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Abstract

Rapidly developing technology for large scale neural recordings has allowed re-
searchers to measure the activity of hundreds to thousands of neurons at single cell
resolution in vivo. Neural decoding analyses are a widely used tool used for inves-
tigating what information is represented in this complex, high-dimensional neural
population activity. Most population decoding methods assume that correlated ac-
tivity between neurons has been estimated accurately. In practice, this requires large
amounts of data, both across observations and across neurons. Unfortunately, most
experiments are fundamentally constrained by practical variables that limit the num-
ber of times the neural population can be observed under a single stimulus and/or
behavior condition. Therefore, new analytical tools are required to study neural pop-
ulation coding while taking into account these limitations. Here, we present a simple
and interpretable method for dimensionality reduction that allows neural decoding
metrics to be calculated reliably, even when experimental trial numbers are limited.
We illustrate the method using simulations and compare its performance to standard
approaches for dimensionality reduction and decoding by applying it to single-unit
electrophysiological data collected from auditory cortex.

1 Introduction

Neural decoding analysis identifies components of neural activity that carry information about the exter-
nal world (e.g. stimulus identity). This approach can offer important insights into how and where information
is encoded in the brain. For example, classic work by Britten et al. demonstrated that the ability of single
neurons in area MT to decode visual stimuli closely corresponds to animal’s perceptual performance.1 Thus,
by using decoding the authors identified a possible neural substrate for detection of motion direction.1 Yet,
behavior does not depend solely on single neurons. In the years since this work, many theoretical frame-
works have been proposed for how information might be pooled across individual neurons into a population
code.2–8 One clear theme that has emerged from this work is that stimulus independent, correlated activity
(i.e. noise correlations) between neurons may substantially impact information coding.2,4–8 This has now
been confirmed in vivo using decoding analysis to measure the information content of large neural popula-
tions.9–11 Therefore, covariability between neurons must be taken into account when measuring population
coding accuracy.

Under most experimental conditions, estimates of pairwise correlation between neurons is unreliable
due to insufficient sampling (e.g. too few stimulus repeats).12 In these situations, traditional decoding algo-
rithms are likely to over-fit to noise in the neural data. This issue becomes even more apparent as the number
of pairwise interactions that must be estimated increases, a situation that is becoming more common due to
the recent explosion in large-scale neurophysiology techniques.13 In some cases, e.g. for chronic recording
experiments and anesthetized preps, the number of trials can be increased to circumvent this issue. However,
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in behavioral experiments, where the number of trials is often fundamentally limited by variables such as
animal performance, new analytical techniques for decoding are required.

Here, we present decoding-based dimensionality reduction (dDR), a simple and generalizable method
for dimensionality reduction that significantly mitigates issues around estimating correlated variability in
experiments with a relatively low ratio of observations to neurons. Our method takes advantage of recent
observations that population covariability is often low-dimensional14–17 to define a subspace where decoding
analysis can be performed reliably while still preserving the dominant mode(s) of population covariability.
The dDR method can be applied to data collected across many different stimulus and/or behavior condi-
tions, making it a flexible tool for analyzing a wide range of experimental data.

We motivate the requirement for dimensionality reduction by illustrating how estimates of a popular
information decoding metric, d′2,4,5 can be biased by small experimental sample sizes. Building on a simple
two-neuron example, we demonstrate that low-dimensional structure in the covariability of simulated neural
activity can be leveraged to reliably decode stimulus information, even when the number of neurons exceeds
the number of experimental observations. Finally, we use a dataset collected from primary auditory cortex
to highlight the advantages of using dDR for neural population decoding over standard principal component
analysis.

2 Results

2.1 Small sample sizes limit the reliability of neural decoding analysis

Linear decoding, a common analytical method in neuroscience, identifies a linear, weighted combination
of neural activity along which distinct conditions (e.g. different sensory stimuli) can be discriminated. In
neural state-space, this weighted combination is referred to as the decoding axis, wopt, and it is the line along
which the distance between stimulus classes is maximized and trial-trial variance is minimized (Fig. 1a, b).
To quantify decoding accuracy, single-trial neural activity is projected onto this axis and a decoding metric
is calculated to quantify the discriminability of the two stimulus classes. Here, we use d′2, the discrete analog
of Fisher Information.4,5 This discriminability metric has been used in a number of previous studies6,9–11,18

and has a direct relationship to classical signal detection theory.4,19

Looking at the simulated data in Figures 1a and b, one can appreciate that an accurate estimate of
wopt requires knowledge of both the mean response evoked by each stimulus class (µa vs. µb), as well the
population covariance, Σ (summarized by the ellipses in Fig. 1a and b). Indeed, d′2, is directly dependent
on these features:

d′2 = ∆µTwopt (1)

wopt = Σ−1∆µ (2)

∆µ = µa − µb (3)

Where µa and µb are the Nx1 vectors describing the mean response of an N -neuron population to two
stimuli, a vs. b, respectively, and Σ is the average NxN covariance matrix 1

2 (Σa + Σb) (e.g. Fig. 1c).

In practice, the pairwise spike count covariance between neurons (often referred to as noise correla-
tion, or rsc) is reported to be very small – on the order of 10−1 or 10−2.20–22 As we can see from the shuffled
distribution in Figure 1a (bottom), this can pose a problem for accurate estimates of the off-diagonal ele-
ments in Σ, and, as a consequence, wopt itself. This difficulty is especially pronounced when sample sizes are
relatively small (compare Fig. 1a to b). The estimates of covariance and stimulus discriminability improve
with increasing sample size, but robust performance is not reached until ≈ 100 stimulus repetitions, even
for this case with relatively strong covariance (Fig. 1d). The sample sizes (e.g. number of trials) in most
experiments, especially those involving animal behavior, are typically much lower, raising the question: How
can one reliably quantify coding accuracy in large neural populations observed over relatively few trials?
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Figure 1: Measurements of pairwise covariance and discriminability are unreliable when sam-
pling is limited. a. Top: k = 10 single trial spike count responses are drawn from standard multivariate
Gaussians N (µa,Σ) and N (µb,Σ) corresponding to two different stimulus conditions, a and b. Ellipses show
the standard deviation of spike counts across trials. Bottom: Reliability of the pairwise covariance estimate
between neuron 1 (n1) and neuron 2 (n2) is calculated by shuffling values of n1 500 times. The true covariance
(red line) falls within this distribution, indicating that estimates of covariance are not reliable for k = 10.
b. Same as in (a), but drawing k = 100 samples for each stimulus. The narrower distribution of permuted
measures indicates a greater likelihood of identifying an accurate estimate of covariance. c. The covariance
matrix, Σ, used to generate data in (a)/(b). The true pairwise covariance for this pair of simulated neurons
has a value of 0.4. d. Variance (σ2) of covariance estimates based on the permutation analysis in (a)/(b)
for a range of sample sizes, k (blue). Variance decays as O( 1

k−1 ) (see Appendix). Overlaid is the difference

in stimulus discriminability, d′2 (Eqn. 1), between estimation and validation sets (50-50 split) estimated
for each sample size (orange). Large values in the d′2 difference for low k indicate overfitting of wopt to
the estimation data. This difference asymptotes toward zero as sample size increases and the estimate of
covariance becomes reliable.

2.2 Neural activity is low-dimensional

Analysis of neural population data with dimensionality reduction has consistently revealed low-dimensional
structure in neural activity.23 Specifically, recent studies have found that stimulus-independent variability
(i.e. noise correlations) is dominated by a small number of latent dimensions.14,15,17,24 Noise correlations
are thought to impact stimulus coding accuracy7 and are known to depend on internal states, such as at-
tention, that affect behavioral task performance.15,16,20,25 These findings suggest that the space of neural
activity relevant for understanding stimulus decoding, and its relationship to behavior, may be small relative
to the total number of recorded neurons.

When population data exhibits low-dimensional structure, the largest eigenvector(s) of Σ (i.e. the top
principal components of population activity) provides a reasonable, low-rank approximation to the full-rank
covariance matrix. Importantly, these high variance dimensions of covariability can be estimated accurately
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even from limited samples. To illustrate this, we simulated population spike counts, X, for N = 100 neurons
by drawing k samples from a multivariate Gaussian distribution with mean µ and covariance Σ (Eqn. 4).

X = N (µ,Σ) + εindep. (4)

Where in Eqn. 4, εindep. represents a small amount of independent noise added to each neuron, effectively
removing any significant structure in the smaller noise modes.

a b

c d

1

100
1 100

Perfect estimate of e1

Figure 2: Low-dimensional correlated activity can be estimated reliably for neural populations,
even when pairwise covariance cannot. a. Example covariance matrix, Σ, for a 100-neuron population
with low-dimensional covariance structure. b. Scree plot shows the fraction of total population variance
captured along each noise dimension, computed by PCA, for three different datasets with varying dimen-
sionality. Orange: 1-dimensional noise (1-D), covariance matrix in (a); green: independent noise (Indep.);
blue: power law decay (1/n). c. Surrogate datasets with varying numbers of samples, k, are drawn from
the three noise distributions in (b). For each dataset, the cosine similarity between the estimate of the
largest noise dimension, ê1, and the true noise dimension, e1, is plotted as function of sample size. For
low-dimensional data, e1 can be estimated very reliably. d. Variance in the estimate of covariance, Σi,j , for
two neurons with a true covariance of 0.04 is plotted as a function of the number of trials, as in Figure 1d.
Even at sample sizes > 100, V ar(Σ̂i,j) ≈ 0.02, corresponding to a standard deviation of ≈ 0.14. Therefore,
estimates of Σi,j , may be off by up to an order of magnitude. Note that the amount of uncertainty does not
depend on the dimensionality of the data, and results for all three datasets overlap (see Appendix for an
analytical derivation).

To investigate how different noise structures impact estimates of Σ, we simulated three different surrogate
populations. First, we simulated data with just one large, significant noise dimension (Fig. 2, 1-D data,
orange). In this case, the first eigenvector can be estimated reliably, even from just a few samples (Fig. 2c).
However, when the noise is independent and shared approximately equally across all neurons, estimates of
the first eigenvector are poor (Fig. 2, Indep. noise, green). These first two simulations represent extreme
examples – in practice, population covariability tends to be spread across at least a few significant dimen-
sions.26 To investigate a scenario that more closely mirrors this structure, we simulated a third dataset
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where the noise eigenspectrum decayed as 1/n, where n goes from n = 1 to N . Recent studies of large neural
populations suggest that this power law relationship is a reasonable approximation to real neural data.26

In this case, by k ≈ 50 trials, estimates of the first eigenvector are highly reliable, approaching a cosine
similarity of ≈ 0.9 between the estimated and true eigenvectors (Fig. 2, 1/n noise, blue). In all simulations,
regardless of dimensionality, we find that estimates of single elements of Σ (i.e. single noise correlation
coefficients) are highly unreliable (Fig. 2d), as we see in the two-neuron example (Fig. 1d).

Collectively, these simulations demonstrate that accurate estimates of covariance need not necessarily
be limited by uncertainty in estimates of individual noise correlation coefficients themselves. In the following
sections we describe a simple decoding-based dimensionality reduction algorithm, dDR, that leverages low-
dimensional structure in neural population activity to facilitate reliable measurements of neural decoding.

2.3 decoding-based Dimensionality Reduction (dDR)

The dDR algorithm operates on a pairwise basis. That is, given a set of neural data collected over S
different conditions, a different dDR projection exists for each of the S!

2!(S−2)! unique pairs. For simplicity,

we will describe the case where S = 2, and consider these to be two unique stimulus conditions. However,
note that the method can be applied in exactly the same manner to handle datasets with many different
types and numbers of decoding conditions, where a unique dDR projection would then exist for each pair.

Let us consider the spiking response of an N -neuron population evoked by two different stimuli, Sa

and Sb, over k-repetitions of each stimulus. From this data we form two response matrices, A and B, each
with shape Nxk. Remembering that our goal is to estimate discriminability (d′2, Eqn. 1), the dDR projec-
tion should seek to preserve information about both the mean response evoked by each stimulus condition,
µa and µb, as well as the stimulus-independent noise covariance, Σ. Therefore, we define the first dimension
of dDR to be the axis that maximally separate µa and µb. We call this the signal axis.

signal = µa − µb = ∆µ (5)

Next, we compute the first eigenvector of Σ, e1. This represents the largest noise mode of the neural
population activity. Together, signal (∆µ) and e1 span the plane in state-space that is most optimized for
reliable decoding. Finally, to form an orthonormal basis, we define the second dDR dimension as the axis
orthogonal to ∆µ in this plane. As this second dimension is designed to preserve noise covariance, we call
this the noise1 axis.

noise1 = e1 − e1∆µT (6)

The process outlined above is schematized graphically in Figure 3.

Thus, the signal and noise1 axes make up a 2xN set of weights, analogous to the loading vectors in
standard PCA, for example. By projecting our Nxk data onto this new basis, we capture both the stim-
ulus coding dimension (∆µ) and preserve the principal covariance dimension (e1), two critical features for
measuring stimulus discriminability. Importantly, because e1 can be measured more robustly than Σ itself
(Figure 2), performing this dimensionality reduction helps mitigate the issues we encounter due to small
sample sizes and large neural datasets.
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Figure 3: decoding-based Dimensionality Reduction (dDR). Left to right: Responses of 3 neurons
(n1, n2, n3) to two different stimuli are schematized in state-space. Ellipsoids illustrate the variability of
responses across trials. 1. To perform dDR, first the difference is computed between the two mean stimulus
responses, ∆µ. 2. Next, the mean response is subtracted for each stimulus to center the data around 0, and
PCA is used to identify the first eigenvector of the noise covariance matrix, e1 (additional noise dimensions
em,m > 1 can be computed, see text). 3. Finally, the raw data are projected onto the plane defined by ∆µ
and e1.

As mentioned in the previous section, neural data often contains more than one significant dimension
of correlated trial-trial variability. To account for this, dDR can easily be extended to include more noise
dimensions. To include additional dimensions, we deflate the spike count matrix, X, by subtracting out the
signal and noise1 dimensions identified by standard dDR, then perform PCA on the residual matrix to
identify m further noise dimensions. Note, however, that for increasing m the variance captured by each
dimension gets progressively smaller. Therefore, estimation of these subsequent noise dimensions becomes
less reliable and will eventually become prone to over-fitting, especially with small sample sizes. For this
reason, care should be taken when extending dDR in this way.

To demonstrate the performance of the dDR method, we generated three sample datasets containing
N = 100 neurons and S = 2 stimulus conditions. Each of the three datasets contained unique noise covari-
ance structure: 1. Σ contained one significant dimension (Fig. 4a) 2. Σ contained two significant dimensions
(Fig. 4b) 3. Noise variance decayed as 1/n (Fig. 4c). For each dataset, we measured cross-validated
d′2 between stimulus condition a and stimulus condition b using standard dDR with one noise dimension
(dDR1), with two noise dimensions (dDR2), or with three noise dimensions (dDR3). We also estimated d′2

using the full-rank data, without performing dDR. Figure 4 plots the decoding performance of each method
as a function of sample size (i.e. number of stimulus repetitions). In each case, d′2 is normalized to the
asymptotic performance of the full-rank approach, when the number of samples is >> than the number of
neurons. This provides an approximate estimate of true discriminability for the population.

In contrast to the full-rank data where overfitting leads to dramatic underestimation of d′2 on the test
data for most sample sizes (Fig. 4 grey lines), we find that d′2 estimates after performing dDR are substan-
tially more accurate and, critically, more reliable across sample sizes. That is, asymptotic performance of
the dDR method is reached much more quickly than for the full-rank method.

For the one-dimensional noise case, note that there is no benefit of including additional dDR dimen-
sions (Fig. 4a), while for the higher dimensional data shown in Figure 4b-c, we see some improvements with
dDR2 and dDR3. However, these benefits don’t begin to appear until k becomes large and they diminish
with increasing noise dimensions – the improvement of dDR2 over dDR1 is larger than that of dDR3 to dDR2

Fig. 4b-c. This is because subsequent noise dimensions are, by definition, lower variance and therefore more
difficult to estimate reliably from limited sample sizes.
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Figure 4: Evaluation of decoding accuracy and reliability with dDR. a. Analysis of data with
one-dimensional (1-D) noise covariance. For each sample size, k, 100 datasets were generated from the
same multivariate Gaussian distribution (Eqn. 4) where Σ was a rank-one covariance matrix and the mean
response vector, µ, corresponded to one of two stimulus conditions, a or b. Top: Scree plot of noise covariance.
Bottom: Cross-validated discriminability, d′2, between a and b computed with full-rank data and with dDR
using one (dDR1), two (dDR2) or three (dDR3) noise dimensions, as a function of sample size. Mean d′2

across all 100 surrogate datasets is shown here. For k >> N , the dDR results converge to the asymptotic
value of the full-rank d′2. However, even for small k, the dDR analyses estimates are much more accurate
than the full-rank approach. b. Same as in (a), but for two-dimensional noise covariance data. In this case,
dDR2 captures the second noise dimension and outperforms the standard 1-D approach (dDR1) c. Same as
in (a) and (b), but for 1/n noise covariance.

2.4 dDR recovers more decoding information than standard principal compo-
nent analysis

One popular method for dimensionality reduction of neural data is principal component analysis (PCA).23

Generally speaking, PCA can be implemented on neural data in one of two ways: single trial PCA or trial-
averaged PCA. In the single trial approach (stPCA), principal components are measured across all single
trials and all experimental conditions. The resulting PCs capture variance both across single trials and
across different e.g. stimulus conditions. In trial-averaged PCA (taPCA), single trial responses are aver-
aged per experimental condition first, and PCs are measured over the resulting N -neuron x S-condition
spike count matrix. In this case, for different stimulus conditions, the PCs specifically capture variance of
stimulus-evoked activity rather than trial-trial variability, making this a more logical choice for many decod-
ing applications. In the case of S = 2, as we have outlined above for the dDR illustration (Fig. 3), taPCA
is equivalent to ∆µ, the first dDR dimension. Thus, dDR can roughly be thought of as a way to combine
taPCA and stPCA – taPCA identifies the signal dimension and stPCA identifies the noise dimension(s).

To demonstrate the relative decoding performance achieved using each method, we applied each to a
dataset collected from primary auditory cortex in an awake, passively listening ferret. N = 52 neurons were
recorded simultaneously using a 64-channel laminar probe27 as in.28–30 Auditory stimuli consisting of nar-
rowband (0.3 octave bandwidth) noise bursts were presented alone (-Inf dB) or with a pure tone embedded at
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varying SNRs (0 dB, −5 dB, −10 dB) in the hemifield contralateral to the recording site (see Experimental
Methods). Each stimulus was repeated 50 times. For stPCA and dDR, we selected only the top m = 2
total dimensions, and for taPCA, we selected the single dimension, ∆µ, that exists for S = 2. This dataset
allowed us to investigate how each dimensionality reduction method performs for two distinct, behaviorally
relevant neural decoding questions: How well can neural activity perform fine discriminations (tone-in-noise
detection), discriminating noise alone vs. noise with tone? How well can it perform coarse discriminations
(frequency discrimination), discriminating noise centered at frequency A vs. noise at frequency B?

Fine discrimination (tone detection)

Figure 5: dDR outperforms PCA for fine sensory discrimination. a. Heatmap shows mean z-scored
spike counts of N = 52 simultaneously recorded units for 15 different narrowband noise bursts (0.3 octave
bandwidth tiling 5 octaves, x-axis). Each row shows tuning for one unit, with red indicating higher firing
rate response. b. Population tuning curve for noise alone (black, data from panel a) and noise plus −10,
−5, and 0 dB tones (light to dark red), computed by averaging tuning curves across neurons. c-e. Decoding
analysis for tone-in-noise detection. c. Scatter plot compares single trial responses to noise alone at best
frequency (on-BF, blue) vs. noise + −5dB tone (orange), projected into dDR space. Ellipses show standard
deviation across trials, marginal histograms show projection of data onto optimal decoding axis (wopt) or
onto ∆µ (equivalent to performing trial-averaged PCA). d. Estimate of d′2 as a function of sample size
(number of trials, k) using each dimensionality reduction method. For each point, d′2 was averaged over 100
random samplings of k trials, drawn without replacement. Shading indicates standard error. e. Fraction
variance explained by each noise component (green) computed by performing PCA on mean-centered single
trial data. The alignment of each noise component with the signal axis is shown in purple. f-h Same as
panels (c)-(e), for noise alone on-BF vs. noise along off-BF (see panel b).

The A1 dataset displayed a range of frequency tuning (Fig. 5a), with the majority of units tuned to
≈ 3.5 kHz. We therefore defined this as the best frequency of the recording site (on-BF, Fig. 5b). For
tone detection, we measured discriminability (d′2, Eqn. 1) between on-BF noise alone (on-BF, -Inf dB)
and on-BF noise plus tone (on-BF, −5 dB), which each drove similar sensory responses (Fig. 5b-c). For
frequency discrimination, we measured discriminability between the neural responses to on-BF noise and
off-BF noise, where off-BF was defined as ≈ 1 octave away from BF, and drove a very different popula-
tion response (Fig. 5b, f). In both cases, taPCA and dDR outperformed stPCA (Fig. 5d, g). This first
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result is unsurprising due to the fact that stPCA is the only method not explicitly designed to capture
variability in the sensory response. The top PCs are dominated by dimensions of trial-trial variability that
do not necessarily contain stimulus information and thus underestimate d′2 relative to the other two methods.

We also find that dDR consistently performs as well or better than taPCA. For the tone detection
data, the sensory signal (∆µ) is small (i.e., trial-averaged responses to the two stimuli were similar) and
covariability is partly aligned with ∆µ. Under these conditions, dDR makes use of correlated activity to op-
timize the decoding axis (wopt) and improve discriminability. taPCA, on the other hand, has no information
about these correlations and is therefore equivalent to projecting the single trial responses onto the signal
axis, ∆µ. Thus, it underestimates d′2 (Fig. 5c, d). In the frequency discrimination example, ∆µ is large.
The covariability has similar magnitude to the previous example, but it is not aligned to the discrimination
axis, and thus has no impact on wopt. In this case, dDR and taPCA perform similarly (Fig. 5f-g). These
examples highlight that under behaviorally relevant conditions, dDR can offer a significant improvement
over standard PCA, even with as few as 10 trials.

3 Discussion

We have described a new, simple method for dimensionality reduction of neural population data, dDR.
This approach combines strategies for both trial-averaged PCA and single-trial PCA to identify important
dimensions of population activity that govern neural coding accuracy. Using both simulated and real neural
data, we demonstrated that the method performs robustly for neural decoding analysis in low experimental
trial count regimes where the performance of full-rank methods break down. Across a range of behaviorally
relevant stimulus conditions, dDR consistently performs as well or better than standard principal component
analysis.

3.1 Applications

dDR is designed to optimize the performance of linear decoding methods in situations where sample
sizes are small. This is often the case for neurophysiology data collected from behaving animals, where the
number of stimulus and/or behavior conditions are fundamentally limited by task performance. In these
situations, using full-rank decoding methods is unfeasible as it leads to dramatic overfitting and unreliable
performance.12 Dimensionality reduction methods, such as PCA, can be used to mitigate overfitting is-
sues. However, the correct implementation of PCA in neural data is often ambiguous, and multiple different
approaches to dimensionality reduction have been proposed.23 We suggest dDR as a simple, standardized
alternative that captures the strengths of different PCA approaches. Unlike conventional PCA, the signal
and noise axes that comprise the dDR space have clear interpretations with respect to neural decoding.
Importantly, dDR components explicitly preserve stimulus-independent population covariability. In addi-
tion to being important for overall information coding, this covariability is known to depend on behavior
state15,16,20,25,31 and stimulus condition.21,32–34 Therefore, approaches that do not preserve these dynamics,
such as trial-averaged PCA, may not accurately characterize how information coding changes across varying
behavior and/or stimulus conditions.

3.2 Interpretability and visualization

A key benefit of dDR is that the axes making up the dDR subspace are easily interpretable: The
first axis (signal) represents the dimension with maximal information about the difference in evoked ac-
tivity between the two conditions to be decoded, and the second (noise) axis captures the largest mode
of condition-independent population covariability in the data. Therefore, within the dDR framework it is
straightforward to investigate how this covariability interacts with discrimination, an important question for
neural information coding. Further, standard dDR (with a single noise dimension) can be used to easily
visualize high-dimensional population data, as in Fig. 5. For methods like PCA, it can be difficult to
dissociate signal and noise dimensions, as the individual principal components can represent an ambiguous
mix of task conditions, stimulus conditions, and trial-trial variability.35 Moreover, with PCA the number of
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total dimensions is typically selected based on their cumulative variance explained, rather than by selecting
the dimensions that are of interest for decoding, as in dDR.

3.3 Extensions

Latent variable estimation:

dDR makes the assumption that latent sources of low-dimensional neural variability can be captured
using simple, linear methods, such as PCA. While these methods often seem to recover meaningful dimen-
sions of neural variability,16 a growing body of work is investigating new, alternative methods for estimating
these latent dynamics,15,17,36,37 and this work will continue to lead to important insights about the nature
of shared variability in neural populations.

We suggest that dDR can be extended to incorporate these new methods. For example, rather than
defining dDR on a strictly per decoding pair basis, a global noise axis could be identified across all experi-
mental conditions using a custom latent variable method. This could then be applied to the decoding-based
dimensionality reduction such that the resulting dDR space explicitly preserves activity in this latent space
to investigate how it interacts with coding.

Incorporating additional dDR dimensions:

In this work we have described dDR primarily as a transformation from N -dimensions to two dimensions,
signal and noise, with the exception of Figure 4. In our code repository, https://github.com/crheller/
dDR, we include examples that demonstrate how the dDR method can be extended to include additional
dimensions. However, as discussed in the main text, it is important to remember that estimates of neural
variability beyond the first principal component may become unreliable as variance along these dimensions
gets progressively smaller, especially in low trial regimes. In short, while information may be contained in
dimensions > m = 2, caution should be used to ensure that these dimensions can be estimated reliably.

3.4 Code availability

We provide Python code for dDR which can be downloaded and installed by following the instructions
at https://github.com/crheller/dDR. We also include a short demo notebook that highlights the basic
work flow and implementation of the method to simulated data. All code used to generate the figures in this
manuscript is available in the repository.

4 Experimental Methods

4.1 Surgical procedure

All procedures were performed in accordance with the Oregon Health and Science University Institutional
Animal Care and Use Committee (IACUC) and conform to standards of the Association for Assessment and
Accreditation of Laboratory Animal Care (AAALAC). The surgical approach was similar to that described
previously.38 Adult male ferrets were acquired from an animal supplier (Marshall Farms). Head-post im-
plantation surgeries were then performed in order to permit head-fixation during neurophysiology recordings.
Two stainless steel head-posts were fixed to the animal along the midline using bone cement (Palacos), which
bonded to the skull and to stainless steel screws that were inserted into the skull. After a two-week recovery
period, animals were habituated to a head-fixed posture and auditory stimulation. At this point, a small
(0.5 - 1 mm) craniotomy was opened above primary auditory cortex (A1) for neurophysiological recordings.

4.2 Neurophysiology

Recording procedures followed those described previously.28,29 Briefly, upon opening a craniotomy, 1 -
4 tungsten micro-electrodes (FHC, 1-5 MΩ) were inserted to characterize the tuning and response latency
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of the region of cortex. Sites were identified as A1 by characteristic short latency responses, frequency se-
lectivity, and tonotopic gradients across multiple penetrations.39 Subsequent penetrations were made with
a 64-channel silicon electrode array.27 Electrode contacts were spaced 20 µm horizontally and 25 µm ver-
tically, collectively spanning 1.05 mm of cortex. Data were amplified (RHD 128-channel headstage, Intan
Technologies), digitized at 30 KHz (Open Ephys40) and saved to disk for further analysis.

Spikes were sorted offline using Kilosort2 (https://github.com/MouseLand/Kilosort2). Spike sorting
results were manually curated in phy (https://github.com/cortex-lab/phy). For all sorted and curated
spike clusters, a contamination percentage was computed by measuring the cluster isolation in feature space.
All sorted units with contamination percentage less than or equal to 5 percent were classified as single-unit
activity. All other stable units that did not meet this isolation criterion were labeled as multi-unit activity.
Both single and multi-units were included in all analyses.

4.3 Acoustic stimuli

Digital acoustic signals were transformed to analog (National Instruments), amplified (Crown), and
delivered through a free-field speaker (Manger) placed 80 cm from the animal’s head and 30◦ contralat-
eral to the the hemisphere in which neural activity was recorded. Stimulation was controlled using custom
MATLAB software (https://bitbucket.org/lbhb/baphy), and all experiments took place inside a custom
double-walled sound-isolating chamber (Professional Model, Gretch-Ken).

Auditory stimuli consisted of narrowband white noise stimuli with ≈ 0.3 octave bandwidth. In total,
we presented fifteen distinct, non-overlapping noise bursts spanning a 5 octave range. Each noise was pre-
sented alone (-Inf dB) condition, or with a pure tone embedded at its center frequency for a range of different
signal to noise ratios (−10dB, −5dB, 0dB). Thus, each experiment consisted of 60 unique stimuli (4 SNR
conditions X 15 center frequencies). Overall sound level was set to 60 dB SPL. Stimuli were 300ms in duration
with 200ms ISI and each sound was repeated 50 times per experiment in a pseudo-random sequence.

5 Appendix

5.1 Variance of parameter estimates

In this work, we approximate the spike counts of a neural population as being drawn from a multivariate
Gaussian with mean µ and covariance Σ. The accuracy of our estimates of these respective parameters
depends on how large the sample size is. That is, if we draw just two samples from the distribution N (µ,Σ),
our estimates of µ and Σ will be highly variable across repeated iterations of this sampling. This means that
when sample size is small we can’t be certain of the measured parameter values. Here, we provide a brief
derivation showing how the uncertainty in each of these parameter values depends on sample size, k.

Mean (µ):
We will investigate the mean of just a single neuron, µ, for simplicity. Here, and in the following cases, we
assume the data has been centered such that the mean response across all trials for each neuron is zero.
Consider repeated samples of a random variable, xi, drawn from N (0, σ2). Let us define the variable Y to
be the mean of a random sequence of i.i.d. numbers, xi...xn with E[xi] = µ and V ar(xi) = σ2.

Y =
1

k

k∑
i=1

xi

Next, we can ask how variable our estimates of Y are with increasing sample size.

V ar(Y ) = V ar
(1

k

k∑
i=1

xi

)
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V ar(Y ) =
1

k2

k∑
i=1

V ar(xi)

V ar(Y ) =
1

k2

k∑
i=1

σ2

V ar(Y ) =
σ2

k

Thus, estimates of the mean spike count for a single neuron, µ, decay with increasing sample size as:

O
(1

k

)
(7)

Single neuron variance (Σdiag):
For the variance of single neurons, i.e. the diagonal elements of Σ, we can similarly derive their uncertainty
as a function of k by defining Y as:

Y =
1

k − 1

k∑
i=1

x2i

V ar(Y ) = V ar
( 1

k − 1

k∑
i=1

x2i

)

V ar(Y ) =
1

(k − 1)2

k∑
i=1

V ar(x2i )

V ar(Y ) =
1

(k − 1)2

k∑
i=1

2σ4

V ar(Y ) =
2σ4

k − 1

Thus, the uncertainty in single neuron variance depends the neuron’s true variance σ2, and decays as a
function of sample size k.

O
( 1

k − 1

)
(8)

Covariance (Σ):
And finally, for uncertainty of the covariance between two correlated neurons x and y, i.e. the off-diagonal
elements of Σ, we define Y as:

Y =
1

k − 1

k∑
i=1

xiyi

As above, can write:

V ar(Y ) = V ar
( 1

k − 1

k∑
i=1

xiyi

)

V ar(Y ) =
1

(k − 1)2

k∑
i=1

V ar(xiyi)

Then, using the three following identities:

V ar(xy) = E[x2y2]− E[xy]2
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E[x2y2] = cov(x2, y2) + E[x2]E[y2]

E[XY ]2 =
(
cov(x, y) + E[x]E[y]

)2
We can write the following expression for the V ar(Y ), taking E[x] = E[y] = 0:

V ar(Y ) =
(2(Σ2

x,y)2 + σ2
xσ

2
y − Σx,y

k − 1

)
where Σx,y is the true covariance between neurons x and y, and σ2

x and σ2
y represent each neuron’s respective

independent variance. Thus, as for single neuron variance, the uncertainty in covariance decays with sample
size, k (Eqn. 9). Note, though, that typical covariance values are much smaller than single neuron variance,
making this a much more difficult parameter to estimate given a particular sample size.

O
( 1

k − 1

)
(9)

Acknowledgements

This work was supported by a National Science Foundation Graduate Research Fellowship (NSF GRFP,
GVPRS0015A2) (CRH), the National Institute of Health (NIH, R01 DC0495) (SVD), Achievement Rewards
for College Scientists (ARCS) Portland chapter (CRH), and by the Tartar Trust at Oregon Health and
Science University (CRH).

References

1 K. H. Britten, M. N. Shadlen, W. T. Newsome, and J. A. Movshon. The analysis of visual motion:
a comparison of neuronal and psychophysical performance. The Journal of Neuroscience: The Official
Journal of the Society for Neuroscience, 12(12):4745–4765, December 1992.

2 Ehud Zohary, Michael N. Shadlen, and William T. Newsome. Correlated neuronal discharge rate and its
implications for psychophysical performance. Nature, 370(6485):140–143, July 1994.

3 Michael N. Shadlen and William T. Newsome. The Variable Discharge of Cortical Neurons: Implications
for Connectivity, Computation, and Information Coding. Journal of Neuroscience, 18(10):3870–3896, May
1998.

4 L. F. Abbott and Peter Dayan. The Effect of Correlated Variability on the Accuracy of a Population
Code. Neural Computation, 11(1):91–101, January 1999.

5 Peter Dayan and L. F. Abbott. Theoretical neuroscience: computational and mathematical modeling of
neural systems. Computational neuroscience. Massachusetts Institute of Technology Press, Cambridge,
Mass, 2001.

6 Bruno B. Averbeck and Daeyeol Lee. Effects of noise correlations on information encoding and decoding.
Journal of Neurophysiology, 95(6):3633–3644, June 2006.

7 Bruno B. Averbeck, Peter E. Latham, and Alexandre Pouget. Neural correlations, population coding and
computation. Nature Reviews Neuroscience, 7(5):358–366, May 2006.

8 Xaq Pitkow, Sheng Liu, Dora E. Angelaki, Gregory C. DeAngelis, and Alexandre Pouget. How Can Single
Sensory Neurons Predict Behavior? Neuron, 87(2):411–423, July 2015.

9 Ramon Bartolo, Richard C. Saunders, Andrew R. Mitz, and Bruno B. Averbeck. Information limiting
correlations in large neural populations. The Journal of Neuroscience, pages 2072–19, January 2020.

13

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 20, 2021. ; https://doi.org/10.1101/2021.04.18.440336doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.18.440336
http://creativecommons.org/licenses/by-nd/4.0/


10 MohammadMehdi Kafashan, Anna Jaffe, Selmaan N. Chettih, Ramon Nogueira, Iñigo Arandia-Romero,
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