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 46 

Abstract 47 

 48 

How do neural populations code for multiple, potentially conflicting tasks? Here, we used 49 

computational simulations involving neural networks to define “lazy” and “rich” coding 50 

solutions to this multitasking problem, which trade off learning speed for robustness. During 51 

lazy learning the input dimensionality is expanded by random projections to the network hidden 52 

layer, whereas in rich learning hidden units acquire structured representations that privilege 53 

relevant over irrelevant features. For context-dependent decision-making, one rich solution is 54 

to project task representations onto low-dimensional and orthogonal manifolds. Using 55 

behavioural testing and neuroimaging in humans, and analysis of neural signals from macaque 56 

prefrontal cortex, we report evidence for neural coding patterns in biological brains whose 57 

dimensionality and neural geometry are consistent with the rich learning regime. 58 

 59 

 60 
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Introduction 62 

 63 

Humans and other primates can exhibit versatile control over behaviour in rapidly changing 64 

contexts [1]. For example, we can switch nimbly between sequential tasks that require distinct 65 

responses to the same input data, as when alternately judging fruit by shape or size, and friends 66 

by gender or age [2–5]. Human studies have mapped the brain regions that exert control during 67 

task performance [6–9] or measured the processing costs incurred by task switches [10,11]. 68 

However, how the neural representations that support sequential multitask performance are 69 

acquired remains a key open question for cognitive and neural scientists [12–15].  70 

 71 

One recently popular theory proposes that stimulus and context signals are projected into a 72 

high-dimensional neural code, permitting linear decoding of exhaustive combinations of task 73 

variables [16]. Indeed many neurons, especially in prefrontal and parietal cortex, exhibit 74 

nonlinear mixed selectivity, multiplexing information over several potentially relevant task 75 

variables [17–19], with errors heralded by a collapse in dimensionality [17]. This high-76 

dimensional random mixed selectivity offers great behavioural flexibility because it maximises 77 

the potential for discrimination among diverse combinations of inputs, but also implies that 78 

neural codes should be relatively unstructured and task-agnostic. An alternative theory states 79 

that neural representations are mixed-selective but structured on a low-dimensional and task-80 

specific manifold [12,13,20], with correlated patterns of firing conferring robustness on the 81 

population code [21]. Representations may adapt so that irrelevant task information is wholly 82 

or partially filtered out in ways that minimise interference between tasks [22], consistent with 83 

accounts emphasising that neural codes are sculpted by task demands [23] or through attention 84 

to scenes and objects [24]. The question of whether neural codes are task-agnostic or task-85 

specific speaks to core problems in neural theory with widespread implications for 86 

understanding the coding properties of neurons and neural populations [25,26]. 87 

 88 

Here, we studied the dimensionality and geometry of neural codes supporting sequential 89 

multitask performance in both neural networks and the human brain. We first formalised a 90 

continuum of solutions to the multitasking problem using the framework provided by 91 

feedforward neural networks. An emergent theme in machine learning research is that neural 92 

networks can solve nonlinear problems in two distinct ways, dubbed the lazy and rich regimes, 93 

which respectively give rise to high- and low-dimensional representational patterns in the 94 

network hidden units [27–31]. In the lazy regime, which occurs when networks are initially 95 

densely wired with strong synaptic connections, the dimensionality of the input signals is 96 

expanded via random projections to the hidden layer, such that learning is mostly confined to 97 

the readout weights. In the rich regime, which occurs under small norm initializations (e.g. in 98 

initially weakly connected networks), the hidden units instead learn highly structured 99 

representations that are tailored to the task demands [27,32–34]. We used neural network 100 

simulations to characterise the nature of these solutions for a canonical multitasking setting and 101 

employ representational similarity analysis to explore their neural geometry. Subsequently, we 102 

compared these observations to BOLD data recorded when humans performed an equivalent 103 

task, and to neural signals previously recorded from macaque prefrontal cortex during context-104 

dependent decisions [4]. In humans, we found that dorsal portions of the prefrontal cortex and 105 

posterior parietal cortex share a neural geometry and dimensionality with networks that are 106 

trained in the rich regime. This solution involves representing distinct tasks as low-dimensional 107 

and orthogonal neural manifolds, in a way that minimises interference and maximises 108 

robustness among potentially competing responses [35]. Neural signals in the two monkeys 109 

were heterogenous but we see strong support for orthogonal manifolds in one animal, with 110 
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neural signals in the other strongly biased towards a single input dimension as previously 111 

reported [4,36]. 112 

 113 

Results 114 

 115 

We focus on a canonical paradigm involving context-dependent classification of D-116 

dimensional stimuli 𝑥(𝑖, 𝑗) ∈ 𝑅𝐷 which vary along two underlying dimensions 𝑖 and 𝑗, for 117 

which correct decisions depend on 𝑖 in context 𝑐𝑖 and 𝑗 in context 𝑐𝑗 [2–4,14]. Healthy human 118 

participants (n = 32) categorised naturalistic (tree) stimuli, with the correct class given by 119 

branch density in one context and leaf density the other (Fig. 1A,B, Fig S1). These dimensions 120 

were orthogonal by design and a priori unknown to participants [37]. Accuracy increased with 121 

training, jumping from 64±2% to 88±2% between an initial baseline and a final test conducted 122 

in the fMRI scanner (t29 = 11.1, p < 0.001, Fig. 1C). Using a psychophysical model to 123 

decompose errors into distinct sources, this improved performance was due neither to a 124 

steepening of the psychometric curve (slope: p = 0.120), nor a reduction in decision bias 125 

(offset: p = 0.319) although the scan session was characterised by fewer generic lapses (lapse: 126 

Z = 3.5, p < 0.001, Fig. 1E). Instead, the fitted estimation error for the category boundary fell 127 

from 27° to 7° (angular bias: Z = -4.1, p < 0.001, Fig. 1E). In a previous study [37] we 128 

quantified behavioural response patterns in this trees task by fitting a model that made choices 129 

according to the two orthogonal ground truth boundaries [37]. This factorised model fit better 130 

than a linear model that learned a single boundary for both tasks, a finding we replicate here 131 

(Fig. 1F; scan: factorised > linear T29 = 17.61, p < 0.0001, phase x model interaction: T29 = 132 

-10.84, p < 0.0001).  In other words, despite having no prior knowledge of the tasks, or how 133 

the stimulus space was organised, participants learned over the course of training to apply the 134 

orthogonal category boundaries appropriately in each context (Fig 1D). 135 

 136 

To understand the evolution of neural codes supporting this behaviour, we trained neural 137 

networks with gradient descent to perform a simplified version of the context-based 138 

categorisation task. For simplicity, we replaced trees with stylised images (containing Gaussian 139 

blobs) that were classified according to their mean 𝑥 or 𝑦 coordinate in two interleaved 140 

contexts, signalled to the network via a unique input node. As expected from theoretical results 141 

[27,29], the norm of the weights at convergence (Fig. 1G, upper) and overall change in input-142 

to-hidden layer weights over learning (Fig. 1G, lower) depended strongly on initial connection 143 

strengths. Networks initialised with high variance weights rapidly learned to solve the task by 144 

reading out from an approximately fixed nonlinear high-dimensional random representation 145 

(lazy regime) whereas those with low variance weights converged more slowly, but exhibited 146 

strong representation learning in the input-to-hidden weights (rich regime). Thus, the final 147 

representations were lower dimensional under rich learning, with just 6 (9) principal 148 

components needed to explain 95% of the variance under rich (lazy) learning (Fig. 1H). 149 

Critically, however, the rich regime proved more tolerant to a challenge that reduced the 150 

dimensionality of hidden unit activity: only 3/6 components were needed to maintain ceiling 151 

performance, whereas 8/9 were required under lazy learning (Fig. 1I). Although learning was 152 

up to 10 times faster in the lazy regime (Fig. 1J), the highly structured representations acquired 153 

during rich learning conferred robustness, also making performance more tolerant to the 154 

addition of Gaussian input noise (Fig. 1K). In other words, these solutions offer 155 

complementary costs and benefits for representation learning (speed vs. robustness) of task-156 

related variables. 157 

 158 

 159 

 160 
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 162 
Figure 1. A. Illustration of the two-dimensional stimulus (tree) space. Each image shows the category boundary 163 
(dashed line) and reward/penalty (red-green colour) for choosing to plant in a specific context (signalled by blue 164 
frame/orange frame). B. Example trial sequence. Participants were asked to “accept” (plant) or reject a tree by 165 
pressing one of two buttons. The context was signalled with frame colour. Participants received rewards and 166 
penalties for planting trees. C. Mean accuracy improved from baseline to scan. Each dot is a participant. D. Choice 167 
matrices show the mean probability of choosing “plant” for each tree (defined by a level of leaf/branch density) 168 
in each context, for both the baseline (top) and scanner (bottom) sessions. E. Parameters of the psychophysical 169 
model between baseline and scan: offset & slope of a sigmoidal transducer, angular bias (between estimated and 170 
ground truth decision boundary), and lapse rate. See methods for details. Each dot is a participant. ** denotes p < 171 
0.01. F. Fits of linear and factorised model at baseline and scan. Each dot is a participant. G. Norm of the weights 172 
at convergence (upper panel) and overall change in weights from input to hidden layer (lower panel) both varied 173 
with initial weight scale (x-axis and green-blue colour scale). H. Variance explained after the retention of 1-10 174 
principal components of hidden layer activity (x-axis) under different initial weight scales. I. Network accuracy 175 
as a function of retained components. Note that the rich networks (lower initial weight scale) are more robust to 176 
compression. J. Episodes to convergence as a function of initial weight scale. Lazy networks converge faster. K. 177 
Network performance with differing levels of input noise. Rich networks are more resilient to noise. 178 
 179 

Next, we used representational similarity analysis (RSA) and multidimensional scaling (MDS) 180 

to visualise the neural geometry of the network hidden units at convergence under either regime 181 

(Fig. 2A). Focussing on the minimum and maximum norm solutions, during lazy learning the 182 

similarity is mostly driven by the structure of the input space (including the task context) (upper 183 

panel); this is expected because the input weights remain close to their initial values and 184 

random high-dimensional projections approximately preserve distances between inputs [38]. 185 

However, during rich learning hidden unit activity varies with context: in 𝑐𝑖, neurons code for 186 

dimension 𝑖 but not 𝑗, with the converse true for 𝑐𝑗.   In other words, task-irrelevant features 187 

were filtered out in each context, transforming the neural “grid” into two manifolds, each 188 

coding for a task-relevant dimension. Specifically, each context has a compressed and 189 
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uncompressed axis, forming a rectangle in the plane, and we hereafter call the geometry 190 

“orthogonal” when the respective compressed and uncompressed axes are perpendicular across 191 

tasks. Thus, the network learned to project the data on a low-dimensional embedding space, in 192 

a way that might minimise intrusions from irrelevant features in each context (lower panel)[35]. 193 

This was confirmed by fitting model representational dissimilarity matrices (RDMs) that 194 

encode a grid or orthogonal pattern to the hidden units at convergence: the grid model fit best 195 

for high-norm (lazy) solutions and the orthogonal model fit best for low-norm (rich) solutions 196 

(Fig. 2D).  197 

 198 

How, then, are task representations structured in biological brains? Our simulations furnished 199 

predictions about the neural geometry we should expect to see in BOLD data acquired during 200 

the final phase of our experiment. Univariate tests replicated standard findings including the 201 

heightened BOLD signal in PFC on context switch relative to stay trials (Fig. S2A,B), and the 202 

correlation between BOLD signal and decision certainty in posterior parietal [39] and medial 203 

orbitofrontal cortex [40] (Fig. S2C,D). However, to investigate neural geometry, we once again 204 

turned to a more powerful multivariate analysis of the activity patterns (RSA). We used model 205 

RDMs encoding grid, orthogonal and control patterns to predict brain activity. Crucially, we 206 

observed strong correlations with the orthogonal model in three major foci: the dorsolateral 207 

prefrontal cortex (dlPFC; t30=9.79, p<0.001 corrected, peak [46 14 24]), the mid-cingulate 208 

cortex (MCC; t30=9.51, p<0.001 corrected, peak [8 21 49]) and the posterior parietal cortex 209 

(PPC; t30=8.87, p<0.001 corrected, peak [39 -45 45]) Fig. 2B). A similar effect was observed 210 

in a left prefrontal region for which the univariate analysis had revealed that it was sensitive to 211 

context switches, but the fit of the orthogonal model did not differ between switch and stay 212 

trials (Fig. S3). In early visual regions, neural data RDMs were best predicted by a model in 213 

which dissimilarities depended mainly on branch density (t30=6.98, p<0.001 corrected, peak 214 

[22 -84 -3]) but no other models explained a significant amount of variance in the neural 215 

RDMs. Thus, neural codes were largely structured as predicted by rich learning, with 216 

representations in each context projected onto orthogonal neural axes that are elongated along 217 

the relevant feature dimension and compressed along the irrelevant feature dimension. 218 

 219 

We also used RSA in conjunction with a parametric model-fitting approach conducted on 220 

independently defined ROIs for dlPFC, MCC and PPC. Rather than fitting models encoding 221 

extremes of compression, rotation, and context separation, now we built RDMs by varying 222 

these factors continuously, visualising the parameters that best fit the neural data in each region. 223 

This confirmed that the neural code was compressed along irrelevant but not relevant 224 

dimensions and remained in the naïve (input) space rather than being rotated into the frame of 225 

reference of the response (Fig. 2F). When we used MDS to visualise the best-fitting model 226 

RDMs for each region, the task-specific encoding of relevant dimensions along orthogonal 227 

manifolds in dorsal stream regions of interest can be clearly seen (Fig. 2C). Finally, in neural 228 

networks rich learning is characterised by a low-dimensional neural code; by systematically 229 

removing components from the data using PCA on the BOLD patterns within each candidate 230 

ROI, we were able to show that reliable correlation with the orthogonal manifolds RDM 231 

required just two components in each region of interest and that there was no measurable 232 

benefit in maintaining more than 6 PCs in total (Fig. S4). In other words, the neural 233 

representations span a low-dimensional subspace focused on task-relevant stimuli, as predicted 234 

by rich learning. 235 

 236 
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 238 

Figure 2. A. Three-dimensional representation of hidden layer representations for each stimulus feature (x- and 239 
y-position, dot colour and size) in each context (connecting lines, orange and blue). Top panels: lazy regime, 240 
bottom panels: rich regime. In the rich regime, note how the compression along irrelevant dimensions leads to the 241 
emergence of “orthogonal” manifolds, in which task-relevant stimulus information is encoded along orthogonal 242 
axes. B.  Left panel: voxel regions where neural similarity patterns matched the grid RDM. Right panel: voxels 243 
where neural similarity patterns matched the orthogonal RDM. All data are corrected for multiple comparisons.  244 
C. Low-dimensional projections of fMRI data from within ROIs taken from visual, parietal and frontal regions, 245 
reconstructed from coefficients of regression model D. Fits of RDMs encoding grid, orthogonal and parallel 246 
representational schemes to the neural network data as a function of initial weight scale.  The orthogonal model 247 
(dark blue line) fits best in the rich regime, and the grid model (cyan line) fits best in the lazy regime. E. Same as 248 
A and C but for data from monkey A. Stimulus features are now colour and motion; data from Mante et al 2013 249 
[4]. F. Data from parametric RDM fits. Compression, rotation and context offset in each region from best-fitting 250 
RDM characterised by parametrically varying expansion/contraction of representation on relevant/irrelevant 251 
dimension (left panel), context-dependent rotation of the stimulus axes from native space into the reference frame 252 
of the response (i.e. from orthogonal to parallel model, mid panel) and separation between contexts (right panel). 253 
G. Correlation between neural task factorisation (fits of orthogonal model to neural data) and behavioural axis 254 
alignment (fits of factorised model to choice matrices). Each dot is a participant.  255 
 256 

 257 

Next, we attempted to link these neural patterns to behaviour. The factorised model that was 258 

fit to human choices to quantify the extent to which these were aligned with the ground truth 259 

category boundaries yields an “axis alignment” score for each participant, which was correlated 260 

with the orthogonality of neural task representations across the cohort in PPC (Kendall’s tau a 261 

= 0.27, p=0.038), MCC (Kendall’s tau a=0.36, p=0.005) and dlPFC (Kendall’s tau a = 0.38, 262 

p=0.003; Fig. 2G). In other words, the decisions of participants with more factorised neural 263 

representations respected more orthogonal category boundaries. 264 

 265 

BOLD data offers at best an indirect window on neural coding, so we additionally capitalised 266 

on a freely available dataset describing single neuron activity in frontal eye fields (FEF) whilst 267 

macaques performed an equivalent context-dependent decision task on stimuli with varying 268 

colour and motion coherence [4,36]. We focus on the results from monkey A, because our 269 

analyses (and those reported previously) indicate that FEF neurons recorded from monkey F 270 

were only very weakly sensitive to motion even when it was decision-relevant [36]. First, we 271 

built a pseudopopulation from all the recorded neurons and plotted its neural geometry in 2 272 

dimensions.  This revealed two orthogonal manifolds, each coding for one of the two task-273 

relevant axes, just like in the BOLD data and predicted by neural networks trained in the rich 274 
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regime (Fig. 2E). Indeed, when we fit the candidate RDMs used above to this dataset, the 275 

orthogonal RDM fit best for monkey A; an RDM coding for colour alone fit best for monkey 276 

F (Fig. S4). We also tested dimensionality of these neural geometries using a similar approach 277 

as above; the ability to decode orthogonal manifolds dropped sharply when fewer than 3 278 

components were retained, suggesting that directions of highest variance were aligned with the 279 

task-relevant dimensions of context, colour and motion (Fig. S5). This analysis suggests that 280 

the orthogonal manifolds identified with the RSA lie embedded in a very low-dimensional 281 

manifold and indicates that the effect observed in human BOLD generalises across species and 282 

recording methods. 283 

 284 

How does this neural coding scheme prevent interference among tasks? In the neural network 285 

model, we reasoned that orthogonal manifolds could emerge if the weights linking each context 286 

unit to the hidden layer were anticorrelated. Anticorrelated weights ensure that distinct subsets 287 

of hidden units are active in each context, as neurons which receive negative net input in one 288 

context (and which therefore are inactive due to the rectified linear (ReLU) activation function) 289 

will receive positive net input (and be active) in the other. By wiring only the task-relevant 290 

stimulus dimension to the active population in each context, information along the irrelevant 291 

dimension is thus effectively zeroed out by the nonlinearity, creating an independent subspace 292 

for each task (Fig. 3A). This would allow the network to factorise the problem, encoding the 293 

task-relevant information in a way that avoids mutual interference (Fig. 3B-D).  294 

 295 
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 297 

Figure 3. A. Schematic illustration of how opposing weights from two context units leads to learning two unique 298 
subspaces. Red and blue arrows show positive and negative weights from context units, which control the sign of 299 
the net inputs in the hidden layer, so that stimuli are effectively processed by different hidden units in each context. 300 
B-D. Schematic illustration but in neural state space. B. Shows similarity structure among input stimuli with no 301 
context modulation. C. Shows the similarity structure in the hidden layer net input (before ReLU). Note the 302 
separation between contexts. D. After the ReLU, “inhibited” (below-zero) inputs are removed, leaving two 303 
orthogonal manifolds. E. Task and stimulus selectivity in the neural network as a function of initial weight scale. 304 
F. Distribution of empirically observed correlation coefficients among context unit weight vectors in the neural 305 
network. G-H. Same as F but separated out by “task-selective” and “stimulus-selective” units as defined in E. 306 
Note the anticorrelation in task-selective units (and overall). I. Distribution of selectivity of single neurons in 307 
monkey A, using the same criteria as in E. J. Hidden unit selectivity for each relevant and irrelevant stimulus 308 
feature in each context. Note that task-selective units (lower panels) are mostly sensitive to relevant vs. irrelevant 309 
dimension whereas stimulus-selective units code for an interaction between features. K. Quantification of results 310 
in J using fits of linear vs. factorised model. The factorised model fits best to task-selective units, and the linear 311 
model to stimulus-selective units. L. Results of ablation study. Ablating task-selective, but not stimulus-selective 312 
units is detrimental to performance. M. Same as J, but for example neurons from monkey A. N. Same as K, but 313 
for monkey A. 314 
 315 
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This theory makes a number of testable predictions. Firstly, it implies that most neurons should 316 

be mixed selective, responding to combinations of stimuli and task variables. Indeed, we 317 

observed that a large proportion of neurons were mixed selective regardless of regime. 318 

Secondly, however, it implies that this mixed selectivity should be structured in the rich regime, 319 

with most units in the hidden layer responding specifically to the combination of task-relevant 320 

stimulus dimension and task. Indeed, we observed that up to ~60% of hidden units responded 321 

exclusively under one task or the other during rich learning (Fig. 3E). Interestingly, when we 322 

conducted a comparable analysis for non-human primate (NHP) data, we found that the 323 

majority (~65%) of significantly responsive units were also selective to either colour in the 324 

colour task or motion in the motion task, although there was strong bias towards the colour task 325 

(Fig. 3I). Thirdly, the theory predicts that in neural networks the context weights should be 326 

anticorrelated. This is indeed the case on average in the rich regime (Fig. 3F) and especially 327 

for the majority of task-selective neurons (Fig. 3G), which became anticorrelated as training 328 

progressed. In contrast, those neurons that converged to being task-agnostic were those that 329 

received strong, positively correlated input from two context units at random initialisation, and 330 

this input remained positively correlated after training (Fig. 3H). It thus seems likely that the 331 

initial sign of the connections from the context units to each hidden unit determines whether it 332 

is destined to be a task-agnostic or task-specific unit during training. We cannot test this in 333 

NHP data, but we can compare the response profiles of neurons defined as task-agnostic and 334 

task-specific in both model systems, revealing how their responses vary with stimulus input in 335 

either context. The theory predicts that task-specific units show a coding preference for relevant 336 

feature dimensions (with irrelevant features mapped onto units which are deactivated by the 337 

ReLU). This is exactly what is seen in both the neural network (Fig. 3J,K factorised model > 338 

linear model: z = 4.781, p < 0.0001, d = 0.873) and the NHP data, where the responses of task-339 

specific units are aligned to the two choice axes (Fig. 3M,N factorised model > linear model: 340 

z = 4.916, p < 0.0001, d = 0.739). By contrast, in neural networks the remaining ~35% of 341 

active units coded for a residual policy which collapses across both contexts (“task agnostic”), 342 

resembling the linear model described above (Fig. 3J,K linear model > factorised model z = 343 

4.781, p < 0.0001, d = 0.873). The same task-agnostic response patterns were observed in NHP 344 

neurons that responded significantly to stimuli but did not differentiate substantially between 345 

dimensions (Fig. 3M). Just as in the neural network simulations, responses of these single units 346 

were best explained by the linear model (Fig. 3N linear model > factorised model: z = 4.076, 347 

p < 0.0001, d = 0.732). A final prediction of this theory is that in the rich regime, performance 348 

depends critically on the task-specific (and axis-aligned) neurons but not on those displaying 349 

task-agnostic selectivity. In the neural network, we thus conducted an ablation study in which 350 

the output of either the task-agnostic or task-specific neurons was set to zero at evaluation. 351 

Performance was unimpaired by the loss of task-agnostic units but dropped to ~70% after task-352 

specific units were removed, consistent with the use of a single linear boundary across the two 353 

contexts (Fig. 3L). Together, these findings support a model of context-dependent decision-354 

making whereby the network learns to gate information into orthogonal subspaces in the hidden 355 

units (of a neural network) or prefrontal cortex (of humans and NHPs), in a way that minimised 356 

mutual interference. This scheme emerges when context input signals are anticorrelated. 357 

 358 

Discussion 359 

 360 

The work described here makes three distinct contributions. The first is to formalise solutions 361 

to the learning of a canonical context-dependent classification paradigm using a feedforward 362 

connectionist (or “deep learning”) framework [41,42]. We do this by drawing upon recent work 363 

in machine learning research, which distinguishes among the learning regimes which occur 364 

when deep networks are initialised with strong, dense connections (high norm weights; lazy 365 
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regime) compared to weak connections (low norm weights; rich regime) [16,17,27–32]. We 366 

derive predictions from these regimes for the context-dependent classification task, a paradigm 367 

that has been well-studied before using both single neuron electrophysiology [4,36] and 368 

neuroimaging [2] methods.  369 

 370 

The second contribution is to assess these predictions using behavioural testing and functional 371 

neuroimaging in human participants, and reanalysis of a dataset recorded from macaque 372 

monkeys performing an equivalent task. In humans, we find that over the course of training, 373 

participants learned about the structure of the stimulus space and correctly inferred the 374 

orientation of the two category boundaries. After training, we observe a stylised neural 375 

geometry in the parietal and prefrontal cortices that closely matches the predictions of the 376 

“rich” regime, whereby stimuli are projected onto orthogonal subspaces on a low-dimensional 377 

manifold. A similar pattern was observed in the NHP data. Together, these data speak to a 378 

debate about whether humans and other primates learn to solve complex tasks by forming high-379 

dimensional (and task-agnostic) or low-dimensional (and task-specific) neural codes and offer 380 

striking evidence for comparable coding principles in humans, non-human primates and 381 

artificial neural networks. 382 

 383 

The third contribution is an insight into the computational principles that allow the context-384 

dependent decision task to be solved. We show that a combination of anticorrelated context 385 

inputs and ReLU (or ReLU-like) nonlinearities allows the network to effectively learn to gate 386 

task information according to context. This allows us to predict how mixed-selective neurons 387 

code for relevant and irrelevant features in both neural networks and NHPs, and to anticipate 388 

the effects of silencing task-agnostic vs. task-specific neurons on performance. We note that 389 

for the NHP task, where inputs arrive over time, our simple theory models the representation 390 

at late times after stimulus presentation. Adding recurrent connectivity yields a model 391 

exhibiting a “late selection” mechanism and fixed stimulus input directions across contexts, 392 

two key hallmarks identified in prior analyses [4,36](see Fig. S8 and Supplementary Methods). 393 

 394 

There has been a recent resurgence of interest in neural networks (or “deep learning models”) 395 

as computational theories of biological brains [41,42]. A common approach is to use linear 396 

methods to examine similarities between the representations formed in biological systems 397 

(e.g. multi-neuronal or multivoxel patterns) and in the hidden units of deep networks. One 398 

corollary of our findings is that the relationship between representations formed in biological 399 

and artificial networks can critically depend on the variance of the weights at initialisation. For 400 

example, when the initial weight scale is large, the similarity structure of encoded 401 

representations will closely match their input structure. This is what we saw in BOLD data 402 

from visual cortex (in our case, a more “grid-like” pattern, with higher sensitivity to variations 403 

in shape than in colour). This may partly explain why previously reported improvements in 404 

model fit from trained to untrained networks tend to be relatively modest, as if the visual cortex 405 

mainly recapitulates the input data through random high-dimensional projections [43,44].  406 

 407 

In our data, the nature of the neural code observed in parietal and prefrontal cortex, however, 408 

was very different. Here, task-irrelevant features were compressed in each context, converting 409 

the neural “grid” into orthogonal manifolds, each coding for a task-relevant axis. This is quite 410 

striking, because conflicting reports have suggested that task-irrelevant information is retained 411 

or discarded during context-dependent decision-making [2,4]. More generally, the diverse 412 

representational structure that can emerge in the rich and lazy regimes, and its variable mapping 413 

to the brain, may shed light on why emerging representation structure can be heterogenous in 414 

trained neural networks [45]. 415 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 23, 2021. ; https://doi.org/10.1101/2021.04.23.441128doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.23.441128
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

   
 

  416 

Previous analyses of single cell data from macaque prefrontal cortex have emphasised that 417 

neural selectivity is mixed, and representations are high dimensional, in seeming contradiction 418 

to the findings reported here [16,17]. One possibility is that over prolonged training, the 419 

dimensionality of neural representations is tailored to the transfer demands of the paradigm 420 

[46]. Structured, low-dimensional representations may be favoured in settings where 421 

information can be shared across tasks or stimuli, such as our trees task, where all stimuli were 422 

unique, but sampled from the same underlying generative process, hence permitting 423 

generalisation of latent features across tasks. By contrast, high-dimensional neural codes may 424 

emerge by preference in tasks with minimal need for generalisation, such as recall and 425 

recognition of a small set of unrelated images [17,47]. Indeed, our “rich” neural networks were 426 

more tolerant to degradation through compression and/or input noise than those in the lazy 427 

regime. However, the relationship between the generalisation ability of the two regimes 428 

described here remains an open question. 429 

 430 

At first glance, our findings might appear to diverge from previous analyses of the same data, 431 

in that we emphasise that irrelevant information is at least partly compressed in FEF [4,36]. 432 

However, our analysis of the NHP data focussed on a relatively late epoch (300-600 ms post-433 

stimulus). In fact, when we repeated the model-based RSA separately for early, middle and late 434 

time windows following stimulus onset, we found that representations were more grid-like 435 

early on (encoding of both feature dimensions) but became highly task-specific in the second 436 

half of the trial (Fig. S8a). Crucially, we can explain this temporal evolution of task 437 

representations with an extension of our gating theory that incorporates recurrence into the 438 

neural network model (Fig S8b). Under this account, feature-selective units keep integrating 439 

motion/colour information throughout the stimulus presentation period, but the irrelevant 440 

dimension is integrated at a slower rate, giving rise to a gradual progression from grid-like to 441 

orthogonal representations. In the following delay-period, the context cue continues to act as 442 

inhibitory bias on the unit encoding irrelevant features, gradually supressing its activity just 443 

enough so that by the time of a response, only task-relevant information is preserved, leaving 444 

a fully orthogonal and task-specific representation (Fig S8c). When we visualised the 445 

geometries separately for early, middle and late windows within the stimulus interval, we 446 

observed a similar temporal evolution from grid-like to more orthogonal representations in both 447 

the RNN and monkey recordings (Fig S8d). 448 

 449 

Another recent paper has emphasised that the neural geometry for distinct tasks in macaque 450 

PFC can become aligned along parallel manifolds, with representations for common action/ 451 

outcome associations aligned in neural space [48]. An equivalent effect in our paradigm would 452 

be that tree representations are rotated into a frame of reference of “plantworthiness” – whether 453 

the tree should be accepted for planting or not – which we tested with a “parallel model” RDM 454 

but failed to find evidence for in either neural data or the network hidden units. One important 455 

difference in our work is that in order to separate decision and motor activity, in the fMRI study 456 

we varied the motor contingencies from trial to trial, meaning that there is no real benefit to 457 

representing the decision directly in the response frame in our task. In fact, further neural 458 

network simulations revealed that in a two-layer neural network, orthogonal representations 459 

dominated in the first hidden layer, but more parallel representations emerged in the subsequent 460 

layer, more consistent with the findings of  [48] (Fig. S7). We take this to imply that in a task 461 

where response contingencies were not randomised from trial to trial, we might see parallel 462 

representations emerge in a putative downstream stage – for example premotor cortex – but 463 

this contention remains to be tested. 464 

 465 
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Taken together, our findings suggest striking similarities between multi-task learning in 466 

biological and artificial neural networks and indicate that the human brain has evolved a coding 467 

scheme that minimises representational overlap between consecutively learned tasks, similar 468 

to the one adopted by a neural network trained in the rich regime on interleaved data. 469 

 470 
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Methods 615 

 616 

Human Behavioural / fMRI Experiment 617 

 618 

Participants. A total of 32 participants (mean age 24.44y, 31 right-handed, 21 female) with no 619 

history of neurological or psychiatric disorders were recruited from a participant pool at the 620 

University of Granada. One participant was excluded from the analysis due to equipment 621 

failure during the scanning session, leaving 31 participants for the fMRI analysis. For another 622 

participant training data was not recorded due to disruption of their internet connection, leaving 623 

30 participants for all behavioural analyses. All participants gave written informed consent 624 

prior to taking part in the study. The experiment received approval from the ethics board of the 625 

University of Granada. Participants were compensated for their time with 38€. The experiment 626 

consisted of several sessions completed on three successive days (Fig S1a). All participants 627 

completed a pre-screening study on day 1 that assessed their eligibility for the main experiment. 628 

The main experiment consisted of a browser-based training session on day 2, and a refresher 629 

and scanning session on day 3, which took place at the fMRI institute of the University of 630 

Granada.  631 

 632 

Stimuli. Participants performed a virtual gardening task for which they had to discover rules 633 

that determined growth success of tree stimuli in two different gardens. Trees were generated 634 

by in house-code [link] and were built to vary parametrically in five discrete steps along two 635 

different dimensions, the density of leaves (“leafiness”) and the density of branches 636 

(“branchiness”), yielding 25 unique class. We generated multiple stimuli per level of leafiness 637 

and branchiness and sampled these exemplars randomly without replacement for training and 638 

test sessions at the level of individual participants so that no physical stimulus was presented 639 

twice during the experiment.  640 

 641 

Pre-Screening Session (Day1) We previously showed that learning is mediated by an a priori 642 

tendency to factorise tree space into dimensions of leafiness and branchiness [37]. To measure 643 

this prior in our participants we first used an online task in which participants moved tree 644 

exemplars within a circular open arena via drag and drop on the screen, attempting to arrange 645 

them so that distance between trees was proportional to their perceived dissimilarity (Fig. S1b). 646 

Participants completed six arrangement trials of 25 trees, with trees sampled from the whole 647 

5x5 grid of branchiness and leafiness on each trial. At the beginning of each trial, the trees were 648 

randomly arranged in an attempt to minimise other sources of bias. The allocation of exemplars 649 

to trials was randomised across subjects. We correlated the dissimilarity matrices derived from 650 

the arrangements with a model matrix that represented a perfect grid-like arrangement to 651 

compute a “grid score” for each participant. We planned to exclude participants who failed to 652 

reach the median grid score reported in the previous study where participants were recruited 653 

online [37], but no participants met this criterion (Fig. S1c).  654 

 655 

Training Session (Day2). On day 2, participants took part in an online training session in 656 

which they learned to perform the task. On each trial participants first viewed a cue indicating 657 

the context (or “garden”), which was a blue or orange rectangular frame presented for 1000ms. 658 

Next, a tree was displayed for 1500ms within the frame, together with the response 659 

contingencies (“plant” or “don’t plant”) which were indicated by left and right arrow buttons 660 

on either side of the tree stimulus. These contingencies (i.e. whether “plant” was mapped onto 661 

the left or right button) were varied randomly from trial to trial. The stimulus and response 662 

interval was always set to 1500ms. If a response provided within this interval was highlighted 663 

by a rectangle drawn around the chosen option (“plant” vs “don’t plant”). Participants were 664 
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asked to learn to plant trees that grew successfully. Tree growth success depended on leafiness 665 

in one context and branchiness in another and was signalled by a numerical reward, ranging in 666 

five steps from -50 to +50. For example, for a given participant, trees occurring within the 667 

orange frame might grow successfully if they had fewer leaves, whereas trees occurring within 668 

the blue frame might grow successfully if they had more branches. Feedback, where available 669 

(see below) was presented for a period of 500ms (800ms for missed trials) and consisted of a 670 

numerical reward (if the tree grew successfully) or penalty (if it did not) for planting a tree, and 671 

always a reward of zero for not planting a tree. At the beginning of the feedback period, the 672 

tree stimulus was replaced by a fixation cross and the response contingencies were replaced by 673 

numeral rewards. These rewards/penalties were mapped onto the relevant dimension 674 

(branchiness/leafiness) and hence varied in five discrete steps from -50 to +50. Rewards (values 675 

above 0) were displayed in green, whereas penalties (rewards below zero) were displayed in 676 

red. Rewards of zero were displayed in black. Again, the chosen option was highlighted by a 677 

rectangle, with its colour matching the colour of the reward value (red/green/black). For 678 

training sessions, the intertrial interval (ITI) had a duration of 1000ms. The directionality of 679 

the rewards (more vs less leafy/branchy trees grow better) and the task order during the main 680 

training phase were fully counterbalanced across participants.  681 

 682 

The training session consisted of three different blocks in which contexts could be either 683 

blocked or interleaved. Blocked means that all trials of in one context were presented first, 684 

followed by all trials in another context, with the order counterbalanced over participants. 685 

Interleaved means that trials were shuffled so that they occurred in random order, but with 686 

exactly the same number in each context. Participants underwent a brief interleaved 687 

familiarisation phase with feedback (50 trials), followed by an interleaved baseline test (200 688 

trials, no feedback). There was then a long main training session which was blocked (900 trials) 689 

(Fig. S1a). The purpose of the baseline training and test was to familiarise the subjects with 690 

the task and to assess the effectiveness of the main training.  691 

 692 

Scanning Session (Day3). The test session consisted of a brief refresher phase (interleaved, 50 693 

trials, feedback) and the main test phase (interleaved, 600 trials, no feedback). The refresher 694 

was completed on the experimenter’s laptop and was identical to the baseline training on day 695 

2. For the test phase inside the scanner, we used a jittered ITI of 2000-6000ms (uniform) during 696 

which only the grey background was displayed. The total length of all ITIs was restricted such 697 

that all runs had equal length. 698 

 699 

Psychophysical Model of human choices. To quantify sources of error in the choice patterns, 700 

we fit a psychophysical model to the choices of each participant. The model assumed that each 701 

tree was categorised with respect to a linear category boundary in tree space, via a logistic 702 

choice function. The model comprised four free parameters: (1) angle of the decision boundary 703 

in tree space (the boundary was assumed to always pass through the centre of the 2D space), 704 

(2) a decision bias or offset to the inflection point of the logistic function; (3) the slope of the 705 

logistic function (iv) a proportion of random lapses. The model is identical to that in ref [37] 706 

where it is described in more detail. From the estimated category boundary, we calculated an 707 

angular bias, quantifying the absolute disparity between the estimated and ground-truth task-708 

specific category boundaries. The model was fitted to human choice by minimising the 709 

difference between empirical and predicted choice patterns.  710 

 711 

Group level inference. For all human analyses, group-level inference was performed via 712 

paired t-tests on accuracies and signed-rank tests on parameter estimates. To calculate effect 713 

sizes, we report Cohen’s d and its nonparametric equivalent Z/sqrt(N). 714 
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 715 

 716 

fMRI Acquisition. Magnetic resonance images were recorded with a 3T Siemens scanner with 717 

a 32-channel head coil. A high-resolution T1-weighted structural image (voxel size = 1x1x1 718 

mm, 176x256x256 grid, TR=1900ms, TE=2.52ms, TI=900ms) was acquired for each 719 

participant prior to the task. Each fMRI image contained 32 axial echo-planar images (EPI) in 720 

descending sequence (3.5x3.5x3.5mm isotropic, slice spacing 4.2mm, TR= 2000ms, flip angle 721 

= 80, TE = 30ms). We collected fMRI data in six independent runs of 345volumes each.  722 

 723 

fMRI Pre-processing. Pre-processing was conducted in MATLAB with SPM12 and custom 724 

scripts. For each participant, functional scans were first realigned to the first scan. As EPIs 725 

were acquired in descending sequence, we applied a slice time acquisition correction with the 726 

middle slice (TR/2=1s) as reference. Next, the structural scan was co-registered to the mean 727 

EPI. Anatomical scans were normalised to standard Montreal Neurological Institute (MNI) 152 728 

template. EPIs were normalised to the template using tissue probability maps for grey matter, 729 

white matter, and cerebrospinal fluid. The EPIs were resliced to 3x3x3mm resolution. For 730 

univariate analyses, we applied smoothing with a full width half maximum (FWHM) Gaussian 731 

kernel of 8mm.  732 

 733 

fMRI Data Analysis: GLMs. Data were analysed using SPM12, the RSA toolbox [49] and 734 

custom scripts written in MATLAB. We used a general linear model (GLM) approach for all 735 

univariate analyses. A 128s temporal high-pass filter was applied to remove low-frequency 736 

scanner artefacts. Temporal autocorrelation was estimated with a first-order autoregressive 737 

model (AR-1). All GLMs contained regressors coding for onset and duration (boxcar until 738 

participant response) of events, which were convolved with the canonical haemodynamic 739 

response function (HRF). Six motion parameter estimates from the pre-processing stage were 740 

included as nuisance regressors in all GLMs. Each run was represented by a separate set of 741 

regressors in the GLM, and run number was encoded by a dummy variable. Observed fMRI 742 

data at single subject level was regressed against this design matrix. Our analyses are based on 743 

three different GLMs. The first GLM (GLM1) had two predictors of interest (task switch trials 744 

and task stay trials), locked to cue onset. GLM2 included two parametric regressors of absolute 745 

distance of stimuli to the category boundary, for the relevant and irrelevant dimension, 746 

respectively. GLM3 was constructed for representational similarity analysis (RSA) and fitted 747 

to unsmoothed EPIs. It had 50 regressors per run, one for each combination of context (“north 748 

garden”/blue rectangle vs “south garden”/orange rectangle), branchiness (1 to 5) and leafiness 749 

(1 to 5).  750 

 751 

Representational Similarity Analysis of human fMRI.  GLM3 (described above) was fit to 752 

neural data at single-voxel level. We then constructed neural Representational Dissimilarity 753 

Matrices (RDMs) using a spherical searchlight (radius 12mm). For each searchlight sphere, we 754 

computed cross-validated neural RDMs from the condition-by-voxel matrix of estimated 755 

neural responses using Pearson correlation distance between pairs of conditions from distinct 756 

runs. This yielded a 300x300 RDM (50 conditions per run, six runs). All analyses excluded 757 

within-run similarity data (e.g. blocks of 50 conditions on the major diagonal). We constructed 758 

seven model RDMs to probe for the existence of task-related representational geometries in 759 

the fMRI activity patterns: the (1) grid model, (2) orthogonal manifold model, (3) parallel 760 

manifold model and (4) rotated grid model, (5) only branchiness model, (6) only leafiness 761 

model and (7) diagonal model. The first model encoded two parallel, evenly spaced grids (unit 762 

distance), representing each combination of context, branchiness and leafiness. The second 763 

model was obtained by taking the grid model and projecting stimuli onto the task-relevant axes 764 
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for each context. Thus, for each context, stimuli differed along the task-relevant dimension 765 

(unit distance), and representations of different tasks were orthogonal to each other. The third 766 

model was obtained by rotating one of the task vectors from the second model by 90 degrees, 767 

considering the reward assignment the participant had been trained on (hence discriminating 768 

“plantiness” of trees, i.e. the extent to which “plant” was the correct answer). For the fourth 769 

model, we performed the same rotation on the grid model. The fifth and sixth models served 770 

as controls, based on the assumption that early visual areas might exhibit task-agnostic shape 771 

(branchiness) or colour (leafiness) sensitivity. The last model was obtained by taking the grid 772 

model and projecting trees onto the main diagonal, ranging from low leafiness and low 773 

branchiness to high leafiness/branchiness. This was based on the competing hypothesis that 774 

humans may have ignored context and optimised for a strategy that yielded 70% correct on 775 

both tasks [37]. Within a given structural ROI or searchlight sphere, z-scored neural RDMs 776 

were regressed against z-scored sets of model RDMs using a multiple linear regression at single 777 

subject level. Statistical inference was performed with a group-level t-test of the regression 778 

weights against zero. Correction for multiple comparisons was conducted via non-parametric 779 

cluster correction as implemented in the SNPM toolbox (FDR threshold < 0.05). To avoid 780 

circular inference, all post-hoc visualisations and analyses within ROIs were performed in 781 

leave-one-subject-out cross-validated ROIs derived from the activity peaks identified with the 782 

searchlight approach (12 mm radius). 783 

 784 

fMRI RSA: Parametrised Model. In order to obtain more fine-grained estimates of the neural 785 

geometry, we also fit a parametrised model to the cross-validated ROIs identified with the 786 

searchlight approach. We constructed a space of model RDMs by varying six parameters, one 787 

controlling the angle between the task-specific grids (ranging from parallel over orthogonal to 788 

anti-parallel in steps of 1degree), four controlling for the compression of relevant and irrelevant 789 

dimensions within each context, and one controlling for the separation of contexts. We fit 790 

RDMs derived from this model to neural RDMs using a constrained optimisation procedure 791 

(fmincon in MATLAB) with least-squares cost function. We then performed group-level 792 

inference on the distribution of best-fitting parameter values. These were used to visualise the 793 

representational geometries of the best fitting RDMs via projection into three dimensions with 794 

classical Multi-Dimensional Scaling (MDS). 795 

 796 

fMRI RSA: Intrinsic Dimensionality. We performed Singular Value Decomposition (SVD) 797 

on the patterns of BOLD activity across voxels within each cross-validated ROI and calculated 798 

the cumulative explained variance based on the squared singular values to obtain an estimate 799 

of the intrinsic dimensionality of the neural activity patterns. To test whether the directions of 800 

largest variance were aligned with the task-diagnostic dimensions of context, branchiness and 801 

leafiness, we repeated the regression-based RSA within each cross-validated candidate region 802 

after successively removing components, starting with the smallest one. This truncated SVD 803 

allowed us to identify the minimal number of components required to successfully decode a 804 

factorised representation from the neural data.  805 

 806 

fMRI RSA: Correlations between brain and behaviour. We performed a correlation analysis 807 

(Kendall’s tau) to quantify the extent to which orthogonal representations at the neural level 808 

predicted accurate, axis-aligned behavioural responses. We analysed human choice patterns by 809 

computing behavioural data RDMs from the probabilities of responding “plant” to trees in each 810 

condition, i.e. as a function of each stimulus’ distance to bound along the irrelevant and relevant 811 

dimension in each context. Building on previous work [37] we fit two model RDMs to human 812 

choice patterns, called the factorised and linear models. In the factorised model, choices were 813 

aligned with the ground-truth boundaries, whereas in the linear model, a “diagonal” boundary 814 
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was applied to both contexts, corresponding to the single linear boundary that optimised for 815 

accuracy whilst ignoring the context (yielding ~70% correct). Fitting the factorised model to 816 

behaviour yielded an “axis-alignment score”, indicating whether the participant’s decision 817 

boundaries were aligned with the ground truth. We tested at the group level whether the extent 818 

to which neural geometries could be explained by the orthogonal model (neural factorisation 819 

score) significantly covaried with the extent to which the factorised model explained human 820 

choices (axis alignment score). 821 

 822 

Neural Network Simulations 823 

 824 

All neural network simulations were implemented and analysed in Python using the NumPy, 825 

SciPy and Scikit-Learn packages. Due to the simplicity the architecture, gradients and 826 

optimisation procedures could be derived by hand and implemented in raw NumPy.  827 

 828 

Task Design. For all neural network simulations, we replaced the fractal tree images with two-829 

dimensional isotropic Gaussian “blobs”. The stimulus space was spanned by parametric 830 

modulation of the x and y coordinates of these blobs in five discrete steps. Inside this 5x5 grid, 831 

neighbouring blobs were partially overlapping, allowing the network to infer similarity 832 

structure based on co-activation of input units. We used a similar context-dependent decision-833 

making task as for our human participants. There were two contexts, in each of which only one 834 

feature dimension (either the x- or y-location) was diagnostic of the correct output (the other 835 

being an irrelevant dimension) and mapped onto a numerical reward ranging from -2 to 2. The 836 

network was trained to predict the reward received in each situation. To assess performance 837 

and representational geometries, we fed trials covering all combinations of the two feature 838 

dimensions (x/y location) and context into the network and recorded hidden layer activity 839 

patterns as well as network outputs for each stimulus.  840 

 841 

Neural Network Architecture. Our model was a feed-forward network architecture with a 842 

single hidden layer. Input units encoded pixel intensities of vectorised and normalised images 843 

of Gaussian blobs. Each image had a down-sampled resolution of 5x5 pixels, hence resulting 844 

in 25 stimulus input units. Two additional one-hot encoded inputs (1 or 0) signalled the context 845 

to the network. All 27 inputs were projected into a hidden layer with 100 units, which were in 846 

turn passed through Rectified Linear Unit (ReLU) nonlinearities. The hidden units projected 847 

onto a single linear output unit. 848 

 849 

Weight Initialisation. All network parameters were initialised with random draws from 850 

Gaussian distributions with a mean of zero. To control whether the network operated in the 851 

rich or lazy regime, we modified the variance of these distributions systematically, ranging 852 

from 0.01 (rich regime) to 3 (lazy regime). We call this “initial weight scale” in the main text. 853 

These values were derived empirically by observing their impact on the relative change of the 854 

weight norm and shape of the loss trajectories during training. Weights to the output unit were 855 

instead initialised with a variance scale of 1/√𝑛ℎ where 𝑛ℎ is the number of hidden units. All 856 

biases were initialised to zero. 857 

 858 

Training. We collected 30 independent runs (unique random initialisations) per initial weight 859 

scale condition. On each run, the network was trained with minibatch gradient descent (batch 860 

size 50, interleaved data, learning rate 0.001, SGD optimiser) on 10000 iterations. The model 861 

was trained on the Mean-Squared-Error (MSE-Loss) between the true and predicted reward 862 

associated with each stimulus. 863 

 864 
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 865 

Addition of Gaussian Input Noise. We investigated the robustness of different training 866 

regimes to additive Gaussian noise in the inputs. The model architecture and training 867 

procedures were identical to the ones described above. Again, we collected 30 independent 868 

runs per weight scale, ranging from 0.01 to 3 in eight steps. However, this time, we added 869 

Gaussian noise drawn from a standard normal distribution to the input units at test. The strength 870 

of this noise was varied parametrically in 10 steps from 0 to 0.1, allowing us to investigate the 871 

impact of different noise levels on performance. 872 

 873 

Endpoint Weight Norm and Relative Weight Change. Every 100 epochs during training, we 874 

computed the Frobenius norm of the hidden layer weights and their relative change with respect 875 

to the norm at initialisation. This allowed us to assess whether the network operated in the rich 876 

or lazy regime, corresponding to low and high norm solutions. The weight change relative to 877 

initialisation was quantified by computing how the norm of the hidden layer weights changed 878 

from random initialisation to the endpoint of training. 879 

 880 

Neural Network Representational Similarity Analysis. We performed RSA on the hidden 881 

layer activity patterns to assess how training sculpted the representations formed by the neural 882 

network. For each individual run, we calculated RDMs based on the hidden layer activity 883 

patterns evoked by inputs covering all combinations of feature values and contexts. The 884 

resulting 50x50 RDMs captured the Euclidean distances between all possible pairs of stimuli 885 

in the high-dimensional space spanned by the hidden units (after the ReLU nonlinearity). We 886 

visualised these geometries by projecting the group-level RDM, averaged across independent 887 

runs, down into three dimensions using metric MDS.  888 

 889 

Neural Network RSA: Quantifying hidden layer geometries. To quantify the extent to 890 

which hidden layer geometries exhibited patterns consistent with our hypotheses, we 891 

performed a linear regression of the hidden layer RDMs onto a set of model RDMs. There were 892 

three model RDMs in total, (1) a grid model, encoding the stimulus spaces as two parallel grids, 893 

separated by the context, (2) an orthogonal model, encoding the task relevant dimensions as 894 

two orthogonal 1D manifolds and (3) a parallel model, encoding the same information as the 895 

orthogonal model, but rotated into the frame of reference of the response (i.e., a “magnitude” 896 

representation). The lower triangular form of these models was z-scored and entered into a 897 

linear multiple regression model to predict the lower triangular form of the hidden layer RDM. 898 

This procedure was repeated for each individual run, yielding a distribution of regression 899 

coefficients that permitted statistical inference on the relative difference between predictors as 900 

well as their difference from zero. We tested whether two models differed in their extent to 901 

which they covaried with the hidden layer RDM by performing Wilcoxon Signed Rank tests 902 

on their corresponding beta estimates. A nonparametric test was chosen due to the observed 903 

violation of the normality assumption. We applied this analysis to models with different initial 904 

weight scale, enabling us to investigate the impact of the training regime (rich or lazy) on the 905 

emerging representations. 906 

 907 

Neural Networks: Intrinsic Dimensionality of hidden layer activity patterns. We used SVD 908 

to investigate the dimensionality of the hidden layer activity patterns. SVD was applied to the 909 

stimulus-by-unit matrix of hidden layer responses to all combinations of feature values and 910 

context. We visualised the cumulative variance explained based on the squared singular values 911 

(i.e., the eigenvalues of the response matrix) as Scree plot and performed the Elbow method to 912 

obtain a qualitative estimate of the intrinsic dimensionality. Next, we performed truncated SVD 913 

to assess the task-diagnosticity of the first 𝒌 directions of variation in the response matrix. For 914 
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this, we reconstructed the hidden layer response matrix, keeping only the first 𝒌 singular values 915 

with 𝒌 ranging from 1 to 27 (i.e. the number of input units). We then generated new outputs 916 

from the network by passing this lower-dimensional activity pattern on to the output unit. 917 

Lastly, we calculated the accuracy as the mismatch between these outputs and the ground truth. 918 

This allowed us to assess, separately for the rich and lazy regime, the extent to which removing 919 

components from the hidden layer responses reduced the network’s performance. The 920 

hypothesis was that more components would be needed in the lazy compared to the rich regime 921 

to maintain equal task accuracy. 922 

 923 

Neural Network Hidden Unit Selectivity and Axis Alignment. To investigate task selectivity 924 

of hidden layer units, we capitalised on the property of ReLU nonlinearities that they map 925 

negative inputs to zero. We defined task-selectivity for the neural network as a non-zero 926 

response to stimuli in one context and zero response to all stimuli in the other context. Stimulus 927 

selectivity irrespective of context was defined as having a non-zero response in both contexts. 928 

We calculated these sensitivity indices at initialisation and after training to ensure that the 929 

initialisation scheme did not pre-partition the hidden layer in the absence of a training objective. 930 

Dead units were defined as returning zero for all stimuli (all combinations of feature values 931 

and context). From this, we calculated the proportion of units that were either dead, task- or 932 

stimulus-selective. To visualise response profiles, we averaged activity within these sub-933 

populations, constructed a response matrix of these averages separately for each context (with 934 

rows corresponding to y location, columns to x-locations of stimuli and the value 935 

corresponding to the average activity of a sub-population) and plotted the group level average 936 

(mean across independent runs) as heatmaps. For this, we focussed on the two most extreme 937 

weight initialisations, 0.01 and 3, corresponding to learning in the rich and lazy regime, 938 

respectively. Lastly, to quantify the extent to which these response patterns were axis aligned 939 

(i.e., whether units responded to relevant but not irrelevant dimensions), we concatenated the 940 

two vectorised task response matrices, constructed RDMs based on pairwise differences in 941 

magnitude and regressed them against two model RDMs, (1) the axis-aligned and (2) diagonal 942 

models. In the axis aligned model, unit responses scaled with context-dependent relevant 943 

dimensions (i.e., with x-location in context A and y-location in context B). In the diagonal 944 

model, activity scaled jointly with both dimensions irrespective of context. We fitted the model 945 

at the level of individual runs. To assess which model RDM covaried stronger with the observed 946 

neural responses, we performed a Wilcoxon Signed Rank  test on the difference between beta 947 

estimates for the axis-aligned and diagonal model. To assess whether this difference was 948 

dependent on the initialisation scheme, we performed the same test on the difference of 949 

differences.  950 

 951 

Neural Network context weight correlations. Our theory predicted that the network could 952 

learn the gating scheme via anti-correlated context weights. To test this empirically, we 953 

calculated the Pearson correlation between task A and task B weights from the input to the 954 

hidden layer at the level of single runs both at initialisation and after the last training epoch. 955 

We repeated this analysis on the sub-populations of task-selective and stimulus-selective units, 956 

expecting weights into the former to be stronger anti-correlated. We visualised the distribution 957 

of single-run correlation coefficients together with a Kernel-Density-Estimate computed with 958 

the kdensity function from the Seaborn package.  959 

 960 

Neural Network Ablation Study. We performed an ablation study to investigate how critical 961 

task-sensitive and stimulus-sensitive units were for multi-task performance. More specifically, 962 

for each collected run, we set  either the sub-population of task-selective or stimulus-selective 963 
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units to zero, performed a forward pass through the ablated network and computed its loss and 964 

accuracy.  965 

 966 

 967 

Nonhuman primate data 968 

 969 

NHP results were based on a reanalysis of data recorded from monkey frontal eye fields (FEF) 970 

during performance of comparable context-based decision-making tasks. The data are freely 971 

available at  https://www.ini.uzh.ch/en/research/groups/mante/data.html. These data have 972 

already been intensively scrutinised in past work [4,36]. In the experiment, two monkeys were 973 

asked to discriminate between distinct levels of motion direction and colour of random dot 974 

stimuli, with only one dimension being relevant in each context, just as in our experiments. 975 

Stimuli spanned a similar 2D grid (motion directions varying from left to right, colour gradient 976 

from green to red) as our trees and Gaussian blobs. Further details are available in ref [4]. 977 

 978 

Representational Similarity Analysis of NHP electrode recordings. We created pseudo-979 

populations by concatenating all recorded units, separately for monkey A and monkey F. Unit-980 

by-stimulus response matrices were obtained by averaging activity across trials for each 981 

stimulus type (6 motion directions * 6 colours * 2 contexts = 72 entries). RDMs were 982 

constructed from these matrices using the Euclidean distance measure. For all reported 983 

analyses, we focus on activity averaged over the second half of the trial (300-600ms) as task 984 

factorisation was strongest in this interval, an observation consistent with previous reports of 985 

dynamic encoding of different task variables throughout a trial [36]. We fitted the same set of 986 

candidate model RDMs to this dataset as previously to RDMs obtained from human fMRI data 987 

(see above). For statistical inference, we created a null distribution by randomly permuting the 988 

trial labels and repeating this regression-based RSA 1000 times. Significance was defined as 989 

regression weights two standard deviations above this null.  990 

 991 

Individual Unit Selectivity and Axis Alignment of NHP electrode recordings. We assessed 992 

task selectivity of individual units using a standard regression-based approach. Mean activity 993 

of each unit was regressed against four predictors, coding for colour and motion direction 994 

separately for each context. Selectivity was defined as having a significant regression 995 

coefficient for the variable of interest. Due to the substantial number of tests, we performed 996 

FDR correction to correct for multiple comparisons. We distinguish between diverse types of 997 

selectivity. Task selectivity was defined as having a significant regression weight only for the 998 

relevant feature dimension (i.e., only for motion in the motion task and colour in the colour 999 

task). Stimulus selectivity was defined as having significant coefficients for both dimensions. 1000 

Furthermore, we identified units that were selective only to colour or motion, irrespective of 1001 

context, and defined “mixed”/non-specific selectivity as having significant regression weights 1002 

that do not fall into any of the above categories. As for the hidden units in the neural network, 1003 

we again plotted the different proportions of selectivity patterns of units within a 1004 

pseudopopulation and visualised the response profile of task and stimulus selective units by 1005 

averaging the activity within a sub-population separately for each combination of feature 1006 

values (colour, motion) and context. Axis alignment of these response matrices was assessed 1007 

by regressing them against the factorised and diagonal model as previously described for the 1008 

neural network (see above). We assessed the intrinsic dimensionality of the patterns observed 1009 

in monkey FEF using the same truncated SVD approach described above for the human fMRI 1010 

data. 1011 

 1012 

 1013 
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Supplementary Information 1015 

 1016 

Supplementary figures S1 to S8 1017 

 1018 

 1019 

 1020 

 1021 

 1022 
Supplementary Figure S1 (a) Session Design. Participants completed three sessions carried out over consecutive 1023 
days. All participants underwent a screening task (day1) in which they were asked to perform dissimilarity ratings 1024 
on tree stimuli. Those who showed strong evidence for being aware of the dimensions of branchiness and leafiness 1025 
(assessed by a “grid score”, see next figure) were invited to the remaining parts of the study. On day 2, participants 1026 
received a lengthy blocked training curriculum, preceded by a brief familiarisation phase and evaluation (baseline 1027 
training and test) to measure the effectiveness of the training phase. On day 3, participants received a brief 1028 
refresher training, before they underwent fMRI scanning during which they completed six interleaved blocks of 1029 
test trials. See methods sections for additional details. (b) Dissimilarity Rating Task & RSA. Participants were 1030 
asked to arrange tree stimuli via mouse drag & drop in a circular arena such that distances between trees 1031 
corresponded to how dissimilar they were perceived (left and middle panel). From these ratings, we constructed 1032 
RDMs at single subject level. These RDMs were correlated with model RDMs assuming that participants were 1033 
(i) only aware of branchiness, (ii) only aware of leafiness, (iii) aware of the full 5x5 grid of branchiness and 1034 
leafiness or (iv) made judgements based on pixel similarity. We describe the extent to which the third model 1035 
explains the data as “grid score”. In Flesch et al, 2018, we reported interactions between training effectiveness 1036 
and grid score. We thus only invited participants with a grid score higher than the median grid score (tau=0.18) 1037 
from the previous study. All screened participants exceeded this threshold. (c) Correlation coefficients between 1038 
subject ratings and model RDMs. The grid model explained the data best, indicating that participants were on 1039 
average aware of the data-generating dimensions. (d) MDS on dissimilarity ratings, divided into participants with 1040 
low, medium and high grid score. All groups showed evidence for awareness of the dimensions branchiness & 1041 
leafiness, and their grid-like relationship with each other.  1042 
 1043 
 1044 
 1045 
 1046 
 1047 
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 1048 
Supplementary Figure S2 (a) Behavioural switch cost. Participants were slightly worse on switch than stay trials 1049 
at test, both during the baseline and later scanning session (Accuracy Baseline, Switch < Stay: T(29)=2.057, 1050 
p=0.048, d=0.266; Accuracy Scan, Switch < Stay: T(29)=2.715, p=0.011, d=0.211; Interaction Phase x Switch 1051 
cost: T(29)=-0.668, p=0.509, d=-0.251).  (b) Univariate markers of switch cost. A whole-brain univariate contrast 1052 
of switch vs stay trials revealed lusters in task-positive regions where activity was higher on switch than on stay 1053 
trials. More specifically, we found significant clusters in Parietal Cortex (BA7 : t(30) = 5.65, p < 0.001 (FWE 1054 
corrected), cluster extent (kE) = 570, MNI coords = [-6, -74, 52]), Supplementary Motor Area (SMA t(30) = 5.03, 1055 
p < 0.05, kE =66, [-6, 18, 46])) and left Medial Frontal Gyrus (MFG t(30)=6.55, p<0.01, kE = 124, [-44, 21, 1056 
28])) (c) Behavioural sensitivity to relevant and irrelevant dimensions. Fitting logistic functions to the choice 1057 
patterns along both dimensions revealed that, compared to the baseline, participants became much more sensitive 1058 
to the task-relevant dimension after they had engaged in the blocked training phase (Slope Relevant, Baseline: Z 1059 
= 4.72, p = < 0.001, d = 0.873; Scan > Baseline: Z = 4.762, p = < Scan: Z = 2.705, p = 0.007, d = 0.494). 1060 
Participants were, however, much more sensitive to the relevant than irrelevant dimension at test (Scan, Relevant 1061 
> Irrelevant: Z = 4.782, p < 0.001, d = 0.873), and this sensitivity was higher compared to baseline (Dimension 1062 
x Phase Interaction: Z = 4.741, p < 0.001, d = 0.866) (d) Univariate markers of absolute distance to category 1063 
boundary. A GLM with parametric regressors for the absolute distance to category boundary (methods) revealed 1064 
significant relationships between activity and distance to bound along the relevant, but not irrelevant feature 1065 
dimensions. More specifically, we found significant clusters in bilateral Angular Gyrus (left: t(30) = 6.79, p < 1066 
0.001, kE = 364, [60, -49, 28]) and the right Orbitofrontal Corex (t(30) = 5.46, p < 0.01, kE = 73, [8, 42, -14]), 1067 
and to a lesser extent also in bilateral EVC (left: t(30) = 5.15, p < 0.01, kE = 70, [-13, -98, 14]; right: t(30) = 1068 
6.55, p < 0.01, kE = 61, [18, -94, 21]) as well as the Posterior Cingulate cortex (t(30) = 5.05, p < 0.001, kE = 1069 
192, [4, -49, 35]). 1070 
 1071 
 1072 
 1073 
 1074 
 1075 
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 1076 
Supplementary Figure S3: Model RSA separately for switch vs stay trials. The univariate contrast of switch vs 1077 
stay trials revealed a significant difference in BOLD in left DLPFC, an area where we had also observed evidence 1078 
for factorised representations using the searchlight RSA approach. We therefore tested whether the extent to which 1079 
task representations were factorised (i.e. lied on orthogonal manifolds) differed between switch and stay trials. 1080 
The difference, however, was not significant.  1081 
 1082 
 1083 
 1084 

 1085 
 1086 
Supplementary Figure S4 Truncated SVD on fMRI patterns. To estimate the intrinsic dimensionality of the 1087 
neural activity manifold, we repeated the model-based RSA on reconstructions of the data for which we had 1088 
successively removed principal components (truncated SVD, see methods). Across all three regions, we observed 1089 
that orthogonal representations could be reliably decoded if only the two strongest components were retained, and 1090 
there was no measurable benefit in retaining more than the six largest PCs. Together, these results indicate that 1091 
the largest directions of variance are to some extent aligned with the directions spanning the orthogonal task 1092 
manifold, indicating that this manifold is intrinsically low-dimensional. 1093 
 1094 
 1095 
 1096 
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 1097 
 1098 
Supplementary Figure S5 Model-based RSA on NHP data (both monkeys). We fitted the same set of model 1099 
RDMs to the monkey data as to our human participants (see methods). We found strong evidence for orthogonal 1100 
representations, encoding only relevant feature dimensions, in monkey A. In contrast, neurons recorded from 1101 
Monkey F responded predominantly to colour, irrespective of the task the monkey was doing, which is consistent 1102 
with previous reports of heterogenous responses in the two monkeys (Mante et al, 2013) 1103 
 1104 
 1105 
 1106 
 1107 

 1108 
 1109 
Supplementary Figure S6 Truncated SVD on NHP data. We subjected the neural RDMs from Monkey A to the 1110 
same truncated SVD approach as the RDMs from human fMRI data, to assess the intrinsic dimensionality of the 1111 
manifold that encodes task relevant and supresses task irrelevant dimensions. Consistent with our observation in 1112 
humans, we found evidence for a low-dimensional manifold, as retaining the first two components was sufficient 1113 
to decode orthogonal representations, which suggests that the strongest directions of variance are aligned with the 1114 
dimensions spanned by an orthogonal & low-dimensional task manifold. 1115 
 1116 

 1117 

 1118 
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Supplementary Figure S7: Enforcing specific representational geometries through auxiliary loss function under 1120 
rich learning. We equipped the network with an auxiliary objective (“RDM loss”) which minimised the difference 1121 
between patterns in the hidden layer and a candidate model RDM that encoded either grid-like, orthogonal or 1122 
parallel representational schemes. (A) Illustration of experimental set-up for model with a single hidden layer. (B) 1123 
Accuracy after convergence on the supervised objective, as a function of the model RDM used for the RDM loss 1124 
function. All models converged. (C) Endpoint RDM loss after convergence on the supervised objective. The 1125 
network for which we tried to enforce parallel representations failed to minimise the RDM loss, all other models 1126 
converged. (D) Regression coefficients for model RSA as a function of the model used for the RDM loss. Baseline 1127 
corresponds to the vanilla network without an RDM loss. The models with grid and orthogonal schemes as target 1128 
for the RDM loss learned the desired representations. The model trained with a parallel RDM as target in the 1129 
RDM loss converged to orthogonal representations. (E) Same as A, but for model with two hidden layers. (F) 1130 
same as B, but for model illustrated in E. (G) Same as C but for model illustrated in E. This time, the RDM loss 1131 
with a parallel model converged. (H) Same as D, but for model shown in E. With two hidden layers, promoting 1132 
parallel representations in the second hidden layer through an RDM loss worked, and led to emergence of 1133 
orthogonal representations in first hidden layer. 1134 
 1135 

 1136 

 1137 
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Supplementary Figure S8. Temporal evolution of orthogonal representations. (A) Model RSA on NHP data, 1141 
separately for early, middle and late time windows within the stimulus interval. Early in the trial, the grid-model 1142 
explains the data best. In following intervals, the parameter estimate for the orthogonal model increases 1143 
progressively, suggesting that the neural code transforms from a grid-like to an orthogonal and task-specific 1144 
representational scheme. (B) An extension of our network architecture with recurrent hidden connections. Please 1145 
see supplementary methods for details. (C) Dynamics of RNN throughout a simulated trial. Top left: Stimulus and 1146 
context signal are presented for 750ms, followed by a delay of 1s during which only context information is 1147 
provided to the network. Top right: Dynamics of hidden layer activity throughout an example trial where motion 1148 
direction was relevant. During stimulus presentation, we observe a gradual integration of motion information in 1149 
the motion-sensitive unit, and, to a lesser extent, colour information in the colour-sensitive unit. After stimulus 1150 
offset (dashed line), the irrelevant dimension (colour) is gradually supressed by the context signal. Bottom left: 1151 
Gradual integration of a category signal in the output unit, which remains roughly constant after stimulus offset. 1152 
Bottom right: Aspect ratio between activity encoding the irrelevant and relevant dimensions respectively, indexing 1153 
the amount of compression along irrelevant dimensions. The aspect ratio decreases during the stimulus interval 1154 
as irrelevant and relevant feature information are integrated at different rates (top right plot). It decreases more 1155 
rapidly after stimulus offset (dashed line) as the context signal filters out any task-irrelevant information that is 1156 
still present. (D) MDS on monkey and RNN RDMs averaged over early, middle and late time windows within the 1157 
stimulus interval. In both cases, we observe evidence for a gradual emergence of task-specific and orthogonal 1158 
representations (with irrelevant features being suppressed) out of more grid-like representational structures. 1159 
 1160 
 1161 
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Supplementary Methods

1 Recurrent Network Extension

Let x1(t) ∈ [−1, 1] be the signed motion coherence over time in a trial, and
x2(t) ∈ [−1, 1] be the signed color level over time, which can be stacked into the
column vector input x(t) = [x1(t) x2(t)]T . Let u(t) ∈ R2 be the task context
input encoded as a one hot vector (+1 in the first element for context A, +1 in
the second element for context B).

Motion
Stimulus

Colour
Stimulus

Colour
Task

Motion
Task

Input

Hidden

Output

Weights

Figure 1: Network architecture for temporal extension.

The network contains four neuron classes, and the overall architecture is
depicted in Fig. 1. In particular, these comprise a pair selective for posi-
tive/negative motion and task, and an pair selective for positive/negative color
and task. Each neuron receives stimulus input through the input-to-hidden
weights

Wx =


1 0
−1 0
0 1
0 −1

 . (1)

1
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Each neuron class also receives task input, with the motion neurons receiving
inhibitory input in the color task and the color neurons receiving inhibitory input
in the motion task. The task-to-hidden weights are

Wu =


0 −w
0 −w
−w 0
−w 0

 (2)

where w is a parameter controlling the strength of context-driven inhibition.
The network has recurrence, which we assume has an autapse structure

such that each neuron has self recurrence with weight one to enable persistent
activity.

We emphasize that all four neuron classes are mixed selective, in the sense
that their response depends on a combination of stimulus and task. However,
this mixed selectivity is not random, rather it is highly structured.

The neural activity dynamics are given by the standard firing rate equations

d

dt
h(t) = −h(t) + f(h(t) +Wxx(t) +Wuu(t)) (3)

where f(·) is the firing rate nonlinearity, which here we take to be the ReLU
function (f(v) = max{v, 0}).

Finally the output of the network r is computed through readout weights
Wo =

[
1 −1 1 −1

]
, i.e., by summing or subtracting the relevant hidden

unit activity,
r(t) = Woh(t). (4)

1.1 Input dynamics

We now describe the temporal structure of a trial. We assume that between
trials, neural activity resets such that we have the initial condition h(0) = 0. We
assume that input stimuli arrive with a temporal profile px(t) that is rescaled
by the motion coherence m and color coherence c, such that the input is

x(t) =

[
mpx(t)
cpx(t)

]
. (5)

For simplicity we take px(t) = ae−t/τ+b for 0 < t < tx, and px(t) = 0 otherwise,
to reflect a sharp onset transient followed by decay to a steady state.

The context signal arrives with a temporal profile pu(t), turning on with the
stimulus and remaining on during the delay period until some time tu > tx.
For simplicity we take pu(t) to be a pulse (one for times between 0 and tu, zero
otherwise). Let z be 1 in the motion context and 0 in the color context. Then
we have

u(t) =

[
zpu(t)

(1− z)pu(t)

]
. (6)

2
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2 Solution

The dynamics in this model can be solved exactly. Let g(t) =
∫ t

0
px(t)dt =

bt+aτ
[
1− e−t/τ

]
with a ≥ 0, b ≥ 0, τ > 0. Let hm+ denote the positive motion

neuron class, hm− the negative motion class, and so on. We have

hm+(t) =


max{mg(t)− w(1− z)t, 0}, 0 ≤ t ≤ tx
max{mg(tx)− w(1− z)t, 0}, tx < t ≤ tu
max{mg(tx)− w(1− z)tu, 0}, t > tu

(7)

hm−(t) =


max{−mg(t)− w(1− z)t, 0}, 0 ≤ t ≤ tx
max{−mg(tx)− w(1− z)t, 0}, tx < t ≤ tu
max{−mg(tx)− w(1− z)tu, 0}, t > tu

(8)

hc+(t) =


max{cg(t)− wzt, 0}, 0 ≤ t ≤ tx
max{cg(tx)− wzt, 0}, tx < t ≤ tu
max{cg(tx)− wztu, 0}, t > tu

(9)

hc−(t) =


max{−cg(t)− wzt, 0}, 0 ≤ t ≤ tx
max{−cg(tx)− wzt, 0}, tx < t ≤ tu
max{−cg(tx)− wztu, 0}, t > tu

(10)

Example dynamics from the model are shown in Fig. 2.

2.1 Dimensionality reduction

This activity is four dimensional, but in practice, these dimensions could be
combined or rotated in the population response. Common analyses project
the population activity down to two or three dimensions using dimensionality
reduction techniques. Here we analytically calculate the result of applying Prin-
cipal Component Analysis (PCA) to perform this reduction. PCA selects the
eigenvectors of the hidden activity correlation matrix

〈h(t)h(t)T 〉, (11)

where the average 〈·〉 is over the stimulus and task parameters m, c, and z and
the time within trial t. Without knowing the details of this average, it is still
possible to calculate the principal components. In particular, correlations be-
tween positive and negative neuron classes for each stimulus dimension s ∈ m, c
are zero, 〈hs+hs−〉 = 0, because only one neuron class is active at a time. Next,
correlations across stimulus dimensions will all be equal due to the symmetry
in the problem, such that 〈hs±hs̄±〉 = β for s 6= s̄. Finally, self correlations
will similarly be equal, 〈hs±hs±〉 = α. We therefore have the correlation matrix

3
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structure

〈h(t)h(t)T 〉 =


α 0 β β
0 α β β
β β α 0
β β 0 α

 , (12)

which is ultrametric (consisting of blocks within blocks). All matrices of this
form are known to be diagonalized by the Haar wavelets, yielding the orthogonal
matrix of eigenvectors,

H =


1/2 1/2 1/

√
2 0

1/2 1/2 −1/
√

2 0

1/2 −1/2 0 1/
√

2

1/2 −1/2 0 −1/
√

2

 (13)

such that 〈h(t)h(t)T 〉 = HΛHT where Λ is the diagonal matrix of eigenvalues.
These eigenvalues are [α+ 2β, α− 2β, α, α]. We can further observe that, for
typical settings where irrelevant information is not completely suppressed and
motion and colour trials are uniform over a similar range, we expect α > β > 0.
In this case the largest variance direction is the mean, followed by the two
stimulus dimensions, and finally the context offset.

The principal components are the columns of H and can be interpreted
as the mean activity, the context offset, the motion axis, and the colour axis
respectively. In essence, because only one or the other of the ‘positive’ and
‘negative’ populations will be active for each stimulus dimension, PCA forms
these into a 2D low dimensional representation y where the ‘negative’ neurons
are mapped to the negative part of one axis while the ‘positive’ neurons are
mapped to the positive part. That is, focusing just on the colour and motion
dimensions, we have the transformation

y(t) =
1√
2

[
1 −1 0 0
0 0 1 −1

]
h(t), (14)

or, for a three-dimensional reduction excluding the mean (as is typical) and
including the context offset we have,

y(t) =

1/
√

2 −1/
√

2 0 0

0 0 1/
√

2 −1/
√

2
1/2 1/2 −1/2 −1/2

h(t). (15)

Example dynamics in the 2D space are shown in Fig. 3.

2.2 Compression dynamics

To track the changing representation of task-relevant and task-irrelevant stimu-
lus features, we calculate the ratio of the hidden activity for the task irrelevant
neuron class compared to the task-relevant neuron class. For instance, if we

4
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supply an input m = 1, c = 1 in the motion context (z = 1), then the ratio of
the activity of the positive colour neuron class to that of the positive motion
neuron class is

hc+(t)

hm+(t)
=

max{g(t)− wt, 0}
g(t)

(16)

for 0 < t < tx, i.e., during the stimulus period.

3 Phase portrait

Finally, we generate a phase portrait for the dynamical system in each context.
We construct the phase portrait for hc+ and hm+ and positive c,m, with a sym-
metric situation holding for the other two neuron classes and opposite stimulus
sign.

Stimulus input directions are invariant across contexts, with motion stimuli
increasing hm+ and colour stimuli increasing hc+. In the motion context, there
is a line attractor along the hm+ axis, while in the colour context there is
a line attractor along the hc+ axis. In the motion context, activity in the hc+

neuron decays to zero due to the context inhibition, in a direction that is exactly
opposite to the colour input direction. Likewise in the color context, activity
in the hm+ neuron decays to zero due to context inhibition, in a direction that
is exactly opposite to the motion input direction. That is, in each context, the
‘selection vectors’ are orthogonal to the irrelevant input direction. Finally, the
readout vector lies at 45 degrees in this space. These features yield the phase
portrait shown in Fig. 4.
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Stimulus period Delay period

Figure 2: Example dynamics. From top to bottom panel: Input kernels. Activ-
ity dynamics for each neuron class. Response variable. Degree of compression of
irrelevant stimulus dimension relative to relevant stimulus dimension. Bottom
row: 2D representation, showing full grid of motion and color stimuli in each
context. Context indicated by color (blue/orange). For these parameters, early
time points show little compression compared to later time points. Parameters:
w = .6, tx = .75, tu = 1.5, a = 1, b = 1, τ = 0.1.
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Figure 3: Example lower-dimensional 2D dynamics. Left: Response of low
dimensional variable y1 to several levels of input on stimulus dimension 1 where
this stimulus is task-relevant. Right: Response of same variable y1 to several
levels of input on stimulus dimension 1 where this stimulus is task-irrelevant. A
brief transient response to stimuli is rapidly suppressed in the irrelevant context.
Parameters: w = .2, tx = .75, tu = 1.5, a = 1, b = 0, τ = 0.2.
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Figure 4: Phase portrait. In both contexts (left and right panels), motion and
colour inputs as well as output readout lie in identical directions. However, the
dynamics flow against the colour input in the motion context, and against the
motion input in the colour context, eventually selecting the appropriate stimulus
dimension (‘late selection’). In each context, a line attractor sits on the relevant
stimulus dimension.
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