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Abstract

Few situations in life are completely novel. We effortlessly generalise prior1

knowledge to solve novel problems, abstracting common structure and map-2

ping it onto new sensorimotor specifics. Here we trained mice on a series3

of reversal learning tasks that shared the same structure but had different4

physical implementations. Performance improved across tasks, demonstrat-5

ing transfer of knowledge. Neurons in medial prefrontal cortex (mPFC)6

maintained similar representations across multiple tasks, despite their dif-7

ferent sensorimotor correlates, whereas hippocampal (dCA1) representa-8

tions were more strongly influenced by the specifics of each task. Critically,9

this was true both for representations of the events that comprised each10

trial, and those that integrated choices and outcomes over multiple trials to11

guide subjects’ decisions. These data suggest that PFC and hippocampus12

play complementary roles in generalisation of knowledge, with the former13

abstracting the common structure among related tasks, and the latter map-14

ping this structure onto the specifics of the current situation.15

1 Introduction16

When we walk into a new restaurant, we know what to do. We might find a table and17

wait to be served. We know that the starter will come before the main, and when the bill18

arrives, we know it is the food we are paying for. This is possible because we already know19

a lot about how restaurants work, and only have to map this knowledge onto the specifics20

on the new situation. This requires that the common structure is abstracted away from21

the sensorimotor specifics of experience, so it can be applied seamlessly to new but related22

situations.23

24

Such abstraction has been variously described as a schema (in the context of human25

behaviour1 and memory research2,3), learning set4 (in the context of animal reward-guided26

behaviour), transfer learning5 and meta-learning6 (in the context of machine learning).27
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We have little understanding of how the necessary abstraction is achieved in the brain, or28

how abstract representations are tied to the sensorimotor specifics of each new situation.29

However, recent data suggest that interactions between frontal cortex and the hippocampal30

formation play an important role. Neurons7,8 and fMRI voxels9,10 in these brain regions31

form representations that generalise over different sensorimotor examples of tasks with32

the same structure, and track different task rules embedded in otherwise similar sensory33

experience11,12.34

35

The involvement of these regions in abstraction is also of interest from a theoretical36

perspective. Both frontal cortex13–16 and hippocampus17–25 have been hypothesized to37

represent task states and the relationships between them. It has not been clear what38

distinguishes the representations in these regions, but some insight might be gained by39

considering hippocampal representations underlying spatial cognition. In rodent hippocam-40

pus, place cells are specific to each particular environment26–28, but firing patterns in41

neighbouring entorhinal cortex (including grid cells) generalise across different environ-42

ments – that is, they are abstracted from sensorimotor particularities29–33. Similarly, there43

is evidence that mPFC representations of spatial tasks generalise across different paths34–36.44

45

One possibility is that, as in space, abstracted or schematic representations of tasks46

in cortex might be flexibly linked with the sensorimotor characteristics of a particular47

environment to rapidly construct concrete task representations in hippocampus, affording48

immediate inferences37,38. Indeed, hippocampal manipulations appear particularly disrup-49

tive when new task rules must be inferred, either at the beginning of training39 or when50

task contingencies change40,41.51

52

To probe cortical and hippocampal contributions to generalisation, we developed a novel53

behavioural paradigm where we presented mice with a series of tasks with the same ab-54

stract structure (probabilistic reversal learning), but different physical instantiations, and55

hence different sensorimotor correlates. We recorded single units in medial prefrontal cortex56

(mPFC) and hippocampus (dCA1) across multiple physical task layouts in each recording57

session. We examined neuronal representations both of the individual elements of each trial,58

and of the cross-trial learning that controlled animal’s choices. Prefrontal representations59

generalised across tasks, with neurons coding for a given task event, irrespective of the60

sensorimotor particulars of the current task. In contrast, hippocampal neurons were more61

task specific - different neuronal populations participated in each task representation. Both62

hippocampus and prefrontal cortex also contained representations of animals’ current policy63

that integrated events over multiple trials. These policy representations were again abstract64

in prefrontal cortex but tied to sensorimotor specifics in hippocampus.65

2 Results66

2.1 Mice generalise knowledge between structurally equivalent tasks67

Subjects serially performed a set of reversal learning tasks which shared the same structure68

but had different physical layouts. In each task, every trial started with an ‘initiation’69

nose-poke port lighting up. Poking this port illuminated two ‘choice’ ports, which the70

subject chose between for a probabilistic reward (Figure 1A). Once the subject consistently71

(75 % of trials) chose the high reward probability port, reward contingencies reversed72

(Figure 1B). Once subjects completed ten reversals on a given port layout (termed a ‘task’),73

they were moved onto a new task where the initiation and choice ports were in different74

physical locations (Figure 1C). All tasks therefore shared the same trial structure (initiate75

in the illuminated poke, then choose between the two illuminated pokes) and a common76

abstract rule (one port has high and one low reward probability, with occasional reversals),77

but required different motor actions due to the different port locations. In this phase of the78

experiment, task switches occurred between sessions, and subjects completed ten different79

tasks.80

81
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Fig: 1. Transfer learning in mice. A) Trial structure of the probabilistic reversal-
learning task. Mice poked in an initiation port (grey), then chose between two choice
ports (green and pink) for a probabilistic reward. B) Block structure of the probabilistic
reversal-learning task. Reward contingencies reversed after the animal consistently chose
the high reward probability port. C) Example sequence of tasks used for training, showing
different locations of the initiation (I) and two choice ports (A & B) in each task. D)
Example behavioural session late in training in which the animal completed 12 reversals.
Top panel shows which side has high reward probability; bottom panel shows exponential
moving average of subjects’ choices (tau=8 trials). E) Number of trials following a reversal
taken to reach the threshold to trigger the next reversal, as a function of task number. F)
Number of pokes per trial to a choice port that was no longer available because the subject
had already chosen the other port, as a function of task number. G, I) Coefficients from
a logistic regression predicting current choices using the history of previous choices (G),
outcomes (not shown) and choice-outcome interactions (I). For each task and predictor the
coefficients at lag 1-11 trials are plotted. H, J) Coefficients for the previous trial (lag 1,
left) and average coefficients across lags 2-11 (right), as a function of task number. Error
bars on all plots show mean ± SEM across mice.
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We first asked whether subjects showed evidence of generalising the abstract task structure82

(one port is good a time, with reversals) to new tasks (Figure 1B). Mice took fewer trials83

to reach the 75 % correct threshold for triggering a reversal within each task (F (9, 72) =84

3.23, p = .002; Supplementary Figure 2A), and crucially also across tasks (F (9, 71) = 3.88,85

p < .001; Figure 1E), consistent with generalising knowledge of this abstract structure.86

Improvement across tasks in a subject’s ability to track the good port might reflect an87

increased ability to integrate the recent history of outcomes and choices across trials. To88

assess this, we fit a logistic regression model predicting subjects’ choices using the choices,89

outcomes and choice-outcome interactions over the past history of trials. Across tasks,90

the influence of both the most recent (F (9, 71) = 5.50, p < .001; Figure 1I, J) and earlier91

(F (9, 71) = 4.33, p < .001; Figure 1I, J) choice-outcome interactions increased. Subjects’92

choices were also increasingly strongly influenced by their previous choices (F (9, 71) = 11.18,93

p < .001; Figure 1G, H), suggesting a decrease in spontaneous exploration with learning.94

95

We also looked at whether subjects showed evidence of generalising the trial structure96

(initiate then choose; Figure 1A) across tasks, by assessing how often they made nose97

pokes that were inconsistent with this sequence (i.e., pokes to the alternative choice port98

after having made a choice, instead of going straight back to initiation). Mice made fewer99

such out-of-sequences pokes across reversals within each task (F (9, 72) = 5.43, p < .001;100

Supplementary Figure 2B), but importantly also across tasks (F (9, 71) = 18.40, p < .001;101

Figure 1F).102

103

These data suggest that mice learned to generalise both the block and trial structure across104

tasks. We next searched for evidence of neural representations that abstracted the task105

structure away from its physical details, allowing generalisation of knowledge.106

Abstract and task-specific representations of trial events by PFC and CA1107

units108

We recorded single units from dorsal CA1 (345 neurons, n = 3 mice, 91 to 162 neurons per109

mouse) and medial prefrontal cortex (mPFC, 556 neurons, n = 4 mice, 117 to 175 neurons110

per mouse; Supplementary Figure 1, Figure 2) using electrophysiology. For recording111

sessions, we modified the behavioural task such that changes from one task to the next112

occurred within a session, with the transition to the next task triggered once subjects113

had completed four reversals on the current task, up to a maximum of three tasks in one114

session. Subjects adapted well to this change and in most recording sessions performed115

at least four reversals in three different task layouts, allowing us to track the activity of116

individual units across tasks (Figure 2B). Cross-task learning reached asymptote prior to117

starting recordings, i.e., during recording sessions mice no longer showed improvement118

across tasks (Supplementary Figure 3).119

120

During recording sessions, we used ten different port layouts, but to simplify the analysis121

they were all reflections of three basic layout types (Figure 2B), each of which occurred122

once in every session. In the first layout type, the initiation port (I1) was the top or bottom123

port, and the choice ports were the far left and far right ports. One of these choice ports124

remained in the same location in all three layouts used in a session, and will be referred125

to as the A choice. This acted as a control for physical location, allowing us to assess126

how the changing context of the different tasks affected the representation of choosing the127

same physical port. Both the other choice port (B choice), and the initiation port, moved128

physical locations between tasks. In the second layout type, both the initiation port (I2)129

and B choice port (B2) were in locations that were not used in layout type 1. In the third130

layout type, the initiation port was the same as the initiation port in layout type 1 (I3 =131

I1), and the B choice port was the same as the initiation port from layout type 2 (B3 =132

I2). Hence, in every recording session, we had examples of (1) the same port playing the133

same role across tasks, (2) different ports playing the same role across tasks and (3) the134

same port playing different roles across tasks (I3 and B2). The order of the layout types135
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Fig: 2. Recording units across multiple tasks in a single session. A) Silicon probes
targeting hippocampal dorsal CA1 and medial PFC were implanted in separate groups
of mice. B) Diagram of task layouts types used during recording sessions. C) Example
recording session in which a subject completed four reversals in each of three tasks. Top
panel shows the ports participating in each task colour coded by layout type. Bottom
panel shows the exponential moving average of choices, with the blocks shown above. D)
Example PFC neurons. Cell 1 in PFC fired selectively to both choice ports (but not
initiation) in each task, even though the physical location of the choice ports was different
both within and across tasks. Cell 2 fired at the initiation port in every task, even when
its physical location changed. Cell 3 fired at B choice ports in all tasks, but also gained a
firing field when initiation port moved to the previous B choice port (showing PFC does
have some port-specific activity). Cell 4 responded to reward at every choice port in every
task. Cell 5 responded to reward omission, and had high firing during the ITI. Cell 6
responded to reward at B choice port (that switched location) in each task. E) Example
CA1 neurons. Some CA1 cells also had task general firing properties (cell 1 and 2). Cell
1 fired at B choice that switched physical location between tasks. Cell 2 responded to the
same port in all tasks and modulated its firing rate depending on whether it was rewarded
or not. Cell 3 fired at the same port in all task layouts. Cell 4 switched its firing preference
from initiation to B choice that shared physical locations, analogous to ‘place cells’ firing
at a particular physical location. This port selectivity was more pronounced in CA1 than
PFC (Supplementary Figure 4). Cell 5 and 6 ‘remapped’ - showing interactions between
task and space. Cell 5 fired at a given port in one layout but not when the same port was
visited in a different layout. Cell 6 fired at choice time at a given port in one layout and
changed its preferred firing time to pre-initiation in a different layout.
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was randomised in each recording session.136

137

As animals transferred knowledge of the trial structure across tasks, we reasoned that neu-138

rons may exhibit ‘task general’ representations of the abstract stages of the trial (initiate,139

choose, outcome) divorced from the sensorimotor specifics of each task. On inspection, such140

cells were common in PFC (Figure 2D). To respond flexibly when a novel task with the same141

trial structure is encountered, abstract knowledge should be mapped onto the sensorimotor142

specifics of the new experience. In line with this, although we observed some task-general143

firing in CA1, hippocampal cells were more likely to respond to the specifics of each task144

(Figure 2E). These single unit examples suggest that although task general representations145

might exist in both regions, PFC activity appears to generalise more across tasks, while CA1146

represents physical location more strongly, and additionally exhibits ‘remapping’ between147

tasks in which neurons change their tuning to both physical location and task events.148

PFC population activity generalises more strongly across tasks than CA1149

To assess whether our single unit observations hold up at the population level, we sought150

to characterise how neural activity in each region represented task events, and how these151

representations generalised across tasks.152

153

We first assessed the influence of different task variables in each region using linear154

regression to predict spiking activity of each neuron, at each time point across the trial, as a155

function of the choice, outcome, and outcome x choice interaction on that trial (Figure 3A).156

We quantified how strongly each variable affected population activity as the population157

coefficient of partial determination (i.e., the fraction of variance uniquely explained by each158

regressor) at every time point across the trial (Figure 3B). This analysis was run separately159

for each task in the session and the results were averaged across tasks and sessions. Both160

regions represented current choice, outcome, and choice x outcome interaction, but there161

was regional specificity in how strongly each variable was represented. Choice (A vs B)162

representation was more pronounced in CA1 than PFC (peak variance explained - CA1:163

8.4 %, PFC: 4.8 %, p < .001), whereas outcome (reward vs no reward) coding was stronger164

in PFC (peak variance explained – CA1: 7.1 %, PFC: 12.9 %, p < .001). Furthermore,165

choice x outcome interaction explained more variance in CA1 than PFC (peak variance166

explained – CA1: 3.7 %, PFC: 2.4 %, p <.001).167

168

Though highlighting some differences in population coding between regions, this approach169

cannot assess the relative contribution of abstract representations that generalise across170

tasks versus task specific features such as the physical port location. This requires171

comparing activity both across time points in the trial and across tasks, which we did using172

representational similarity analysis (RSA)42. We extracted firing rates around initiation173

and choice port entries (40ms window) and categorised these windows by which task they174

came from, whether they were initiation or choice, and - for choice port entries whether the175

choice was A or B and whether it was rewarded - yielding a total of 15 categories (Figure176

3C). For each session we computed the average activity vector for each category, then177

quantified the similarity between categories as the correlation between the corresponding178

activity vectors. We show RSA matrices for this ‘choice time’ analysis (Figure 3C, left179

panels), and also an ‘outcome time’ analysis (Figure 3C, right panels) where the windows180

for choice events were moved 240ms after port entry, holding the time window around trial181

initiations constant.182

183

To quantify the factors influencing representation similarity, we created representational184

similarity design matrices (RDMs) which each encapsulated the predicted pattern of185

similarities under the assumption that activity was influenced by a single task feature186

(Figure 3D). For example, if the population activity represented only which physical port187

the animal was at, its correlation matrix would look like Figure 3D, Port. We included188

design matrices for a set of task-general features; the trial stage (‘Initiation vs Choice’),189

choice (A vs B), trial outcome (both on its own as ‘Outcome’, and in conjunction with190
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Fig: 3. Task-general and task-specific representations in PFC and CA1 popula-
tion activity. A) Linear regression predicting activity of each neuron at each time point
across the trial, as a function of the choice, outcome and outcome x choice interaction. B)
Coefficients of partial determination from the linear model shown in A for choice, outcome
and outcome x choice regressors in PFC and CA1. C) Representation similarity at ’choice
time’ (left) and ’outcome time’ (right), quantified as the Pearson correlation between the
demeaned neural activity vectors for each pair of conditions. D) Representational Similarity
Design Matrices (RDMs) used to model the patterns of representation similarity observed in
the data. Each RDM codes the expected pattern of similarities among categories in C under
the assumption that the population represents a given variable. The Port RDM models a
representation of the physical port poked (e.g., far left) irrespective of its meaning in the
task. A vs B Choice models a representation of A/B choices irrespective of physical port.
The Outcome RDM models representation of reward vs reward omission. The Outcome at A
vs B RDM models separate representations of reward vs omission following A and B choices.
Choice vs Initiation models representation of the stage in the trial. Choice A Task Specific
models separate representation of the A choice in different tasks. E) Coefficients of partial
determination in a regression analysis modelling the pattern of representation similarities
using the RDMs shown in D. The time-course is given by sliding the windows associated
with choices from being centered on choice port entry to 0.76 s after choice port entry, while
holding time windows centered on trial initiations fixed. Stars indicated time points where
regression weight for each RDM was significantly different between the two regions (p <
.05 (small stars) and p < .001 (big stars), permutation test across sessions corrected for
multiple comparison over time points. For more details on permutation tests see Methods.

7/23

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 6, 2021. ; https://doi.org/10.1101/2021.03.05.433967doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.05.433967


choice ‘Outcome at A vs B’). Changes in activity across tasks might occur simply due to191

neurons being tuned for particular physical locations, which will be captured by the ‘Port’192

RDM. However, it is also possible that the changing context provided by different tasks193

modifies the representation of choosing the same physical port at the same trial stage. To194

assess such ‘remapping’, we included an RDM ‘Choice A task specific’ which modelled195

task specific representations of the A choice, which shares the same physical location and196

meaning across tasks. We modelled the observed pattern of similarities in the data as a197

linear combination of these RDMs, quantifying the influence of each by its corresponding198

weight in the linear fit. To be able to examine the temporal evolution of these effects we199

run a series of regressions onto the data. In each, the data around initiation port entry was200

the same but the data around the choice port entry progressed serially through time from201

choice point until after the reward was delivered (Figure 3E).202

203

Consistent with our single unit observations, both PFC and CA1 represented both task204

specific and task general features to some extent. However, there was a marked regional205

specificity in how strongly different features were encoded (Figure 3E). PFC had stronger,206

abstract, sensorimotor-invariant representation of trial stage (initiation vs choice) and trial207

outcome (p < .001). In contrast, CA1 had stronger representation of the physical port208

the subjects was poking, and whether it was an A vs B choice (p < .001). Additionally,209

CA1 but not PFC showed a task specific representation of A choices (p < .001). This210

is striking because during A choices both the physical port and its meaning are identical211

across tasks, indicating that the changing task context alone induced some ‘remapping’ in212

CA1 but not PFC. Finally, there was a regional difference in the representation of trial213

outcome. PFC outcome representations were more general (the same neurons responded214

to reward or reward omission across ports and tasks - p < .001). CA1 also maintained an215

outcome representation, but this was more likely to be conjunctive than in PFC – different216

neurons would respond to reward on A and B choices (p < .001). To exclude the possibility217

that task specificity in CA1 might be driven by CA1 representations drifting slowly over218

time we confirmed that task representation changed abruptly at transitions between tasks219

(Supplementary Figure 5).220

Low dimensional temporal structure of activity is invariant across tasks221

and regions, but cell assemblies generalise more strongly in PFC than CA1222

To further explore how the structure of population activity generalised between tasks,223

we used singular value decomposition to compare the principal temporal and cellular224

modes across the different tasks. We decomposed activity in each task into a set of225

cellular (across neurons) and temporal modes (across trial and time). For each cell in226

each task, we computed the average firing rate at each time point across the trial, for four227

types of trials – rewarded A choices, A non-rewarded, B rewarded, and B non-rewarded.228

We concatenated these four time series for each cell to create an activity matrix D229

where each row contained the average activity of one neuron in one task across each230

time point of the four trial types (Figure 4A). Using SVD, we decomposed each activ-231

ity matrix into cellular and temporal modes U and V, linked by a diagonal weight matrix Σ.232

233

D = UΣV T

Each cellular mode in U is a vector with a weight for each cell. They can be thought234

of as cell assemblies, as they correspond to sets of neurons whose activity covaries over235

time. Cellular and temporal modes come in pairs, such that each cellular mode has an236

associated temporal mode in V , which is a vector of weights indicating how strongly237

the cellular mode contributes to population activity at each time point across the four238

trial types. The cellular and temporal modes are both unit vectors, so the contribution239

of each pair to the total data variance is determined by the corresponding element of240

the diagonal matrix Σ. The first cellular and temporal mode of PFC activity in three241

different tasks is shown in Figure 4B, C. It is high throughout the ITI and trial with a242
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Fig: 4. Generalisation of low dimensional representations of trial events. A)
Diagram of singular value decomposition (SVD) analysis. A data matrix comprising the
average activity of each neuron across time points and trial types was decomposed into
the product of three matrices, where diagonal matrix Σ linked a set of temporal patterns
across trial type and time (rows of V T ) to a set of cellular patterns across cells (columns
of U). B) First temporal mode in V T from SVD decomposition of data matrix from PFC
plotted in each task separately for clarity and separated by A (green) and B (pink) rewarded
(solid) non-rewarded (dashed) choices. C) First cellular mode from SVD decomposition of
data matrix from PFC in each task showing similar pattern of cells participate in all tasks.
D) Variance explained when using temporal activity patterns V T

1 from one task to predict
either held out activity from the same task (solid lines) or activity from a different task
(dash lines). E) Variance explained when using temporal activity patterns V T

1 to predict
either activity from the same task and brain region (solid lines) or a different brain region
and the same task (dash lines) D2. F) Variance explained when using cellular activity
patterns U1 from one task to predict either held out activity from the same task (solid lines)
or activity from a different task (dash lines). G) Cumulative weights along the diagonal
Σ using pairs of temporal V T

1 and cellular U1 activity patterns from one task to predict
either held out activity from the same task (solid lines) or activity from a different task
(dash lines). Weights were normalised by peak cross-validated cumulative weight computed
on the activity from the same task. H) To assess whether the temporal singular vectors
generalised significantly better between tasks in PFC than CA1, we evaluated the area
between the dash and solid lines in D for CA1 and for PFC separately, giving a measure
for each region of how well the singular vectors generalised. We computed the difference
in this measure between CA1 and PFC (pink line in H), and compared this difference to
the null distribution obtained by permuting sessions between brain regions (grey histogram,
black line shows 95th percentile of distribution). For more details on permutation tests
see Methods.Temporal singular vectors generalised equally well between tasks in the two
regions. I) Cellular singular vectors generalised significantly better between tasks in PFC
than CA1. Computed as in H but using the solid / dash lines from F. G) Pairs of cellular
and temporal singular vectors generalised significantly better between tasks in PFC than
CA1. Computed as in H but using the solid / dash lines from G. 9/23
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peak at choice time, but strongly suppressed following reward (similar to cell 5 in Figure 2D).243

244

We reasoned that: (i) if the same events were represented across tasks (e.g. initiation, A/B245

choice, reward), then the temporal modes would be exchangeable between tasks, no matter246

whether these representations were found in the same cells; (ii) if the same cell assemblies247

were used across tasks, then the cellular modes would be exchangeable across tasks, no248

matter whether the cell assemblies played the same role in each task; and (iii) if the same249

cell assemblies performed the same roles in each task, then pairs of cellular and temporal250

modes would be exchangeable across tasks.251

252

To see whether the same representations existed in each task, we first asked how well the253

temporal modes from one task could be used to explain recordings from other tasks. Since254

V is an orthonormal basis, any data of the same rank or less can be perfectly explained255

when using all the temporal modes. However, population activity in each task is low256

dimensional so a small number of modes explain a great majority of the variance. Modes257

that explain a lot of variance in one task will only explain a lot of variance in the other task258

if the structure captured by the mode is prominent in both tasks. The question is therefore259

how quickly variance is explained in data set B, when ordering the modes according to260

variance explained in data set A. To assess this, we regressed the temporal modes from261

one task onto the data matrix from the other, and plotted cumulative variance explained262

(Figure 4D). To control for drift in neuronal representations across time, we computed the263

data matrices separately for the first and second halves of each task. We compared the264

amount of variance explained using modes from the first half of one task to model activity265

in the second half of the same task, with the variance explained using modes from the266

second half of one task to model activity from the first half of the next task.267

268

In both PFC and CA1, the cumulative variance explained as a function of the number of269

temporal modes used, did not depend on whether the two data sets were from the same270

task (solid) or different tasks (dashed) (Figure 4D, H, p > .05). This indicates that the271

temporal patterns of activity, and therefore the trial events represented, did not differ272

across tasks in either brain area. However, as this analysis used only the temporal modes, it273

says nothing about whether the same or different neurons represented a given event across274

tasks. In fact, we can even explain activity in one brain region using temporal modes from275

another region and mouse. (Figure 4E).276

277

The pattern was very different when we used cellular modes (i.e., assemblies of co-activating278

neurons) from one task to explain activity in another. In both PFC and CA1, cellular279

modes in U that explained a lot of variance in one task, explained more variance in the280

other half of the same task than they did in an adjacent task (Figure 4F - differences281

between solid and dashed lines). However, the within task vs cross task difference was282

larger in CA1 than PFC (Figure 4I, p < .05). This indicates that PFC neurons whose283

activity covaried in one task were more likely to also covary in another task, when compared284

to CA1 neurons. As this analysis considered only the cellular modes it does not indicate285

whether a given cell assembly carried the same task information across tasks.286

287

To assess how well the cellular-temporal activity patterns from one task explained activity288

in another, we projected one data set D2 onto the cellular and temporal mode pairs of the289

other (UT
1 , V1).290

Σ2 = UT
1 D2V1

If the same cell assemblies perform the same roles in two different tasks, the temporal and291

cellular modes will align, and Σ2 will have high weights on the diagonal. We therefore plotted292

the cumulative weight of the diagonal elements of Σ within and between tasks (Figure 4G).293

In both PFC and CA1 cellular and temporal modes aligned better in different data sets from294
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the same task (solid lines), than for different tasks (dashed lines). However, this difference295

was substantially larger for CA1 than PFC (Figure 4J, p < .05).296

These data show that although the temporal structure of activity in both regions generalises297

perfectly across tasks, brain regions and subjects – a consequence of the same set of trial298

events being represented in each, the cell assemblies used to represent them generalised more299

strongly in PFC than CA1.300

Policy representations are abstract in PFC, but linked to sensorimotor301

experience in CA1302

So far, we have focused on the neuronal representations of events on individual trials, and303

how they generalise across tasks. But to maximise reward, the subject must also track304

which option is currently best by integrating the history of choices and outcomes across305

trials. To be useful for generalisation, this policy representation should also be divorced306

from the current sensorimotor experience of any specific task.307

308

To obtain an estimate of subjects’ beliefs about which option was best, we used a logistic309

regression predicting current choices as a function of the history of previous rewards,310

choices and their interactions (Figure 5A). This allowed us to compute, trial-by-trial, the311

probability that the animal would choose A vs B – i.e., the animal’s policy. When we used312

this policy as a predictor of neural activity, it explained variance that was not captured by313

within-trial regressors such as choice, reward and choice x reward interaction. Specifically,314

the subjects’ policy interacted with the current choice explained variance (Figure 5B, p <315

.001). Notably, this signal became prominent around the time of trial initiation, when it316

would be particularly useful for guiding the decision.317

318

To examine whether policy representations generalised across tasks, we evaluated the319

correlation across tasks between the policy weights in the neural regression. Because the320

A port was the same on each task, but the B port varied between tasks, we computed321

policy regression weights at each time point separately for A and B choices (controlling for322

reward). We then computed the average across-task correlation of these weights between323

every pair of timepoints (Figure 5C). The diagonal elements of these matrices show the324

average correlation across tasks at the same time point in each task. Visual inspection325

(Figure 5C), and permutations tests of differences between sums of the diagonals of Policy326

on A and B choices correlation matrices (p < .05), revealed that these correlations were327

larger in PFC than CA1 (Figure 5D). On average, therefore, cellular representations of328

policy generalised across tasks better in PFC than CA1 on both A and B choices.329

330

One possible explanation is that PFC simply represented action values in a task-general331

way. A more interesting possibility is that current policy shapes the representation332

of each trial stage differently, but in CA1 these representations are more tied to the333

sensorimotor specifics of the current task. To test this, we examined time-slices through334

the correlation matrices at initiation, choice, and outcome times (Figure 5E). In PFC,335

all three correlation profiles on both A and B trials peaked at the correct time point336

(the equivalent to the diagonal elements of the matrix) – i.e., the policy representations337

generalised across problems, but were specific to the different parts of the trial (initiate,338

choose, outcome). A similar pattern was present in CA1, but only on A choices (which339

are the same physical port across tasks). No CA1 correlation was significantly above340

zero on B choices. Indeed, whilst PFC policy correlations were greater than CA1 corre-341

lations for all representations (all p < .05) on both A and B choices, CA1 correlations342

showed a greater difference between A and B trials at outcome time (Figure 5E, all p < .05).343

344

Overall, therefore, both PFC and CA1 maintained representations of the subject’s current345

policy that were not simple value representations – as they differed depending on the trial346

stage. These representations were abstracted across tasks in PFC, but tied to the sensori-347
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Fig: 5. Policy Generalisation in PFC and CA1. A) Weights from logistic regression
predicting choices in recording sessions using choices, rewards and choice x reward interac-
tions over the previous twelve trials as predictors. The effect of choice x outcome interaction
history was above zero on up to eleven trials back. Error bars report the mean ± SEM across
mice. B) CPDs from regression models predicting neural activity using current trial events,
subjects’ policy (estimated using the behavioural regression in A), and policy interacted
with current choice. Stars denote the time points at which each regressor explained signifi-
cantly more variance than expected by chance (permutation test across sessions - p < .001,
corrected for multiple comparisons; for more details on permutation tests see Methods.) C)
Correlations across tasks between policy weights in regressions predicting neural activity.
Regressions were run separately for A (top panels) and B (bottom panels) choices in each
task, and at each time point across the trial. Correlations of policy representations between
all task pairs were evaluated for each pair of time points, values on the diagonal show how
correlated policy representation was at the same time point in both tasks. Positive cor-
relation indicates that the same neurons coded policy with the same sign in both tasks.
D) To quantify whether policy generalised more strongly between tasks in PFC than CA1,
we computed the between region difference in the sum along the diagonal of the correlation
matrices in C), separately for A and B choices, and compared it against the null distribution
obtained by permuting sessions between brain regions. Policy representation on both A and
B choices generalised more strongly in PFC than CA1. E) Slices through the correlation
matrices at initiation (left), choice (center) and outcome (right) times for A (solid) and
B (dash line) choices. Significant differences between conditions are indicated by stars as
shown in legend. 12/23
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motor specifics in CA1. A portion, but not all, of this task specificity in CA1 was accounted348

for by the port identity.349

3 Discussion350

Humans and other animals effortlessly generalise prior experience to novel situations that351

are only partially related. This ability relies on our understanding of the abstract structure352

in the regularities we experience in the world. Here we developed a novel behavioural353

paradigm to measure this generalisation of abstract knowledge between reinforcement354

learning problems with the same structure - probabilistic reversal learning - but different355

sensorimotor particularities. Mice generalised knowledge about two elements of the task356

structure between different but related problems - the sequence of responses required357

within a trial, and the between-trial policy required to obtain rewards. Recordings from358

hippocampal CA1 and mPFC revealed that both abstract and task-specific representations359

existed in both brain areas but in markedly different proportions, such that population360

responses in mPFC but not CA1 were dominated by task invariant, abstract representa-361

tions. By contrast, the CA1 responses contained major sources of variance that were either362

invariant to the sensorimotor particularities (port selective), or intriguingly, the interaction363

of these with the task (demonstrating ‘remapping’ between tasks). Notably, this was true364

both for correlates of the elements of an individual trial, and for correlates of the long-term365

behavioural policy that guided between-trial behaviour.366

367

Recent data have highlighted the low dimensional structure of task representations in rodent368

OFC8. We show that these low dimensional temporal modes are also consistent across tasks369

in both mPFC and CA1. We also confirm that they are consistent between animals and370

further demonstrate they are consistent between different brain areas (mPFC and CA1),371

suggesting this low dimensional structure does not reflect the unique representational372

properties of a particular brain area. Our manuscript makes further unique contributions.373

Because we record across the same neurons in different tasks, we are able to ask not only374

whether the temporal dimensions are preserved across tasks, but whether these temporal375

modes align to the same neurons in each task, i.e., whether the same neurons represent the376

same trial events across tasks. They do so significantly more in PFC than CA1. Whilst377

transfer learning relies on building abstractions, it must also tie these abstractions to378

the sensorimotor properties of each new task. In this context it is intriguing that CA1379

representations contained distinct portions of variance aligned to abstract task coordinates,380

to sensorimotor coordinates and to the interaction of the two coordinate sets. Lastly, our381

paper extends these ideas to variables that must integrate information over many different382

experiences (such as the animals’ choice policy) and shows a similar distinction between383

mPFC and CA1 in performing such computations.384

385

A second recent line of work has examined related ideas in primate PFC and hippocam-386

pus7,43. Where data are available from both structures in the same task, representations387

are found to be geometrically arranged in line with task coordinate space and no clear388

differences are observed between structures. Whilst it is tempting to postulate a species389

difference, careful examination reveals another possibility. Because these data are acquired390

in tasks that share no sensory elements (no overlapping images between tasks), and because391

motor coordinates are aligned to task coordinates, it is not possible in these data to discern392

whether there is also a sensorimotor component to the hippocampal representation, as we393

observe in our data.394

395

We found that prefrontal neurons encoded abstract meanings of different stages of the task396

(initiation, choice, and outcome), which might underlie animals’ ability to quickly know how397

to do a trial on any set of physical ports. The identification of a common representation of398

the sequential structure of different states/actions aligns with theoretical arguments about399

abstracting the structure of behaviour38,44. Such theories suggest that these abstractions400

need not be limited to representing exact sequences, but can also abstract the rules and401

regularities that constrain possible sequences. These ideas were developed in the context of402
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the entorhinal cortex. Whilst we did not record from entorhinal cortex in the current study,403

recent fMRI evidence in humans in a conceptually similar experiment suggests entorhinal404

representations will also generalise the structure of reinforcement learning tasks10. It is405

also notable that abstract representations of trials are present in mPFC in purely spatial406

contexts35,36. It will therefore be intriguing to build an understanding of how these407

representations differ.408

409

One possibility is that abstractions that affect behaviour over longer timescales will be410

preferentially represented in frontal regions45, such as the policy representations described411

here. Indeed, the notion that policy representations may be abstracted aligns directly with412

recent ideas from computer science such as meta-reinforcement learning. When neural413

networks are trained with such algorithms, their internal representations resemble those414

seen in frontal cortex in a number of distinct tasks6,46,47.415

416

Along with extracting structure in regularities in the world the brain also processes ongoing417

experiences and creates memories of specific events. Memories are defined by vivid sensory418

representations, such as sounds, smells, tastes, and physical locations. The hippocampal419

formation play an important role in episodic memory, and contains neural representations420

relevant for memory encoding and recall18,19,48. In this broader context, it is perhaps421

unsurprising that hippocampus contain rich representations of the sensorimotor specifics of422

current experience. The fact that these coexisted with structural abstractions is consistent423

with the idea that hippocampus is modulated by the schema that underlie episodic experi-424

ences19,49. Notably, we also found that policy coding was not unique to prefrontal cortex,425

as hippocampus also contained policy representations, corroborating existing findings for426

the existence of signals relevant for decision-making in hippocampal formation50,51. We427

expand on these observations to provide further evidence that hippocampal activity might428

represent sensorimotor specifics of events in the context of broader memory schemas and429

task structures.430

431

We do not perceive the world as it really is. Starting with the visual 2D inputs on the retina432

that we use along with prior experience to infer the 3D world around us52, our brains likely433

develop structural placeholders for many of our experiences. In fact, we remember things434

more easily if we know the general schema or a script for a particular event53, and often435

ignore information that does not align with our understanding of the world54. More broadly,436

here we demonstrate that mice also acquire sophisticated models of tasks they frequently437

experience in their environment and can apply this knowledge to solve new problems faster.438

We further show that prefrontal cortex contains representations of what can be thought of439

as a ‘learning-set’, or ‘schema’ of abstract relationships and variables needed to solve new440

related problems while hippocampus combines sensorimotor and abstract information to441

represent an interaction between the two, which might be crucial for both interpreting our442

ongoing experiences as well as encoding and recall of episodic memories.443
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Materials and Methods595

Behavioural apparatus596

Experiments were performed in custom made operant boxes597

(https://github.com/pyControl/hardware), controlled using pyControl55. The boxes598

used in the training phase of the experiment had six nose poke ports mounted on the599

back wall, each with infrared beam, stimulus LED and solenoid valve for dispensing600

liquid rewards, and a speaker for auditory stimuli. For recording experiments mice were601

transferred to operant boxes with nine nose poke ports located in electrically shielded602

sound attenuating chambers.603

Subjects604

Nine male C57BL/6J experimentally näıve mice bred in the Biomedical Sciences Facility at605

the University of Oxford were obtained for this experiment at six weeks of age. Animals606

were group housed prior to surgery, and individually housed post-surgery, in a humidity-607

and temperature-controlled vivarium, on a 12-hour light-dark cycle (7:00 to 19:00). All nine608

animals were implanted with silicon probes, but we only obtained data from seven animals,609

due to one probe being damaged during surgery and having to cull one animal prior to610

recordings. Experiments were carried out in accordance with the Oxford University animal611

use guidelines and performed under UK Home Office Project Licence P6F11BC25.612

Behavioural Training613

Mice were placed on water restriction 48 hours prior to starting behavioural training, with 1614

hour water access provided 24 hours before the first session. Mice were trained six days per615

week, and on the day off they received 1 hour ad lib water access in their home cage. On616

training days, mice typically received all their water in the task, but were given additional617

water if required to maintain their body weight above 85 % of their pre-restriction baseline618

weight.619

620

Mice were trained on a sequence of reversal learning tasks each with the same structure621

but a different physical port layout. Each reversal learning problem used three nose poke622

ports, out of the six or nine ports available in the operant box. One port was used for trial623

initiation, the other two were choice ports where reward could be obtained. During the624

initial training phase (Figure 1A) ports not used in the current task were covered. During625

recording sessions, ports used in all three tasks presented in the session were exposed626

throughout, and unused ports were covered.627

628

Each trial started with the initiation port lighting up, until the subject poked it, after629

which two choice ports both lit up. Mice chose one of the choice ports which triggered a630

sound cue (250ms long) indicating the trial outcome, with a pure tone (5 kHz) indicating631

they will get a reward and white noise indicating reward omission. Reward was delivered632

at the termination of the auditory cue. A 2s inter-trial interval started once the animal left633

the port following reward consumption or a non-rewarded choice. One in four randomly634

selected trials was a forced choice trial, where a single randomly selected choice port lit up635

which the animals had to select. At any given point in time, one choice port had a high636

reward probability and the other one had low probability. Reward probability reversals637

were triggered 5-15 trials after the subject crossed a threshold of 75 % correct choices638

(exponential moving average, tau=8 trials).639

640

In the initial training stage of experiment mice (Figure 1) encountered a single task (i.e.,641

port layout) per session, and moved to the next task the session after they had completed 10642

reversals on the current task. In each task, the first three reversals had reward probabilities643

of 0.9 and 0.1 at the good/bad choice ports. The fourth and fifth reversals had reward644

probabilities of 0.85 and 0.15, and the remaining reversals had reward probabilities of645
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0.8 and 0.2. In this phase each session was 30 minutes long and animals performed two646

sessions per day. The reward sizes during this stage were incrementally decreased from647

15 ul in the beginning of the training to 4 ul, based on the current weight of the animal648

and its performance on the previous session. Each session started with a free reward649

given from each of the two choice ports. Mice were divided into three groups with each650

group starting on a different task layout. Sequentially presented layouts were chosen to be651

as different as possible, and the sequence of task layouts was counterbalanced across animals.652

653

Once mice had completed 10 tasks during this initial training phase, we started to present654

multiple tasks in each session, to prepare them for recording sessions where we sought to655

record neurons across multiple tasks. Initially, mice were trained on two tasks in a session, in656

the nine port operant boxes subsequently used for recordings. Mice completed 12 different657

tasks in this stage, with the port layout used in each chosen to be as different from the658

previous one as possible. The reward probabilities in this phase were always 0.8 and 0.2 and659

the reward size was 4 ul. After mice completed two reversal blocks on one layout, choice660

ports that were going to be a part of the new task layout both lit up. Mice received a free661

reward from each of the new choice ports. Next, the new initiation port lit up signalling662

mice where they could initiate a trial.663

Behavioural Training during Recordings664

During recordings, subjects completed four reversal blocks in each of three different task665

layouts in every session. All task parameters were kept the same as during the two-layout666

per session training stage, with the exception that now subjects needed to complete four667

blocks on each task before they were moved onto a new one. As before, the task change668

was signalled by the two new choice ports lighting up and staying lit up until the subject669

collected a reward from each port. This was followed by the new initiation port lighting670

up. Port layouts used for tasks during recording sessions were designed to allow us to ask671

specific questions of the neural activity. As described in the Results section, all layouts were672

reflections of three basic layout types, each of which was presented once each session, in a673

randomised order (Figure 2B).674

Electrophysiological Recordings and Spike Sorting675

The silicon probes used were Cambridge Neurotech 32 channel probes. F series probes676

were used for hippocampus, P series for mPFC. For hippocampal recordings we started the677

recordings only after we lowered the probe enough to detect characteristic of hippocam-678

pus sharp wave ripples in the local field potential while the animal was asleep in its home679

cage. For mPFC recordings we lowered the probe ∼ 100um on every recording day. Fore680

more details on recording sites see Supplementary Figure 1. Neural activity was acquired681

at 30kHz with a 32-channel Intan RHD 2132 amplifier board (hardware bandpass filter-682

ing between 1.1 and 7603.8 Hz; Intan Technologies, USA) connected to an OpenEphys683

acquisition board via a flexible serial peripheral interface cable (‘Ultra Thin RHD2000 SPI684

cable’, Intan Technologies). Behavioural and ephys data were synchronised by sending sync685

pulses from the pyControl system to the OpenEphys acquisition board. Electrophysiological686

recordings were then spike sorted offline using KiloSort56 and manually curated using phy687

(https://github.com/kwikteam/phy). Clusters were classified as single units and retained688

for further analysis if they had a characteristic waveform shape, showed a clear refractory689

period in its autocorrelation, were stable over time and were present only on nearby chan-690

nels. We merged clusters only if there was a high similarity in waveforms and channels691

they came from, had a refractory period in their cross-correlation histograms and occupied692

similar areas in feature space or appeared to drift into one another.693

Surgery and Histology694

Subjects were taken off water restriction 48 hours prior to surgery, then anaesthetised with695

isoflurane (3 % induction, 0.5–1 % maintenance), treated with buprenorphine (0.1 mg/kg)696

and meloxicam (5 mg/kg), and placed in a stereotactic frame. A silicon probe mounted on a697
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Microdrive (Ronal Tools) was implanted into either mPFC (AP:1.95, ML:0.4 , DV:-0.8), or698

dCA1 (AP:-2 , ML:1.7 , DV:-0.7), and a ground screw was implanted above the cerebellum.699

Both of the DV coordinates are relative to the brain surface. Mice were given additional700

doses of meloxicam each day for 3 days after surgery, and were monitored carefully for 7 days701

post-surgery, then placed back on water restriction 24 hours before restarting task behaviour.702

At the end of the experiment, electrolytic lesions were made under terminal pentobarbital703

anaesthesia to mark the probe location, animals were perfused, and the brains fixed in704

formal saline for subsequent histology to identify lesion locations.705

Data analysis706

All analyses were carried out using custom written code in Python.707

708

Time in Trial Alignment709

Activity was aligned across trials by warping the time interval between trial initiation and710

choice to match the median interval across all recorded trials. Activity prior to trial initiation711

or after choice was not warped. Spike times that occurred between initiation and choice712

were converted into the aligned reference frame by linear interpolation between initiation713

and choice time. The firing rate of each neuron was calculated in the aligned reference frame714

at time points evenly spaced every 40ms, from 1 second before trial initiation to 1 second715

after trial outcome, using a Gaussian kernel with 40ms standard deviation. To compensate716

for the change in spike density due to time warping, spikes in the warped interval between717

initiation and choice were weighted by the stretch factor applied, prior to evaluating the718

firing rate.719

Statistical Significance720

The significance of the differences between brain areas in analyses reported throughout the721

paper was computed by shuffling the sessions of CA1 and PFC animals to obtain null dis-722

tributions. Real differences in the data were compared against the 95th and 99th percentiles723

of such null distributions. To correct for multiple comparisons, the maximum differences724

between CA1 and PFC across time points was taken as a threshold for multiple comparison725

correction, such that value at each time step was compared not to its respective shuffled726

value at the same time step, but the biggest value at any time step. All comparisons also727

survived a group test obtained by shuffling animal identities between regions.728

Representational Similarity Regression Analysis729

We created representational similarity matrices which consisted of the Pearson correlation
coefficients of neurons in 15 different task condition, defined by the trial stage, choice,
outcome and task number (see Results section and Figure 3). Because neurons were not
simultaneously recorded, we collapsed data across recording sessions for each brain region
into a single matrix (cells x task events) and then calculated the correlation matrix across
cells between different task events (i.e., representational similarity). We used a linear regres-
sion to model the patterns of representation similarity in the data as a linear combination
of representation similarity design matrices (RDMs):

ri,j = β0 +
9∑

n=1

βnRDMn(i,j) + εi,j

Where r(i,j) are elements of the RSA matrix and RDMn(i,j) are elements of the nth RDM.730

The set of RDMs used is shown in Figure 3D. Before regressing the correlation matrices onto731

the RDMs the diagonal elements from both were deleted and a constant matrix of ones was732

added to the design matrix to account for any condition independent correlation between733

neurons. We plotted the coefficients of partial determination (CPDs) from the regression734

model described above. The CPD was defined as:735
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CPD (RDMi) = (SSE∼i − SSEfull model ) /SSE∼i

Where SSE∼i refers to sum of squares from a regression model excluding the RDMi of736

interest and SSEfull model is the sum of squares from a regression model including all the737

RDMs. CPDs describe how much unique variance does each RDM account for in the RSA738

matrix calculated from firing rates.739

Surprise Measure740

To investigate the time course of how quickly the firing rates of neurons change in response741

to layout changes (Supplementary Figure 4), we used the ‘surprise’ measure from the infor-742

mation theory:743

s (xij) = (xij − µk)
2
/σ2

k

where xij is the firing rate of one neuron on a given trial i and task layout j, µk and σk744

are the baseline mean and the standard deviation of the firing rate of that neuron on a745

particular task layout. If j = k, then the s(xij) on each trial i is calculated based on the746

mean firing rate µ and standard deviation σ of the withheld trials from the same task. More747

precisely, to calculate how much the firings rates change during the same task layout s(xij)748

was calculated on the 10 trials before the task layout switch (‘test’ within task), where µk749

and σk were calculated on the 10 trials before those ‘test’ trials (‘train’ within task). If750

j 6= k, then the s(xij) on each trial i was calculated based on the mean firing rate µ and751

standard deviation σ of the withheld trials from a different task. So, to estimate how much752

the firings rates change after the task layout switch s(xij) was calculated on the 20 trials753

after the task layout switch (‘test’ between tasks), where µk and σk were calculated from754

the ‘train’ trials from a different task layout. This measure was calculated for each neuron755

separately and then averaged across all neurons for each brain region.756

Singular Value Decomposition757

Singular value decomposition (SVD) was performed using the numpy linalg.svd function
in Python. SVD is a principal component analysis technique that decomposes any n x m
matrix into a product of three matrices:

D = UΣV T

where D comprises the data matrix to be decomposed and the U Σ and V T matrices have
specific interpretations depending on the type and organisation of data in matrix D. The
U Σ and V T are computed based on the non-normalised covariances in the column space:

DDT =
(
UΣV T

) (
UΣV T

)T
DDT =

(
UΣV T

) (
V ΣUT

)
DDT = UΣ2UT

and row space:

DTD =
(
UΣV T

)T (
UΣV T

)
DTD =

(
V
∑
UT
) (
UΣV T

)
DTD = V Σ2V T

where DDTU = UΣ2 and DTDV = V Σ2 are analogous to eigenvalue decomposition758

AQ = Q. These equations provide an intuition for what the U , Σ and V T matrices mean.759

In the analyses of our data, matrices D were of neuron x timepoints* trial type dimensions.760

As DDT is a non-normalised covariance in the column space, this means that the U761

singular vectors come from the eigendecomposition of the covariances between neurons762

(as column space in D is neuron number) and thus describe the neural patterns in the763

data (i.e., neurons that are active/silent together). DTD is non-normalised covariance764

in the row space, meaning the V singular vectors come from the eigen decomposition765
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of the covariances between time and trial type (as D row space is time and trial type)766

and thus describe the trial and time modes in the data (i.e., trial times/types that are767

represented similarly). The Σ is diagonal matrix and captures the overall strength of768

association between each U and V T vectors in the data matrix D, hence how much loading769

there is of a particular neural mode together with its respective trial x time mode in the data.770

771

Our goal was to use the SVD to test how well cellular and temporal patterns generalise
across different tasks. To make the D matrix we averaged time warped trial firing rates
for each neuron in A choice rewarded, A choice non-rewarded, B choice rewarded and B
choice non-rewarded conditions and concatenated the data from all sessions for each region
separately such that each matrix was had the neurons x time point in trial and condition
dimensions. We performed the SVD on demeaned firing rates separately for each task and
for cross-validation purposes performed the decomposition separately on the first half and
second half of the task:

Dij = UijΣijV
T
ij

where i is the task number i = 1, 2, 3 and j is the half of the task the data is taken from772

j = 1, 2.773

To test how well the neural and temporal patterns generalised between pairs of tasks we
used the Ui2, V T

i2 from the second half of the first task but the activity matrix from the first
half of the next task Di+11 to compute the Σpred i+1:

Σpred i+1 = UT
i2Di+11Vi2

Cross-validation was computed in an analogous manner but based on the data from the774

same task. Selecting the second versus first half of the task data ensured there was no time775

confound in cross-validated results, as the between task analysis would have analogous time776

effects.777

778

Since we had different number of neurons in each brain region, each Σ was normalised by779

the number of neurons recorded from the respective brain region. Computing the Σpred i780

for the new D using UT and V from a decomposition of a different D matrix results in a781

Σ matrix that is no longer diagonal. However, by looking at the diagonal elements we can782

estimate how much the UT and V from one task explain the activity of neurons from a783

different layout or in the cross-validated version – same layout but second half of the task.784

More specifically, the diagonal elements tell us how strong the association between each UT
785

and V vectors computed on one of the D matrix is in a different data matrix D.786

787

Hence, when we looked at how much variance the combination of neural and temporal788

components from one task explain in a different task, we looked at the cumulative diagonal789

elements in Σpred. Selecting only the diagonal elements from the Σpred also means that the790

meaningful comparison is between the cross-validated within task Σpred i and between task791

Σpred i+1 as the cumulative sum of the singular values in either Σpred i+1 or Σpred i will not792

add up to a 100 % because the matrix is no longer diagonal in either cross-validated or793

cross-layout conditions because the singular vectors U and V were computed on a different794

data matrix data matrix D. Thus, we normalised the test weights by the peak of the795

cross-validated cumulative weights.796

To investigate how much variance either U or V singular vectors independently explain in
the data matrix from a different task we removed the constraint for any Us or V s to be
linked to each other. We estimated how much variance the temporal components V on their
own explain in the new task:

Mpred i+1=Di+11Vi2
and cross-validated analogously:

Mpred i=Di2Vi1
Similarly, to estimate how much variance the neural components U explained in a different
task we computed:

Mpred i+1 = UT
i2Di+11
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And cross-validated analogously:
Mpred i=U

T
i2Di1

To determine the significance of the differences between two regions we compared differences797

in the data between PFC and CA1 against a null distribution of differences between areas798

under the curve by shuffling the sessions between CA1 and PFC animals.799
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