly                 
utilized behavioral paradigms to study VTA DA neuron activity ​(43,44,47–49)​. Our goal was to              
determine whether spike inference recapitulates the previously reported features of DA firing activity             
during Pavlovian conditioning, including the transient, phasic response to a cue that predicts reward              
(50)​, the pause resulting from the omission of an expected reward ​(39,44,51)​, and finally, the previously                
established relationships across neurons in response to expected, unexpected, and omitted rewards            
(39,51)​. Because we did not have electrophysiology data from the same Pavlovian task as our imaging                
data, we were not able to make direct comparisons to electrophysiology for these data. 
 

Inferred spike rates displayed a transient phasic burst to the cue onset (median full duration at half max                  
= 190.4 ms, Q1 = 170.7 ms, Q3 = 206.0 ms), consistent with previous electrophysiology reports (​Fig.                 
3a,c,d, Supp. fig. 6​) ​(50)​. This fast, phasic response contrasted with GCaMP fluorescence, which              
remained elevated throughout the 2 s duration of the cue that predicted reward (​Fig. 3a,b​).  
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Figure 3. Spike   
inference applied to   
Pavlovian conditioning  
in vivo ​imaging data    
recapitulates transient  
cue responses, pauses   
following reward  
omission, and  
previously reported  
relationships between  
expected and  
unexpected reward  
responses. a. ​Top left:    
Schematic showing  
expected reward is   
delivered after a 2 s cue      
presentation. Bottom left:   
Example expected  
reward trial from a single     
cell, showing observed   
GCaMP (purple) and   
inferred spikes (black   
vertical lines). Right: All    
expected reward trials   
from the example cell,    
showing observed  
GCaMP (top) and   
inferred spikes (bottom).   
b​. Mean observed   

GCaMP from population around presentation of expected reward. ​c. Mean inferred spikes from population around presentation of expected                  
reward. ​d. Full duration at half max of cue response in inferred spikes (median = 190.4 ms, Q1 = 170.7 ms, Q3 = 206.0 ms). Vertical bars are                            
interquartile range (Q1 and Q3). ​e. Top left: Schematic showing unexpected omission of reward, where reward is omitted after a 2 s cue                       
presentation that previously predicted reward. Bottom left: Example unexpected omission trial from a single cell, showing observed GCaMP                  
(green) and inferred spikes (black vertical lines). Right: All unexpected omission trials from example cell, showing observed GCaMP (top) and                    
inferred spikes (bottom). ​f​. Mean population observed GCaMP around unexpected omission of reward. ​g. Mean population firing rate from                   
inferred spikes around unexpected omission of reward. Shaded areas are SEM. ​h​. Mean omission response of inferred spikes, where                   
omission response is mean firing rate over 1,300 ms following onset of reward omission, baseline subtracted using the mean firing rate over 1                       
s period before trial start (median = -1.2 Hz, Q1 = -2.2 Hz, Q3 = -0.2 Hz). Neurons that exhibited a significant decrease in firing following                          
reward omission (23/65 neurons; 35.4% of population) are darker green. Vertical bars are interquartile range (Q1 and Q3). ​i​. Scatterplot of                     
expected reward response versus unexpected reward response, using inferred firing rate of each neuron, recapitulates correlations in Eshel et                   
al. 2016. ​j​. Scatterplot of omission response versus unexpected reward response, using inferred firing rate of each neuron, recapitulates                   
correlations in Eshel et al. 2016. Responses in ​i​ and ​j​ are baseline subtracted. 
 

We next examined whether spike inference was able to recover the decrease in tonic firing that occurs                 
following reward omission (sometimes called “pause”, ​Fig. 3e​) ​(39,44,51)​. Inferred spike rates in 35.4%              
of neurons (23/65) displayed a significant decrease in response to reward omission (​Fig. 3e for               
example neuron; Fig. 3g,h, Supp. fig. 7 ​for population summaries; median omission response = -1.2               
Hz, Q1 = -2.2 Hz, Q3 = -0.2 Hz; n = 65 neurons). Though a direct comparison cannot be made,                    
electrophysiology data from a Pavlovian experiment from Eshel et al. (2016) following odor-reward             
pairings revealed that 41.9% of neurons (13/31) exhibited significant decreases in firing rate in              
response to reward omission (median omission response of -1.5 Hz; data not shown; 7 trials per cell                 
were analyzed in order to match the available trial number in the imaging dataset). Thus, spike                
inference is able to recover pauses to reward omission in a similar proportion to that observed with                 
electrophysiology.  
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Finally, it has previously been reported that across DA neurons, responses to unexpected reward are               
positively correlated with responses to expected reward, while unexpected reward responses are            
negatively correlated with responses to reward omission ​(39,51)​. We recovered both of these             
relationships on the basis of inferred spikes (​Fig. 3i,j​). These relationships were not reliably recovered               
directly from GCaMP fluorescence without applying spike inference (​Supp. fig. 8​). This is because, as               
mentioned above, the fluorescence in response to the cue has not returned to baseline at the time of                  
the reward or omission (​Fig. 3b,f​). Therefore, accounting for this baseline offset through spike              
inference avoids inaccuracies in response estimates at the time of reward. 
 
Application of spike inference to ​in vivo DA calcium imaging data collected during a task in                
virtual reality  
 
In addition to the phasic modulation of DA activity in response to reward or reward-predicting cues,                
there are an increasing number of reports suggesting that activity may “ramp” as animals approach a                
reward in space ​(22,52–56)​. Most of these studies were based on calcium imaging ​(22,56)​, or on                
measures of downstream DA release ​(52,53,55)​, but more recently evidence has emerged from ​in vivo               
electrophysiology of ramps in the tonic firing of VTA DA neurons during reward approach ​(54)​.  
 
Thus, a key question is whether spike inference recovers the recently observed upward and downward               
ramps in tonic DA neuron firing. To our knowledge, spike inference has not previously been validated in                 
the context of tonic firing rate modulations in any cell type.  
 
To this end, we applied our spike inference procedure to a recent virtual reality T-maze study with                 
2-photon imaging of DA neurons (​Fig. 4a​) ​(22)​. Again, for these spike estimates, the decay was set                 
to the median decay rate from the ​in vitro measurements at 37 ​°​C ( = 0.970 for GCaMP6f at ​37 ​°​C;                    
= 0.984 for GCaMP6m at ​37 ​°​C at 60 Hz sampling frequency), and the tuning parameter was set to                   
correspond to a mean firing rate of 6 Hz. Ramps in both GCaMP fluorescence and inferred spikes were                  
often evident on single trials (​Fig. 4b-i​). Example neurons with prominent downward or upward ramps               
in GCaMP fluorescence showed corresponding ramps in inferred firing rates consistent with modulation             
of tonic activity (where tonic activity is defined as a firing rate between 1-10 Hz; ​Fig. 4f-k​). To quantify                   
how ramps in GCaMP fluorescence translated to changes in inferred firing rate, for each neuron we                
calculated the linear change in both fluorescence and inferred firing rate over the course of the maze                 
(​Fig. 4l​). Across the population of 303 neurons, there was a strong correlation in the extent (and                 
direction) of change in the fluorescence signal and the inferred spike rates across the maze (correlation                
coefficient R = 0.8328; p = 0.0077; ​Fig. 4l​), with a change in ​∆​F/F of 0.25 from the beginning to the end                      
of the maze associated with a change in firing rate of ~1.9 Hz (​Fig. 4l​). Inferred firing rates increased by                    
a maximum of 6.8 Hz over the course of the maze in the case of upward ramps, and decreased by a                     
maximum of 4.5 Hz for downward ramps (​Fig. 4l​). 
 
These changes in tonic firing rates are consistent with a recent electrophysiology study that showed               
that many VTA DA neurons exhibit upward or downward ramps in tonic firing rate during reward                
approach in virtual reality ​(54)​. Thus, we show that spike inference can produce the subtle,               
slow-timescale changes in tonic firing rates that have been reported in DA neurons as animals               
approach rewards. 
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Figure 4. Upward and downward ramps in inferred spikes during reward approach in a virtual reality environment, in agreement with                    
recent reports from electrophysiology. a. ​Left: Schematic of neural recording and behavioral setup. The mouse navigates a virtual reality                   
(VR) environment and 2p microscope records neural data. Right: Schematic of VR T-maze paradigm. The mouse navigates a linear maze and                     
at the end must turn to the side that featured more cues in the Cue Region to receive reward. ​b​. Example of single trial data from an                           
upward-ramping cell. Both observed GCaMP (green) and inferred spikes ramp upward over time as the mouse moves down the maze                    
(position trace, yellow). ​c​. Example of a single trial from a downward-ramping cell. Both observed GCaMP (green) and inferred spikes ramp                     
downward over time as the mouse moves down the maze (position trace, yellow). ​d​. All trials from the example upward-ramping cell in (​b​) of                        
observed GCaMP by position. ​e​. All trials from the example upward-ramping cell in (​b​) ​showing inferred spikes by position. ​f​. Mean observed                      
GCaMP by position for example upward-ramping cells. ​g​. Mean inferred firing rate by position for example upward-ramping cells. ​h​. All trials                     
from the example downward-ramping cell in (​c​) of observed GCaMP by position. Heatmap color scales constrained to data between 1st and                     
99th percentile. ​i. All trials from the example downward-ramping cell in (​c​) ​showing inferred spikes by position. ​j​. Mean observed GCaMP by                      
position for example downward-ramping cells. ​k​. Mean inferred firing rate by position for example downward-ramping cells. Shaded areas are                   
SEM. ​l​. Scatterplot showing how change in observed GCaMP from beginning to end of maze for each neuron relates to change in inferred                       
firing rate for that neuron. Each data point represents a single neuron and its mean change in observed GCaMP and inferred firing rate. Red                        
line is linear least-squares fit; shaded region is 95% confidence of the fit. 

 

 
 
Discussion 
 
Here, we establish and validate procedures to infer spikes from calcium imaging in DA neurons, making                
use of a recently developed spike inference algorithm ​(4) that depends on only two tuning parameters,                
which can be selected based on knowledge of basic biophysical properties of the cell-type of interest.                
We first validate this approach for spike inference on a new ground-truth dataset that we have                
collected, which consists of simultaneous calcium imaging and electrophysiology recordings in DA            
neurons ​in vitro​. We then apply this same approach to recently published ​in vivo ​DA calcium imaging                 
data during Pavlovian conditioning and virtual reality-based navigation. We find that spike inference             
successfully recapitulates various features of spiking in DA neurons that were previously reported             
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based on electrophysiological measurements, including the magnitude of the phasic unexpected           
reward response, average tonic firing rates, the relationship between expected and unexpected reward             
responses during Pavlovian conditioning, pauses during the omission of expected reward, and the             
recently reported magnitude of upward and downward ramping tonic activity during VR-based            
navigation.  
 
Limitations of spike inference in VTA DA neurons 
 
Despite these successes, we also noted limitations to DA spike inference ​in vivo and ​in vitro​. ​In vitro​,                  
there were some missed or mis-timed spikes. ​In vivo​, we did not recapitulate the observed variability in                 
tonic firing rates, nor the smaller second peak in response to unexpected reward that has been                
previously reported. Since we did not have a true ground-truth dataset for the ​in vivo data, it is                  
impossible to know whether the subtle differences we noted relative to previously published work              
should be attributed to shortcomings of spike inference, differences in behavioral paradigms in our              
imaging study versus the previous electrophysiology study, or some other factor.  
 
One source of discrepancy between spike inference and true spikes is that we are limited to inferring                 
spikes at double the imaging sampling frequency (60 Hz for ​in vivo data, 67 Hz for ​in vitro ​data; see                    
Methods). While average DA neuron phasic firing rates in response to reward are typically <60 Hz (​Fig.                 
2h​), firing rates can momentarily exceed this value. This may be less relevant for our ​in vivo ​analyses,                  
which involved averaging firing rates across trials for a given neuron.  
 
Another source of discrepancy could be caused by limitations in the signal-to-noise of the imaging data.                
While single-spike events are often visually detectable in the fluorescence trace by eye in the ​in vitro                 
data, ​in vivo recordings tend to have lower signal-to-noise ratios that may preclude reliable detection of                
single-spike events ​(57)​. Since we only considered trial-averaged properties, and since phasic DA             
neuron responses even to very small rewards consist of two or more spikes ​(39,58)​, these issues may                 
be less relevant in our data. 
 
Finally, the fact that we did not tune the two free parameters for the spike inference algorithm per                  
neuron in the in vivo ​data could also produce discrepancies. This might be particularly relevant for ,                 
given that we assumed a target firing rate of 6 Hz, whereas in reality VTA DA neuron average firing                   
rates may range between 1-10 Hz ​(36–39,46)​. Thus, examining robustness of any conclusions across a               
range of may be valuable. 
 
Relationship to recent validation of spike inference in cortical neurons 
 
Until recently, systematic comparisons of neural correlates derived from electrophysiology data and            
imaging data were lacking. Recent work has begun to address this gap, by comparing neural tuning                
properties derived from calcium imaging versus electrophysiology data in cortex ​(59,60)​.   
 
Siegle et al.​(59) reported discrepancies in visual cortex between neural correlates based on calcium              
imaging versus electrophysiology, with a larger fraction of responsive neurons from electrophysiology            
and higher stimulus selectivity in calcium imaging, even after spike inference (using the same spike               
inference algorithm we apply in this paper). A forward spike-to-calcium model could not account for               
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these discrepancies, suggesting that it was not due to the efficacy of spike inference. Instead, the                
discrepancy seemed to be caused by a recording bias with electrophysiology towards highly active              
neurons, and also inaccuracies of spike sorting. This conclusion was based on the fact that by biasing                 
the imaging data towards highly active neurons, and also by using stricter cell sorting criteria, the                
discrepancies could be largely eliminated. By contrast, Wei et al.​(60) found that the discrepancies they               
observed in tuning properties in anterolateral motor cortex between imaging and electrophysiology            
could only be partially accounted for by spike inference, but could be accounted for by a forward                 
spike-to-calcium model. This may suggest limitations in the application of their spike inference             
algorithms to their data. 
 
In our case of VTA DA neuron data, as discussed above, we only noticed minor discrepancies between                 
inferred spikes from ​in vivo imaging and previously reported electrophysiology data. The conclusions             
from the Siegle paper that discrepancies may be due primarily to recording biases and poorly isolated                
units in electrophysiology data may explain our success, as these issues may be less applicable for our                 
data. In particular, our focus on a genetically identified cell-type would help eliminate recording biases,               
while the phototagging used for the electrophysiology data collection requires well-isolated units.            
Finally, the challenge of correctly selecting the tuning parameters for spike inference, which was likely               
an issue for Wei et al., is less likely a problem with our spike inference algorithm, which has only two                    
free parameters that are likely to be relatively consistent within a genetically-identified population. 
 
In summary, we present and validate a simple and successful method to infer spikes from VTA DA                 
neurons. We expect this straightforward approach to generalize to other subpopulations of genetically             
identified subcortical neurons.  
 
 
 
METHODS 
 
Animals and surgery 
All experimental procedures were conducted in accordance with the National Institutes of Health             
guidelines and were reviewed by the Princeton University Institutional Animal Care and Use Committee              
(IACUC). A total of 39 mice were used across all experiments. We used either DAT::IRES-Cre mice                
(n=17, The Jackson Laboratory strain 006660; extensively characterized in ​(61)​) or mice resulting from              
the cross of DAT​IRES​cre ​mice and the GCaMP6f reporter line Ai148 mice ​(62) (n=22, Ai148xDAT::cre, The                
Jackson Laboratory strain 030328). 
 
For the slice recording experiments, we used male and female Ai148xDAT::cre mice (n=8) and              
DAT::IRES-Cre mice (n=3). For the Pavlovian conditioning experiments, male and female           
Ai148xDAT::cre mice (n=8) were used. For the virtual reality experiments, male DAT::IRES-Cre mice             
(n=14) and male Ai148xDAT::cre mice (n=6) were used. 
 
Mice were maintained on a 12-hour light on – 12-hour light off schedule. All procedures were conducted                 
during their light off period. Mice were 2-6 months old. 
 
For Pavlovian and virtual reality experiments, mice between 8-12 weeks underwent sterile stereotaxic             
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surgery under isoflurane anesthesia (3-4% for induction, 0.75-1.5% for maintenance). The skull was             
exposed and the periosteum removed using a delicate bone scraper (Fine Science Tools). The edges               
of the skin were affixed to the skull using a small amount of Vetbond (3M). We injected 800 nL of a viral                      
combination of AAV5-CAG-FLEX-GCaMP6m-WPRE-SV40 (n=12) or     
AAV5-CAG-FLEX-GCaMP6f-WPRE-SV40 (n=2; UPenn Vector Core) with 1.6x10 ​12​/mL titer and         
AAV9-CB7-CI-mCherry-WPRE-rBG (UPenn Vector Core) with 2.3x10 ​12​/mL titer. Two such injections          
were made at stereotactic coordinates: 0.5 mm lateral, 2.6 or 3.8 mm posterior, 4.7 mm in depth                 
(relative to bregma). After the injections, we implanted a 0.6 mm diameter GRIN lens (GLP-0673,               
Inscopix or NEM-060-25-10-920-S-1.5p, GrinTech) in the VTA using a 3D printed custom lens holder.              
After implantation, a small amount of diluted metabond cement (Parkell) was applied to affix the lens to                 
the skull using a 1 ml syringe and 18 gauge needle. After 20 minutes, the lens holder grip on the lens                     
was loosened while the lens was observed through the microscope used for surgery to ascertain there                
was no movement of the lens. Then, a previously described titanium headplate was positioned over the                
skull using a custom tool and aligned parallel to the stereotax using an angle meter ​(2)​. The headplate                  
was then affixed to the skull using metabond. A titanium ring was then glued to the headplate using                  
dental cement blackened with carbon. 
 
For ex vivo recordings of GCaMP6m, mice between 6-7 weeks underwent stereotaxic surgery under              
isoflurane anesthesia (3-4% for induction, .75-1.5% for maintenance). The skull was exposed and the              
periosteum removed using a delicate bone scraper (Fine Science Tools). The edges of the skin were                
affixed to the skull using a small amount of Vetbond (3M). We injected 500 nL of                
AAV5-CAG-FLEX-GCaMP6m-WPRE-SV40 (n=3) with 1.6x10 ​12​/mL titer. Injections were made at         
stereotactic coordinates: 0.5 mm lateral, 3.2 mm posterior, 4.75 mm in depth (relative to bregma). 

Virtual-reality behavioural system 
To enable a navigation-based decision-making task under head-fixed conditions, we used a            
virtual-reality system similar to that previously described ​(22,63,64) (​Fig. 4a​). Mice were held             
head-fixed under a two-photon microscope using two custom headplate holders and ran on an              
air-supported, Styrofoam spherical treadmill that was 8 inches (20.3 cm) in diameter. We found that the                
precise alignment of the mouse on top of the sphere was important for maintaining good behavioural                
performance; therefore, we used a custom alignment tool for this purpose. The sphere’s movement              
were measured using an optical flow sensor (ADNS3080) located underneath the sphere and controlled              
by an Arduino Due; this information was sent to the virtual-reality computer, running the ViRMEn               
software engine ​(65) (https://pni.princeton.edu/pni-software-tools/virmen) under MATLAB, which       
displayed and controlled the virtual-reality environment. 
 
The display was projected using a DLP projector (Mitsubishi HD4000) running at 85 Hz onto a custom                 
toroidal screen with a 270° horizontal field of view. Reward delivery was accomplished by sending by a                 
TTL pulse from the virtual-reality computer to a solenoid valve (NResearch), which released a drop of a                 
water to a lick tube located slightly in front and below the mice’s mouth. The tone signifying trial failure                   
was played through conventional computer speakers (Logitech). The setup was enclosed in a             
custom-designed cabinet built from optical rails (Thorlabs) and lined with sound-absorbing foam            
sheeting (McMaster-Carr). 

In vivo optical imaging and data acquisition 
Imaging was performed using a custom- built, virtual-reality-compatible two-photon microscope ​(64)​.           
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The microscope was equipped with a pulsed Ti:sapphire laser (Chameleon Vision, Coherent) tuned to              
920 nm. The scanning unit used a 5-mm galvanometer and an 8-kHz resonant scanning mirror               
(Cambridge Technologies). The collected photons were split into two channels by a dichroic mirror              
(FF562-Di03, Semrock). The light for the respective green and red channels was filtered using              
bandpass filters (FF01-520/60 and FF01-607/70, Semrock), and then detected using GaAsP           
photomultiplier tubes (1077PA-40, Hamamatsu). The signal from the photomultiplier tubes was           
amplified using a high-speed current amplifier (59-179, Edmund). Black rubber tubing was attached to              
the objective (Zeiss 20×, 0.5 NA) as a light shield covering the space from the objective to the titanium                   
ring surrounding the GRIN lens. Double-distilled water was used as the immersion medium. The              
microscope could be rotated along the mediolateral axis of the mice, allowing alignment of the optical                
axes of the microscope objective and GRIN lens as previously described for microprism imaging ​(64)​.               
Control of the microscope and image acquisition was performed using the ScanImage software (Vidrio              
Technologies37) that was run on a separate (scanning) computer. Images were acquired at 30 Hz at a                 
resolution of 512 × 512 pixels. Average beam power measured at the front of the objective was 40–60                  
mW. Synchronization between the behavioural logs and acquired images was achieved by sending             
behavioural information each time the virtual-reality environment was refreshed from the virtual-reality            
computer to the scanning computer via an I2C serial bus; behavioural information was then stored in                
the header of the image files.  
 
Behavioral training 
Seven days after the surgery, mice were started on a water restriction protocol, with a daily allotment of                  
water of 1–1.5 ml. Mice were monitored for signs of dehydration or reductions in body mass below 80%                  
of the initial value. If any of these conditions occurred, mice were given ad libitum access to water until                   
recovery. The animals were handled daily from the start of water restriction. Five days after starting                
water restriction and handling, mice began training in the behavioural setup. Training consisted of a               
shaping procedure with nine levels of T-mazes with progressively longer stem length and cognitive              
difficulty. After shaping concluded, in each session the first few trials (5–30) were warm-up trials drawn                
from mazes 5–8, and then trials from the final maze (#9) were used for the remainder of the session.                   
Warm-up trials were excluded from all analyses presented in the paper. The mice typically received               
their daily allotment of water during task performance; if not, the remainder was provided to them at the                  
end of the day.  

Details of the virtual reality behavioral task 
At the beginning of each trial, mice were presented with the start of a virtual T-maze. After 30 cm (start                    
region; -30 cm to 0 cm in ​Fig. 4​) the cue region began, in which cues randomly appeared on either side                     
of the corridor. The portion of the maze where cues were presented (cue region) was 220 cm long (0                   
cm to 220 cm in ​Fig. 4​), and after it the stem of the T-maze continued for another 80 cm in which no                       
cues were presented (delay region; 220 cm to 300 cm in ​Fig. 4​). At the end of the T-maze, the mouse                     
had to enter one of the arms.Turning into the correct (more cues) side would elicit a water reward (6.4                   
μl), whereas an incorrect choice elicited a tone (pulsing 6–12-kHz tone for 1 s). At the time of reward or                    
tone delivery, the visual environment froze for 1 s, and then disappeared for 2 s (after a successful trial)                   
or 5 s (after a failed trial) before another trial was started. Cue distribution is described in detail in our                    
previous methods ​(22)​.  
 
Pavlovian conditioning and unexpected reward behavioral paradigm 
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After water restriction and handling, mice were habituated to head fixation for 2–3 sessions. Training               
consisted of 5 sessions (1 session per day); each session consisted of 50 reward deliveries (8 μL of                  
water reward). During training, each reward was preceded by a 2 s tone that ended at the time of                   
reward delivery. The time between a reward and the next tone delivery was sampled from an                
exponential distribution with a mean of 40 s. The tone consisted of a sum of multiple sine waves with                   
frequencies of 2, 4, 6, 8 and 16 kHz, and an amplitude of 70 dB. All of the mice exhibited anticipatory                     
licking by the end of the five days (increase in lick rate after tone presentation but before reward                  
delivery). Some of the mice were previously trained for several days in a similar protocol in which the                  
tone amplitude was 60 dB and the time between reward and subsequent tone was sampled from a                 
uniform distribution between 5 and 15 s; these mice did not exhibit anticipatory licking until trained in                 
the final protocol. After training, mice underwent a single test session that consisted of 64 trials; 50 of                  
those trials were identical to the training trials (tone followed by reward), 7 trials were unexpected                
reward trials (reward delivery with no preceding tone) and 7 trials were unexpected omissions (tone not                
followed by reward). In all cases, the intertrial interval was sampled from an exponential distribution               
with a mean of 40 s. Trial identity was sampled randomly with the following exceptions: (1) the first five                   
trials were standard trials (tone plus reward); (2) the first two non-standard trials were unexpected               
reward trials.  

Unexpected reward paradigm from Eshel et al. 2016 
We used previously collected in vivo electrophysiology data as a comparison to our inferred spike data                
during unexpected delivery of reward ​(39)​. After >1 week of recovery from stereotactic surgery involving               
implantation of a headplate and microdrive containing optrodes, mice were water-restricted. Weight            
was maintained above 90% of baseline body weight. Animals were head-restrained and habituated for              
1-2 d before training. Mice underwent a variable-reward task, where mice received either water reward               
that was either predicted by odor delivery (“trial type 1”; 45% of all trials), or where water rewards of                   
various sizes were delivered without any odor (“trial type 2”; 45% of all trials). For both experiments,                 
reward sizes were chosen pseudorandomly from the following set: 0.1, 0.3, 1.2, 2.5, 5, 10, or 20 μL. For                   
our comparison, we only looked at unexpected delivery of 10 μL rewards. We used these trials because                 
they most closely matched the conditions of our unexpected reward trials (where unexpected 8 μL               
water rewards were delivered in a similar head-fixed protocol). We used electrophysiology recorded             
extracellularly from VTA during this task. Electrophysiology methods were previously described in detail             
(39)​. 

Motion correction procedure for in vivo fluorescence data 
Deep brain imaging can be associated with spatially non-uniform fast motion (frame to frame), as well                
as spatially non-uniform slow drift of the field of view (over several minutes). To perform accurate                
motion correction despite the spatial non-uniformity, we divided the video into small regions (“patches”)              
that had relatively uniform motion, and separately corrected the motion within each patch, as described               
below. Motion correction was performed on the red channel of the recording when available, otherwise               
it was performed on the green channel (​n ​= 9). 
 
As described previously ​(22)​, before dividing the video into patches, we first performed rigid motion               
correction using a standard normalized cross-correlation method, to eliminate any spatially uniform            
motion (‘matchTemplate’ function in the openCV package in Python). This correction was performed on              
non-overlapping 50 s video clips to eliminate concerns that slow drift over the course of minutes would                 
degrade performance. The template for the cross-correlation was calculated by dividing each clip into              
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non-overlapping sections of 100 frames, calculating the mean image of each section and obtaining the               
median of the mean images. Before these motion correction steps, the video was pre-processed as               
follows: (i) thresholded by subtracting a constant number and setting negative values to 0, such that the                 
lower roughly 50% of pixels was 0; (ii) using the openCV function ‘erode’ (with a scalar ‘1’ kernel); and                   
(iii) convolved with a Gaussian (s.d. = 2 pixels). Motion correction and template calculation were               
performed iteratively ten times or until all absolute shifts were less than one pixel in both axes. Finally,                  
the 50 s clips had to be aligned to each other. This required generating a ‘master template’ for the                   
entire video, and then using the same normalized cross-correlation procedure as before            
(‘matchTemplate’ function). The master template was calculated by taking the median of the templates              
of all clips. 
 
The next step of motion correction involved compensating for spatially non-uniform, slow drift by              
estimating the drift in local patches. Patches were defined manually around neurons of interest to               
contain objects that drifted coherently (patch width 80–160 pixels). To estimate the drift of each patch                
over time, we used a non-rigid image registration algorithm (demons algorithm, ‘imregdemons’ function             
in MATLAB). This algorithm outputs a pixel-by-pixel correction. However, direct application of this             
correction risks distorting the shape of the neurons or the amplitude of the signals. Therefore, we                
applied a uniform correction for each patch, based on the average shift of all pixels in the patch (based                   
on the demons output). We implemented the demons algorithm on the templates from the 50 s clips                 
described in the previous paragraph, again using the median of these templates as the master               
template. The registration and master templates were computed iteratively 20 times, or until the              
increase in the average correlation between each corrected template and the overall template was less               
than the s.e.m. of these correlations. We found that the performance of the non-rigid registration               
improved if the templates were first processed through a local normalization procedure ​(66)​. 
 
Finally, we performed standard rigid motion correction using the normalized cross-correlation method            
on each patch and clip. We then repeated the rigid motion correction after taking a rolling mean of                  
every two frames and downsampling the video by a factor of two. This increased the signal strength; we                  
used this downsampled video for subsequent analysis. After correcting for motion within clips, we had               
to correct across clips. To this end, we performed rigid motion correction on the clip templates. The                 
motion correction code can be found in: https://github.com/benengx/Deep-Brain-Motion-Corr.  

In vitro ​ recordings to compare GCaMP6 fluorescence with electrophysiology in DA neurons 
In order to compare GCaMP6f and GCaMP6m fluorescence with spike times in DA neurons, we               
performed ​ex vivo slice imaging and electrophysiological recordings in Ai148xDAT::Cre mice or            
DAT::IRES-Cre mice virally expressing GCaMP6m. Mice were anesthetized with an i.p. injection of             
Euthasol (0.06ml/30g) and decapitated. After extraction, the brain was immersed in ice-cold            
carbogenated NMDG ACSF (92 mM NMDG, 2.5 mM KCl, 1.25 mM NaH2PO4, 30 mM NaHCO3, 20                
mM HEPES, 25 mM glucose, 2 mM thiourea, 5 mM Na-ascorbate, 3 mM Na-pyruvate, 0.5 mM                
CaCl2·4H2O, 10 mM MgSO4·7H2O, and 12 mM N-Acetyl-L-cysteine) for 2 minutes. The pH was              
adjusted to 7.3-7.4. Afterwards coronal slices (300um) were sectioned using a vibratome (VT1200s,             
Leica) and then incubated in NMDG ACSF at 34°C for 15 minutes. Slices were then transferred into a                  
holding solution of HEPES ACSF (92 mM NaCl, 2.5 mM KCl, 1.25 mM NaH2PO4, 30 mM NaHCO3, 20                  
mM HEPES, 25 mM glucose, 2 mM thiourea, 5 mM Na-ascorbate, 3 mM Na-pyruvate, 2 mM                
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CaCl2·4H2O, 2 mM MgSO4·7H2O and 12 mM N-Acetyl-l-cysteine, bubbled at room temperature with             
95% 02/ 5% CO2) for at least 45 mins until recordings were performed. 

 
During cell-attached recordings, slices were perfused with a recording ACSF solution (120 mM NaCl,              
3.5 mM KCl, 1.25 mM NaH2PO4, 26 mM NaHCO3, 1.3 mM MgCl2, 2 mM CaCl2 and 11 mM                  
D-(+)-glucose, continuously bubbled with 95% O2/5% CO2) held at either 30°C or 37°C. Picrotoxin (100               
µM) was added to the recording solution to block tonic inhibition and promote spontaneous activity.               
Cell-attached recordings were performed using a Multiclamp 700B (Molecular Devices, Sunnyvale, CA)            
using pipettes with a resistance of 4-6 MOhm filled with a solution identical to the recording ACSF.                 
Infrared differential interference contrast–enhanced visual guidance was used to select neurons that            
were 3–4 cell layers below the surface of the slices, which were held at room temperature while the                  
recording solution was delivered to slices via superfusion driven by a peristaltic pump. Cell-attached              
recordings were collected once a seal (>50 MOhm to ~1 GOhm) between the recording pipette and the                 
cell membrane was obtained. Action potential currents were recorded in voltage-clamp mode with             
voltage clamped at 0 mV. Cell-attached currents were low-pass filtered at 1 kHz and digitized and                
stored at 10 kHz (Clampex 9; MDS Analytical Technologies). All experiments were completed within 4               
hours after slicing the brain. Fluorescence was imaged using a CMOS camera (ORCA-Flash 2.8,              
Hamamatsu) at 33.333 Hz (30 ms exposure windows) using a GFP filter cube set (exciter ET470/40x,                
dichroic T495LP, emitter ET525/50m).  
 
Motion correction procedure for ​in vitro ​ data 
On our ​in vitro imaging data, we performed rigid motion correction using a standard normalized               
cross-correlation method, to eliminate any spatially uniform motion (‘matchTemplate’ function in the            
openCV package in Python). The template for the cross-correlation was hand-selected as a frame near               
the middle of the recording when cell fluorescence was relatively bright. Since these recordings were               
usually around 2 mins in length, we performed motion correction on the entire recording rather than                
sectioning the recording into individual “patches.” 
 
ROI selection and calculation of raw GCaMP for ​in vivo ​ and ​in vitro ​data 
As previously described ​(22)​, to determine ROIs for fluorescence measurement, we used the mean (​in               
vivo only) or S.D. (​in vivo and ​in vitro​) projection of the recording to generate a clear outline of the cell                     
body. ROIs were defined manually using this S.D. projection. An initial automatic annulus was              
generated by enlarging the borders of the ROI twice (by 5 μm and 10 μm); the annulus was the shape                    
contained between the two enlarged borders, where we expect that observed activity would be due to                
the neuropil but not the cell itself. Next, we manually reshaped the annulus region to avoid any visible                  
dendrites, processes or cell bodies, while approximately maintaining its original area. 
 
To correct for neuropil contamination in the ​in vivo and ​in vitro imaging data, we subtracted a scaled                  
version of the annulus fluorescence from the raw trace: ​F​corr​(​t​) ​= F​raw​(​t​) ​− Υ*F​annulus​(​t​), in which ​F​raw​(​t​) is                  
the mean fluorescence in the ROI of each neuron at time ​t​; ​F​annulus​(​t​) is the mean fluorescence in the                   
corresponding annulus ROI at time ​t​; and ​Υ ​is the correction factor ​(1,67)​. The correction factor is                 
intended to reflect the fraction of the ​z​-section that is generated by the neuropil versus the cell that is                   
being imaged. The correction factor used was 0.58 for the ​in vivo ​data and 1 for the ​in vitro data. For                     
the ​in vitro data, spike time estimates and decay rate estimates were similar whether a correction factor                 
of 1 or 0.7 was used. 
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In vitro ​ data organization 
The in-vitro data consist of 12 recordings of GCaMP6f at 30 ​°​C; 9 recordings of GCaMP6f at 37 ​°​C; and                  
21 recordings of GCaMP6m at 37 ​°​C. Each recording consists of a time series of fluorescence               
intensities obtained via calcium imaging at 33.33 Hz as well as a set of ground-truth spike times                 
obtained via an electrode. We defined bursting as a series of at least 3 spikes with a maximum                  
inter-spike interval of 100 ms. Because we anticipated burst activity in the ​in vivo experiments, we                
focused our analysis on recordings where the fraction of spikes within a burst was >=10%. Recordings                
where the fraction of spikes within a burst was <10% were deemed pacemaker cells and were excluded                 
from analysis.  
 
In vitro ​ data preprocessing 
We performed data preprocessing to calculate ​∆​F/F and to further adjust for changes in baseline               
fluorescence. 
 
First, we shifted and scaled ​the fluorescence by the baseline fluorescence to produce a                

normalized trace, , where is an estimate of the baseline           

fluorescence at . We estimated by the percentile of where             
, corresponding to a 60 second lag. 

 
To further remove linear trends that may occur over the course of an entire fluorescence recording, we                 
computed the residuals from ​a robust linear regression of onto time with Gaussian mixture errors,                
as in Theis et al. (2016)​. Then, we subtracted the ​1st percentile from these residuals, and divided by                  

the difference between the 80th and 1st percentiles. We let denote the resulting scaled and shifted                 
residuals. 
 
Next, to allow for the possibility that more than one spike occurs within a (1/33.33)s window, we                 

resampled the data from 33.33 Hz to 66.66 Hz using the scipy.signal.resample function in python.                
We call this time series the fluorescence trace, or the GCaMP ​∆​F/F, and denote it by for                  

 time steps, where now the length of each time step is 1/66.66 seconds. 
 
In vitro ​ data analysis 
 
Statistical model 
In order to infer spike times on the basis of the calcium imaging data, we consider a model for calcium                    
dynamics proposed by ​(14) and ​(8)​. We view the fluorescence trace at the th time step as a noisy                    
observation of the underlying calcium concentration , which is assumed to decay with rate              

, unless there is a spike. A spike causes an instantaneous increase in the calcium               
concentration. The full model is  
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where  unless there is a spike at the th timepoint, in which case .  
 
As previously discussed ​(4,5)​, a natural estimate of the spike times, i.e. the times such that ,                  
is obtained by solving the non-convex optimization problem 
 

 
 

Here, is a tuning parameter that controls the trade-off between the goodness of fit to the data--as                 
measured by the residual sum of squares between estimated calcium and the observed             
fluorescence--and the number of inferred spikes. This optimization problem is non-convex, but can be              
solved for the global optimum using a dynamic programming strategy laid out in Jewell et al. (2019).                 
We say that we have inferred a spike if . Smaller values of result in more inferred                 
spikes and thus a higher inferred firing rate (number of inferred spikes / length of recording), whereas                 
larger values of result in fewer inferred spikes, and thus a smaller inferred firing rate.  
 
This model assumes that a spike leads to an instantaneous increase in the calcium; in reality, the                 
calcium increase due to a spike is not instantaneous. Therefore, after fitting the model, we shift the                 
inferred spike times by 4 time steps ( ).  
 
To fit this model, we must specify the decay rate  and a value of the tuning parameter .  
 
Estimating the decay rate  
According to the statistical model for calcium decay, the rate of calcium decay is constant across                 
multiple inter-spike regions. Thus, given knowledge of the spiking events from the ground-truth data, we               
can estimate the decay rate from multiple inter-spike segments.  
 
More precisely, given spike indices (i.e., the times where there is at least one spike) ,                 

we defined as the index between and with maximal fluorescence value,              

. Similarly, we let be the index with minimal fluorescence           
value. These indices segment the fluorescence trace from peak-to-trough between spikes. Of these, we              
considered segments whose peak-to-trough distance is at least  time steps, 
 

 
 
Then we estimated the decay rate by finding the value of that minimizes the residual sum of squares                   
of the best exponential curve to each of these segments, 
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This process is illustrated in ​Fig. 1d​. Here, values of the fluorescence trace whose indices are                
contained in are colored blue. Using these points, is the value that gives the lowest total residual                   
sum of squares obtained by fitting exponential curves to each set of points. For each segment, the best                  
exponential fit with decay rate  is plotted in red.  
 
Estimating the tuning parameter  
The tuning parameter controls the tradeoff between goodness of fit to the data and the number of                  
inferred spikes. A smaller value of leads to a higher inferred firing rate, and a larger value leads to a                     
lower inferred firing rate.  
 
On the ​in vitro data, we set so that the inferred firing rate equals the true firing rate. In greater detail,                      
we defined to be the value that minimizes the difference between the number of inferred spikes and                 
the number of time bins (of duration (1 / 66.66)s) with at least one spike,  
 

 
 

where the inferred spikes were obtained by solving the optimization problem with the              
tuning parameter and setting , and where is the number of time bins with at                
least one ground-truth spike. We efficiently computed ​ using binary search. 
 
Assessing model performance 
To assess whether the inferred spikes agree with the ground-truth spikes, we used the van Rossum                
distance metric ​(40,41)​. This metric measures the distance between two discrete vectors of spike times               

and by first mapping each to a continuous space and then using the               
usual Euclidean distance between two functions. Specifically, a discrete vector is mapped to a               
continuous function, , where  is the kernel 
 

 
 

and where is a time-scale parameter. The van Rossum distance between two spike               

trains  and  is given as the distance between the induced functions  and , 

 
 
 
 
In vivo ​ data analysis 
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Fluorescence data preprocessing  
The same data preprocessing pipeline described above in the ​In vitro data preprocessing ​section              
was used to de-trend using a robust linear regression, subtract the 1st percentile, scale by the                
difference between the 80th and 1st percentiles,  and then upsample from 30 Hz to 60 Hz.  
 
Decay rate determination 
We used the decay rates estimated from the ​in vitro experiment (​Fig. 1d​) for the ​in vivo analysis. In                   
particular, we calculated a median decay rate for each GCaMP indicator and temperature based on the                
in vitro data. We adjusted these median decay rates to account for the difference in recording                
frequency between the ​in vitro​ and ​in vivo​ data (the latter was recorded at 60 Hz), 
 

decay rate at 60 Hz = 1 - (66.66 / 60.00) * (1 - decay rate at 66.66 Hz). 
 
The adjusted median decay rate for the appropriate GCaMP indicator ( = 0.970 for GCaMP6f at                
37 ​°​C;  = 0.984 for GCaMP6m at ​37 ​°​C) is used for all ​in vivo​ analysis.  

 
Tuning parameter determination 
We use binary search to identify a value of the tuning parameter that results in a set of inferred                    
spikes with a target average firing rate r. In particular, we solve  
 

 
 
where T denotes the length of the recording in time steps. For the ​in vivo analysis, our target firing rate                    
was 6 Hz ​(36–39,46)​.  
 
Analysis of firing rate data in unexpected reward and Pavlovian conditioning experiment 
For the unexpected reward and Pavlovian conditioning data (​Figs. 2c, 3e, 3h​), peristimulus time              
histograms (PSTHs) were constructed using electrophysiology and inferred spike times. For a given cell              
and trial type, we found all spikes that occurred within some window (-4 s to 4 s) of the behavioral                    
event. Electrophysiology spike times were organized into 1 ms time bins, whereas inferred spike times               
were rounded to the nearest 1 ms. For each neuron, and for each trial type, the mean instantaneous                  
firing rate at each time bin was calculated by summing the number of spikes occurring within that 1 ms                   
time bin across trials, and dividing by the product of the number of trials and the bin width (1/1000 ms).                    
We then convolved this mean firing rate with a Gaussian kernel (width = 200 ms, SD = 40 ms;                   
normalized such that the sum of the kernel equaled 1), producing a smooth PSTH for each neuron. The                  
population firing rate PSTHs (​Figs. 2e-f, 3c,g​), was calculated as the average of the individual cells’                
smooth PSTHs. 
 
For a given cell, mean firing rates for a given period were calculated by taking the total number of                   
spikes in some time window, and dividing by the product of the width of that window and the number of                    
relevant trials. We calculated the baseline firing rate over a 1 s period immediately before reward                
delivery (for unexpected reward trials) or cue onset (for expected reward and reward omission trials).               
Cue, reward, and omission responses were baseline-subtracted using the baseline firing rates            
calculated across those respective trials. The time windows for cue, reward, and reward omission              
responses were selected for consistency with the Eshel et al. experiments ​(39)​. The responses to               
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unexpected and expected reward were calculated by finding the mean firing rate over a 600 ms window                 
after reward onset. The response to cue presentation was calculated by finding the mean firing rate a                 
500 ms window beginning 150 ms after cue onset. The response to reward omission was calculated by                 
finding the mean firing rate over a 1,300 ms window after reward omission onset. Peak amplitudes of                 
cue and reward responses were calculated as the largest peak of that cell’s smooth PSTH in the                 
respective response window. Full duration at half max of cue and reward responses were calculated               
using the width of the largest peak, as measured at half the max value, of the smooth PSTH in the                    
response window. 
 
To detect significant changes in response to reward omission for a given neuron, for each trial we                 
calculated the firing rate in a 1 s window prior to cue onset and the firing rate in a 1,300 ms window                      
following omission onset. We performed a paired t-test to determine whether the firing rates during the                
omission window were significantly different from baseline, and categorized a neuron as having a              
significant omission response if the t-test rejected the null hypothesis at level p = 0.05 and the mean                  
omission response was < 0 Hz.  
 
Analyzing GCaMP fluorescence and inferred spike rates by maze position in the VR task 
In Figure 4, we plotted GCaMP fluorescence and inferred spike rates as a function of position. To                 
smooth this data for visualization (​Fig. 4g,k​), for a given cell we calculated moving averages of GCaMP                 
fluorescence and inferred spike rate using a 10 cm window moved at 1 cm intervals along the maze. To                   
compute the inferred spiking rate by position, we divided the number of inferred spikes within a given                 
10 cm window by the amount of time spent in that window. We then averaged GCaMP and inferred                  
spike rates across trials to generate cell averages (​Fig. 4g,k​). 
 
Quantifying ramps in VR task using GCaMP fluorescence and inferred spikes 
To describe linear ramps by position in each neuron (​Fig. 4l​), we performed a linear regression of the                  
observed GCaMP fluorescence or the inferred spike rates onto the mouse’s position. We calculated the               
mean inferred spike rates and GCaMP fluorescence over maze positions using the same procedure for               
Fig 4 g,k​, except that we used non-overlapping 10 cm position bins (with edges at maze positions -30                  
and 290 cm), where the positional value was the center of that bin. For ​Fig. 4l​, we calculated the linear                    
change in GCaMP or inferred spike rate for each neuron by multiplying the position coefficient of its                 
respective linear model by the length of the maze (290 cm).  
 
Code availability 
The code for calcium imaging data preprocessing, decay rate estimation, and spike inference is              
available on github (​https://github.com/jewellsean/spike_tools​).  
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Supplementary figures 
 

 
 
Supplementary figure 1. Identification of pacemaker cells by absence of phasic activity, and decay              
statistics for pacemaker cells​. ​a. Percent of spikes that occurred within a burst in a previously collected in vivo                   
electrophysiology dataset (Eshel et al., 2016). A burst was defined by a series of at least 3 spikes with <= 100 ms                      
between each spike. All in vivo electrophysiology cells had >10% of spikes within a burst. This was chosen as the                    
cut-off for inclusion in in vitro analysis. ​b. Percent of spikes that occured within a burst for all recordings in the                     
GCaMP6f at 30 ​°​C, GCaMP6f at 37 ​°​C, and GCaMP6m at 37 ​°​C groups. Cells with <10% of spikes occurring within                  
a burst were excluded from group analysis, since they featured little or no phasic activity. ​c. Left: Estimated decay                   
rates for pacemaker cells for GCaMP6f at 30 ​°​C (n = 4 recordings across 2 cells; median decay rate = 0.974, Q1 =                      
0.969, Q3 = 0.980), GCaMP6f at 37 ​°​C (n=9 recordings across 7 total cells; median decay rate = 0.969, Q1 =                    
0.965, Q3 = 0.985), and GCaMP6m at 37 ​°​C (n=2 recordings from 1 cell; median decay rate = 0.986, Q1 = 0.982,                     
Q3 = 0.989). Right: Half decay time for pacemaker cells for GCaMP6f at 30 ​°​C (median = 0.400 s, Q1 = 0.337 s,                      
Q3 = 0.530 s), GCaMP6f at 37 ​°​C (median = 0.332 s, Q1 = 0.291 s, Q3 = 0.742 s) and GCaMP6m at 37 ​°​C                       
(median = 0.764 s, Q1 = 0.583 s, Q3 = 0.944 s). 
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Supplementary figure 2. Mean firing frequency in bursty cells during in vitro recordings. ​Mean spike               
frequency during the simultaneous calcium imaging and electrophysiology in vitro experiment (GCaMP6f at 30 ​°​C,              
n=12 recordings from 9 total cells, median firing rate = 4.2 Hz, Q1 = 2.8 Hz, Q3 = 4.8 Hz; GCaMP6f at 37 ​°​C, n=9                        
recordings from 5 total cells, median firing rate = 6.5 Hz, Q1 = 5.9 Hz, Q3 = 8.6 Hz; GCaMP6m at 37 ​°​C, n=19                       
recordings from 9 total cells, median firing rate = 4.7 Hz, Q1 = 3.3 Hz, Q3 = 6.7 Hz). Vertical bars are interquartile                       
range (Q1 and Q3). 
 
 

24 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 6, 2020. ; https://doi.org/10.1101/2020.12.05.412965doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.05.412965


 
 
Supplementary figure 3. Example traces from all bursty recordings in GCaMP6f 30​°​C group. Examples of               
correspondence between observed GCaMP (black line, top) and estimated calcium (blue line, top), and observed               
spikes (black dashes, bottom) and inferred spikes (blue dashes, bottom) for each recording in GCaMP6f 30 ​°​C                
group. Traces are 20 s long. Scale bars are 1 ​∆​F/F and 5 s.  
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Supplementary figure 4. Example traces from all bursty recordings in GCaMP6f 37​°​C group. Examples of               
correspondence between observed GCaMP (black line, top) and estimated calcium (green line, top), and              
observed spikes (black dashes, bottom) and inferred spikes (green dashes, bottom) for each recording in               
GCaMP6f 37 ​°​C group. Traces are 20 s long. Scale bars are 1 ​∆​F/F and 5 s.  
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Supplementary figure 5. Example traces from all bursty recordings in GCaMP6m 37​°​C group. Examples of               
correspondence between observed GCaMP (black line, top) and estimated calcium (orange line, top), and              
observed spikes (black dashes, bottom) and inferred spikes (orange dashes, bottom) for each recording in the                
GCaMP6m 37 ​°​C group. Traces are 20 s long. Scale bars are 1 ​∆​F/F and 5 s.  
 
 
 
 
 

 
Supplementary figure 6. Mean cue and expected reward responses in inferred spikes. a. Left: Mean cue                
response, where cue response is the mean firing rate in a 500 ms period beginning 150 ms after cue onset,                    
baseline subtracted using the mean firing rate over a 1 s period before cue (median = 7.3 Hz, Q1 = 4.7 Hz, Q3 =                        
10.0 Hz). Right: Mean expected reward response, where reward response is the mean firing rate over the first 600                   
ms following reward presentation, baseline subtracted using the mean firing rate over a 1 s period before cue                  
(median = 3.8 Hz, Q1 = 2.7 Hz, Q3 = 5.6 Hz). ​b. Left: Peak cue response amplitude in inferred spikes, where                      
peak is maximum value of PSTH in the 500 ms cue period (median = 26.5 Hz, Q1 = 18.6 Hz, Q3 = 32.9 Hz).                        
Right: Peak expected reward response amplitude in inferred spikes, where peak is maximum value of PSTH in                 
the first 600 ms period following reward presentation (median = 16.7 Hz, Q1 = 12.8 Hz, Q3 = 18.9 Hz). ​c. Left:                      
Full duration at half max of cue response in inferred spikes (median = 190.4 ms, Q1 = 170.7 ms, Q3 = 206.0 ms).                       
Right: Full duration at half max of expected reward response in inferred spikes (median = 164.9 ms, Q1 = 149.8                    
ms, Q3 = 189.5 ms). Vertical bars are interquartile range (Q1 and Q3). 
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Supplementary figure 7. Mean cue and omission responses in inferred spikes during omission trials. a.               
Mean cue response during omission trials, where cue response is the mean firing rate over first 500 ms following                   
cue presentation, baseline subtracted using the mean firing rate over a 1 s period before cue (median = 6.4 Hz,                    
Q1 = 3.7 Hz, Q3 = 9.3 Hz). ​b. Peak cue response amplitude in inferred spikes during omission trials, where peak                     
is maximum value of PSTH in the first 500 ms period following cue presentation (median = 25.5 Hz, Q1 = 19.5 Hz,                      
Q3 = 32.9 Hz).​c. Full duration at half max of cue response in inferred spikes during omission trials (median =                    
192.6 ms, Q1 = 181.6 ms, Q3 = 246.4 ms). d. Mean firing rate in inferred spikes over 1,300 ms period following                      
onset of reward omission (median = 5.2 Hz, Q1 = 4.0 Hz, Q3 = 5.7 Hz). Vertical bars are interquartile range (Q1                      
and Q3). 
 
 
 
 

 
 
Supplementary figure 8. Reward and omission response correlations using GCaMP ​. ​a. Scatterplot of             
expected reward response versus unexpected reward response. Responses are calculated by finding mean ​∆​F/F              
value over a 600 ms window following reward presentation and baseline subtracting the mean ​∆​F/F value over a                  
1 s window before trial start (1 s before cue for expected reward; 1 s before reward for unexpected reward). ​b.                     
Scatterplot of omission response versus unexpected reward response. Omission response is calculated by finding              
the mean ​∆​F/F value over a 1,300 ms window following reward omission and baseline subtracting the mean ​∆​F/F                  
value over a 1 s window before cue.  
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