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1 Abstract

Studies of neural dynamics in lateral orbitofrontal cortex (lOFC) have shown that subsets of neurons that encode
distinct aspects of behavior, such as value, may project to common downstream targets. However, it is unclear
whether reward history, which may subserve lOFC’s well-documented role in learning, is represented by functional
subpopulations in lOFC. We analyzed neural recordings from rats performing a value-based decision-making task, in
which we previously documented trial-by-trial learning that required lOFC. We found five distinct clusters of lOFC
neurons, either based on clustering of their trial-averaged peristimulus time histograms (PSTHs), or a feature space
defined by their average conditional firing rates aligned to different task variables. We observed weak encoding of
reward attributes, but stronger encoding of reward history, the animal’s left or right choice, and reward receipt across
all clusters. Only one cluster, however, encoded the animal’s reward history at the time shortly preceding the choice,
suggesting a possible role in integrating previous and current trial outcomes at the time of choice.

2 Introduction

Previous experience can profoundly influence subsequent behavior and choices. In trial-based tasks, the effects
of previous choices and outcomes on subsequent ones are referred to as “sequential effects,” and while they are
advantageous in dynamic environments, they produce suboptimal biases when outcomes on each trial are independent.
The orbitofrontal cortex (OFC) has been implicated in updating behavior based on previous experience, particularly
when task contingencies are partially observable [1–4]. However, it is unclear whether behavioral flexibility in OFC
is mediated by dedicated subpopulations of neurons exhibiting distinct encoding and/or connectivity. We previously
trained rats on a value-based decision-making task, in which they chose between explicitly cued, guaranteed and
probabilistic rewards on each trial [5, 6]. Despite the fact that outcomes were independent on each trial, we observed
several distinct sequential effects that contributed to behavioral variability. Optogenetic perturbations of the lateral
orbitofrontal cortex (lOFC) eliminated one particular sequential effect, an increased willingness to take risks following
risky wins, but spared other types of trial-by-trial learning, such as spatial “win-stay/lose-switch” biases. We
interpreted this data as evidence that (1) different sequential effects may be mediated by distinct neural circuits, and
(2) lOFC promotes learning of abstract biases that reflect the task structure (here, biases for the risky option), but
not spatial ones [6].

Electrophysiological recordings from lOFC during this task revealed encoding of reward history and reward
outcomes on each trial at the population level, which could in principle support sequential effects [6]. Recent studies
of rodent OFC have suggested that despite the apparent heterogeneity of neural responses in prefrontal cortex,
neurons can be grouped into distinct clusters that exhibit similar task-related responses and, in some cases, project
to a common downstream target [7, 8]. In light of these results, we hypothesized that reward history might be
encoded by a distinct cluster of neurons in lOFC. This would suggest that the lOFC-dependent sequential effect we
observed (an increased willingness to take risks following risky wins) may derive from a subpopulation of neurons
encoding reward history, and potentially projecting to a common downstream target.

Here, we analyzed an electrophysiological dataset from lOFC during a task in which independent and variable
sensory cues conveyed dissociable reward attributes on each trial (reward probability and amount; [5, 6]). We found
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that clustering of lOFC neurons based on either their trial-averaged peristimulus time histograms (PSTHs), or a
feature space defined by their average conditional firing rates aligned to different task variables [7], both revealed
five clusters of neurons with different response profiles. We exploited the temporal variability of task events to fit a
generalized linear model (GLM) to lOFC firing rates, generating a rich description of the encoding of various task
variables over time in individual neurons. All of the clusters exhibited weak encoding of reward attributes; and
stronger encoding of reward history, the animal’s left or right choice, and reward receipt. Only one cluster, however,
encoded the animal’s reward history at the time shortly preceding the choice. This distinct encoding was observable
by three independent metrics (coefficient of partial determination, mutual information, and discriminability or d′)
and two separate clustering methods. Moreover, the subpopulation of neurons that represented reward history before
the choice also exhibited the strongest encoding of reward outcomes, suggesting that these neurons are well-situated
to integrate previous and current reward experience. We hypothesize that this subpopulation of neurons, which were
identifiable based on their temporal response profiles alone, may mediate sequential learning effects by integrating
previous and current trial outcomes at the time of choice.

3 Results

Rats’ behavior on this task has been previously described [5, 6]. Briefly, rats initiated a trial by poking their nose in
a central nose port (Fig. 1A-C). They were then presented with a series of pseudo-randomly timed light flashes, the
number of which conveyed information about reward probability on each trial. Simultaneously, they were presented
with randomly timed auditory clicks, the rate of which conveyed the volume of water reward (6-48 µl) baited on
each side. After a cue period of ∼ 2.5− 3s, rats reported their choice by poking in one of the two side ports. Reward
volume and probability of reward (p) were randomly chosen on each trial. On each trial, the left or right port was
randomly designated as risky (p < 1) or safe (p = 1). Well-trained rats tended to choose the side offering the greater
subjective value, and trial history effects contributed to behavioral variability [5, 6]. We analyzed 659 well-isolated
single-units in the lOFC with minimum firing rates of 1Hz, obtained from tetrode recordings [6].

3.1 Single units in lOFC belong to clusters with distinct temporal response profiles

To characterize the temporal dynamics of the neural responses during this task, we performed k-means clustering
on trial-averaged PSTHs (“PSTH clustering”), aligned to trial initiation. We used the gap statistic [9], which
quantifies the improvement in cluster quality with additional components relative to a null distribution (Methods),
to choose a principled number of clusters, and identified five distinct clusters of responses (Fig. 1D). Each cluster
has a stereotyped period of elevated activity during the task: at trial start, during the cue period, and at or near
reward delivery, with the largest cluster (cluster 3) having activity just before the rat entered the reward port (Fig.
S1). Cluster 2 is the only cluster that exhibited persistent activity during the cue period. These data indicate that
despite the well-documented heterogeneity of neural responses in prefrontal cortex, responses in lOFC belong to one
of a relatively small, distinct set of temporal response profiles aligned to different task events.

A recent study in rat lOFC similarly found discrete clusters of neural responses by clustering the conditional firing
rates of neurons for different task-related variables (“conditional clustering”) [7]. We sought to compare results from
clustering PSTHs and conditional firing rates. Therefore, we generated conditional response profiles for each neuron
(Fig. 2B; Methods), performed clustering on these conditional responses via the same procedure. This also revealed
five distinct clusters that exhibited qualitatively similar temporal response profiles as the clusters that were based
on the average PSTHs (Fig. 2C-E, Suppl. Fig. S2). Moreover, clusters 2 and 3 were comprised of highly similar
groups of neurons across both procedures (66% overlap of cluster 2 neurons and 70% of cluster 3 neurons), which
indicates that neurons in these two clusters exhibit similar temporal response profiles and also similar encoding of
task variables (Fig. 2E). Additionally, assessing the distance among clusters verified that clusters obtained by both
clustering procedures are generally well separated from one another (Suppl. Fig. S3).

3.2 Neural responses in lOFC are well-captured by a generalized linear model that

includes attributes of offered rewards, choice, and reward history

We next sought to characterize the encoding properties of neurons in each cluster. To that end, we modeled each
neuron’s trial-by-trial spiking activity with a generalized linear model with Poisson noise (Fig. 3). This approach
has been previously used in sensory areas to model the effects of external stimuli upon neural firing [10, 11], and
more recently has been extended to higher-order areas of cortex during decision-making tasks [12]. In this model,
the time-dependent firing rate (λt) of a neuron is the exponentiated sum of a set of linear terms

λt = exp

[

S
∑

s=1

(

X
(s)
t−τ :t ∗ ks(τ)

)

]

, (1)

2
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Figure 1: A. Behavioral task: rats chose between a guaranteed and probabilistic water reward on each trial, that
could each be one of four water volumes. Rats were well-trained and tended to choose the option with the greater
subjective value. Reward probability and volume were cued by visual flashes and auditory click rates, respectively.
B. Mapping between the visual flashes/auditory clicks and reward attributes. C. Range of reward attributes. D.
Cluster-specific, mean responses of the trial-averaged, z-scored PSTHs. Error bars denote s.e.m. E. Z-scored PSTHs
for neurons in each cluster, sorted by time to peak within each cluster. Colored bars on the left indicate the cluster
identities from panel D. Panels A-C reproduced and modified from [6].
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Figure 2: A. Feature-conditioned PSTHs of an example neuron. The average z-scored firing rate in each gray
time window comprises an element in the feature space. B. Feature space for conditional clustering for the sample
neuron from A. The average firing rate for each condition is concatenated to yield a 19-dimensional feature space.
Here, features are grouped into three qualitative types (for presentation purposes only): responses for choice and
trial outcome (left); responses to expected value of left and right offers (middle); and responses to received reward
volume (right). C. Cluster-averaged PSTHs, aligned to trial initiation, using this conditional feature space. Error
bars denote s.e.m. D. Z-scored PSTHs for all neurons, sorted by time to peak within each cluster. E. Consistency
of cluster labeling, calculated as the conditional probability P (Cconditional|CPSTH) of belonging in any ‘conditional’
cluster (Cconditional), given that a unit belongs to a certain PSTH-defined cluster (CPSTH).
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where the variables X
(s)
t−τ :t are the stimuli and behavioral events against which neural activity is regressed; ks(τ)

denote the response kernels that are convolved with the task variables to model time-dependent responses to each
variable (Fig. 3C). The probability that a given number of spikes would occur in a discrete time bin of ∆t = 50ms
is given by a homogeneous Poisson process with mean λt∆t.

The task variables and example kernels for our model are shown for a sample neuron in Fig. 3C. Variables were
binarized such that 1 (0) denoted the occurrence (absence) of an event. The task variables included reward (win
or loss on the current or previous trial), choice (left or right), and the timing of cues indicating reward attributes
for the left and right offers (reward volume conveyed by auditory clicks and reward probability conveyed by visual
flashes). We also included the average reward rate prior to starting each trial and the location of the trial within
the session (not shown). Given the large number of model parameters, we used a smooth, log-raised cosine temporal
basis and L2 regularization to prevent overfitting (Methods). Based on model comparison, we found that including
a spike history term as in other GLM approaches did not improve our model, presumably due to the fact that we
are modeling longer timescale responses.

The chosen model parameters were selected by model comparison against several alternative models using cross-
validation. Model comparison favored a simpler binary win/loss representation of rewarded outcomes over richer
representations of reward volume on the current or previous trial (Suppl. Fig. S4). The model reproduced the trial-
averaged PSTHs of individual neurons (Fig. 3E). To quantify model performance, we calculated the proportion of
variance explained (R2) for held-out testing data (Fig. 3F). The model captured a high percentage of variance for
most of the neurons in our dataset. A small fraction of neurons exhibited negative R2 values (69 units, Suppl. Fig. S5),
indicating that the model produced a worse fit of the test data than the data average. Our liberal inclusion criteria did
not require neurons to exhibit task-modulation of their firing rates, so these neurons were likely not task-modulated,
and were excluded from subsequent analyses.

3.3 Clustering reveals distributed encoding of most task variables across subpopula-

tions of lOFC neurons

We next sought to characterize the extent to which neurons that belonged to different clusters might be “functionally
distinct,” and encode different task-related variables [7, 8]. To address this question, we computed two complementary
but independent metrics, both based on the GLM fit: the coefficient of partial determination and mutual information.
The coefficient of partial determination (CPD) quantifies the contribution of a single covariate (e.g., left/right choice)
to a neuron’s response by comparing the goodness-of-fit of the encoding model with and without that covariate. In
other words, the CPD quantifies the amount of variance that is explained by kernels representing different aspects
of the model. We computed the CPD in a sliding time window throughout the trial, and compared CPD values to
a shuffle test, in which trial indices were randomly shuffled relative to the design matrix before generating model
predictions. CPD values that were within the 95% confidence intervals of the shuffled distribution were set to 0
before averaging CPD values over neurons in a cluster. The average CPD values for different task variables is shown
for clusters based on each clustering procedure in Fig. 4A and Fig. 4C. Note that CPD plots are aligned to different
events, depending on the covariate.

We also computed the mutual information (MI) between neural spike trains and different model covariates (Meth-
ods). Our approach relates the statistics of trial-level events to firing rates, which allows us to assess the information
content for each stimulus throughout the entire time course of a trial. Such an approach does not easily generalize to
the statistics of within-trial events such as the information represented in stimulus clicks and flashes, so we restricted
the MI analysis to the other covariates: reward history, choice, and reward outcome. The average MI for these
variables is shown for clusters based on the trial-averaged PSTHs in Fig. 4B.

In general, regardless of the metric (CPD or MI) or clustering procedure (PSTH clustering or conditional cluster-
ing), task variables appear to be broadly encoded across neural subpopulations, with similar temporal dynamics and
average CPD/MI values across clusters. All clusters encoded cues conveying reward volume and probability during
the cue period (Fig. 4C), although it is worth noting that the magnitude of CPD for clicks and flashes was an order
of magnitude lower than for the other task variables. Therefore, encoding of cues representing reward attributes was
substantially weaker than encoding of reward history, choice, and outcome. It may be surprising that neurons with
strikingly different PSTHs appear to encode task variables with similar time courses. However, PSTHs marginalize
out all conditional information, so a PSTH carries no information about encoding of task or behavioral variables,
per se.

Reward history was most strongly encoded at the time of trial initiation and decayed over the course of the
trial, consistent with previous analyses [6]. Neurons belonging to cluster 2, which strongly overlap in both clustering
procedures (Fig. 2E), seem to exhibit slightly more pronounced encoding of reward history during the trial, compared
to the other clusters, although these neurons were also persistently active during this time period. Encoding of choice
and reward outcomes were phasic, peaking as the animal made his choice and received outcome feedback, respectively,
and was broadly distributed across clusters (Fig. 4A-B).
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Figure 3: GLM analysis. A. Model schematic: the timings of external stimuli conveying reward attributes, as well
as timings of choices and outcomes on each trial serve as model inputs. Nonlinear response kernels convolved with
each input generates time dependent responses that are summed and exponentiated to give a mean firing rate, λt, in
each time bin. Spikes are generated from a Poisson process with mean firing rate λt. B. Task schematic illustrating
the key choice and outcome inputs to the model. C. Kernel fits for a sample neuron. Kernels are grouped by the
aspects of the task that they model. Error bars denote estimated kernel standard deviation (Methods). D. Timing
of each kernel’s contribution in an example trial. The kernels in bold from panel C are the kernels that are active
in this trial. The resulting model-predicted firing rate is shown in the bottom row. E. Representative PSTHs to
held-out testing data from 5 different neurons (black) and model prediction (red). F. Variance explained for each
neuron, with sample neurons from E denoted by correspondingly colored crosses. The distribution of R2 values is
presented along edge of the panel.
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Figure 4: Coefficient of partial determination (CPD) and mutual information (MI) reveal broad encoding of all
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3.4 Reward history re-emerges before choice in a distinct subset of lOFC neurons

The CPD and MI analysis revealed one aspect of encoding that is unique to cluster 3. Both clustering methods
identified largely overlapping populations of neurons in this cluster (Fig. 2E), indicating that these neurons exhibited
similar temporal response profiles as well as encoding. Like neurons in the other clusters, neurons in cluster 3 encoded
reward history at trial initiation, and that encoding decreased through the cue period. However, for neurons in this
cluster, encoding of reward history re-emerged at the time preceding the animal’s choice on the current trial (Fig. 5A-
B, green lines). This “bump” of reward history encoding late in the trial was unique to cluster 3 regardless of the
clustering method, and was observable in both CPD and MI (Fig. 4A-B). This result was further corroborated
by computing the average discriminability index or (d′) for reward history, which is a model-agnostic metric that
quantifies the difference in mean firing rate in each condition, accounting for response variance over trials. Cluster
3 was unique from the other clusters for having a subset of neurons with high d′ values for reward history at the
time preceding the animal’s choice (Fig. 5C). We additionally found that encoding of previous wins and losses
during this time period only extended to the previous trial, and did not encode the outcome of additional past trials
(Suppl. Fig. S7).

Notably, cluster 3 also exhibited the most prominent encoding of reward outcome compared to the other clusters
(Fig. 4A-B, green, bottom row). This suggests that this subset of neurons may be specialized for representing or
even integrating information about reward outcomes on previous and current trials. We wondered if this might
reflect adaptive value coding, in which value representations in OFC have been observed to dynamically reflect the
statistics of offered rewards [13–18]. Adaptive value coding, which is thought to reflect a divisive normalization
or range adaptation mechanism, allows the circuit to efficiently represent values in diverse contexts in which their
magnitudes may differ substantially. As such, it provides key computational advantages, such as efficient coding, or
the maximization of mutual information between neural signaling and the statistics of the environment [14–17, 19–22].

According to divisive normalization models of subjective value, the value of an option or outcome is divided
by a recency-weighted average of previous rewards [14, 21, 22]. Therefore, if neurons in OFC exhibit adaptive
value coding, we would predict that they would exhibit stronger reward responses following unrewarded trials, and
weaker responses following rewarded trials (Fig. 6C). Put another way, regressing the firing rate against current and
previous rewards should reveal coefficients with opposite signs [23]. Neurons with regression coefficients for current
and previous rewards with the same sign would be modulated by current and previous rewards, but not in a way
that is consistent with the adaptive value coding hypothesis (Fig. 6D).

To test this hypothesis, we regressed the firing rates of neurons in a 1 second window after reward receipt
against reward win/loss outcomes on the current trial, as well as the win/loss outcome from the previous trial (Fig.
6, Methods). We found that 180 neurons (27% of population) exhibited significant coefficients for both current
reward and reward history regressors, and 45% of these units demonstrated adaptive value coding conveyed by the
opposite signs of regression coefficients for current and previous reward outcomes (81 units, Fig. 6A, blue). To
determine if these adaptive neurons preferentially resided in a particular cluster, we calculated the cluster-specific
probability of a neuron demonstrating either significant coefficients for rewarded volume and reward history, or
having coefficients with opposite signs, consistent with adaptive value coding (Fig. 6B). We found that no cluster
preferentially contained adaptive units with higher probability (comparison of 95% binomial confidence intervals).
We also investigated whether adaptive value coding was present for rewarded volume representations, and similarly
found that neurons did not preferentially reside in any one cluster (30 adaptive units out of 79 significant units,
Suppl. Fig. S9). Notably, activity during the reward epoch did not appear to encode a reward prediction error
(Suppl. Fig. S8), defined as the difference between the expected value and the outcome of the chosen option, as has
been previously reported in rat and primate OFC [23–27].

4 Discussion

We have analyzed neural responses in lOFC from rats performing a value-based decision-making task, in which
they chose between left and right offers with explicitly cued reward probabilities and volumes. Despite the apparent
response heterogeneity in our dataset, two independent clustering methods revealed that neurons belonged to one of a
small number of distinct clusters. We clustered based on the PSTHs over all trials, and found that subpopulations of
neurons exhibited characteristic temporal response profiles. To our knowledge, this is a novel approach for identifying
distinct neural response profiles in prefrontal cortex. We also clustered based on a conditional feature space for each
neuron, consistent with previous work [7, 8]. The feature space for each neuron corresponded to its average firing
rate on different trial types, in select time windows that most closely corresponded to the differentiating covariate
on each trial (e.g., wins vs. losses at the time of reward feedback). Notably, these independent clustering methods
identified highly similar groups of neurons for two of the clusters, indicating that neurons in these clusters exhibited
similar temporal response profiles and task encoding, as defined by the feature space.

Previous studies that clustered using a conditional feature space identified a larger number of clusters than we
did here [7, 8]. This could reflect the different metrics used to select the number of clusters (the gap statistic in
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Figure 5: Encoding of reward history emerges late in the trial for cluster 3. A. CPD for reward history, aligned to
leaving the center poke after the cue period. Note the peak in encoding that is isolated to cluster 3 (black arrow). B.
CPD similarly aligned to choice, demonstrates that this encoding occurs before reward delivery on the current trial.
C. Sensitivity, d′, across time and neurons for reward history has activity isolated to cluster 3 (magenta circle). d′ is
sorted within the PSTH-based clusters by time-to-peak.

this study; compared to PCA and silhouette scores [8], or adjusted rand index [7]). Another difference is the time
window that was used to generate the conditional feature space. In [7], for instance, the authors used the same time
window for each feature, which was after the rat made a choice but before it received feedback about the outcome
of that choice. There was no such epoch in our behavioral paradigm, precluding a more direct comparison.

4.1 Rat lOFC weakly encodes reward attributes

Our task design allowed us to isolate neural responses to sensory cues that conveyed information about distinct reward
attributes, because these cues were presented independently and variably in time. However, our GLM revealed weak
encoding of these reward attributes – reward probability and volume – across all clusters, regardless of the clustering
method. This was observable by the CPD metric, and also by examination of the relative magnitude of the flash
and click kernels in individual neurons. Indeed, the average flash and click CPD values were an order of magnitude
smaller than for the other covariates, indicating that flashes and clicks did not contribute substantially to neural
firing. Therefore, while behavioral analyses have shown that rats used the flashes and clicks to guide their choices [5],
these cues were not strongly represented in lOFC. This weak encoding of reward attributes, whose combination would
specify the subjective value of each offer [5], is consistent with a recent study of rat lOFC during a multi-step decision-
making task that enabled dissociation of choice and outcome values [27, 28]. Recordings in that study revealed weak
encoding of choice values, but strong encoding of outcome values, and optogenetic perturbations suggested a critical
role for lOFC in guiding learning but not choice [27]. Other studies in rat lOFC have reported strong encoding of
reward and outcome values specifically following action selection, but not preceding choice [7, 27, 29–32]. Notably,
this is in contrast to studies in non-human primates, which have reported strong encoding of offer values in OFC
after presentation of a stimulus, and before choice [23, 33–35]. A recent study in mouse OFC used olfactory cues to
convey reward attributes (juice identity and volume) and reported encoding of offer values before choice [36]. This
could either reflect a species difference between mice and rats, or perhaps encoding of olfactory stimuli in OFC. The
lOFC receives prominent input from the mediodorsal nucleus of the thalamus (MD), which is strongly innervated
by olfactory structures including the piriform cortex [37, 38], and some MD projection neurons are tuned to odor
identity [39]. It is unclear what other factors may account for the pronounced encoding of offer value before choice
in [36], but minimal encoding of offer value before choice in other rodent studies, including the present one.

4.2 Adaptive coding in rat lOFC

Previous studies in primate medial [15] and central-lateral [16, 17, 23, 40] OFC have reported subsets of neurons that
adjust the gain of their firing rates to reflect the range of offered rewards, a phenomenon referred to as adaptive value
coding. This type of coding is efficient because it would allow OFC to accurately encode values in diverse contexts
that may vary substantially in reward statistics [14], analogous to divisive normalization in sensory systems [19, 20].

According to divisive normalization models of subjective value, the value of an option is divided by a recency-
weighted average of previous rewards [14, 21, 22]. Therefore, we would predict that neurons implementing adaptive
value coding would exhibit stronger responses following unrewarded trials, and weaker responses following rewarded
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Figure 6: Adaptive value coding analysis using linear regression of firing rates for the 1s period following reward
delivery against current and previous reward outcomes. A. Regression coefficients for the current reward outcome,
cwin/loss (parameterized as win=1, and loss=-1), and previous trial outcome, crewhist. 180 neurons had significant
coefficients for both regressors (p < 0.05, t-test), and 81 neurons had coefficients with opposite signs, consistent
with adaptive value coding (blue dots). The remaining neurons have differential responses due to reward history, but
inconsistent with adaptive value coding (red crosses). B. Probability that a model with significant regressors for both
current and past reward outcome would come from a given cluster. Shaded regions denote all models from panel A,
and blue bars show the probability for adaptive neurons only. Error bars are the 95% confidence interval of the mean
for a binomial distribution with observed counts from each cluster. C. Example cell demonstrating adaptive value
coding. Shaded gray region denotes time window used to compute mean firing rate for the regression. D. Sample
cell demonstrating significant modulation due to reward history, but with a relationship inconsistent with adaptive
value coding.
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trials. Consistent with this hypothesis, we identified a subset of neurons that had significant coefficients for rewards
on current and previous trials, with opposite signs, and this fraction (∼15%) was comparable to the proportion of
adaptive value coding neurons observed in central-lateral primate OFC [23]. Notably, we did not find any evidence
of encoding of a reward prediction error during this epoch, or the difference between the expected value of the chosen
lottery and the outcome. Therefore, the differential encoding of reward outcomes depending on reward history
reflected a discrepancy between reward outcomes and recent experience, not a discrepancy between reward outcomes
and expectations (as in a reward prediction error). These were dissociable in our task, due to the sensory cues that
explicitly indicated expected value on each trial.

It is striking that we observed these correlates of adaptive value coding, as the present task did not vary reward
statistics over trials. Therefore, OFC seems to dynamically adjust response gain on a trial-by-trial basis, even in
contexts with stable reward contingencies. This activity was broadly distributed across all clusters in our dataset.
Similar highly dynamic value coding has been observed in primate OFC [23].

4.3 Representations of reward history in OFC

In studies that require animals to learn and update the value of actions and outcomes from experience (i.e., in
accordance with reinforcement learning), values are often manipulated or changed over the course of the experiment
to assess behavioral flexibility, value-updating, and goal-directed behavior. In rodents and primates, lesion and
perturbation studies have shown that the OFC is critical for inferring value in these contexts, suggesting an important
role in learning and dynamically updating value estimates for model-based reinforcement learning [27, 28, 41–46].
Neural recordings in these dynamic paradigms have revealed activity in OFC that reflects reward history and outcome
values, which could subserve evaluative processing and learning [27, 29, 47].

Other studies, including this one, have used sensory cues (e.g., static images, odors) to convey information about
reward attributes. Once learned, the mapping between these cues and reward attributes is fixed, and the subject
must choose between options with explicitly cued values. Neurons in the central-lateral primate OFC and rat lOFC
have been shown to represent the values associated with these sensory cues in their firing rates (although in rats these
representations tend to occur after the choice, if the task requires one), as well as reward outcomes and outcome
values [7, 29, 33, 34, 40, 48–54]. However, the extent to which OFC is causally required for these tasks is a point of
contention, and may differ across species [36, 55, 56]. Notably, even when reward contingencies are fixed over trials,
animals often show sequential learning effects [5, 57], and reward history representations in OFC have been reported
in tasks with stable reward contingencies [6, 23, 58].

In this study, we have described dynamic trial-by-trial changes in firing rates that reflected reward history just
preceding the choice. In contrast to broadly distributed adaptive value coding, this activity was restricted to a
particular subset of neurons that were identifiable by two independent clustering methods, and that exhibited the
strongest encoding of reward outcomes. We hypothesize that this subpopulation of neurons, which were identifiable
based on their temporal response profiles alone, may potentially mediate sequential effects, or the effect of previous
outcomes on current choices. We have previously shown that optogenetic perturbations of lOFC in this task, triggered
when rats exited the center port, disrupted sequential trial-by-trial learning effects [6]. The subpopulation of neurons
in cluster 3 that specifically encodes (1) reward history preceding choice, and (2) reward outcomes immediately
following choice are well-suited to mediate the influence of previous trials on the animal’s choice. Future experiments
should determine whether these neurons project to a common downstream target in service of trial-by-trial learning.

5 Methods

5.1 Animal subjects and behavior

The details for the animal subjects, behavioral task, and electrophysiological recordings have been described in detail
elsewhere [5, 6]. Briefly, neural recordings from three male Long-Evans rats were used in this work. Animal use
procedures were approved by the Princeton University Institutional Animal Care and Use Committee and carried
out in accordance with National Institutes of Health standards.

Rats were trained in a high-throughput facility using a computerized training protocol. The task was performed
in operant training boxes with three nose ports, each containing an LED. When the LED from the center port was
illuminated, the animal was free to initiate a trial by poking his nose in that port (trial start epoch). While in the
center port, rats were continuously presented with a train of randomly timed auditory clicks from a left and right
speakers. The click trains were generated by Poisson processes with different underlying rates [59]; the rates from
each speaker conveyed the water volume baited at each side port. Following a variable pre-flash interval ranging
from 0 to 350 ms, rats were also presented with light flashes from the left and right side ports, where the number
of flashes conveyed reward probability at each port. Each flash was 20 ms in duration, presented in fixed bins, and
spaced every 250 ms to avoid perceptual fusion of consecutive flashes. After a variable post-flash delay period from
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0 to 500 ms, there was an auditory “go” cue and the center LED turned back on. The animal was then free to leave
the center port (exit center port epoch) and choose the left or right port to potentially collect reward (choice epoch).

5.2 Electrophysiology and data pre-processing for spike train analyses and model

inputs

Tetrodes were constructed from twisted wires that were either PtIr (18 µm, California Fine Wire) or NiCr (25 µm,
Sandvik). Tetrode tips were platinum- or gold-plated to reduce impedances to 100–250 kΩ at 1 kHz using a nanoZ
(White Matter LLC). Microdrive assemblies were custom-made as described previously [60]. Each drive contained
eight independently movable tetrodes, plus an immobile PtIR reference electrode. Each animal was implanted over
the right OFC. On the day of implantation, electrodes were lowered to 4.1 mm DV. Animals were allowed to recover
for 2–3 weeks before recording. Shuttles were lowered 30–60 µm approximately every 2–4 days.

Data were acquired using a Neuralynx data acquisition system. Spikes were manually sorted using MClust
software. Units with fewer than 1% inter-spike intervals less than 2 ms were deemed single units. For clustering and
model fitting, we restricted our analysis to single units that had a mean firing rate greater that 1 Hz (659 units).
To convert spikes to firing rates, spike counts were binned in 50 ms bins and smoothed using Matlab’s smooth.m
function with a 250ms moving window. Similarly, our neural response model fit spike counts in discretized bins of
50ms. When parsing data into cross-validated sets of trials balanced across conditions, a single trial was considered
as the window of [-2,6]s around trial start. In all other analyses, conditional responses were calculated on trials with
a window [-2,4]s for data aligned to trial start, and [-4,4]s for choice-aligned or leave centerpoke-aligned responses.

5.3 Clustering of lOFC responses

5.3.1 Feature space parametrization

To analyze the heterogeneity in time-dependent lOFC responses, our first clustering procedure utilized trial-averaged
PSTHs from each neuron to construct the feature space for clustering. Specifically, for a set of N neurons and trials
of T timepoints, we z-scored the PSTH of each neuron and combined all responses into a matrix Z ∈ R

N×T , then
performed PCA to obtain principal components, W , and score, M , as Z = MWT . We found that k = 18 components
explained > 95% of the covariance in Z and used the first k columns of M , the PSTH projected onto the top k PC,
as our feature space on which to perform clustering.

Our second clustering procedure used time-averaged, conditional neural responses to construct the feature space
for k-means clustering. This is similar in form to the approach in [7]. The feature space consisted of its z-scored
firing rate conditioned on choice, reward outcome, reward history, presented offer value (EV of left and right offers),
and rewarded volume, in time bins that most often corresponded to differential encoding of each variable (Fig. 2A,
Fig. 2B). Specifically, we used conditional PSTHs that depend on a single condition, and marginalized away all other
conditions. The conditions, X(M) = xj , are grouped into three categories for our task. Choice and outcome infor-
mation is X(reward) ∈ {win,loss},X(rewardHistory) ∈ {previous Win,previous loss},X(choice) ∈ {left,right}. Presented
offer attributes on left and right ports are the expected value of reward as EV = pV , where p is reward probability
conveyed through flashes, and V is the volume offer conveyed through Poisson clicks. Values were binned on a log-2
scale: X(EVL),X(EVR) ∈ {[0, 6), [6, 12), [12, 24), [24, 48]µl}. Rewarded value is X(rewVol) ∈ {0, 6, 12, 24, 48µl}.

The conditional PSTH responses were z-scored, and then each conditional PSTH was averaged over the time
window in which the behavioral variable was maximally encoded (dictated by peak location in CPD, see Methods
below) to obtain a conditional firing rate as a single feature for clustering. Specifically, the time windows for reward
and reward volume information were averaged over [0, 3]s after reward delivery, [−1, 2]s after trial start for reward
history, [0, 1.5]s after exiting the center port for left/right choice, and [−1, 0]s before the animal’s choice (i.e., entering
the side port) for expected value of presented offers. These 19 features were combined and pre-processed using PCA
in the same way as the PSTH-based clustering to yield 11 features.

5.3.2 Evaluation of k-means cluster quality

For each clustering procedure, we utilized k-means clustering to locate groups of functionally distinct responses in
lOFC, and used the gap statistic criterion to determine a principled choice of the best number of clusters (evalclus-
ters.m in Matlab) [9]. Specifically, we locate the largest cluster size K for which there was a significant jump in gap
score Gap(K),

Gap(K) ≥ Gap(K − 1) + 2SE(K − 1). (2)

This is similar to a standard option in evalclusters.m (‘SearchMethod’= firstMaxSE’), which finds the smallest
instance in which a non-significant jump in cluster size is located. The two methods often agree. Finally, we used
5000 samples for the reference distribution to ensure convergence of results in the gap statistic.
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5.3.3 Cluster labeling consistency and cluster similarity

To compare the consistency of results between the PSTH clustering and conditional clustering (Fig. 2E), we cal-
culated P (Cconditional|CPSTH), the conditional probability of a neuron being assigned to cluster Cconditional from the
conditional clustering procedure, given that it was assigned to cluster CPSTH in the PSTH cluster procedure. We
evaluated the similarity of clusters within a given clustering procedure in two ways. First, we performed TSNE
embedding of the features space to visualize cluster similarity in two dimensions (sklearn.manifold.TSNE in python,
perplexity=50, n iter=5000) [61]. We then colored each sample in this 2-D space based on cluster identity (Figs.
S3A-B). We quantified the distance amongst clusters by calculating the cluster averaged Mahalanobis distance to
the other clusters [62]. The Mahalanobis distance DM (x) calculates the distance of a sample xA to a distribution B

with a known mean, µB , and covariance, SB :

DM (xA, B) =
√

(xA − µB)TS
−1
B (xA − µB). (3)

The cluster-averaged distances in Figures S3C-D average DM over all samples from a given cluster A as

DM (A,B) = E
xA∈A

[DM (xA, B)]. (4)

5.4 Generalized linear model of neural responses in lOFC

Our neural response model is a generalized linear model with an exponential link function that estimates the prob-
ability that spiking from a neuron will occur in time bin t with a rate λt, and with Poisson noise, given a set of

time-dependent task parameters. Specifically, for a design matrix X with S columns of task variables X
(s)
t , the

probability of observing yt spikes from a neuron in time bin t+∆t is modeled as

p(yt|X) ∼ Poiss(λt) =
1

yt!
(λt∆t)yte−λt∆t (5)

λt = exp

[

S
∑

s=1

(

X
(s)
t−τ :t ∗ ks(τ)

)

+ θ0

]

, (6)

where λt is the rate parameter of the Poisson process. Task variables are linearly convolved with a set of response
kernels ks(τ) that allow for a time-dependent response from a neuron that may occur after (causal) or before (acausal)

the event in the trial. The kernels are composed of a set of Ns basis functions, φ
(k)
s , linearly weighted by model

parameters θ
(k)
s :

ks(τ) =

Ns
∑

j=1

θ(j)s φ(j)
s (τ). (7)

Additionally, we include a parameter θ0 that captures the background firing rate of each neuron.
We used 15 time-dependent task variables in our model that indicate both the timing of an event in the task, as

well as behavioral or conditional information. Parameterization of the model in this manner with a one-hot encoding
of each condition per variable allows for asymmetric responses to different outcomes (e.g., wins vs. losses), and also
captures the variable timing of each event in the task. The task variables were the following: (4) stimulus variables
of left and right clicks and flashes (aligned to trial start). (4) Choice variables for choosing either the left of the
right port (aligned to exit center port). Similarly, we included an alternate parameterization of choosing either the
safe port (p = 1) or the risky port (p < 1). (5) Outcome variables were wins or losses on the current trial (aligned
to choice); and reward history variables of previous wins, losses, or a previous opt-opt (aligned to trial start). We
included a previous reward rate task variable that was calculated as the average rewarded volume from all previous
trials in the session (aligned to trial start). We also included a “session progress” variable as the normalized [0,1] trial
number in the session (aligned to trial start). This covariate captures motivational or satiety effects on firing rate over
the course of a session. Finally, model comparison of cross-validated log-likelihood indicated that an autoregressive
spike-history kernel was not necessary for our model.

5.4.1 Parameter learning, hyperparameter choice, and model validation

The set of parameters θ of the model are the kernel weights θ
(j)
s and the background firing rate θ0. θ were fit by

minimizing L, the negative-log likelihood − log[p(y|θ)] with an additional L2 penalty acting as a prior over model
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parameters [12]:

L = − log p(y|θ)− log p(θ)

=
∑

t

λt − yt log λt +
ξ

2
‖θ‖2. (8)

Model parameters were chosen through four-fold cross validation, and ξ was found through a grid search op-
timization on a held-out test set. Specifically, we split the data from each neuron into 5 equal parts that were
balanced among trial contingencies (i.e., equal amounts of wins/losses, previous wins/losses, and left/right choices
per partition). One partition (test set) was not utilized in fitting θ, and was held out for later model comparison
and hyperparameter choice. The remaining four partitions were used in cross validation to fit four models, with each
model fit on three partitions and assessed on the fourth “validation” partition. The model with the lowest negative
log-likelihood on the validation set was chosen for further analysis. This procedure was repeated iteratively on an
increasingly smaller grid of initial hyperparameter values ξ ∈ [10−5, 10], and the hyperparameter yielding the lowest
negative log-likelihood on the test partition was chosen. We chose this approach for hyperparameter optimization in
lieu of approximations such as calculating evidence [63], as we found the underlying approximations to be limiting
for our data. In general, when building our model we assessed the aspects of other hyperparameter choices (i.e.,
kernel length, symmetric vs. asymmetric conditional kernels, number of task variables) with cross-validated negative
log-likelihood on held-out test data. See the model comparison section of Supplementary Materials for further details.
Finally, kernel covariances and standard deviations were estimated using the inverse of the Hessian of L.

5.4.2 Basis functions

We utilized a log-scaled, raised cosine basis function set for our model [12]. These functions offer the ability to
generate impulse-like responses shortly after stimulus presentation, as well as broader, longer time-scale effects. The
form of the basis function is given as

φj(τ) =
1

2
cos(a log[τ ]− bj) +

1

2
, (9)

where a is parameter that controls breadth of support of each basis function, and bj controls the location of its
maxima. The parameters a, bj were chosen to spread the set of basis functions {φj} in roughly a log-linear placement
across their range of support. This gives a better coverage than linear spacing, as the basis functions increase in
breadth as bj increases. We used 9 such functions, and additionally augmented our basis set with two decaying
exponential basis functions placed in the first two time bins to capture any impulse-like behavior at the onset of the
task variable. This gives M = 11 basis functions for all kernels in the study. After a cursory model comparison of
different kernel lengths we took a conservative approach and utilized a range of support of 4s for each kernel.

5.5 Coefficient of partial determination

The coefficient of partial determination (CPD) is a measure of the relative amount of % variance explained by a
given covariate, and here we use it to quantify the encoding of behavioral information in single units. The CPD is
defined as [27]

CPD(X(i))t =
SSE(X−i)t − SSE(Xall)t

SSE(X−i)t
× 100, (10)

where SSE is the trial-summed, squared error between data and model. Xall refers to the full model with all
covariates. X−i implies a reduced model with the effect of X(i) omitted. Since our model utilized a ont-hot encoding
for each condition, we calculated CPD by omitting the following groups of covariates: X(reward) ∈ {x(win), x(loss)},
X(rewardHistory) ∈ {x(prevWin), x(prevLoss), x(prevOptOut)}, X(choice) ∈ {x(left), x(right)}, X(clicks) ∈ {x(Lclick), x(Rclick)},
X(flashes) ∈ {x(Lflash), x(Rflash)}.

Our measure of CPD assessed the encoding of the covariate of interest (e.g., previous win or loss) separately from
encoding of the general event-aligned response (e.g., trial start). As such, our reduced model averaged the kernels that
corresponded to the event-aligned response to create behaviorally irrelevant task variables. For example, for CPD of

reward encoding: X
(win)
t , X

(loss)
t → 1

2 (X
(win)
t +X

(loss)
t ). For reward, reward history, and choice CPD calculations, we

additionally weighted each trial type in SSE such that each condition contributed equally contributed to CPD, and
omitted any bias due to an imbalance in trial statistics. Due to data limitations, we utilized the full set of training,
testing, and validation data to calculate CPD. Units with a model fit of R2 > 0 (590/659 units) were used in CPD
calculation.

We assessed the significance of the CPD result by comparing it to a null distribution of 500 CPD values that were
generated by shuffling the trial labels among the relevant covariates (e.g., shuffle win and loss labels across trials,
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keeping timing of event and all other covariates fixed). CPD was deemed significant if it fell outside of the one-sided
95% confidence interval of the shuffle distribution, and plotted values in Figure 4 subtract off the mean of the shuffle
distribution from the CPD.

5.6 Mutual information

Mutual information (MI) was used to calculate how much information about task variables is contained in lOFC
firing rates, in different time windows throughout a trial. We calculated MI between spikes Yt and a group of
covariates X(m) ∈ {xi} (detailed in section 5.5) as:

MIt = H(Xm)−H(Yt|X
(m))

= −
∑

i

p(xi) log(xi) +
∑

j,k

p(xj)p(yt|X
(m) = xk) log[p(yt|X

(m) = xk)]. (11)

The first term is the entropy of the stimulus, which is calculated from the empirical distribution. The second term
is the conditional entropy of spiking, and requires calculation of the conditional distribution p(yt|X

(m) = xk) by
marginalizing over the fully conditional distribution that contains all other covariates from the model. We modeled
the fully conditional distribution p(yt|X

(1), X(2), ...X(S), ..X(m) = xk) via sampling of a doubly stochastic process, in
which normal distributions of model parameters were propagated through our GLM and Poisson spiking. Specifically,
for each time bin within each trial we sampled 500 parameter values from the normal distribution for each θ, where
the covariance of θ was estimated as the inverse of the Hessian of L. These samples were the passed through the
exponential nonlinearity to generate a log-normal distribution of λ values, which were used as the rate parameter for
a Poisson process that generated spikes. This spiking distribution of 500 samples was truncated at 10 spikes/50ms
bin (a 200Hz cutoff), and the conditional distribution p(yt|X

(m) = xk) was then taken as the average over trials in
which X(m) = xk. Units with a model fit of R2 > 0 (590/659 units) were used in MI calculations. We assessed
significance of MI in each time bin by comparing to an analogously created distribution of 500 MI values in which
trial labels were shuffled. Significant MI fell outside of the 95% confidence interval of this distribution.

5.7 Discriminability for reward history

The discriminability between previous wins and previous losses in Figure 5C was calculated in its unsigned form

d′t =

∣

∣µt,(prevWin) − µt,(prevLoss)

∣

∣

√

1
2 (σ

2
t,(prevWin) + σ2

t,(prevLoss))
.

To account for an inflated range of nonsignificant d′ values around zero due to the unsigned form of d′, we
subtracted from this quantity the mean d′ of a trial-shuffled distribution. The shuffled distribution was generated by
shuffling trial labels 1000 times. Significant d′ values were identified as being outside of the one-sided 95% confidence
interval of the shuffled distribution. Trial types were balanced when generating the shuffle distributions.

5.8 Linear regression models of pre-choice and post-choice epochs

For the linear regression of pre-choice epoch in Figure S7, the model used the trial history of wins and losses on the

previous five trials as regressors, x
(i)
win/loss, the choice on that trial, x

(n)
choice, and an offset term, c0:

rn = c0 + x
(n)
choice +

n−5
∑

i=n−1

c
(i)
win/lossx

(i)
win/loss. (12)

The regressors were binary +1/-1 variables for win(+1)/loss(-1) outcomes and left(+1)/right(-1) choice. Model
coefficients c were fit with Matlab’s fitlm function, and significance was assessed via an F-test comparing to the
baseline model containing only c0. The significance of each coefficient was assessed via a t-test with a cutoff of
p < 0.05 for significance.

Similarly, the results in Figure 6 and Figure S9 investigating the adaptation of reward representations regressed
rn, the average firing rate in the 1 second interval after reward onset on each trial n (post-choice epoch), against
previous and current trial outcomes. The first model investigated adaptation of the rewarded outcome representation
by including a binary win(+1)/loss(-1) regressor for current trial reward outcome, a binary win(+1)/loss(-1) regressor
for previous reward outcome, the left(+1)/right(-1) choice on that trial, and an offset term :

rn = cwin/lossx
(n)
win/loss + crewhistx

(n−1)
win/loss + cchoicex

(n)
choice + c0. (13)
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Similarly, the other model investigating adaptation of reward volume representations instead used a regressor for
rewarded volume, and a binary loss(1/0) regressor for outcome on the current trial:

rn = cvolx
(n)
vol + clossx

(n)
loss + crewhistx

(n−1)
win/loss + cchoicex

(n)
choice + c0. (14)

Finally, the regression in Figure S8 modeled the post-choice epoch using a reward prediction error as a regressor:

rn = crpex
(n)
rpe + cchoicex

(n)
choice + c0, (15)

where the RPE regressor was the difference in rewarded volume and the expected value of the chosen option on that

trial: x
(n)
rpe = V

(n)
reward − p(n)V

(n)
choose.
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[55] Sébastien Ballesta, Weikang Shi, Katherine E Conen, and Camillo Padoa-Schioppa. Values encoded in or-
bitofrontal cortex are causally related to economic choices. Nature, 588(7838):450–453, 2020.

[56] Matthew PH Gardner, Davied Sanchez, Jessica C Conroy, Andrew M Wikenheiser, Jingfeng Zhou, and Geoffrey
Schoenbaum. Processing in lateral orbitofrontal cortex is required to estimate subjective preference during
initial, but not established, economic choice. Neuron, 108(3):526–537, 2020.

18

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 7, 2021. ; https://doi.org/10.1101/2021.05.06.442972doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.06.442972


[57] Armin Lak, Emily Hueske, Junya Hirokawa, Paul Masset, Torben Ott, Anne E Urai, Tobias H Donner, Matteo
Carandini, Susumu Tonegawa, Naoshige Uchida, et al. Reinforcement biases subsequent perceptual decisions
when confidence is low, a widespread behavioral phenomenon. ELife, 9:e49834, 2020.

[58] Camillo Padoa-Schioppa. Neuronal origins of choice variability in economic decisions. Neuron, 80(5):1322–1336,
2013.

[59] Timothy D Hanks, Charles D Kopec, Bingni W Brunton, Chunyu A Duan, Jeffrey C Erlich, and Carlos D Brody.
Distinct relationships of parietal and prefrontal cortices to evidence accumulation. Nature, 520(7546):220–223,
2015.

[60] Dmitriy Aronov and David W Tank. Engagement of neural circuits underlying 2d spatial navigation in a rodent
virtual reality system. Neuron, 84(2):442–456, 2014.

[61] Geoffrey Hinton and Sam T Roweis. Stochastic neighbor embedding. In NIPS, volume 15, pages 833–840.
Citeseer, 2002.

[62] Prasanta Chandra Mahalanobis. On the generalized distance in statistics. In Proceedings of the National Institute
of Sciences (Calcutta). National Institute of Science of India, 1936.

[63] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

6 Acknowledgements

We thank Carlos Brody, Carla Golden, and Alex Piet for helpful discussions and comments on the manuscript. This
work was supported by NIMH grant 1R01MH125571-01 (CMC and CS).

7 Supplementary information

7.1 Excluded Data

The full data set consisted of 1881 single- and multi-units. Multi-unit recordings and neurons with a mean firing rate
of less than 1 Hz were discarded, and the remaining 659 neurons were fit with the GLM, as well as utilized in the
clustering procedures. Only neurons with a liberal threshold of R2 > 0 were utilized in CPD and mutual information
calculations (590 units). Additionally, we found that CPD measures for neurons can sometimes be noisy, and of the
659 neurons fit by the model, we further excluded neurons as outliers in the cluster-averaged CPD calculation if they
had a CPD value > 0.5. This excluded a further 10 neurons.

7.2 GLM model comparison

To choose the best-fit model to our data we performed model comparison on held-out testing data. For comparison
we considered models with additional task variables such as current and previously rewarded volume; as well as
reduced models that omitted the variables relating to previous opt out trials, the previous reward rate, and the
session progress. We also considered a reduced model that omitted the reward history contribution entirely. In each
case, we assessed the population level change in model performance via a Wilcoxon signed rank test (Fig. S4). Our
chosen model demonstrated a significantly lower population median in its negative log-likelihood than other models.
We note that while our chosen model performed better than the reduced model at the population level, the median
changes in neural responses were relatively slight (Fig. S4C, left panel). However, some neurons showed relatively
strong improvement from introducing previousOptOut, previousRewardRate, and sessionProgress; which motivated
us to keep them for the entire population (i.e., Fig. S4C, middle panel). Additionally, we investigated a symmetrized
form of our model that used a binary (±1) encoding of task variables, as opposed to a one-hot encoding. This model
was rejected at the population level via model comparison (not shown).
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7.3 Supplementary Figures
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Figure S1: PSTH-based clustering of responses, aligned to different events in the task. A-B. Results aligned to
exiting the center port. C-D. Results aligned to choice.
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Figure S2: Results of clustering on conditional features space, aligned to different events in the task. A-B. Results
aligned to exiting the center port. C-D. Results aligned to choice.
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Figure S3: Similarity of clusters in feature space. A. t-SNE embedding of the PSTH feature space: Dots are
individual neurons, and colors denote the cluster identity. B. Similar t-SNE embedding of the conditional feature
space. Quantification of the cluster similarity through the cluster-averaged Mahalanobis distance of neurons from a
given cluster distribution from all other clusters for C. the PSTH feature space clustering result and D. the conditional
feature space clustering result.
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Figure S4: Model comparison. Model “best” was the model utilized in this work, and detailed in Figure 3. Two
more complex models (+vol, +prevVol), as well as two simpler models (-RewRate,-RewHist) were compared through
model comparison on held-out data log-likelihood. +prevVol substituted previous wins with rewarded volume on the
previous trial, and +vol additionally substituted trial wins with rewarded volume. -RewRate omitted the session-
Progress, prevRewardRate, and previousOptOut kernels, and -RewHist further omitted the remaining reward history
kernels. A-D. Individual model comparisons. (Left) Histograms of the population-level changes in held-out negative
log-likelihood demonstrate when a model performs significantly better if the median ∆NLL is different than 0. Sig-
nificance is assessed through Wilcoxon signed rank test. p < 0.001 in all comparisons. Median ∆NLL values were
∆NLLbest,+vol = −0.62, ∆NLLbest,+prevVol = −1.77, ∆NLLbest,-RewRate = −4.14, ∆NLLbest,-RewHist = −15.13.
Sample neuron fits demonstrating the most extreme change in ∆NLL are shown in the middle columns, and neurons
demonstrating the median change in ∆NLL are shown in right columns. E. Performance of models assessed through
the mean-squared error on PSTHs from held-out test data as compared to model predictions.
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Figure S5: Variance explained, R2, for all model fits. 69 units (10.5%) of the models had R2 < 0, and were excluded
from further analysis.
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Figure S6: Gap statistic evaluation for both clustering approaches (see Methods for details). Error bars denote ± 2
s.e.m. A. PSTH-based clustering results. B. Alternative clustering approach based upon a conditional feature space.
Vertical black lines denote largest significant number of clusters.
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Figure S7: Linear regression of the pre-choice epoch based on recent trial history. A. Average regression coefficients

for all statistically significant models with significant c
(n−1)
win/loss (p < 0.05 for F-test comparing full model to mean-

rate baseline model, p < 0.05 for t-test of c
(n−1)
win/loss ). Regression coefficients one trial back have both positive and

negative coefficients for reward outcome one trial back that convey different coding schemes for rewarded value, but
coefficients for increasingly further trials back are not significant. B. Number of neurons with significant models

containing either positive (shaded) or negative (not shaded) c
(n−1)
win/loss coefficients, separated by cluster. Cluster 3

contains the majority of statistically significant neurons.
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Figure S8: Linear regression of RPE in the post-choice epoch indicates that no RPE is present. Plotted is the
variance explained for each neuron for two separate models: the binary win/loss model analyzed in Figure 6, and an
equivalent model that replaces the current trial win/loss and past trial win/loss regressors with an RPE regressor.
Blue dots indicate models with significant linear models, while red dots indicate non-significant models (threshold
p < 0.05, F-test). The binary win/loss model captures more variance than the RPE model, indicating that wins and
losses better explain that data. Further, model comparison between the two models by held out data log-likelihood
reveals that the win/loss model is a better model (median ∆NLL = −5.9, p < 10−4, Wilcoxon signed rank test).
The large proportion of RPE models that are significant is likely a reflection of the high correlation between RPE
and win/loss regressors (ρ = 0.80).
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Figure S9: Adaptation of rewarded volume representation is present in fewer neurons than the reward outcome
representation, but is still distributed across all clusters. Figure convention is similar to Fig. 6.
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