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Summary

Voluntary movement requires communication from cortex to the spinal cord, where a
dedicated pool of motor units (MUs) activates each muscle. The canonical description of
MU function, established decades ago, rests upon two foundational tenets. First, cortex
cannot control MUs independently' but supplies each pool with a common drive that
specifies force amplitude®3. Second, as force rises, MUs are recruited in a consistent
order*" typically described by Henneman's size principle'"°. While this paradigm has
considerable empirical support, a direct test requires simultaneous observations of
many MUs over a range of behaviors. We developed an isometric task that allowed
stable MU recordings during rapidly changing force production. MU responses were
surprisingly flexible and behavior-dependent. MU activity could not be accurately
described as reflecting common drive, even when fit with highly expressive latent factor
models. Neuropixels probe recordings revealed that, consistent with the requirements of
fully flexible control, the cortical population response displays a surprisingly large
number of degrees of freedom. Furthermore, MUs were differentially recruited by
microstimulation at neighboring cortical sites. Thus, MU activities are flexibly controlled
to meet task demands, and cortex has the capacity to contribute to that ability.
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Primates produce myriad behaviors, from acrobatic maneuvers to object manipulation,
all requiring precise neural control of muscles. Each muscle is controlled by a motor
neuron pool containing hundreds of anatomically and functionally diverse motor units
(MUs)®. One MU is defined as a spinal a-motoneuron and the muscle fibers it uniquely
innervates”’. MUs are highly heterogeneous®, differing in size (large MUs innervate
more fibers), duration of generated force®?, and the muscle length where force is
maximal®.

Optimality suggests using MUs best suited to the specific situation®. Yet such flexibility
would necessitate non-trivial computational resources, including participation by brain
areas aware of the full movement and context. A simpler alternative is a spinally
implemented recruitment strategy that approximates optimality in limited contexts.
Supported by nearly a century of research, this alternative has become the canonical
conception of MU control™?. In decerebrate cats, MUs are recruited and de-recruited in
a consistent order?® from smallest to largest according to Henneman'’s size principle™°.
Orderly MU recruitment is similarly observed following supraspinal stimulation in cats*
and during voluntary muscle contractions in humans*™. MU firing rates increase
monotonically with force and display correlated fluctuations?, arguing that MUs are
jointly controlled by a one-dimensional (1D) ‘common drive™. This ‘rigid control
hypothesis -- common drive followed by small-to-large recruitment -- is codified in
standard models of muscle activation?®°,

Rigid control is believed to relieve cortex from the burden of controlling MUs
independently®'®. Small-to-large recruitment minimizes fluctuations during constant
force production and is thus optimal in that context®**2. In idealized form, rigid control
describes each muscle and its MU pool. There are known exceptions?**** when a
‘multifunctional’ muscle pulls in different directions (necessitating more than one
common drive?**°) or drives movement across two joints and participates in multiple
synergies®. These properties are compatible with rigid control under an operational
definition of an MU pool*~*°; descending commands can remain simple (specifying force
direction®* or synergy activation®®) and small-to-large recruitment holds for any given
force direction.

The alternative to rigid control is highly flexible MU recruitment that adapts to situational
demands. Some flexibility has been observed during locomotion***', where it may
reflect the need to control force when a muscle lengthens under load®*#?*3, It also
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seems intuitive that recruitment should favor fast-twitch MUs when forces change
rapidly. Yet it remains controversial whether speed does®*****° or should*® influence
recruitment.

Rigid control is thus believed to govern the vast majority of cases*, with exceptions
being rare and/or inconsistent across studies®*“°. An accepted caveat is that critical
tests have yet to be performed®. Due to the difficulty of recording many MUs during
swiftly changing forces**, no study has directly addressed the key situation where rigid
and flexible control make divergent predictions: when a subject skillfully performs
diverse movements, is MU recruitment altered to suit each movement? An additional
key test also remains. Fully flexible control would require, in addition to spinal
mechanisms, some influence from areas aware of overall context. Flexible control thus
makes the strong prediction that altering cortical activity should alter recruitment. This
does not occur in cat?, but remains to be examined in primate.

Pac-Man Task and EMG recordings

We trained one rhesus macaque to perform an isometric force-tracking task. The
monkey modulated force to control the vertical position of a ‘Pac-Man’ icon and
intercept scrolling dots (Fig. 1a). We could request any temporal force profile by
appropriately selecting the dot path. We conducted three experiment types, each using
dedicated sessions. Dynamic experiments employed many force profiles including slow
and fast ramps and sinusoids (Fig. S1). Muscle-length experiments (Fig. 1b)
investigated whether MU recruitment reflects joint angle/muscle length, using a subset
of force profiles. Microstimulation experiments (Fig. 1c) artificially perturbed descending
commands using microstimulation delivered via a linear electrode array in sulcal primary
motor cortex (M1).

On each of 38 sessions, we recorded from multiple custom-modified percutaneous
thin-wire electrodes closely clustered within the head of one muscle. Recordings were
made from the triceps and deltoid (dynamic experiments); deltoid (muscle-length
experiments); and triceps, deltoid, and pectoralis (microstimulation experiments). It is
notoriously difficult to spike sort EMG signals during dynamic tasks; movement
threatens recording stability and vigorous muscle contractions cause MU
action-potential waveforms to superimpose*’. Three factors enabled us to identify the
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Figure 1 | Experimental setup and MU spikes. (a) Dynamic experiments. A monkey
modulated the force generated against a load cell to control Pac-Man’s vertical position and
intercept a scrolling dot path. A variety of force profiles were used, a subset of which were also
employed during muscle-length and microstimulation experiments. (b) Muscle-length
experiments. The manipulandum was positioned so that the angle of shoulder flexion was 15°
(long) or 50° (short). (c) Stimulation experiments. Intracortical microstimulation was delivered
through a linear array inserted in sulcal motor cortex. (d) Behavior and MU responses during
one dynamic-experiment trial. The target force profile was a chirp. Top: generated force. Middle:
eight-channel EMG signals recorded from the lateral triceps. 20 MUs were isolated across the
full session; 13 MUs were active during the displayed trial. MU spike times are plotted as circles
(one row and color per MU) below the force trace. EMG traces are colored by the inferred
contribution from each MU (since spikes could overlap, more than one MU could contribute at a
time). Bottom left: waveform template for each MU (columns) and channel (rows). Templates are
5 ms long. As shown on an expanded scale (bottom right), EMG signals were decomposed into
superpositions of individual-MU waveform templates. The use of multiple channels was critical
to sorting during challenging moments such as the one illustrated in the expanded scale. For
example, MU2, MU5, and MU10 had very different across-channel profiles. This allowed them to
be identified when, near the end of the record, their spikes coincided just before the final spike
of MU12. The ability to decompose voltages into a sum of waveforms also allowed sorting of
two spikes that overlapped on the same channel (e.g., when the first spike of MUG overlaps with
that of MU10, or when the first spike of MU9 overlaps with that of MU5). Multiple channels also
guarded against mistakenly sorting one unit as two if the waveform scaled modestly across
repeated spikes (as occurred for a modest subset of MUs).
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spikes of multiple single MUs, even during high-frequency force oscillations (Fig. 1d).
First, the isometric task facilitated stable recordings even when force changed rapidly.
Second, activity intensity could be titrated via the gain linking force to Pac-Man’s
position. Finally, a given MU typically produced a complex waveform spanning many
channels (Fig. 1d, bottom), which we identified by adapting recent advances in spike
sorting®®®, including methods for resolving superimposed waveforms*® (Supp.
Materials).

We isolated 3-21 MUs in each session (356 total units). Analyses considered only
simultaneously recorded neighboring MUs, for two reasons. First, many of our
recordings were from the deltoid, where different regions pull in different directions and
physically distant MUs thus have different ‘preferred force directions’®*. Second,
across-session behavioral variability could conceivably make recruitment order appear
inconsistent in pooled data. We thus compared only amongst simultaneously recorded
neighboring MUs within a single muscle head, with all forces generated in one direction.

Motor unit activity during behavior

Rigid control applies to the behavior of the full MU pool, yet provides constraints that
can be visualized at the level of MU pairs. MUs should be recruited in a consistent
order'®'® and changes in their activity should not be strongly opposing®'. Responses of
MU pairs were typically consistent with these predictions during gradually changing
forces at a single muscle length. For example, in Fig. 2a, MU88 is recruited before
MU90 and the activity of both increases monotonically with increasing force. Both
become less active as force decreases, with MU88 de-recruited last. The predictions of
rigid control sometimes held during swiftly changing forces (Fig 2b). However, violations
were common when comparing rapidly and slowly changing forces. For example, in Fig.
2e, MU309 is more active during the sinusoid (/eft) than during the ramp (right), while
the opposite is true for MU311. Thus, which of the two MUs contributes the most to
force production depends on context.

Recruitment incompatible with rigid control also occurred within individual conditions if
force changed at different rates during different epochs. In Fig. 2c, MU109’s activity
rises threefold in anticipation of sudden force offset, even as MU108’s activity declines.
In Fig. 2d, over the last three cycles of a chirp force profile, MU324’s activity decreases


https://app.readcube.com/library/d280aa89-4eec-4be8-92ee-4874bb99287a/all?uuid=921518941091165&item_ids=d280aa89-4eec-4be8-92ee-4874bb99287a:87658e0b-bbc8-4dd8-b507-315994af47a0,d280aa89-4eec-4be8-92ee-4874bb99287a:5d353c4e-786e-4c30-86ab-48b50fb9d2ed,d280aa89-4eec-4be8-92ee-4874bb99287a:cd283ae1-9953-4264-beab-4aba51b5e5c1
https://app.readcube.com/library/d280aa89-4eec-4be8-92ee-4874bb99287a/all?uuid=5855442839938729&item_ids=d280aa89-4eec-4be8-92ee-4874bb99287a:5d353c4e-786e-4c30-86ab-48b50fb9d2ed
https://app.readcube.com/library/d280aa89-4eec-4be8-92ee-4874bb99287a/all?uuid=4397820993900917&item_ids=d280aa89-4eec-4be8-92ee-4874bb99287a:26916dff-c2dd-410b-9bfe-a963425c40ce
https://app.readcube.com/library/d280aa89-4eec-4be8-92ee-4874bb99287a/all?uuid=09820638324755793&item_ids=d280aa89-4eec-4be8-92ee-4874bb99287a:02194599-ead5-478a-98d7-1b5862fb5a93,d280aa89-4eec-4be8-92ee-4874bb99287a:97580eb5-3cf3-4f63-8807-6e64e2d6a567
https://app.readcube.com/library/d280aa89-4eec-4be8-92ee-4874bb99287a/all?uuid=43669988094220924&item_ids=d280aa89-4eec-4be8-92ee-4874bb99287a:b12e3342-a732-4207-aa89-26e44351a339,d280aa89-4eec-4be8-92ee-4874bb99287a:66807609-e15b-4a90-a893-9f89c0b6ece1
https://doi.org/10.1101/2021.05.05.442653
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.05.442653; this version posted May 5, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Figure 2 | Example MU responses. Each a b

panel displays the trial-averaged force (fop), sl

mean firing rate with standard error (middle) § % |MAAP—‘==-
and spike rasters (bottom) for a pair of g X W —
concurrently recorded MUs during dynamic 250ms : B

(a-e), muscle-length (f,g), and stimulation c —i d M
Vertical |

(h-j) experiments. scale bars A g
indicate 8 N (forces) and 20 spikes/s (firing | — Rﬁu% M g
rates). Horizontal scale bars indicate 250 S m i‘ﬁzi‘% =
ms. Columns within panels correspond to o o
different conditions. In h-j, labels indicate
the stimulation electrode. Bars (with shaded _M_M\L_L
region overlapping rasters) indicate | e = T
stimulation duration. On average (across all =225 _
sessions and experiments) each condition
consisted of 34 trials on average.
f long
| RVAVAS
AR
- : 2
_ = _ = i i
g Ny d
|
h Elec 24 Elec 24
e
] § poo
= i
i &
3
2
=
&

-



https://doi.org/10.1101/2021.05.05.442653
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.05.442653; this version posted May 5, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

as MU329’s activity increases. These examples are inconsistent with common drive,
which cannot simultaneously increase and decrease. For both pairs, the key violation
(activity decreasing for one MU while increasing for another) was not observed when
holding a static force. Instead, activity reflected whether forces were, or soon would be,
rapidly changing. Yet it was rarely the case that MU activity simply reflected the
derivative of force. The rate of MU109 (Fig. 2c) rises while force is constant. And while
MU329 (Fig. 2d) and MU309 (Fig. 2e) are more active during higher-frequency forces,
they do not phase lead their neighboring MUs. Activity reflecting not just force, but the
overall situation, was particularly evident with changes in muscle length, both when
activity was swiftly changing (Fig. 2f) and when it was static (Fig. 2g). Changes in
recruitment with muscle length could be large (e.g., an MU becoming inactive for a
given posture) but could also be more modest, allowing us to confirm recording stability
(Fig. S2).

Cortical perturbations

Many aspects of the flexibility that we observed (especially those reflecting muscle
length) are likely due to spinally implemented flexibility. Yet recruitment reflected factors
beyond force and its instantaneous derivative, including whether force would soon
change or was overall high frequency, suggesting that supraspinal mechanisms may
contribute. If so, it should be possible to alter recruitment by artificially perturbing
descending cortical commands®'. The opposite prediction is made by the classical
hypothesis that rigid control is fully enforced at or near the MU pool™. If so,
perturbation-induced activity, while unnatural in time course, should display orderly
recruitment?’’. We manipulated M1 activity using microstimulation (57 ms, 333Hz).
Penetration locations and electrode choices were optimized to activate the recorded
muscle.

Cortical perturbations often produced unexpected recruitment patterns. For example,
given recruitment during a slow force ramp (Fig. 2h, left), any common drive that
activates MU295 (blue) should also activate MU289 (red). Yet stimulation on electrode
24 activated MU295 but not MU289 (center). When MU289 was already active during
static force production, stimulation had an effect consistent neither with common drive
(it differed for the two MUs) nor with natural recruitment (where MU289 was always
more active). Similarly, in Fig. 2i, stimulation on electrode 24 selectively activated
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MU224, although MU221 was lower-threshold during a force ramp. Occasionally,
cortical perturbations produced hysteresis (Fig. 2i, right), likely reflecting persistent
inward currents®®. Unlike the direct effect of stimulation, hysteresis rarely altered
recruitment order (activity was higher for MU221, as during natural recruitment)*.

Thus, in primates, MU recruitment is readily altered by cortical perturbations. Indeed,
neighboring MUs, recorded on the same set of closely-spaced electrodes, were often
differentially recruited by physically proximal stimulation sites (100 um electrode
spacing). For example, in Fig. 2j, electrode 23 recruits MU208, electrode 27 recruits
MU215, and electrode 24 recruits both. It remains unclear to what degree the capacity
for fine-grained control is typically used (stimulation is an intentionally artificial
perturbation), but cortex certainly has the capacity to influence recruitment.

State-space predictions of rigid control

The predictions of flexible and rigid control can be evaluated by plotting the activity of
two MUs jointly in state space. Under rigid control, MU activity increases nonlinearly but
monotonically with force magnitude®**#* (Fig. 3a). Thus, when represented as a point in
state space, activity should move farther from the origin with increasing force, tracing a
curved (due to the nonlinearities) monotonic one-dimensional (1D) manifold. The
manifold is 1D because the activity of every MU varies with a common drive. The
manifold is monotonic because, as common drive increases, the rate of every MU
increases (or stays the same if unrecruited or at maximal rate). Because each MU has a
static link?®2° function (transforming common drive into a firing rate) manifold shape is
preserved across situations. This formulation simply restates the fundamental tenets of
rigid control: different MUs are recruited at different times and in different ways, but all
have activity that is a monotonic function of a common drive. Thus, under rigid control,
the 1D manifold can take any monotonically increasing shape, but activity should
always lie on the same manifold (Fig. 3b). In contrast, flexible control predicts that
activity will exhibit many patterns that cannot be described by a monotonic 1D manifold
(Fig. 3c).

We used the state-space view to examine the joint activity of MU pairs, including many
of those from Fig. 2. Examining activity in both formats helps determine whether
apparent departures from rigid control are real and nontrivial. Under rigid control, the
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identity of the most-active MU may reverse if the later-recruited MU has a steeper link
function. Without close inspection, this might appear to violate rigid control when plotting
activity versus time. In contrast, the state space view would demonstrate that activity
remains on a monotonic 1D manifold. Conversely, MUs with different latencies could
create brief departures from a monotonic 1D manifold, but the lack of a true violation
would be apparent when plotting activity versus time.

When considering only slowly changing force profiles, activity typically approximated a
monotonic 1D manifold (Fig. 3d, left). During rapidly changing forces, activity often
deviated from a monotonic 1D manifold either within a condition (Fig. 3d, center) or
relative to conditions with slowly changing forces (right). ‘Looping’ within a single rapid
cycle could reflect latency differences rather than a true violation. However, rigid control
is inconsistent with the differently oriented loops across cycles within a chirp force
profile (Fig. 3d, center) and with the very different trajectories during a 3 Hz sinusoid
and a slow ramp (right). Large deviations from a monotonic 1D manifold were also
observed across muscle lengths (Fig. 3e). Cortical perturbations often drove deviations,
both when comparing among electrodes and when comparing with natural recruitment
(Fig. 3f).

Quantification across all simultaneously recorded MU pairs confirmed that departures
from a monotonic 1D manifold were usually small when considering only slowly
changing forces within a single muscle length. Departures were larger when also
considering rapidly changing forces, both muscle lengths, or cortical perturbations
(Figs. S3 and S4). This effect was seen in 36 of 38 sessions. This quantification was
highly conservative; departures were nonzero only if they could not be attributed to
latency differences when comparing just two moments of time. To consider how well
rigid control describes MU activity across all times and conditions, we leveraged a
model-based approach.

Latent factor model

The central tenet of rigid control is that all MUs within a pool are controlled by a
common drive; different MU activities arise from MU-specific link functions of that drive.
We wished to quantitatively evaluate how well this model can account for the joint
activity of all simultaneously recorded MUs. Conceptually this approach is simple: the
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model should be rejected if it fits the data poorly even when granted full expressivity (no
constraints other than those inherent to rigid control). Existing models of MU control
employ idealized link functions (rectified linear?® or sigmoidal®®). While reasonable, those
choices limit expressivity. We instead employed a probabilistic latent factor model (Fig.

4a) where the rate of each MU is a function of common drive: 7i(t) ~ fi(z(t + 7:)).
Model fitting used black box variational inference® to infer z(t) and learn the

MU-specific /i and time-lag, 7i. Ji was unconstrained other than being monotonically
increasing.

The resulting model obeys rigid control but is otherwise highly expressive; it can
assume essentially any common drive and set of link functions. Because MUs can have
different latencies, it can produce some departures from a monotonic 1D manifold. The
model provided good fits during slowly changing forces (Fig. 4b, top). Fit quality
suffered in all other situations, including cortical perturbations (Fig. 4b, bottom),
because the model could not account for the manifold changing flexibly across
situations.

For each session, we fit the activity of all MUs during the 4-second increasing ramp
condition, either alone or collectively with other conditions. Error was always computed
during the 4-second increasing ramp only. This allowed us to ascertain whether the
model’s ability to account for activity during a ‘traditional’ situation was compromised
when it had to also account for other situations. Fit error was cross-validated (using
random data partitions) and thus should be zero on average for an accurate model.
That property was confirmed using an artificial MU population that could be described
by one latent factor but was otherwise realistic (accomplished by reconstructing each
MU’s response from the first population-level principal component, followed by a
rectifying nonlinearity). Fit error was indeed nearly zero for the artificial population (Fig.
4c, filled circles) regardless of how many conditions were fit.

For the empirical data, fit error was nearly zero when the latent variable model was fit
only during the 4-second increasing ramp (Fig. 4c, purple). Fits were compromised
when the model had to also account for dynamically changing forces, different muscle
lengths, or cortical perturbations. This combination of findings explains why the
hypothesis of rigid control was appealing (it can describe responses when forces
change slowly) while also demonstrating that it fails to describe MU activity once a
broader range of behaviors is considered.
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a latent that account for the observed rates. We assessed the degree to which this was true,
with essentially no constraints other than that link functions be monotonically increasing. (b)
lllustration of model fits for simplified situations: the activity of two MUs during a slow ramp (fop)
or following cortical stimulation on three different electrodes (bottom). (¢) Quantification of model
performance when accounting for the activity of the full MU population. Cross-validated error
was the median (across MUs) dot product of the model residuals (difference between actual and
model MU activity) for random splits of trials during the slow-ramp condition alone.
Cross-validated error was computed when the model only had to fit the ramp condition, or also
had to fit other conditions. Left. For dynamic experiments, the other conditions were the different
force profiles. Center. For muscle-length experiments, the other conditions were different force
profiles using the same muscle length (a subset of the force profiles used in the dynamic
experiments) or all force profiles across both muscle lengths. Right. For microstimulation
experiments, the other conditions involved cortical stimulation (on one of 4-6 electrodes) during
static force production at different levels. Error bars indicate the mean +/- standard deviation of
the cross-validated error across 10 model fits, each using a different random division of the data
to compute cross-validated error. Circles indicate fit error when the model was fit to an artificial
population response that truly could be described by rigid control, but otherwise closely
resembled the empirical population response. (d) Proportion of total MUs that consistently
violated the 1-latent model when fit to pairs of conditions. Each entry is the difference between
the proportion of consistent violators obtained from the data and the proportion expected by
chance. Left: dynamic experiments; right. muscle-length experiments.
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We used a complementary approach, focused on single trials, to further explore when
the model of rigid control failed. We fit the model to single-trial responses from two
conditions at a time. We defined an MU as a ‘consistent violator’ if its activity was
overestimated for trials from one condition and underestimated for trials from the other
condition, at a rate much higher than chance. Consistent violators indicate that
recruitment differs across conditions in a manner inconsistent with rigid control.
Consistent violators were relatively rare when two conditions had similar frequency
content (Fig. 4d, left, dark entries near diagonal), but became common when conditions
had dissimilar frequency content. Additionally, consistent violators became common
when comparing across muscle lengths (Fig. 4d, right).

Neural degrees of freedom

If a one-degree-of-freedom (common) drive cannot account for MU activity, how many
degrees of freedom must one assume (Fig. 5a)? To identify a lower bound, we fit
models with multiple latent factors for two dynamic-experiment sessions (those with the
most simultaneously recorded active MUs: 16 and 18). Cross-validated fit error (Fig. 5b)
reached zero around 4-6 factors. Thus, describing the activity of the 16-18 MUs
required 4-6 degrees of freedom. Because we recorded a minority of MUs (the triceps
alone contain a few hundred) from a localized region during a subset of behaviors, there
are likely many more degrees of freedom even for a given muscle. Neural control of the
arm may thus be quite high-dimensional, with dozens or even hundreds of degrees of
freedom once all muscles are considered.

It is unclear how many of these degrees of freedom are influenced by descending
control. Anatomy suggests it could be many. The corticospinal tract alone contains
approximately one million axons®, and our perturbation experiments reveal a potential
capacity for fine-grained control. A counterargument is that descending commands must
be drawn from dimensions occupied by cortical activity, which is typically described as
residing in a low-dimensional manifold®™>’. In standard tasks, 10-20 latent factors
account for most of the variance in M1 activity®®°. Yet the remaining structure, while
small, may be meaningful®’ given that descending commands appear to be small
relative to other signals®?.
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Figure 5 | Quantifying neural degrees of freedom. (a) We considered the number of latent
inputs that drive MU activity. (b) Cross-validated fit error for models with 1-10 latent factors.
Cross-validated error (Fig. 4) was computed across all dynamic-experiment conditions. Error
bars indicate the mean +/- standard deviation of that median error across 10 model fits, each
using a different random division of the data to compute cross-validated error. (¢) We recorded
neural activity in M1 using 128-channel Neuropixels probes. (d) Two sets of trial-averaged firing
rates were created from even and odd trials. Traces show the projection of the even (green) and
odd (purple) population activity onto three principal components (PCs) obtained from the even
set. Traces for PCs 1 and 50 were manually offset to aid visual comparison. (e) Reliability of
neural latent factors. Two sets of trial-averaged data were obtained from random partitions of
single trials. Both data sets were projected onto the principal components (factors) obtained
from one set. The reliability of each factor was computed as the correlation between the
projection of each data set onto the factor. Traces indicate the mean and 95% confidence
intervals (shading) for 25 re-samples of M1 activity (blue) and simulated data with 50 (yellow),
150 (orange), and 500 (red) latent signals.


https://doi.org/10.1101/2021.05.05.442653
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.05.442653; this version posted May 5, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

We reassessed the dimensionality of activity in M1, aided by three features. First, our
task involves force profiles spanning a broad frequency range, potentially revealing
degrees of freedom not used in other tasks. Second, we considered an unusually large
population (881 sulcal neurons) recorded over multiple sessions using the 128-channel
version of primate Neuropixels probes. Third, to assess whether a latent factor is
meaningful, we focused not on its relative size (i.e., amount of neural variance
explained) but on whether it was reliable across trials (Fig. 5d) using a method similar
to that of Stringer and colleagues®. When analyzing a subset of neurons, a small but
meaningful signal (e.g., one that could be reliably decoded from all neurons) will be
corrupted by spiking variability but will still show some nonzero reliability across trials.
We defined reliability, for the projection onto a given principal component, as the
correlation between held-out data and the data used to identify the principal component
(Fig. 5¢).

The first two hundred principal components all had reliability greater than zero (Fig. 5e).
To put this finding in context, we analyzed artificial datasets that closely matched the
real data but had known dimensionality. Even when endowed with 150 latent factors,
artificial populations displayed reliability that fell faster than for the data. This is
consistent with the empirical population having more than 150 degrees of freedom, an
order of magnitude greater than previously considered®®*®°. For comparison, if M1
simply encoded a force vector, there would be only one degree of freedom; all forces in
our experiment were in one direction. Encoding of the force derivative would add only
one further degree of freedom. Thus, the M1 population response has enough
complexity that it could, in principle, encode a great many outgoing commands beyond
force per se. Direct inspection of individual-neuron responses (Fig. S5) supports this
view; neurons displayed a great variety of response patterns.

Discussion

The hypothesis of rigid control -- a common drive followed by size-based recruitment --
has remained dominant’® for three reasons: it describes activity during steady force
production*3, would be optimal in that situation®', and could be implemented via simple
mechanisms'®'®, It has been argued that truly flexible control would be difficult to
implement and that “it is not obvious... that a more flexible, selective system would offer
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any advantages.” Yet there has existed evidence, often using indirect means, for at
least some degree of flexibility in specific situations*. Our findings argue that flexible
MU control is likely a normal aspect of skilled performance in the primate. Recruitment
differed anytime two movements involved different force frequencies or muscle lengths.

An appealing hypothesis is that flexibility reflects the goal of optimizing recruitment for
each behavior. To test the internal validity of this hypothesis, we employed a normative
model of force production by an idealized motor pool where MUs varied in both size and
how quickly force peaked and decayed (Supp. Materials). The model employed
whatever recruitment strategy maximized accuracy, using knowledge of future changes
in force. During slowly changing forces, the model adopted the classic small-to-large
recruitment strategy (Fig. S6). During rapidly changing forces, the model adopted
different strategies that leveraged heterogeneity in MU temporal force profiles. From this
perspective, the size principle emerges as a special case of a broader optimality
principle.

Optimal recruitment would require cooperation between spinal and supraspinal
mechanisms. Our data support this possibility. Flexibility driven by changes in muscle
length presumably depends upon spinally available proprioceptive feedback®. During
dynamic movements, some aspects of flexibility reflect future changes in force, which
would likely require descending signals. The nature of the interplay between spinal and
descending contributions remains unclear, as is the best way to model flexibility.
Flexibility could reflect multiple additive drives to the MU pool and/or modulatory inputs
that alter input-output relationships® (i.e., flexible link functions). Both mechanisms
could have spinal and/or supraspinal sources.

The hypothesis that descending signals influence MU recruitment has historically been
considered implausible, as control might be unmanageably complex unless degrees of
freedom are limited®*'®. Indeed, descending control has typically been considered to
involve muscle synergies®, without even the ability to independently control individual
muscles. Consistent with that view, recruitment order is unaltered by supraspinal
stimulation in cats®’. Recruitment can be altered using biofeedback training in
humans®*®®, although it is debated whether this ability reflects unexpected flexibility or
simply leverages known compartmentalization of multifunctional muscles® .

In our view there is little reason to doubt the existence of descending influences on MU
recruitment. The corticospinal tract alone contains on the order of a million axons®,
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including direct connections onto a-motoneurons®® from neurons whose diverse
responses’® reflect the context in which a force is generated”’. Our findings supply three
additional reasons to suspect rich descending control. First, during a learned task
performed skillfully, recruitment is far more flexible than previously thought. Second,
stimulation of neighboring cortical sites can recruit neighboring MUs, disproving the
assumption that “the brain cannot selectively activate specific motor units'™. Third, M1
activity has a surprisingly large number of degrees of freedom that could potentially
contribute descending commands. Future experiments will need to further explore
whether MU recruitment is fully or partially flexible, the level of granularity of descending
commands, and how those commands interact with spinal computations.
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Figure S1 | Force profiles. Single-trial (gray), trial-averaged (black), and target (cyan) forces
for one session of dynamic experiments. Vertical scale bars indicate 4 N. Horizontal scale bars
indicate 500 ms. n denotes trial count.
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Figure S2 | Example MU responses and waveforms across muscle lengths. (a) Firing rate
of a pair of simultaneously recorded deltoid MUs plotted against each other for three different
conditions (columns) with the deltoid in a lengthened (blue) or shorted (red) posture. (b) Left.
Template of MU157 across the 5 EMG channels used during this session. Right. The 20
waveforms identified in each posture that were most similar to the template. n denotes the total

spike counts in each posture. (¢) Same as b for MU158.
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Figure S3 | MU displacement. (a) Schematic illustrating, in three situations, the size of the

displacement (dmu) for a two-dimensional population state at two times. Left. dmu(t) =0
because a monotonic manifold can pass through r: and r+. Center. Any monotonic manifold
passing through T: is restricted to the green zone, and thus cannot come closer than 1 spike/s
to rv. Right. A manifold passing through r: can come no closer than 10 spikes/s from r+. (b)

Probability density function (PDF) of dwu(t) for one session for each experiment. dwu(t) was
evaluated at every time during the 4 s increasing ramp condition alone, at one muscle length,
(purple) or including other conditions. Left. For dynamic experiments, the other conditions were
the different force profiles. Center. For muscle-length experiments, the other conditions were
different force profiles using the same muscle length (a subset of the force profiles used in the
dynamic experiments) or all force profiles across both muscle lengths. Right. For
microstimulation experiments, the other conditions involved cortical stimulation (on one of 4-6
electrodes) during static force production at different levels. (¢) Maximum displacement (across
time) for each condition group shown in b for all sessions. Thin gray lines correspond to
different sessions and the thick black line corresponds to the mean across sessions.
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Figure S4 | Motor neuron pool (MNP) dispersion. (a) Firing rate of MU309 vs. MU311 during

the 4 s increasing ramp and 3 Hz sinusoidal conditions. The line defined by [rfli = 30
intercepts the activity manifold at several different moments; of those, r1 and r2 are the most
separated along the contour line. The MNP dispersion for A\ = 30 is the L1-norm of the
difference between r1 and T2: 40 spikes/s. (b) Scatter plot of dunp versus A for one session
for each experiment. duxr was evaluated at every time during the 4 s increasing ramp
condition alone, at one muscle length, (purple) or including other conditions. Left. For dynamic
experiments, the other conditions were the different force profiles. Center. For muscle-length
experiments, the other conditions were different force profiles using the same muscle length (a
subset of the force profiles used in the dynamic experiments) or all force profiles across both
muscle lengths. Right. For microstimulation experiments, the other conditions involved cortical
stimulation (on one of 4-6 electrodes) during static force production at different levels. (c)
Maximum dispersion (across A) for each condition group shown in b for all sessions. For each

session, dyinp (A) was restricted to the greatest common )\ across all condition sets before
computing the maximum. Maximum dispersions were normalized by the maximum L1-norm of
the MNP response across all times/conditions. Thin gray lines correspond to different sessions
and the thick black line corresponds to the mean across sessions.
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Figure S5 | Example M1 neuron responses. (a) Trial-averaged forces from one session of
dynamic experiments (intermediate static force condition is omitted for space). Vertical scale bar
indicates 8 N. Horizontal scale bar indicates 1 s. (b-j) Trial-averaged firing rates of M1 neurons
with standard error (top) and single-trial spike rasters (bottom). Vertical scale bars indicate 20
spikes/s. Horizontal scale bars indicate 1 s.
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Figure S6 | Optimal MU recruitment. Isometric force production was modeled using an
idealized motor neuron pool (MNP) containing 5 MUs. MU twitch amplitude varied inversely with
contraction time, meaning that small MUs were also slow (see: Supp. Materials for details). The
optimal set of MU firing rates for generating a target force profile were numerically derived as
the solution that minimized the mean-squared error between the MNP and target forces. (a)
Target forces provided to the model (cyan) and MNP force (black) generated using the optimally
derived firing rates. (b) Optimal MU firing rates used to generate the MNP force in a. Each color
corresponds to a different MU, numbered in ascending order by size (i.e., MU1 was the smallest
and slowest). Optimization predicted size-based recruitment for steady force profiles (first two
columns), but more flexible recruitment strategies for rapidly changing forces. (¢) Firing rates of
MU3 (green) plotted against that of MU2 (orange), for each condition shown in b.
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Methods

Data Acquisition

Subject and task

All protocols were in accord with the National Institutes of Health guidelines and
approved by the Columbia University Institutional Animal Care and Use Committee.
Subject C was an adult, male macaque monkey (Macaca mulatta) weighing 13 kg.

During experiments, the monkey sat in a primate chair with his head restrained via
surgical implant and his right arm loosely restrained. To perform the task, he grasped a
handle with his left hand while resting his forearm on a small platform that supported the
handle. Once he had achieved a comfortable position, we applied tape around his hand
and velcro around his forearm. This ensured consistent placement within and between
sessions. The handle controlled a manipulandum, custom made from aluminum (80/20
Inc.) and connected to a ball bearing carriage on a guide rail (McMaster-Carr, PN
9184T52). The carriage was fastened to a load cell (FUTEK, PN FSH01673), which was
locked in place. The load cell converted one-dimensional (tensile and compressive)
forces to a voltage signal. That voltage was amplified (FUTEK, PN FSH03863) and
routed to a Performance real-time target machine (Speedgoat) that executed a Simulink
model (MathWorks) to run the task. As the load cell was locked in place, forces were
applied to the manipulandum via isometric contractions.

The monkey controlled a ‘Pac-Man’ icon, displayed on an LCD monitor (Asus PN
PG258Q, 240 Hz refresh, 1920 x 1080 pixels) using Psychophysics Toolbox 3.0.
Pac-Man’s horizontal position was fixed on the left hand side of the screen. Vertical
position was directly proportional to the force registered by the load cell. For 0 Newtons
applied force, Pac-Man was positioned at the bottom of the screen; for the calibrated
maximum requested force for the session, Pac-Man was positioned at the top of the
screen. Maximum requested forces (see: Experimental Procedures, below) were titrated
to be comfortable for the monkey to perform across multiple trials and to activate
multiple MUs, but not so many that rendered EMG signals unsortable. On each trial, a
series of dots scrolled leftwards on screen at a constant speed (1344 pixels/s). The
monkey modulated Pac-Man’s position to intercept the dots, for which he received juice
reward. Thus, the shape of the scrolling dot path was the temporal force profile the
monkey needed to apply to the handle to obtain reward. We trained the monkey to
generate static, step, ramp, and sinusoidal forces over a range of amplitudes and
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frequencies. We define a ‘condition’ as a particular target force profile (e.g., a 2 Hz
sinusoid) that was presented on many ‘trials’, each a repetition of the same profile. Each
condition included a ‘lead-in’ and ‘lead-out’ period: a one-second static profile appended
to the beginning and end of the target profile, which facilitated trial alignment and
averaging (see below). Trials lasted 2.25-6 seconds, depending on the particular force
profile. Juice was given throughout the trial so long as Pac-Man successfully intercepted
the dots, with a large ‘bonus’ reward given at the end of the trial.

The reward schedule was designed to be encouraging; greater accuracy resulted in
more frequent rewards (every few dots) and a larger bonus at the end of the trial. To
prevent discouraging failures, we also tolerated small errors in the phase of the
response at high frequencies. For example, if the target profile was a 3 Hz sinusoid, it
was considered acceptable if the monkey generated a sinusoid of the correct amplitude
and frequency but that led the target by 100 ms. To enact this tolerance, the target dots
sped up or slowed down to match his phase. The magnitude of this phase correction
scaled with the target frequency and was capped at +/- 3 pixels/frame. To discourage
inappropriate strategies (e.g., moving randomly, or holding in the middle with the goal if
intercepting some dots) a trial was aborted if too many dots were missed (the criterion
number was tailored for each condition).

Surgical procedures

After task performance stabilized at a high level, we performed a sterile surgery to
implant a cylindrical chamber (Crist Instrument Co., 19 mm inner diameter) that
provided access to M1. Guided by structural magnetic resonance imaging scans taken
prior to surgery, we positioned the chamber surface-normal to the skull, centered over
the central sulcus. We covered the skull within the cylinder with a thin layer of dental
acrylic. Small (3.5 mm), hand-drilled burr holes through the acrylic provided the entry
point for electrodes.

Intracortical recordings and microstimulation

Neural activity was recorded with Neuropixels probes. Each probe contained 128
channels (two columns of 64 sites). Probes were lowered into position with a motorized
microdrive (Narishige). Recordings were made at depths ranging from 5.6 - 12.1 mm
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relative to the surface of the dura. Raw neural signals were digitized at 30 kHz and
saved with a 128-channel neural signal processor (Blackrock Microsystems, Cerebus).

Intracortical electrical stimulation (20 biphasic pulses, 333 Hz, 400 ps phase durations,
200 us interphase) was delivered through linear arrays (Plexon Inc., S-Probes) using a
neurostimulator (Blackrock Microsystems, Cerestim R96). Each probe contained 32
electrode sites with 100 ym separation between them. Probes were positioned with a
motorized microdrive (Narishige). We estimated the target depth by recording neural
activity prior to stimulation sessions. Each stimulation experiment began with an initial
mapping, used to select 4-6 electrode sites to be used in the experiments. That
mapping allowed us to estimate the muscles activated from each site, and the
associated thresholds. Thresholds were determined based on visual observation and
were typically low (10-50 pA), but occasionally quite high (100-150+ pA) depending on
depth. Across all 32 electrodes, microstimulation induced twitches of proximal and distal
muscles of the upper arm, ranging from the deltoid to the forearm. Rarely did an
electrode site fail to elicit any response, but many responses involved multiple muscles
or gross movements of the shoulder that were difficult to attribute to a specific muscle.
Yet some sites produced more localized responses, prominent only within a single
muscle head. Sometimes a narrow (few mm?) region within the head of one muscle
would reliably and visibly pulse following stimulation. Because penetration locations
were guided by recordings and stimulation on previous days, such effects often involved
the muscles central to performance of the task: the deltoid and triceps. In such cases,
we selected 4-6 sites that produced responses in one of these muscles, and targeted
that muscle with EMG recordings. EMG recordings were always targeted to a localized
region of one muscle head (see below). In cases where stimulation appeared to activate
only part of one muscle head, EMG recordings targeted that localized region.

EMG recordings

Intramuscular EMG activity was recorded acutely using paired hook-wire electrodes
(Natus Neurology, PN 019-475400). Electrodes were inserted ~1 cm into the muscle
belly using 30 mm x 27 G needles. Needles were promptly removed and only the wires
remained in the muscle during recording. Wires were thin (50 um diameter) and flexible
and their presence in the muscle is typically not felt after insertion, allowing the task to
be performed normally. Wires were removed at the end of the session.
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We employed several modifications to facilitate isolation of MU spikes. As originally
manufactured, two wires protruded 2 mm and 5 mm from the end of each needle (thus
ending 3 mm apart) with each wire insulated up to a 2 mm exposed end. We found that
spike sorting benefited from including 4 wires per needle (i.e., combining two pairs in a
single needle), with each pair having a differently modified geometry. Modifying each
pair differently meant that they tended to be optimized for recording different MUs'; one
MU might be more prominent on one pair and the other on another pair. Electrodes
were thus modified as follows. The stripped ends of one pair were trimmed to 1 mm,
with 1 mm of one wire and 8 mm of the second wire protruding from the needle’s end.
The stripped ends of the second pair were trimmed to 0.5 mm, with 3.25 mm of one wire
and 5.25 mm of the second wire protruding. Electrodes were hand fabricated using a
microscope (Zeiss), digital calipers, precision tweezers and knives. During experiments,
EMG signals were recorded differentially from each pair of wires with the same length of
stripped insulation; each insertion thus provided two active recording channels. Four
insertions (closely spaced so that MUs were often recorded across many pairs) were
employed, yielding eight total pairs. The above approach was used for both the dynamic
and muscle-length experiments, where a challenge was that normal behavior was
driven by many MUs, resulting in spikes that could overlap in time. This was less of a
concern during the microstimulation experiments. Stimulation-induced responses were
typically fairly sparse near threshold (a central finding of our study is that cortical
stimulation can induce quite selective MU recruitment). Thus, microstimulation
experiments employed one electrode pair per insertion, with minimal modification
(exposed ends shorted to 1 mm).

Raw voltages were amplified and analog filtered (band-pass 10 Hz - 10 kHz) with
ISO-DAM 8A modules (World Precision Instruments), then digitized at 30 kHz with a
neural signal processor (Blackrock Microsystems, Cerebus). EMG signals were digitally
band-pass filtered online (50 Hz - 5 kHz) and saved.

Experimental procedures

Cortical recordings were performed exclusively during one set of experiments
(‘dynamic’, defined below), whereas EMG recordings were conducted across three sets
of experiments (dynamic, ‘muscle length’, and microstimulation). In a given session, the
eight EMG electrode pairs were inserted within a small (typically ~2 cm?) region of a
single muscle head. This focus aided sorting by ensuring that a given MU spike typically
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appeared, with different waveforms, on multiple channels. This focus also ensured that
any response heterogeneity was due to differential recruitment among neighboring
MUs.

In dynamic experiments, the monkey generated a diverse set of target force profiles.
The manipulandum was positioned so that the angle of shoulder flexion was 25° and the
angle of elbow flexion was 90°. Maximal requested force was 16 Newtons. We
employed twelve conditions (Supp Fig. 1) presented interleaved in pseudo-random
order: a random order was chosen, all conditions were performed, then a new random
order was chosen. Three conditions employed static target forces: 33%, 66% and 100%
of maximal force. Four conditions employed ramps: increasing or decreasing across the
full force range, either fast (lasting 250 ms) or slow (lasting 4 s). Four conditions
involved sinusoids at 0.25, 1, 2, and 3 Hz. The final condition was a 0-3 Hz chirp. The
amplitude of all sinusoidal and chirp forces was 75% of maximal force, except for the
0.25 Hz sinusoid, which was 100% of maximal force. Recordings in dynamic
experiments were made from the deltoid (typically the anterior head and some from the
lateral head) and the triceps (lateral head).

In muscle-length experiments, the monkey generated force profiles with his deltoid at a
long or short length (relative to the neural position used in the dynamic experiments).
The manipulandum was positioned so that the angle of shoulder flexion was 15° (long)
or 50° (short), while maintaining an angle of elbow flexion of 90°. Maximal requested
forces were 18 N (long) and 14 N (short). Different maximal forces were employed as it
appeared more effortful to generate forces in the shortened position. To ensure enough
trials per condition, we employed only a subset of the force profiles used in the
dynamics experiments. These were 2 static forces (50% and 100% of maximal force),
the slow increasing ramp, both increasing and decreasing fast ramps, all four sinusoids
and the chirp. These were presented interleaved in pseudorandom order for multiple
trials (~30 per condition) for the lengthened position (15°) before changing to the
shortened position (50°). In most experiments we were able to revert to the lengthened
position (15°) at the end of the session, and verify that MU recruitment returned to the
originally observed pattern. Recordings in muscle-length experiments were made from
the deltoid (anterior head).

Microstimulation experiments employed recordings from the lateral deltoid and lateral
triceps. Both these muscles exhibited strong task-modulated activity, as documented in
the dynamic and muscle-length experiments. We also included recordings from the
sternal pectoralis major, which showed only modest task-modulated activity, as we
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found cortical sites that reliably activated it. The manipulandum was positioned so that
the angle of shoulder flexion was 25° and the angle of elbow flexion was 90° (as in
dynamic experiments). Maximal force was typically set to 16 N, but was increased to 24
N and 28 N for two sessions each in an effort to evoke greater muscle activation.
Microstimulation experiments employed a limited set of force profiles: four static forces
(0, 25%, 50% and 100%), and the slow (4 s) increasing ramp. The ramp was included to
document the natural recruitment pattern during slowly changing forces.
Microstimulation was delivered once per trial during the static forces, at a randomized
time (1000-1500 ms relative to when the first dot reached Pac-Man). Because
stimulation evoked activity in muscles used to perform the task, it sometimes caused
small but detectable changes in force applied to the handle. However, these were so
small that they did not impact the monkey’s ability to perform the task and appeared to
go largely unnoticed. These experiments involved a total of 17-25 conditions: the ramp
condition (with no stimulation) plus the four static forces for the 4-6 chosen electrode
sites. These were presented interleaved in pseudorandom order.

Data Processing

Signal processing and spike sorting

Cortical voltage signals were spike sorted using KiloSort 2.02. A total of 881 neurons
were isolated across 15 sessions.

EMG signals were digitally filtered offline using a second-order 500 Hz high-pass
Butterworth. Any low SNR or dead EMG channels were omitted from analyses. Motor
unit (MU) spike times were extracted using a custom semi-automated algorithm. As with
standard spike-sorting algorithms used for neural data, individual MU spikes were
identified based on their match to a template: a canonical time-varying voltage across
all simultaneously recorded channels (example templates are shown in Fig. 1d, bottom
left). A distinctive feature of intramuscular records (compared to neural recordings) is
that they have very high signal-to-noise (peak-to-peak voltages on the order of mV,
rather than uV, and there is negligible thermal noise) but it is common for more than one
MU to spike simultaneously, yielding a superposition of waveforms. This is relatively
rare at low forces but can become common as forces increase. Our algorithm was thus
tailored to detect not only voltages that corresponded to single MU spikes, but also
those that resulted from the superposition of multiple spikes. Detection of superposition
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was greatly aided by the multi-channel recordings; different units were prominent on
different channels. Further details are provided in the Supplementary Methods.

Trial alignment and averaging

Single-trial spike rasters, for a given neuron or MU, were converted into a firing rate via
convolution with a 25 ms Gaussian kernel. One analysis (Fig. 4d) focused on single-trial
responses, but most employed trial-averaging to identify a reliable average firing rate.
To do so, trials for a given condition were aligned temporally and the average firing rate,
at each time, was computed across trials. Stimulation trials were simply aligned to
stimulation onset. For all other conditions, each trial was aligned on the moment the
target force profile ‘began’ (when the target force profile, specified by the dots, reached
Pac-Man). This alignment brought the actual (generated) force profile closely into
register across trials. However, because the actual force profile could sometimes slightly
lead or lag the target force profile, some modest across-trial variability remained. Thus,
for all trials with changing forces, we realigned each trial (by shifting it slightly in time) to
minimize the mean squared error between the actual force and the target force profile.
This ensured that trials were well-aligned in terms of the actual generated forces (the
most relevant quantity for analyses of MU activity). Trials were excluded from analysis if
they could not be well aligned despite searching over shifts from -200 to 200 ms.

Data Analysis

Quantifying motor unit flexibility

We developed two analyses that quantified MU-recruitment flexibility without directly
fitting a model (model-based quantification is described below). These two analyses
were used to produce the results in Figures S2 and S3, respectively. Both methods
leverage the definition of rigid control to detect patterns of activity that are inconsistent
with rigid control even under the most generous of assumptions.

Let Tt=[re T2¢ - Tn,t]T denote the population state at time ¢, where "it denotes
the firing rate of the " MU. If r; traverses a 1-D monotonic manifold, then as the firing
rate of one MU increases, the firing rate of all others should either increase or remain
the same. More generally, the change in firing rates from ¢ to ¢ should either be
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nonnegative or nonpositive for all MUs. If the changes in firing rate were all nonnegative
with some increases, then we could infer that a common input drive increased from ¢ to
t" . Equivalently, we could conclude that the common drive decreased from ' to ¢ .
Both these cases (all nonnegative or all nonpositive) are consistent with rigid control
because there exists some 1-D monotonic manifold that contains the data at both ¢’
and t .

On the other hand, departures from a 1-D monotonic manifold can be inferred as
moments when the firing rates of one or more MUs increase as others’ decrease. Both
our analyses seek to quantify the magnitude of such departures while being very
conservative. Specifically, the size of a departure was always measured as the smallest
possible discrepancy from a 1-D manifold, based on all possible 1-D manifolds. To
illustrate the importance of this conservative approach, consider a situation where the
firing rate of MU1 increases considerably while MU2’s rate decreases slightly from ¢ to
t'. This scenario would be inconsistent with activity being modulated solely by a
common input, yet it would be impossible to know which MU reflected an additional or
separate input. Perhaps common drive decreased slightly (explaining the slight
decrease in MU2s rate) but MU1 received an additional large, private
excitatory/inhibitory input. This would indicate a large departure from rigid control. Yet
another possibility is that common drive increased considerably (explaining the large
increase in MU1’s rate) and that MU2’s rate failed to rise because it was already near
maximal firing rate. This would not explain why MUZ2’s rate went down, but if that
decrease was small it could conceivably be due to a very modest departure from
idealized rigid control. Thus, to be conservative, one should quantify this situation as
only a slight deviation from the predictions of rigid control. Both methods described
below were designed to do so; when MU activities were anticorrelated, we identified the
largest increase and decrease in firing rates, then reported the change that was smaller
in magnitude.

For the first analysis, we computed the largest nonnegative change in firing rates from ¢
to ¢ for a population of n MUs as

(1) ArT(t,t) = max (0,714 — T14, "o — Togrs - Tt — Ttr) -

If a 1-D monotonic manifold can be drawn through r: and rv, then either Art(t,t) or
ArT(t,t) will be zero. Otherwise, A7 (t,t') will capture the largest increase (across

MUs) in rate from ¢ to # while Art(t',t) wil capture the largest decrease.Thus, we
computed departures from a monotonic manifold at the level of an individual MU as
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(2) D(t,t') = min (Ar*(¢,¢), Art (1))

As examples, consider a population of two MUs with T+ = [10,10] ang T+ = [15,25],
These states would be consistent with an increase in common drive from ¢ to ¢, so
D(t,t) =0 (Supp Fig. S2a, leff). Conversely, Tt = [10,10] and rv = [9,30] (center)
suggests a violation of rigid control, but that violation might be small; one can draw a
manifold that passes through [10,10] and comes within 1 spike/s of [9,30]. In this case,
D(t,t') = 1, Finally, T+ = [10,10] and T+ = [0,30] (right) argue for a sizable violation;
[0,30] is at least 10 spikes/s distant from any monotonic manifold passing through
[10,10], g0 D(t,t') =10,

It is worth emphasizing that (eq. 2) can readily be computed for a population with more
than two MUs, but the analysis ultimately reduces to a comparison of two MUs: one
whose firing rate increased the most and the other whose firing rate decreased the most
across a pair of time points.

To extend our analysis to multiple time points, we computed the ‘MU displacement’ as

(3)  dmu(t) = min (rntax D(t+r7, t' + T/))
where ¢ indexes over all other times and conditions, and = and 7' are time lags. The
inclusion of time lags ensures that departures from a monotonic manifold cannot simply
be attributed to modest differences in response latencies across MUs. In our analyses,

we optimized over 7; 7' € [-25,25] ms, dwu is exceedingly conservative; it makes no
assumptions regarding the manifold other than that it is monotonic, and identifies only
those violations that are apparent when comparing just two times.

An advantage of the dmu metric is interpretational simplicity; it identifies pairs of times
where the joint activity of two MUs cannot lie on a single 1-D monotonic manifold. A
disadvantage is that it does not also capture the degree to which multiple other MUs
might also have activity inconsistent with a 1-D monotonic manifold. To do so, we
employed a second metric that quantifies MU-recruitment flexibility at the population
level. Under the assumptions of rigid control, the magnitude of common drive
determines the population state and therefore the summed activity of all MUs or,

equivalently, its L1-norm, Ir[l1. Increases and decreases in common drive correspond,

in a one-to-one manner, to increases and decreases in llrll: Violations of rigid control
can thus be inferred if a particular norm value, )\, is associated with different population
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states. Geometrically, this corresponds to the population activity manifold intersecting
the hyperplane defined by el =X at multiple locations.

We thus defined the motor neuron pool (MNP) dispersion as

(4) dyne(N) = min ( max v r, —Tuirli), @ = {¢: [l = Al < &)

where 71,72 are time lag vectors, of the same dimensionality as r, and ¢ is a small
constant. Conceptually, the dispersion identifies the pair of time points when the
population states are the most dissimilar, while having norms within ¢ of A\. As when
computing @vu(t), we minimized dune(A) over time lags so as to only consider
dispersions that could not be simply attributed to latency differences across MUs. For
our analyses, we set ¢ = 1 and optimized over 71, T2 € [—25,25] mg,

Latent factor model

We developed a probabilistic latent variable model of MU activity. Let T+ be the
unknown latent variables at time ¢, which are shared between all MUs. We can fit this
model with one latent (Fig. 4; T+ can be a single value) or multiple latents (Fig. 5). Let
Yit be the activity of the ™" MU at time ¢, given by

(5) Yit ~ N(fz ($t+n), 6)

where Ji denotes the link function for the i MU and 7; denotes the lag between its
response and the shared latent variables. We constrained 7: € [—25,25] ms. To identify
flexible, monotonically increasing link functions with nonnegative outputs, we
parameterized /i as a rectified monotonic neural network. More precisely, we fit each
/i using a two-layer feedforward neural network in which the weights were constrained
to be positive. The positivity constraint was achieved by letting each weight
w = In(1+ eu), where the values of « were fit within the model. During model training,
the output of the neural network was passed through a ‘leaky rectified linear unit’ (i.e.,
so that the output was never exactly zero). After training was completed, we used
standard rectification on the output.
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When predicting held-out data, we encouraged temporal smoothness in the latent space

to improve generalization performance by letting Xt ™~ N (%41, o), where smaller
values of ¢ encouraged greater smoothness. We set ¢ to 0.01 for our analyses.

To infer the most likely distribution of latent variables given the data (i.e., the model

posterior, p(X|Y)), and to learn the link functions and other parameters, we used
variational inference with a mean-field approximation for the posterior approximation. As
an inference method, we used black-box variational inference®, which performs gradient
descent to maximize the model's evidence lower bound. We iterated between (1)
optimizing the posterior and all parameters while holding response lags fixed and (2)
optimizing the response lags. Post model-fitting, when predicting MU activity, we used
the mean of the posterior distribution as the latent input at each time.

Prior to fitting the model, the firing rate of each MU was normalized by its maximum
response across conditions. Normalization did not alter the ability of the model to fit the
data, but simply encouraged the model to fit all MUs, rather than just the high-rate units.
Additionally, the likelihood of each time point was weighted by the duration of the
experimental condition, so that each condition mattered equally within the model
regardless of duration. When fitting to single trials, we also weighted each condition by
its trial count, again so that each condition had equal importance. All model fits were
done within individual sessions.

Residual error plots

To compute the cross-validated model residuals, we first randomly split the single-trial
firing rates for each MU into halves, and computed the trial-average responses for each
half: Yi1 and Yi2. We then fit the latent variable model to each half, which yielded a pair

of predicted responses, Yi1 and Yi2. The cross-validated model residuals were
calculated as the dot product between the residual errors of each half:

(yin — $’z‘,1)T(Yi,2 — ¥i2). We computed the median cross-validated residuals across all
MUs and sessions for a given partitioning of the data. The above steps were then
repeated for 10 different random splits of trials and we reported the mean +/- standard
error of the median error across re-partitions and fits.

As a control (Fig. 4), we modified the data so that a single latent variable could fully
account for all responses. To do so, we reconstructed the firing rates using only the first
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principle component of the trial average firing rates. For example, if w is the n x 1
loading vector for the first principal component, then Y1, the ¢t x n matrix of responses

for one partitioning of the data, was reconstructed as [Y1WWT]+, where the rectification
ensures that all firing rates are non-negative. Using these reconstructed firing rates, we
performed the same residual error analysis. Because of the rectification, the modified
data are not one-dimensional in the linear sense (there would be multiple principal
components with non-zero variance). Yet because the data will lie on a one-dimensional
monotonic manifold, cross-validated error should be near zero when fitting the model,
which is indeed what we observed.

Consistency plots

We fit the model to the activity of single trials. We aimed to determine whether, when fit
to two conditions, the model consistently overestimated the true firing rates in one
condition and underestimated the firing rates in the other condition. To do so, we
calculated the mean model error across time on every trial for each condition. Let
E(1,tr) and E(2.tr) denote the mean errors for a particular MU, pair of conditions

(indexed by 1 and 2), and trial #». We calculated the consistency for the MU and
conditions as

(6) C = max l(nover, 1+ Nunder, 2 +0.5- nequal) (nunder’ 1+ Nover, 2 +0.5- nequal)]

n n

where

Nover,j = E 1E(j,tr)>0
tr

Nunder,j = E 1E(j,tr)<0
tr

Nequal = Z ]-E(l,tr):O + Z 1E(2,tr):0
tr tr

n is the total number of trials across both conditions, and 14 is the indicator function (1
if A is true; 0 otherwise). Eq. (6) determines the fraction of times one condition had
negative errors and the other had positive errors, while accounting for trials with no

error. Prior to performing this consistency calculation, we set all E(j,tr) with absolute
value less than 0.01 to 0, so that the sign of negligible errors was not considered. We
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also removed £(1,%7) or E(2,%r) in which the MU had zero actual and predicted
activity, because it was impossible for the predicted activity to undershoot the true
activity in this setting.

We calculated the fraction of MUs that had C' > 0.8 and an average error of at least
0.01 across trials (to ensure that outlier trials did not lead to false positives of consistent
errors). We excluded MUs who had zero activity in > 80% of trials in the two conditions
being analyzed. Consequently, the number of MUs included in the analysis) varied for
each pair of conditions.

To calculate a chance-level baseline (Fig. S4), for each MU, we calculated the
probability that greater than 80% of the included trials would have a positive or negative
error, assuming that each trial has an independent 50/50 chance of being positive or

negative. More precisely, let F(k;n,p) pe the cumulative density function of a binomial
distribution of having k& successes in n Bernoulli events, each event with probability »

of being a success. We calculate £ =2 (1 — F(ceil[0.8n,];n;,0.5)), where n: is the
number of total trials included for MU i and ceil[] gets the next integer. The total

P
expected fraction of MUs with C' > 0.8 by chance is thus

Cross-validated reliability dimensionality estimate

To estimate the dimensionality of M1, we randomly split the single-trial firing rates for
each neuron into two groups and averaged over trials within each group. Let Y1 and Y2
denote the CT'x N matrices of trial-averaged responses for each partition (C'T
condition-times and N neurons). Let w; (an N x 1 vector) denote the i™™ principal
component (PC) of Yi. The reliability of PC i was computed as the correlation between
Yiw; and Yow;. We repeated this process for 25 re-partitions over trials to obtain
confidence intervals. Our method is inspired by Churchland et al.* and conceptually
similar to but distinct from the cross-validated PCA analysis of Stringer et al., which
estimates the stimulus-related (‘signal’) neural variance based on spontaneous activity
across many neurons on single trials®.

To create simulated data sets with dimensionality %, we computed Y* = Y Q:Q;. , where
Y is the matrix of M1 firing rates averaged over all trials, and @« denotes the first k
columns of a random orthonormal matrix. Simulated single-trial spikes were generated
for each neuron using an inhomogeneous Poisson process with rate given by the
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corresponding column of Y*. Simulated spikes were smoothed using a 25 ms Gaussian
kernel, and the cross-validated reliability metric applied as described above.
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