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Across species, neural circuits show remarkable regularity, suggesting that their structure has been
driven by underlying optimality principles. Here, we ask whether we can predict the neural circuitry
of diverse species by optimizing the neural architecture to make learning as efficient as possible. We
focus on the olfactory system, primarily because it has a relatively simple evolutionarily conserved
structure, and because its input and intermediate layer sizes exhibits a tight allometric scaling. In
mammals, it has been shown that the number of neurons in layer 2 of piriform cortex scales as
the number of glomeruli (the input units) to the 3/2 power; in invertebrates, we show that the
number of mushroom body Kenyon cells scales as the number of glomeruli to the 7/2 power. To
understand these scaling laws, we model the olfactory system as a three layered nonlinear neural
network, and analytically optimize the intermediate layer size for efficient learning from a limited
number of samples. We find that the 3/2 scaling observed in mammals emerges naturally, both
in full batch optimization and under stochastic gradient learning. We extended the framework to
the case where a fraction of the olfactory circuit is genetically specified, not learned. We show
numerically that this makes the scaling law steeper when the number of glomeruli is small, and we
are able to recover the 7/2 scaling law observed in invertebrates. This study paves the way for a
deeper understanding of the organization of brain circuits from an evolutionary perspective.

I. INTRODUCTION

Brains exhibit a large range of cell types, connectivity
patterns, and organizational structures, at both micro
and macro scales. There is a rich history in neuroscience
of explaining these structures from a normative point
of view [1–3]. Most of that work focused on computa-
tion, in the sense that it asked what circuit, and con-
nection strengths, lead to optimal performance on a par-
ticular task. However, the connection strengths have to
be learned, and model selection theory tells us that the
efficiency of learning depends crucially on architecture,
especially when a limited number of trials is available
[4–8]. In this study, we attempt to understand the orga-
nizational structure of the brain from a model selection
perspective, hypothesizing that evolution optimized the
brain for efficiency of learning.

Here we focus on the olfactory system, primarily be-
cause it has a relatively simple, evolutionarily conserved,
predominantly feedforward structure [9–11]. In particu-
lar, odorants are first detected by olfactory sensory neu-
rons; from there, olfactory information is transmitted
to glomeruli. The number of glomeruli, however, varies
widely across species, from between 10 and 100 in in-
sects to ∼1000 in mammals. The question we address
here is: how does the number of glomeruli affect down-
stream circuitry? And in particular, what downstream
circuitry would best help the animal survive? The trade-
offs that go into answering this question are in principle
straightforward: more complicated circuitry (i.e., more
parameters) can do a better job accurately predicting
reward and punishment, but, because there are more pa-
rameters, there is a danger of overfitting [4, 7, 8]. And

∗ N.Hiratani@gmail.com

even if learning is performed with sample-by-sample up-
dates to avoid overfitting, learning tends to be slower in
complicated circuitry, as typically more samples are re-
quired [12, 13]. Navigating these tradeoffs for a given
architecture is reasonably straightforward. The architec-
ture, though, must come from biology. For that we take
inspiration from the olfactory system of both mammals
and invertebrates.

In the mammalian olfactory system, information from
the glomeruli is transmitted to mitral/tufted cells, then
to layer 2 of piriform cortex among others, and then
mainly to layer 3; after that, information is passed on to
higher order cortical areas [9, 11]. Thus, although many
studies suggest that reciprocal interactions between mi-
tral/tufted cells and granule cells are also important for
olfactory processing [14–16], as a first-order approxima-
tion the olfactory system can be modeled as a feedfor-
ward neural network. Moreover, because sister mitral
cells receiving input from the same glomeruli are highly
correlated, both with each other and with the glomeruli
from which they receive input [17], the olfactory network
essentially has three layers: an input layer correspond-
ing to glomeruli, a hidden layer corresponding to layer 2
of piriform cortex, and an output layer corresponding to
layer 3.

Based on this picture, in our analysis we use an ar-
chitecture corresponding to a three layer feedforward
network. The size of the input layer is the number of
glomeruli, and we assume that each unit of the output
layer is extracting a different feature of the olfactory in-
put, such as expected reward or punishment, or a behav-
iorally relevant concept. Consequently, we focus on the
hidden layer. For that we ask: how many units should the
hidden layer have? That question was chosen partly be-
cause its answer provides insight into learning principles
in general, and partly because it was recently addressed
experimentally: Srinivasan and Stevens found, based on
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FIG. 1. A) Scaling law in mammalian olfactory circuits. Data
was replicated from supplementary tables S2 and S3 of Srini-
vasan & Stevens, 2019. B) Scaling law in invertebrate olfac-
tory circuits. See SI §1.1 for the details.

six mammalian species, a very tight relationship between
the number of glomeruli and the number of neurons in
layer two of piriform cortex (Fig. 1A; data taken from
[18]). More precisely, using Lx to denote the input layer
size (the number of glomeruli), and Lh to denote the
hidden layer size (the number of neurons in layer 2 of
piriform cortex), they found the approximate scaling law

Lh ∼ L3/2
x .

Motivated by this result, we asked whether a similar
scaling law holds for the invertebrate olfactory system.
Like their mammalian counterparts, odors detected by
olfactory sensory neurons converge to glomeruli. After
that, though, the circuitry differs. Glomeruli send in-
formation to the projection neurons [11], which mainly
extend synapses onto mushroom body Kenyon cells and
lateral horn neurons [19]. The latter is mostly related to
innate olfactory processing [20], so we focus on the mush-
room body, which transmits information to higher-order
regions through mushroom body output neurons. Thus,
the invertebrate olfactory system can also be modeled as
a three layer neural network: an input layer correspond-
ing to glomeruli, a hidden layer corresponding to Kenyon
cells, and an output layer corresponding to mushroom
body output neurons [3, 21].

A literature survey of the number of glomeruli and
Kenyon cells of various insects [22–34] (see SI §1.1 for de-
tails) yielded a scaling law, as in the mammalian olfactory
system, but with an exponent of about 7/2 rather than

3/2 (Lh ∼ L7/2
x , as shown in Fig. 1B). Drone (male) bees

are the clear outlier, but that is reasonable considering
the caste system of honey bees that puts the drones under
unique ecological pressure; for instance, the drones are

the only ones among the seven insects listed that do not
engage in foraging. It should be noted that the data was
not properly controlled, as it was collected from different
sources, and in some cases in different eras. Moreover,
for the locust, we used the number of olfactory receptor
genes instead of the number of glomeruli; that is because
their micro-glomeruli structure makes direct comparison
with other species difficult [35]. In addition, the mush-
room body also takes part in visual processing in bees
and cockroaches [36].

Several normative hypotheses have been offered to ex-
plain the population size of sensory circuits. One line
of theoretical work showed that expansion in the hidden
layer is beneficial for sensory coding [3, 37, 38], but it
remains elusive how much expansion is optimal, because
in these studies, more expansion was in principle always
better. Other studies estimated the optimal population
size in multiple layers from a width-depth tradeoff, as-
suming that the total number of neurons is fixed [39, 40]
by external factors such as a constraint on energy [41].
However, this energy constraint should be violated if in-
creasing the number of neurons improves foraging abil-
ity, resulting in a better energy budget [42]. Evaluation
of the optimal population size was also attempted from
other biological constraints such as synaptic [43] and neu-
ronal [44] noise. While these models provided insight into
circuit structure, none were able to provide a quantita-
tive explanation for the population sizes of circuits across
different species. Srinivasan and Stevens, on the other
hand, offered several explanations, based on coding ef-
ficiency and geometry, for the scaling in mammals [18].
While those explanations are reasonable candidate hy-
potheses, they are more abstract than mechanistic, and
do not explain the scaling seen in invertebrates.

Here we develop a mechanistic explanation of the scal-
ing laws, focusing on the fact that the transformation
from glomeruli to piriform cortex (for mammals), or from
glomeruli to mushroom body output neurons (for inverte-
brates), has to be learned from a limited number of sam-
ples. For that we apply model selection theory, in which
the primary constraint on the circuit is the poverty of the
teaching signals and resultant overfitting [4, 7, 8]. The ol-
factory circuit has to tune its numerous synaptic weights
from very sporadic, low-dimensional reward signals in the
natural environment [45, 46], so this constraint should
be highly relevant. Therefore, we formulate the problem
of olfactory circuit design as a model selection problem,
then analytically derive the optimal hidden layer size un-
der various learning rules and nonlinearities.

Not surprisingly (because learning takes time) we find
that the optimal hidden layer size depends on the lifetime
of the organism. Using observed lifetimes, we recover
the 3/2 scaling found in mammals. However, our theory
cannot capture the 7/2 power law found in invertebrates.
That is because traditional model selection theory fails to
take into account the fact that neural circuits are at least
partially genetically specified. In particular, rich innate
connectivity structure is known to exist in the inverte-
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brate olfactory systems [20, 47]. Thus, we extend the
framework to the case where a fixed genetic budget can
be used to specify connections, and consider how that
affects scaling. The budget we used – about 2000 bits
– had little effect on the scaling of the mammalian cir-
cuit, primarily because mammals have a large number of
glomeruli, for which a complicated downstream circuit is
needed to achieve good performance – far more compli-
cated than could be constructed by 2000 bits. However,
it had a large effect on invertebrates, which contain far
fewer glomeruli. Using this extended framework, we were
able to recover the observed 7/2 power law without dis-
rupting the 3/2 power law found in mammals. These
results shed light on potential constraints on the devel-
opment and evolution of neural circuitry.

II. RESULTS

To determine scaling in the olfactory system, we use a
teacher-student framework [13, 48, 49]: we postulate a
teacher network, which reflects the true mapping from
odors to reward or punishment in the environment, and
model the circuit in the animal’s olfactory system using
the same overall architecture, but with different nonlin-
earities and a different number of neurons in the hidden
layer (see Fig. 2). We determine the optimal hidden layer
size under several scenarios: batch learning and stochas-
tic gradient learning, and with and without information
about the weights supplied by the genome.

A. The model

Let us denote the olfactory input at the level of glomeruli
as x = {x1, x2, ..., xLx}, and the corresponding reward,
or punishment, as y. We consider a student-teacher
model, and define the true relationship between x and
y in the environment by a three layer “teacher” network
(Fig. 2A),

y = wt · gt(Jtx) + σtζ, (1)

where gt is a pointwise nonlinear activation function
of the hidden neurons, and ζ is Gaussian noise, added
because the relationship between input and reward is
stochastic in real world situations. Throughout the text
we use bold capital letters to denote matrices and bold
small letter for vectors. Vectors are defined as column
vectors, a superscript T denotes transpose (indicating a
row vector), and for readability we use a dot product
to denote the inner product between two vectors. We
sampled Jt, wt, and x from independent Gaussian dis-
tributions for analytical tractability.

As discussed above, we model the olfactory circuits of
both vertebrates and invertebrates as a three layer neural
network (Fig. 2B),

ŷ = ws · gs(Jsx). (2)

FIG. 2. Network models. A) Olfactory environment
(teacher). B) Olfactory circuit that models the environment
(student).

For simplicity, we assume that Js is fixed and random,
with elements drawn from an independent Gaussian dis-
tribution. Only the readout weights, ws, are learned
from data. This is a good approximation for the inverte-
brate olfactory system, as the connection from the pro-
jection neurons to Kenyon cells are indeed mostly ran-
dom [25] and fixed [50]. In the mammalian system, the
connection from mitral/tufted cells to piriform cortex,
which corresponds to Js, is suggested to be plastic [51].
However, it is thought that those connections are mainly
shaped by unsupervised learning, but are seldom mod-
ulated by reward, as odor representation in layer 2 of
piriform cortex is relatively stable under reward-based
learning [52, 53].

The objective of learning is to predict the true reward
signal, y, given the input, x. Using the mean squared
error as the loss, the generalization error is written

εgen ≡
〈
(y − ŷ)2

〉
(3)

where here and in what follows angle brackets indicate
an average over the input, x, and the teacher noise, ζ.
Under this problem setting, we ask what hidden layer
size, Lh, minimizes the generalization error, εgen, when
ws is learned from N training samples. In particular, we
investigate how the optimal hidden layer size scales with
the input layer size, Lx. Intuitively, when the hidden
layer size is too small, the neural network is not expres-
sive enough, so the generalization error tends to be large
even after an infinite number of training samples. On
the other hand, if the hidden layer is too large relative
to the number of training samples, the network becomes
prone to over-fitting, again resulting in poor generaliza-
tion. Here we solve this model selection problem analyt-
ically.

B. Generalization error

When the learning rule is unbiased, the generalization
error consists of two components: the approximation er-
ror, which arises because we do not have a perfect model
(we use Js rather than the true weight, Jt, to model the
output, y, and we may have a different nonlinearity and
hidden layer size), and the estimation error, which arises
because we use a finite number of training samples [6–
8]. Inserting Eqs. (1) and (2) into (3), we can write the
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FIG. 3. Generalization, approximation, and estimation error
at Lx = 50, N = 30000, under various hidden layer sizes
Lh. Lines are analytical results (red, generalization error,
Eq. (12); blue, approximation error, Eq. (9), and green, es-
timation error, Eq. (11)); points are from numerical simula-
tions (see SI §7.3 for details). Here, and in all figures except
Figs. 4D and E, both gt and gs are rectified linear functions
(gt(u) = gs(u) = max(0, u)). In all figures except Fig. 6 we
use σ2

t = 0.1 for the noise in the teacher circuit, and in all
figures the hidden layer size of the teacher network is fixed at
Lt = 500. Error-bars represent the standard deviation over
10 simulation trials.

generalization error in terms of these two components,

εgen = σ2
t + εapr + εest . (4)

The approximation error, εapr (the error under the opti-
mal weight w∗

s), is given by

εapr ≡
〈(

wt · gt(Jtx)−w∗
s · gs(Jsx)

)2〉
. (5)

The estimation error, εest (the error induced by using the
learned weight, ws, rather than the optimal one, w∗

s), is

εest ≡
〈(

w∗
s · gs(Jsx)−ws · gs(Jsx)

)2〉
. (6)

Note that under an appropriate learning rule, εest con-
verges to zero in the limit of an infinite number of training
samples (N →∞).

We focus first on the approximation error, εapr, which
depends on the optimal weight, w∗

s . That weight is found
by minimizing 〈(y − ŷ)2〉 with respect to ws, with y and
ŷ given in Eqs. (1) and (2), respectively. This is a lin-
ear regression problem, and so w∗

s is given by the usual
expression,

w∗
s =

〈
gs(Jsx)gs(Jsx)T

〉−1 〈
gs(Jsx)gt(Jtx)T

〉
wt . (7)

To compute w∗
s , we need to invert a matrix. That is

nontrivial because gs(·) is a nonlinear function and the
components of Jsx are correlated,

〈(Jsx)i(Jsx)j〉 =

Lx∑
k=1

JsikJ
s
jk . (8)

Because the Jsik are independent random variables, the
off-diagonal elements are smaller than the diagonal el-
ements by a factor of Lx. We can, therefore, compute
w∗
s as an expansion in powers of 1/Lx, multiplied by Lh

(because there are factor of Lh more off-diagonal than
diagonal elements). Working to second order in 1/Lx,
we show in SI §3 that

εapr ≈ α+
a0
Lh

+ a1f

(
Lh
Lx

, c1

)
+ a2f

(
2Lh
L2
x

, c2

)
(9)

where

f(z, c) ≡

√
(z + c− 1)

2
+ 4c− (z + c− 1)

2
(10)

is a monotonically decreasing function of z: f(0, c) = 1
and f(z, c) → c/z when z � 1. All constants are O(1);
their values depend only on the nonlinearities gs(·) and
gt(·). Note that εapr does not explicitly depend on the
teacher network size Lt. That holds so long as Lt � 1
(see SI, Eqs. (36)-(39)).

As shown in Fig. 3 (blue line), εapr is a monotoni-
cally decreasing function of Lh. That function derives
its shape from the three Lh-dependent terms in Eq. (9)
(excluding α, which is a small constant): the second
term, α0/Lh, decays to zero when Lh is large compared
to 1, the third decays to zero when Lh is large com-
pared to Lx, and the last decays to zero when Lh is large
compared to L2

x. Essentially, as Lh increases, the ef-
fect of the off-diagonal elements of the covariance matrix
in Eq. (7) increase, and the model becomes effectively
more expressive (and thus lowers the approximation er-
ror). Although a number of approximations were made in
deriving Eq. (9), the theoretical prediction matches well
the numerical simulations (points in Fig. 3) for a wide
range of Lh.

To complete the picture of the generalization error, we
need the estimation error – the error associated with fi-
nite training data. For that it matters how we learn ws.
There are two main choices: maximum likelihood estima-
tion (MLE) and stochastic gradient descent (SGD). We
consider MLE learning first. Although it is not biolog-
ically plausible (it requires the learner to compute, and
invert, a covariance matrix after seeing all the data), we
consider it first because it is reasonably straightforward.
After that, we consider the more realistic case of SGD.
Both exhibit the 3/2 scaling found in the mammalian
olfactory circuit.

In SI §4.1, we extend the analysis in [54] to our maxi-
mum likelihood setting, and find that the estimation er-
ror from N samples is given by

εest ≈ (εapr + σ2
t )

Lh
N − Lh

. (11)

This expression is intuitively sensible: in the limit of infi-
nite data, N →∞, the estimation error vanishes, and in
the opposite limit, N → Lh, the estimation error blows
up due to overfitting.
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FIG. 4. Model behavior under maximum likelihood estimation. A) Relationship between the input layer size, Lx, and the
optimal hidden layer size, L∗

h, with a fixed sample size (N = 30000). Gray lines are found by optimizing Eq. (12) with
respect to Lh; dotted lines are the asymptotic expression derived in SI §5.1. B) Optimal hidden layer size, L∗

h, as a function
of the input layer size, Lx, and the sample size, N , from Eq. (12). C) Scaling with N = 2.7L1.9

x . Gray line is theory; black
points are from simulations; colored circles are the experimental data from Fig. 1A. Simulations were done only for low Lx,
due to the computational cost of the simulations when Lx is large. D) Relationship between the hidden layer size, Lh, and
the generalization error, εgen, under the logistic activation function (black), and ReLU (gray), at Lx = 50 and N = 30000.
Lines are theory; bars are from simulations. Error bars are the standard deviation over 10 simulations. E) Scaling for the
logistic activation function with N = 270L1.9

x . Gray line is theory; black points are from simulations; colored circles are the
experimental data from Fig. 1A. As in panel C, simulations were done only for low Lx, due to the computational cost of the
simulations when Lx is large. As in Fig. 3, the teacher network had a hidden layer size of 500, used a ReLU nonlinearity, and
the noise was set to σ2

t = 0.1.

If σ2
t is not too small, εest is a monotonically increasing

function of Lh, as shown in Fig. 3 (green line). In partic-
ular, when Lh is significantly smaller than the number of
training samples, N , εest is a linearly increasing function
of Lh, which is consistent with classical model selection
theory [4, 12]. As Lh approaches N , the estimation error
increases, and it goes to infinity when Lh = N , because
the matrix on the right hand side of Eq. (7) becomes
singular at that point.

Inserting εest from Eq. (11) into Eq. (4), the general-
ization error under MLE is

εgen ≈ (εapr + σ2
t )

N

N − Lh
. (12)

The generalization error typically has a nontrivial global
minimum as a function of Lh, as shown in Fig. 3 (red
line). Moreover, the analytically estimated optimal hid-
den layer size, L∗

h, closely matches its estimation from
numerical simulations (solid vs dotted vertical lines in
Fig. 3).

C. Optimal hidden layer size

By minimizing the generalization error, Eq. (12) with
respect to Lh (with the approximation error given by
Eq. (9)), we can find the optimal hidden layer size, L∗

h,
as a function of the input layer size, Lx. As shown in
Fig. 4A, L∗

h has three different scalings. That is because
only one term at a time in Eq. (9) is sensitive to Lh:
the second term if Lh ∼ O(1); the third term if Lh ∼
O(Lx) and the fourth term if Lh ∼ O(L2

x). However,
even considering one term at a time, minimizing Eq. (12)
with respect to Lh is nontrivial, in large part because of
the dependence on N . Details of the minimization are,
therefore, left to SI, §5.1; here we simply summarize the
results.

The optimal hidden layer size, L∗
h, roughly follows one

of the three dotted lines in Fig. 4A, depending on the
value of Lx. When the input layer size, Lx, is small com-
pared to N , L∗

h is linear in Lx (purple line in Fig. 4A);
when Lx is comparable to N , Lh scales as the square
root of Lx (red line); and when Lx is larger than N ,
Lh stays constant as Lx changes (orange line). This last
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scaling is reasonable because when the input layer is wide
enough, expansion in the hidden layer is unnecessary. In
all regions, L∗

h shows a square-root dependence on N ,
as suggested from previous studies [6, 8]. To further il-
lustrate the dependence of L∗

h on Lx and N , in Fig. 4B
we plotted the optimal hidden layer size versus these two
quantities. This plot indeed shows three distinct phases
separated by the lines Lx ∝ N and L2

x ∝ N .
Figure 4B shows that the scaling relationship between

L∗
h and Lx depends on N . Thus, to determine scaling

across species, we need to know how N scales with Lx
across species. We cannot directly measure N , which
is the total amount of reward/teaching signal an animal
experiences in its lifetime. However, we expect that N
scales linearly with the duration of learning, so we can use
that as a proxy forN . Among the six mammalian species,
maximum longevity scales approximately as L1.65

x (SI,
Fig. S1A; longevity data from AnAge database [55]). Al-
ternatively, if we assume that learning happens mostly
during the developmental period, here defined as the pe-
riod from weaning to sexual maturation, a similar trend
is observed, but with a slightly different exponent: dura-
tion from the time of weaning to sexual maturation scales
approximately as L1.97

x (SI, Fig. S1B).
Given these observations, we assumed N ∝ Lγx with γ

between 1.5 and 2. When we did that, we found a clear
scaling law between Lx and L∗

h that spans more than
three orders of magnitude. When we used N = 2.7L1.9

x ,
the model reproduced the 3/2 scaling observed in the
mammalian olfactory system (Fig. 4C). (Other values of
γ gave slightly different scaling; see SI, Fig. S2A.)

In the above examples, we used ReLU for both teacher
(gt) and student (gs), but this matching (gt = gs) is a
rather strong assumption. To check the robustness of
our results over the choice of the activation functions
g, we used a logistic function gs while keeping gt as a
ReLU. We found that the generalization error is min-
imized at a smaller hidden layer size compared to the
ReLU student networks (black vs gray line in Fig. 4D;
see SI §7.2 for details), primarily because large expan-
sion is less helpful when the activation functions of the
teacher and student networks are different. Nevertheless,
assuming N = 270L1.9

x , we obtain the experimentally ob-
served 3/2 scaling law between L∗

h and Lx (Fig. 4E and
Fig. S2B in SI).

D. Stochastic gradient descent (SGD) learning

So far we have considered learning by maximum likeli-
hood estimation (MLE). However, that is not the best
choice when the hidden layer size, Lh, is similar to the
sample size N , as discussed above. In addition, batch
learning is not particularly biologically plausible. There-
fore, we consider online learning using stochastic gradient
descent,

w(n) = w(n−1) + η(yn − ŷn)gs(Jsxn) (13)

where w(n) is the readout weight after trial n and η is
the learning rate. For online learning we consider min-
imization of the generalization error averaged over the
lifetime of the organism, not the final error; that is be-
cause the fitness of an animal is much better character-
ized by the average proficiency during its lifetime than
the proficiency at the end of its life.

Consistent with previous results [13], the learning rate
that enables the fastest decay of the error is (see SI §4.2
for details)

η∗ =
2

Lh
. (14)

For this learning rate, the estimation error after N train-
ing samples is given approximately by (see SI §4.2, espe-
cially Eq. (91))

ε̄
(N)
est ≈ εapr+σ2

t +b0e
−N
π +b1e

− N
2L1 +b2e

− N
2πL2 +b3e

− αN
2Lh

(15)
where

L1 = min(Lx, Lh) (16a)

L2 =

[
min

(
L2
x

2
, Lh − Lx

)]+
(16b)

(recall that [·]+ is the rectified linear function). The co-
efficients b0, b1, b2 and b3 depend on Lh, but not on N ,
and α (last term) is the same constant that appeared in
Eq. (9).

The behavior of the estimation error under SGD is
different than under MLE, Eq. (11), in two ways. First,
for MLE, the estimation error goes to 0 as N → ∞;
for SGD, it asymptotes to a constant. That is because
we used a fixed learning for the SGD update rule rather
than letting it decay, as would be necessary to reduce
the estimation error to zero [56]. Second, for MLE the
estimation error diverges as Lh approaches N , whereas
for SGD it remains finite. That is because of the online
nature of SGD, which precludes overfitting.

As expected from Eq. (15), the estimation error as a
function of the number of training samples, N , exhibits
three components, all decaying with different timescales
(Fig. 5B). The timescales of these, L1, L2, and Lh, are
non-decreasing functions of Lh, as shown in Fig. 5A.
Thus, larger Lh means slower decay, as can be seen in
Fig. 5B. Therefore, unless Lh is small (where the estima-
tion error decreases because the coefficients bq depend on
Lh), the lifetime average error increases with Lh, as can
be seen in the green line in Fig. 5C. Notably, though, be-
cause the estimation error remains finite as Lh → N , the
lifetime average error does not diverge – in sharp contrast
to maximum likelihood estimation, where it does diverge
(compare the green line in Fig. 3 versus Fig. 5C). Be-
cause the approximation error decreases monotonically
(blue line in Fig. 5C), the lifetime average generaliza-
tion error (red line in Fig. 5C) tends to have a nontrivial
global minimum.
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FIG. 5. Model behavior under stochastic gradient descent. A) Hidden layer size dependence of the decay time constant L1 and
L2, with Lx = 100. B) Dynamics of the estimation error under various hidden layer sizes, Lh. Dashed lines: simulations; solid
lines: theory. C) The cumulative generalization error, approximation error, and cumulative estimation error under various
hidden layer sizes, Lh, at N = 30000. D) Optimal hidden layer size, L∗

h, with N = 100000. Dotted lines are asymptotic scaling
(see SI §5.2). E) Optimal hidden layer size, L∗

h, with N = 30L1.9
x . Gray line is theory; black points are from simulations; colored

circles are the experimental data from Fig. 1A. As in Fig. 4, simulations were done only for low Lx, due to the computational
cost of the simulations when Lx is large. F) Optimal hidden layer size, L∗

h, for various initial weight amplitudes, σ2
R, and

N = 30000. Gray: fixed learning rate; black: adaptive learning rate. Lines are theory and dots are simulations. The initial

readout weights were sampled from w
(0)
s ∼ N(0, σ2

R/Lh). The horizontal dotted line represents the cutoff of L∗
h in the numerical

simulations, meaning that at σ2
R < 2, under a fixed learning rate L∗

h is larger than 105. In panels A-C and F we set the input
layer size to Lx = 100. As in Fig. 3, the teacher network had a hidden layer size of 500, used a ReLU nonlinearity, and the
noise was set to σ2

t = 0.1.

As with MLE learning, under a fixed sample size N
the optimal hidden layer size, L∗

h, shows three differ-
ent scalings (dotted lines in Fig. 5D). This is because
the approximation error decreases with three distinct
phases (Eq. (9)). As a result, we observe effectively the
same structure in SGD that we saw in MLE (Fig. 5D
vs Fig. 4A), although the theoretical prediction at large
Lx under SGD does not match quite as well as under
MLE. But by introducing the scaling N = 30L1.9

x , the
experimentally observed scaling law in Fig. 1A is again
reproduced (Fig. 5E).

In the model, we initialized the readout weights at rel-

atively large values, w
(0)
s ∼ N(0, 9.0/Lh). If the weights

are instead initialized to small values, the optimal hidden
layer size L∗

h diverges to infinity (gray line and points in
Fig. 5F). This is partially because the fixed learning rate
(Eq. (14)), employed for analytical tractability, causes
poor convergence at small Lh. If an adaptive learning
rate, ηn = 2/max(Lh, n), is used instead [16, 57], the cu-
mulative generalization error is optimal at a finite hidden
layer size even when the initial readout weights are zero

(black points in Fig. 5F). Although the optimal hidden
layer size, L∗

h, goes up as the initial weight amplitude
σ2
R becomes smaller (Fig. 5F), the cumulative error be-

comes smaller under both fixed and adaptive learning
rate (Fig. S3 in SI), due to smaller initial error.

E. Evolutionary constraints

The results so far indicate that developmental constraints
explain the scaling law observed in the mammalian ol-
factory system. However, our analysis also revealed that
developmental constraints alone do not explain the 7/2
power law scaling observed in the invertebrate olfactory
circuit, suggesting the presence of additional principles.
The primary candidate is a constraint on the genetic bud-
get an animal can use to specify the olfactory circuit. We
refer to this as an evolutionary constraint. Because both
the number of protein-encoding genes and the total size
of the genome tends to be similar across species [58], we
assume that the genetic budget for the specification of
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olfactory circuitry is similar among the insects listed on
Fig. 1B.

Inspired by the insect olfactory circuitry, we consider a
two-pathway model, in which projection neurons extend
connections to both lateral horn neurons and Kenyon
cells (Fig. 6A), and the output is

ŷ = wp · g(Jpx) + ws · g(Jsx) (17)

where wp · g(Jpx) is the pathway through lateral horn
neurons. Although lateral horn neurons do not directly
project to mushroom body output neurons, the two path-
ways eventually converge in the pre-motor area [26],
where the output ŷ might be represented. Because con-
nections between projection neurons and lateral horn
neurons tend to be stereotypical [20, 47], we assumed
they were optimized on evolutionary timescales. We thus
tuned the values of Jp and wp while constraining the to-
tal information required for specifying the weights (see SI
§6). In contrast, Js was initialized randomly and fixed,
and ws was learned with adaptive SGD. Note that the
initialization of Js and ws should require very little ge-
netic information, compared to the hard-wired projec-
tion neuron-to-lateral horn neuron pathway. Using Lp to
denote the number of lateral horn neurons, under a ge-
netic information budget G, the amount of information
encoded in the initial condition of Jp and wp is bounded
by

(LpLx + Lp)sb < G, (18)

where sb is the number of bits per synapse. The first
term is the number of bits needed to specify Jp; the sec-
ond is the number needed to specify wp. When only
the presence/absence of connections is determined ge-
netically, sb is at most 1 bit; additional bits are needed
if the weights are specified as well. Under a fixed bud-
get, G, the number of bits per synapse, sb, is bounded
by G/LxLp, suggesting that as the input layer size, Lx,
increases, tuning of Jp and wp have to be more coarse-
grained. In particular, in the mammalian olfactory sys-
tem where Lx ∼ 103, the hard-wired pathway should play
a minor role unless G > 104. Indeed, except for encoding
of pheromone signals, evidence of hard-wired connections
in the mammalian olfactory circuits is limited [59]. For
invertebrates, which have far fewer glomeruli, hard-wired
pathways should be far more important. As the effect of
the genetic budget, G, is difficult to characterize analyt-
ically, we numerically investigate its effect.

When we allowed information about the weights to be
transmitted genetically, subject to the constraint given
in Eq. (18), we found that the optimal Kenyon cell pop-
ulation size, Lh, was much smaller than the circuit with-
out the projection neuron-to-lateral horn neuron pathway
(compare 0 bit lines to 2 and 4 bit lines in Fig. 6B-D),
leading to steeper scaling. Note that the two estimates
became close at large Lx (as predicted above). Thus,
for mammals, which have Lx ∼ 103, genetic informa-
tion has a negligible effect on scaling. In particular, we

found that by setting sb = 2, and G = 2000, the 7/2
scaling observed among insects is approximately repro-
duced (dark gray line in Fig. 6B). The predicted curve
saturates at square scaling around Lx ≈ 150, resulting in
under-estimation of the Kenyon cell population in bees
and cockroaches. This trend was observed under a dif-
ferent implementation of low-bit synapses (Fig. 6C), and
even when wp was additionally trained with SGD from
finely-tuned initial weights (Fig. 6D).

III. DISCUSSION

In this work, we modeled the olfactory circuit of both
mammals and insects as a three layer feedforward net-
work, and asked how the number of neurons in the hidden
layer scales with the number neurons in the glomerular
(i.e., input) layer. We hypothesized that the scarcity of
labeled signals (e.g., reward and punishment) provides a
crucial constraint on the hidden layer size. We showed
analytically, and confirmed with simulations, that this
hypothesis robustly explains the experimentally observed
3/2 scaling found in the mammalian olfactory circuit,
both under maximum likelihood (Fig. 4) and stochas-
tic gradient descent (Fig. 5) learning. (Here “3/2 scal-
ing” means the number of neurons in the hidden layer
is proportional to the number of glomeruli to the 3/2
power.) This hypothesis alone does not, however, explain
the 7/2 scaling found in the olfactory circuit of insects.
But by considering the fact that genetic information used
for constructing hard-wired olfactory connections is lim-
ited, we recovered the 7/2 scaling law (Fig. 6), without
disrupting the 3/2 scaling law in mammals.

The 3/2 power in the scaling law we derived for mam-
mals comes from two factors. First, when the number of
training samples is fixed, the optimal population size of
the piriform cortex increases as the number of glomeruli
increases, unless the number of glomeruli is very large
(Figs. 4A and 5D). Second, the optimal population size
of the piriform cortex also increases with the number of
training samples (Fig. 4B). Because species with more
glomeruli tend to live longer and experience more sam-
ples (Fig. S1), this sample size dependence causes an ad-
ditional scaling between the number of glomeruli and the
piriform population size. From these two factors, the
optimal intermediate layer size scales supra-linearly on
number of the glomeruli (Figs. 4C, E, and 5E). Because
of the dependence on the number of training samples, N ,
the power in the scaling law is not fixed at 3/2. In fact,
depending on how N scales with the input layer size, Lx,
theoretically any scaling is possible (SI §5). The 3/2 scal-
ing we found was because in mammals, lifetime scales ap-
proximately quadratically with the number of glomeruli
(SI §1.2, Table 2).

The three layer feedforward neural network with ran-
dom fixed hidden weights is a class of neural networks
that is widely studied from both biological [3, 37, 38, 60]
and engineering [61, 62] perspectives. Under batch learn-
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FIG. 6. A) Schematic of the two pathway model. B-D) Optimal layer size of the randomly initialized pathway ws · g(Jsx)
under different model settings. B) Low bit synapses were achieved by adding Gaussian noise to Jp and wp. C) Low bit
synapses were achieved by discretizing Jp and wp. D) Low bit synapses were achieved by adding noise on Jp and wp as in B,
but wp was additionally learned from training samples using SGD (see SI, Eq. (145)). In panels B-D, for the teacher network
we used we had a hidden layer size of 500, used a ReLU nonlinearity, set the to σ2

t = 0.01, and used N = 10L2
x trials. For

sb = 2 bits we used G = 2000, while for sb = 4 bits we used G = 4000, and for sb = 0 bit, we simply removed the hard-wired
pathway. The width of the hardwired intermediate layer, Lp, was found from Eq. (18): Lp = G/sb(Lx + 1), rounded up to an
integer. See SI §6 and §7.4 for details.

ing, the upper bound on the approximation error for this
network structure is known for a large class of the target
functions [63, 64], yet these bounds are often too loose in
practice. Here, we instead derived the average approx-
imation error (SI §3). This allowed us to derive, ana-
lytically, accurate estimates of the optimal hidden layer
size. The behavior of the estimation error is also well
characterized in the large sample size limit (N → ∞
while Lx, Lh < ∞) [12, 65], but this limit is not a good
approximation of an over-parameterized neural network.
On the other hand, the characteristics of the error at the
large parameter space limit (number of synapses ∝ N
as N → ∞) remains mostly elusive, except for linear
regression [54] (see also §4.1). Similarly, model selec-
tion in neural networks was previously studied mostly
in the large sample size limit [7, 66]. The upper bound
on the network size was also studied from VC (Vapnik-
Chervonenkis) theory [5], and the minimum description
length principle [6].

Learning dynamics in neural networks under SGD has
also been widely studied [13, 49, 57]. In particular, re-
cent results suggest that over-parameterization of a neu-
ral network does not harm the generalization error under
both full-batch and stochastic gradient descent learning
[67–70]. Here, though, we focused on the cumulative
error, not the error at the end of training, as the for-
mer is more relevant to the fitness of the species. Under
this objective function, over-parameterization does tend
to harm performance, because learning becomes slower
(Fig. 5B), even under an adaptive learning rate (Fig. 5F).
Nevertheless, we found that if the initial weights are set
to very small values and the learning rate is fixed, hav-
ing infinitely many neurons in the hidden neuron min-
imizes the cumulative error (Fig. 5F), suggesting that
over-parameterization is not always harmful, even when

the cumulative error is the relevant cost function.
Scaling laws are ubiquitous in the brain. For instance,

the number of neurons in the primary visual cortex scales
with the 3/2 power against the population size of the
LGN [71], while the number of neurons in the cerebral
cortex is linear in the total number of neurons in the
cerebellum [72]. Given the anatomical similarity between
the olfactory circuit and cerebellum [3], our method-
ology should be directly applicable to understanding
the latter scaling. But it is not limited to olfactory-like
structures; it could be applied, possibly with some
modifications, anywhere in the brain, and has the po-
tential to provide insight into circuit structure in general.
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