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Abstract13

How do we choose the best action in a constantly-changing environment? Many natural14

decisions unfold in dynamic environments where newer observations carry better information15

about the present state of the world. Recent work has shown that rats can learn to optimally16

discount old evidence, updating their provisional decision when the environmental state changes.17

Provisional decisions are thought to be represented in the Frontal Orienting Fields (FOF), but18

this has only been tested in static environments where the provisional and final decisions are19

not easily dissociated. Here, we characterize the representation of accumulated evidence in rat20

FOF during decision-making in a dynamic environment. We find that FOF encodes evidence21

throughout decision formation with a temporal gain modulation that rises until the period when22

the animal may need to act. Using a behavioral model to predict the timing of changes of mind23

revealed that FOF neurons respond rapidly to these events, representing the new provisional24

decisions in their firing rates. Our results suggest that the FOF represents provisional decisions25

even in dynamic, uncertain environments, allowing for rapid motor execution when it is time to26

act.27
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Introduction28

When making decisions, animals must weigh and combine the available evidence in favor29

of each alternative. With each new observation, evidence about the underlying state of the30

environment gradually accumulates until the animal is ready to act. This accumulation model31

successfully describes a wide array of decisions1,2,3,4. Neural correlates of this accumulation32

process are also present across many brain regions in animals performing perceptual categoriza-33

tion tasks1,4. Delivering perceptual evidence in streams of discrete pulses, like randomly-timed34

auditory clicks, provides additional power to estimate the evolution of each subject’s latent ac-35

cumulated evidence variable on individual trials5. Accurate prediction of the decision variable36

during each trial increases the resolution for estimating neural encoding across brain regions6,7,8.37

Hanks et al. 6 characterized the neural representation of accumulating evidence in rats performing38

accumulation of trains of auditory click evidence. In the task, two streams of randomly-timed39

auditory clicks were emitted from either side of a fixation location and rats were trained to40

orient toward the side that played a greater number of clicks. Experimenters recorded from41

the frontal orienting fields (FOF), a frontal cortical structure implicated in short term memory42

and preparation of orienting movements9,10,11. They proposed that FOF neurons used a single43

code throughout accumulation, which represented the accumulated evidence value categorically,44

providing a readout of the animal’s provisional decision6. However, perturbations of this signal45

in FOF only impaired the animal’s choice when they overlapped with the final time points of46

accumulation. These results, along with a two-node model of the FOF12, indicate that the FOF47

is critical for maintaining the decision variable after it has been transformed into a categorical48

representation of the animal’s choice.49

While these experiments were conducted using stationary environments, many natural de-50

cisions unfold in dynamic environments. In stationary settings, all evidence samples in a trial51

reflect the same underlying environmental state. This means the best strategy is to equally52

weigh all samples of evidence throughout stimulus presentation13. In this regime it is difficult53

to dissociate the provisional from the final decision. In dynamic environments, the state of54

the world can change while the animal is deliberating. This means the animal should learn to55

discount old evidence via leaky integration, weighing more recently presented samples of infor-56

mation more heavily than older samples14,15,16,17,18. Unlike stationary environments, adopting57

the optimal strategy in a dynamic environment leads to frequent fluctuations in the animal’s58

provisional decision, or changes of mind.59

Recent work has shown that rats and humans can learn to adopt the optimal discounting rate60

in a dynamic environment14,16. However, it is unknown whether neural correlates of accumulated61

evidence observed in animals performing non-leaky integration in stationary environments persist62

in animals performing leaky integration in dynamic environments. Here, we recorded from FOF63

in rats during a dynamic accumulation of evidence task. We tested whether the stable code64

observed in the stationary environment persisted in the dynamic environment by applying and65

extending a method developed to characterize neural tuning to accumulated evidence6. Evidence66

tuning in FOF was described by a single sigmoidal tuning curve multiplied by a time varying67

gain modulation, which increased with time early in the trial and stabilized at the time of the68

earliest possible go cue. We reasoned that if FOF neurons track the accumulated evidence69

throughout the entire accumulation period, firing rates should respond rapidly to changes in70

the provisional decision. Using the behavioral model to predict the timing of changes of mind,71

we find that FOF neurons respond within 100ms, reflecting the new provisional decision in72

their activity. By recomputing the evidence tuning curves aligning to these change of mind73

events, we confirmed that FOF neurons encode evidence with a single tuning curve before and74

after changes of mind. These results suggest that FOF maintains a stable representation of75

accumulated evidence despite dynamic uncertainty in the environment. The time varying gain76

modulation may help ensure that the animal is ready when it is time to act. Our study opens77
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up the opportunity for future work on the neural circuit level understanding of how animals78

integrate and decide in a volatile environment.79

Results80

The dynamic evidence accumulation task. We trained rats (n=5) to perform a previously81

developed dynamic evidence accumulation task16. This task requires the rat to report which82

of two hidden states the environment is in at the time of a go cue. At the beginning of each83

trial, the center port in an array of three nose ports is illuminated by an LED. This invites the84

rat to poke its nose into the center port, initiating presentation of an auditory stimulus. The85

stimulus is composed of two trains of auditory pulses (clicks) delivered in stereo from speakers86

positioned on either side of the center port. The left and right click trains are generated from87

different Poisson processes with rate parameters, riR and riL, that depend on the state i. When88

the environment is in state 1, the ‘Go Right’ state, the generative click rate is higher for the right89

speaker than the left (r1R = 38Hz and r1L = 2Hz). In state 2, the ‘Go Left’ state, the click rates90

are reversed (r2R = 2Hz and r2L = 38Hz). Trials begin in either state with equal probability91

and switch stochastically between states with a fixed hazard rate h = 1Hz. After a randomized92

duration, drawn from a uniform distribution between 500 and 2000 ms, the stimulus ends and93

the center LED turns off. This ‘go’ cue signals the rat to withdraw from the center port and94

poke its nose into one of two reward delivery ports on either side. The animal receives a drop95

of water (18 uL) if it chooses the side port corresponding to the final value of the hidden state.96

Incorrect choices were signaled with a white noise stimulus (Fig. 1A). In our dataset, roughly97

33% of trials had no state changes, 33% had one, and 34% had more than one (Fig. 1C).98

Behavioral model captures leaky integration strategy. We fit a previously-developed99

behavioral model5,16 to rats’ choices using an average of 108,126 trials per rat (63,494 to 185,091100

trials each from 118 to 308 sessions). The model parameterizes the process by which the evidence101

available in each auditory click is integrated to produce a decision. At the start of each trial,102

time t = 0, this distribution has zero mean and initial variance σ2
i . Each right and left click,103

δR,i and δL,i, increments or decrements the accumulation value a, subject to sensory adaptation104

governed by parameters φ and τφ. Each click also introduces additional noise with variance105

σ2
s . Memory noise with variance σ2

a is introduced at each time step. Evidence is discounted106

with rate λ which parameterizes the rate at which, in the absence of further input, a decays107

with time (λ < 0) or increases with time (λ > 0). When λ < 0, older pieces of evidence108

are discounted relative to newer evidence. While decision makers in stationary environments109

perform best when discounting is minimal (λ = 0), ideal observers in our task adopt a high-level110

of discounting of old evidence (λ < 0), reducing the impact of older clicks that may have been111

presented before a change in the hidden state16,15,14,17. As previously described16, the optimal112

discounting rate in a dynamic environment depends on the quality of evidence, including the113

observer’s per-click noise (σ2
S). At the end of the trial, time t = tN , the rat chooses to go right114

if the accumulation value a is greater than the decision boundary B, except on a fraction of115

“lapse” trials where, with some probability l, the rat chooses randomly (Fig. 1C) (see methods116

for mathematical details). For each rat, we found the best-fitting parameter set θ to describe117

this process using maximum likelihood estimation. These parameter sets were used these to118

estimate the probability distribution over accumulation values on each trial P (a|t, δR, δL, θ).119

We present several assessments of task performance and model validation. Psychometric120

curves show a rat’s choices as a function of the ideal observer log-odds favoring a rightward121

choice, as well as the correspondence with predictions from the behavioral model fit to an122

example rat (Fig. 1D) and all rats used in this study (Fig. S2). Final state chronometric curves123

show that performance was dependent on the final state duration, the elapsed time between the124

final state change and the ‘go’ cue (Fig. 1E and Fig. S3). Radillo et al. 17 demonstrated the125
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Figure 1: Rats accumulate and discount evidence in a dynamic accumulation task
(A) Schematic showing task events and timing. The center port is illuminated by an LED. The
rat pokes its nose into the port to initiate playback of randomly timed auditory clicks from
speakers on either side. Clicks on each side are generated with different underlying Poisson rate
parameters that depend on a hidden environmental state. The stimulus duration is drawn from
a uniform distribution between 500 and 2000ms. During that time the hidden state switches
stochastically at a fixed hazard rate, h = 1Hz. At the end of the stimulus presentation, the
center LED turns off and reward is baited in the side port corresponding to the final state.
(B) Schematic of the evolution of the accumulation model on an example trial. Three example
accumulation traces are shown for different instantiations of the noise applied at each time point
(σa) and the noise applied to each click (σs). Neighboring clicks can either depress or facilitate
each other according to the adaptation parameters (φ and τφ). The evidence discounting rate
(λ) determines how quickly the decision variable a decays back to zero. At the end of the trial, a
choice is made by comparing the decision variable to the bias parameter. (C) Frequency of state
changes per trial across all rats’ datasets. (D) Example psychometric plot showing the probability
that the rat chooses ‘go right’ as a function of the ideal observer log-odds supporting a ‘go right’
choice. Rat data (black points) is overlaid on predictions of the accumulation model with
parameters fit to this rat (red traces). Errorbars for rat data represent 95% binomial confidence
intervals around the mean. (E) Example final state chronometric plot showing accuracy (mean
with 95% binomial confidence intervals) as a function of the duration of a trial’s final state and the
number of switches in a given trial. (F) Psychophysical reverse correlation kernel for an example
rat. Green and blue patches indicate strength (mean ± s.d.) of evidence favoring rightward
choice as a function of time until the trial ends for rightward and leftward choices, respectively.
The red patches are corresponding predictions from the accumulation model. (G) Discounting
parameters for each rat in this study (red points) compared to each rat in a previously published
stationary environment (lilac points; Brunton et al. 5). Group medians are plotted as black
horizontal lines.

rate of increase and saturation level of the chronometric curve for an ideal observer depends126
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only on the hazard rate and SNR of the click rates. Psychophysical reverse correlation kernels127

quantify the influence of clicks at each timepoint throughout the stimulus period, providing an128

assay of the rats’ evidence discounting that is independent of the behavioral model. Reverse129

correlations for all rats in this study show heavier weighting of clicks presented at the end of the130

trial compared to the beginning (Fig. 1F and Fig. S4).131

The behavioral model parameter fits for each rat confirm that all rats used a leaky inte-132

gration strategy (λ < 0). Best fit discounting parameters were significantly different from a133

previously reported5 dataset of rats integrating in a stationary environment (p < .01; two-tailed134

Wilcoxon rank-sum test, n=5 in dynamic and n=19 stationary environments) (Fig. 1G). Con-135

sistent with previous work, rats adopted discounting rates that favor more recent evidence due136

to the environmental volatility16.137
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Figure 2: FOF neurons encode the rat’s upcoming choice (A) Coordinates used for FOF
recordings (+2 AP; ± 1.3 ML). (B) Average firing rates for three example FOF cells aligned
to stimulus onset (left) and movement (right). Activity is conditioned on right (green) vs. left
(blue) side choice, as well as hits (solid lines) vs. errors (dashed lines). (C) Side-selectivity at
each time point relative to movement for all active cells (left; firing rate > 1 Hz) and for the
subset of these cells that meet the spike count pre-movement side-selectivity criterion (right;
2-tailed t-test p < .05). AUC is computed on spike rates for right versus left choices. Plots
are sorted by latency to 200ms (8 consecutive time bins) of significant AUC values relative to
a distribution created by permuting choice labels across trials (2-tailed permutation test, 250
permutations, p < .05). (D) Average activity of all pre-movement side-selective cells conditioned
on final state duration and cells’ side preferences. Grand-average firing rate at stimulus onset
(11.7Hz) is written in brackets.

FOF responses during dynamic accumulation. We recorded from the frontal orienting138

fields (FOF) of rats performing the dynamic evidence accumulation task. In 4 rats, we im-139
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Figure 3: FOF neurons encode the accumulated evidence throughout the trial (A)
Firing rate map as a function of accumulated evidence and time for an example neuron. Colors
indicate accumulated evidence value with the same colors as in B and C. (B) Residual rate map
in which the mean temporal trajectory is subtracted. (C) Average tuning over time. Points
indicate mean (± s.e.m.) across time of the change in firing rate relative to temporal average
as a function of accumulated evidence value a. (D) Rank 1 approximation of the residual rate
map E[∆r(a, t)] from B. The approximation (left) is equal to the outer product of a modulation
over time m̂(t) (middle) and a tuning curve r̂(a) (right). (E) Average residual z-scored firing
rate map (left). This plot is produced by averaging over the residual z-scored firing rate map
of all pre-movement side-selective cells. This map is approximated by the outer product of a
modulation curve (middle) and a tuning curve (right).

planted unilateral (n=2 left FOF, 2 right FOF) microwire arrays at coordinates (+2 AP; ± 1.3140

ML) (Fig. 2A). In a 5th rat, we implanted a bilateral tetrode drive over the same coordinates.141

Recordings from 69 sessions yielded 738 units. See Supplementary Table 1 for a breakdown of142

data by rat (Method, location). Cells were considered active and included for further analysis if143

they had a mean firing rate of at least 1 Hz during the trial (n = 592 active cells).144

Individual cells show stereotyped temporal dynamics aligned to both the onset of the trial145

(entering the center nose port), and the movement following the end of the stimulus (nose out of146

center port) (Fig. 2B). Many individual cells diverged throughout the trial based on the animal’s147

upcoming choice. We tested the timecourse of selectivity for single neurons to right versus left148

choices by computing the area under the receiver operating characteristic curve (AUC) and149
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comparing it to a permutation distribution computed by shuffling choice labels across trials.150

For purposes of visualization, cells are sorted by latency to 200ms (8 consecutive time bins) of151

significant AUC values (2-tailed permutation test, 250 permutations, p < .05). We present these152

plots for all active neurons and for a subset of pre-movement side-selective neurons (Fig. 2C).153

This subset made up 17% of the active population (n=103 selective) and was defined as cells154

with spike counts that differed significantly as a function of upcoming animal choice during the155

period between the start of the stimulus and the movement away from the fixation port (2-tailed156

t-test, p < .05). For each neuron, the side associated with the higher spike count is referred157

to as the cell’s preferred side. Following Hanks et al. 6 , we focus subsequent analyses on these158

pre-movement side-selective cells. Pre-movement side selectivity was slightly less common in this159

dataset than in previous studies of FOF in stationary environments6. This may be a consequence160

of frequent changes of mind, which create a dissociation between provisional and final choice161

throughout trials in the dynamic task. Across pre-movement side-selective neurons, we computed162

the average activity conditioned on final state duration and cell preference (Fig. 2D). We observe163

divergences at different latencies depending on the final state duration.164

Stable accumulator tuning in dynamic environment. The choice-selectivity metrics pre-165

sented above reveal coding of the final choice in average neural activity. However, during the166

trial, the hidden state can change multiple times (1.22 ± 1.20 state changes per trial). This cre-167

ates dissociations during the trial between the animal’s provisional choice and the final choice.168

To better describe tuning to the provisional decision throughout the trial, we applied and ex-169

tended a method developed to quantify the tuning of single neurons to the accumulated value170

throughout the trial. Using this method, Hanks et al. 6 found that FOF neurons had a stable171

encoding of evidence throughout accumulation in a stationary environment. Here, we sought to172

test whether the FOF continues to encode the evidence throughout trials when the environment173

is dynamic. Further, we asked whether this encoding can still be captured by a single tuning174

curve in the dynamic environment.175

We used the approach described by Hanks et al. 6 , to produce an evidence tuning map of176

each neuron. First, we computed the joint distribution P (r, a, t) of each cell’s firing rate r, the177

instantaneous accumulation value a, and time in the trial t. The distribution over a, from the178

behavioral model described above, was further constrained using the animal’s choice y on each179

trial, giving the posterior distribution P (a|t, δR, δL, θ, y). We improve on the method used by180

Hanks et al. 6 by using an analytical computation of the posterior distribution of accumulated181

evidence, allowing for more accurate estimation of P (r, a, t) (see methods). Marginalizing the182

joint distribution with respect to firing rate provides an estimate of the expected firing rate as183

a function of accumulated evidence and time, for each cell E[r(a, t)]. We present this rate map184

for an example cell which is strongly tuned to the accumulator throughout the trial, firing more185

when accumulated evidence favors left choices (Fig. 3A). Because our neurons have stereotyped186

temporal dynamics aligned to stimulus onset, we subtract out the average temporal dynamics187

to get the expected firing rate modulation E[∆r(a, t)] = E[r(a, t)]−E[r(t)] (Fig. 3B). Following188

Hanks et al. 6 , a summary tuning curve was computed by averaging over time to get E[∆r(a)]189

(Fig. 3C).190

We extend the method by computing the rank 1 approximation of the residual firing rate191

map E[∆r(a, t)] using the singular value decomposition (Fig. 3D). For the example cell, this192

approximation captures 99.6% of the variance in the estimated residual firing rate map. The193

mean variance explained by this approximation for all pre-movement side-selective cells was194

89.7% ± 9.8%. The approximation is equal to the outer product of the first left singular vector195

u1 and the first right singular vector v1, scaled by the first singular value s1. These terms can be196

rearranged and interpreted as the outer product of a firing rate modulation, m̂(t) = u1s1range(v1)197

and a tuning curve f̂(a) = v1/range(v1). Scaling by range(v1) gives f̂(a) unit scale and m̂(t)198
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Figure 4: FOF neurons track changes in the provisional decision (A) Schematic ex-
plaining method used to compute state change triggered responses (STR). A given trial has
a hidden environmental state (blue and green bar) used to generate click trains from each
speaker. We compute the posterior distribution of accumulated evidence P (a|θ, δR, δL, y) (la-
beled P (a|θ, choice)). We find time points where the smoothed posterior mean crosses the
decision boundary and label these model-inferred state changes. We then select the residual
smoothed firing rates from the 550ms before and after each state change and average together
the residual responses for changes into state 1 and changes into state 2. (B) STR (mean ±
s.e.m.) for the example cell used in panel A. Significance bars indicate time points when d′ for
discriminating model state is different from chance (2-tailed permutation test, 250 permutations,
p < .05). The trace showing changes into the cell’s preferred state (state 2 for this cell) is la-
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the preferred and non-preferred state (STRpref− STRnon-pref) for each of the pre-movement side-
selective cells. (D) Average z-scored STR (mean ± s.e.m.) across all pre-movement side-selective
cells for state changes into cells’ preferred states and non-preferred states. (E) Percentage of
included cells (mean ± s.e.m.) with significant encoding across time relative to model predicted
state changes (red trace) and generative state changes (gray trace).
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units of spikes/s. Our complete tuning curve approximation becomes:199

r(a, t) ≈ E[r(t)] + m̂(t) ∗ f̂(a). (1)

We computed a population average residual rate map across all pre-movement side-selective200

cells by computing the residual firing rate map E[∆r(a, t)] for each cell using z-scored firing rates.201

The accumulated value axis was inverted for left choice preferring cells and then the residual202

firing rate maps were averaged together (Fig. 3E). We computed the rank 1 approximation of203

this population residual rate map. This approximation explained 99.7% of the variance in the204

population residual rate map (Fig. 3E middle, right). The population firing rate modulation205

curve m̂(t) rises for the first 500 milliseconds and then plateaus at it’s maximum value. Therefore,206

the population tuning can be described as a single tuning curve whose modulation increases207

during the period of the trial before a ‘go’ cue is possible. The modulation stabilizes at its208

maximum value during the period in which the trial may end and the animal may need to209

report its decision. Despite the dynamic environment, and changing provisional choice, we find210

FOF neurons continue to stably encode the evidence with a single tuning curve throughout211

evidence accumulation.212
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Figure 5: State change triggered tuning curves show post state change modulation
increase (A) Example cell tuning map triggered on model-predicted state changes with rank
1 approximation derived temporal modulation and evidence tuning. Data is excluded from
the 300ms around the state change where the accumulated value distribution is too narrow to
estimate tuning (dotted lines). (B) Average of all pre-movement side-selective cells’ tuning maps
computed with z-scored firing rates and triggered on model-predicted state changes along with
rank 1 approximation derived temporal modulation and evidence tuning for the average map.

Neurons track changes in provisional decision. If cells are stably tuned to the accumulated213

evidence throughout deliberation, we should be able to see rapid responses in their firing rates to214

changes in the animal’s provisional decision. To look at responses to these changes of mind, we215

computed each cell’s average deviation from its mean temporal trajectory aligned to time points216

when the behavioral model predicted a change in the animal’s estimate of the environmental217
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state (Fig. 4A). Following Hanks et al. 6 , we introduced a 100ms response lag between model-218

predictions and FOF responses. For this analysis, changes of mind were selected at time points219

when a 100ms running average of the posterior mean crossed the decision boundary (a = 0).220

To avoid introducing noise into this analysis, changes of mind in the first and last 200ms of221

the trial were excluded, as were state changes that immediately reversed to the previous state222

(see methods). For each cell, this method produced two state-change triggered response curves223

describing responses to changes into states 1 (STR1) and 2 (STR2). STRs are also referred224

to as STRpref and STRnon-pref according to cells’ previously determined side-preference. STRs225

are shown for an example neuron (Fig. 4B). Discriminability before and after model-predicted226

changes of mind was measured using d’ and tested for significance by permuting the state-change227

labels across trials (2-tailed permutation test, 250 permutations, p<.05).228

To visualize the state change triggered response across the neural population, each cell’s229

response is summarized by computing the difference between the z-scored STR for state changes230

into the preferred state and into the non-preferred state (STRpref − STRnon-pref). We present231

these data as a heat map for all pre-movement side-selective cells (Fig. 4C). The z-scored STRs232

were averaged across these cells to give the average state-change triggered response across the233

population (Fig. 4D). We apply the permutation procedure described above to each cell and234

compute the fraction of the included cells that significantly encode state at each timepoint235

relative to the state change (Fig. 4E). If cells are encoding the animal’s provisional decision, we236

should expect them to take intermediate firing rates during both the state change into and out237

of the preferred state. This would mean that cells are not significantly discriminating between238

states at the time of the state change. Consistent with this, we find that the population reaches239

its minimum fraction of cells differentiating between states at the time of the model-predicted240

state change. We recomputed the timecourse of discriminability across cells triggered on changes241

in the veridical environmental state, rather than the model-predicted changes. When we do this,242

we find the dip in the fraction of cells significantly discriminating the state is delayed relative243

to the dip produced by triggering on model-predicted changes. This is consistent with the244

FOF tracking changes in the sign of accumulated evidence rather than simply responding to245

the instantaneous stimulus. At the level of individual cells and across the population, we see246

rapid responses to changes of mind providing further evidence that neurons track the animal’s247

provisional decision throughout the accumulation process.248

Stable evidence tuning before and after changes of mind. To further characterize cell249

tuning to accumulated evidence during changes of mind, we recomputed the tuning maps aligning250

time to model-predicted state changes instead of the start of the trial. The computation and251

rank 1 decomposition of the tuning curves proceeded in the same manner as before except time252

in each trial was aligned to changes of mind:253

r(a, t− tc) ≈ E[r(t)] + m̂(t− tc) ∗ f̂(a) (2)

where tc is the timing of changes of mind. Consistent with the state-change triggered responses254

and previous tuning curve analysis, we see that tuning in example neurons and the population255

is well described by a single evidence tuning curve multiplied by a temporal modulation before256

and after state changes (Fig. 5A,B). The rank 1 approximation for the example cell presented in257

Figure 5A explains 98.7% of the variance in the tuning map and the average variance explained258

for all selective cells is 84.9% ± 9.7%. The population average across z-scored tuning maps for259

all pre-movement side-selective cells is also well-described by the rank 1 approximation, which260

captures 95% of the variance (Fig. 5B). This demonstrates that neurons encode the accumulated261

evidence with a single tuning curve even at the times when the hidden state and provisional262

decision fluctuate.263
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Discussion264

We recorded neural activity from the frontal orienting fields (FOF) of rats performing a265

dynamic decision-making task designed to induce frequent changes of mind. In our study, rats266

integrated sequential pieces of information, discounting older evidence, to track changes in a267

volatile hidden state. FOF responses have been characterized previously during a similar task268

in a stationary environment where rats learn to equally weigh all evidence and changes of mind269

are rare6. This previous work revealed categorical encoding of population activity to the accu-270

mulated evidence, characterized by a single tuning curve throughout the trial. This suggested271

that FOF encoded the provisional decision during decision-making. However, in a stationary en-272

vironment, the provisional decision rarely differs from the final choice meaning that preparatory273

activity could begin without needing to be reversed. In a dynamic environment, where changes274

of mind are frequent, it might be advantageous to suppress choice coding until the final decision275

is reached. It was not clear whether FOF would play a similar role in representing evidence dur-276

ing decision-making in a constantly-changing environment and while the provisional decisions277

were still highly flexible.278

We found that FOF responses to accumulation in a dynamic environment were similar to FOF279

responses during accumulation in a stationary environment. First, a subpopulation of about 17%280

of active neurons showed significant side-selectivity during the pre-movement stimulus period.281

This was a smaller fraction than previously reported, but was an expected result of a task with282

more frequent stimulus-induced changes of mind. Using a method developed by Hanks et al. 6 ,283

we measured the encoding of the decision variable in single neurons and across the population.284

We improved this method by using a rank 1 approximation to explain the evidence-encoding285

component of neural firing rates as the product of a temporal modulation and an evidence286

tuning curve. The rank 1 approximation supported the description of FOF neurons with a287

single evidence tuning curve that was modulated over the trial. Across the population, we found288

that the temporal modulation increased until the timing of the earliest possible ‘go’ cue and289

then plateaus at a maximum modulation strength during the rest of the trial.290

The dynamic nature of the task allowed measurements that are not possible in stationary291

tasks, where evidence is drawn from a single distribution during each decision, and changes of292

mind are rare. We used our behavioral model to predict the timing of changes in the provisional293

decision during evidence accumulation and measured the response to these changes of mind294

events in neural activity. If the neurons use a single evidence tuning curve throughout accu-295

mulation, we expect the neural firing rates to encode the provisional decision before and after296

changes of mind. Computing state change triggered responses for each neuron, showed that FOF297

cells rapidly responded to changes of mind, reflecting the new provisional decision in their firing298

rates. Critically, neurons encoded provisional decisions both before and after changes of mind,299

which implies that provisional decisions are encoded even when they differ from the final choice.300

Neuronal responses were better aligned to changes of mind predicted by the behavioral model301

than to changes in the true environmental state, suggesting that these responses were not simply302

reflecting a change in sensory experience. Combining this approach with the method for com-303

puting accumulated evidence tuning maps, we found, as described above, that the product of a304

single evidence tuning curve and temporal modulation was still sufficient to explain the evidence305

response across changes of mind (rank 1 approximation). We observed that, after the moment306

when ‘go’ cues could arrive, the temporal modulation of evidence tuning was, on average, stable.307

Together, our results demonstrate that FOF neurons encode the animal’s provisional decision308

and respond rapidly, updating this representation following changes of mind.309

Changes of mind are not unique to dynamic environments and can also occur during evidence310

accumulation in stationary environments. These events can occur during stimulus presentation311

due to noise in the decision making process and can be predicted from neural activity19. Changes312

of mind may also occur after the subject begins to execute their choice due to post-processing313
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delays20 or constraints placed on action21. Our work differs from these studies, in that we use an314

environment designed to induce changes of mind and ask how neurons respond to these model-315

predicted events. To our knowledge, only one other study22 has examined neural responses to316

behaviorally predicted changes of mind during evidence accumulation in a dynamic environment,317

and ours is the only such study in an animal model.318

Previous inactivation studies suggest that while FOF is critical for performing actions and319

reporting decisions, it is not necessary for the integration of evidence6,23. This is consistent320

with the FOF representing the evidence after categorization into a provisional choice12. Work in321

mouse anterior lateral motor (ALM), a comparable cortical region, shows that categorical signals322

in this region recover quickly following photoinhibition, suggesting categorical input from other323

brain regions24. In a recent study, Finkelstein et al. 25 found that ALM choice signals were324

robust to distractors delivered during a delay period after the typical evidence presentation325

period, suggesting local circuitry maintained the choice signal. Our study considered a similar326

brain structure operating in a regime where, rather than ignoring distractors, it needed to flexibly327

update provisional decisions in response to new information. These studies, along with recent328

modeling work12,26, suggest a common role for the FOF and the ALM in maintaining choice329

signals that are either robust to or responsive to new information according to task demands.330

The dynamic decision-making task offers a complementary approach to typical studies of331

evidence accumulation in static environments. Here, we showed that in constantly-changing332

environments FOF neurons encode provisional choices and respond rapidly to changes of mind333

predicted from our behavioral model. Our quantitative methods and behavioral paradigm will334

be useful tools for investigation of the brain circuitry supporting evidence accumulation and the335

decision-making process more generally.336

Methods337

Subjects Animal use procedures were approved by the Princeton University Institutional Ani-338

mal Care and Use Committee and carried out in accordance with NIH standards. All subjects339

were adult male Long Evans rats (Vendor: Taconic and Harlan, USA). Rats were pair-housed340

prior to implantation with recording electrodes and single-housed subsequently. Rats were placed341

on a water restriction schedule to motivate them to perform the task for water rewards.342

Behavioral training We trained rats on the dynamic clicks task16 (Figure 1). Rats went343

through several stages of an automated training protocol. In the final stage of training, each344

trial began with the illumination of a center nose port by an LED light inside the port. This345

LED indicated that the rat could initiate a trial by placed its nose into the center port. Rats346

were required to keep their nose in the center port (nose fixation) until the light turned off as347

a ‘go’ signal. During center fixation, auditory cues were played indicating the current hidden348

state. The duration of the stimulus period was drawn from a uniform distribution between 500349

and 2000ms. After the ‘go’ signal, rats were rewarded for entering the side port corresponding to350

the final value of the hidden state. The hidden state did not change after the ‘go’ cue. Correct351

choices were rewarded with 18 microliters of water. Incorrect choices were signaled by a white352

noise stimulus (spectral noise of 1 kHz for a 0.7 seconds duration). The rats were put on a353

controlled water schedule where they receive at least 3% of their weight every day. Rats trained354

each day in training session of around 120 minutes. Training sessions were included for analysis if355

the overall accuracy rate exceeded 70%, the center-fixation violation rate was below 25%, and the356

rat performed more than 50 trials. In order to prevent the rats from developing biases towards357

particular side ports an anti-biasing algorithm detected biases and probabilistically generated358

trials with the correct answer on the non-favored side.359

Psychometric and chronometric curves Task performance was assessed using psychometric360
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curves, chronometric curves and psychophysical reverse correlations. For all task performance361

plots, rat data was overlaid on predictions from the accumulation model described below. These362

predictions were made by using the probability of a right or correct choice on each trial given363

by the acummulation model in place of the actual choice observed.364

Psychometric plots show the probability that the rat chose to go right as a function of the365

ideal observer log-odds supporting a ‘go right’ choice. Final state chronometric plots show the366

probability of a correct choice as a function of the final state duration, the elapsed time between367

the final hidden state change (or the beginning of the stimulus, if there are no state changes)368

and the end of the stimulus. Data is plotted separately for trials with 0, 1, or more than 1 state369

changes.370

Psychophysical reverse correlation The computation of the reverse correlation curves was371

similar to methods previously reported5,6,23. An additional step was included, as in Piet et al. 16 ,372

to deal with the changing hidden state. First,the click trains on each trial were smoothed with373

a causal Gaussian filter k(t). The left click train was subtracted from the right, creating one374

smooth click rate for each trial. The filter had a standard deviation of 5 msec.375

ri(t) = δR,t ∗ k(t)− δL,t ∗ k(t) (3)

Then, the smoothed click rate on each trial was normalized by the expected click rate for that376

time step, given the current state of the environment. This gives us the deviation (the excess377

click rate) from the expected click rate for each trial.378

ei(t) = ri(t)− 〈r(t)|Si(t)〉 (4)

Finally, we compute the choice triggered average of the excess click rate by averaging over trials379

based on the rat’s choice.380

excess-rate(t|choice) = 〈e(t)|choice〉 (5)

The excess rate curves were then normalized to integrate to one. This was done to remove381

distorting effects of a lapse rate, as well to make the curves more interpretable by putting the382

units into effective weight of each click on choice.383

Accumulation Model The accumulation model characterizes the decision-making process as384

the evolution over time t of an accumulation value a in response to left and right click trains, δL385

and δR, with dynamics governed by a parameter set θ. Each rat’s behavioral data is used to find386

the parameter set that maximizes the probability under the model of the rat’s choices y. Evalu-387

ating this model with the best fit parameters produces a probability distribution over values of a388

at every timepoint in the trial. We refer to this as the forward model distribution P (a|t, δR, δL, θ).389

The forward model was described previously in Piet et al. 16 and will be reviewed in detail below.390

To characterize neural encoding of the accumulation value, we further constrained the accumu-391

lation value distribution on trials where we had simultaneous neural recordings by incorporating392

the rat’s choice, y, to find the posterior distribution P (a|t, δR, δL, θ, y). To do this, we computed393

a distribution that we refer to as the backward model distribution, which we describe in the394

next section.395

At each moment in the trial, the forward model P (a|t, δR, δL, θ) predicts a Gaussian distri-396

bution of accumulation values with mean µ(t) and variance σ2(t). At start of the trial, time397

t = 0, this distribution has zero mean and initial variance σ2
i . At all timepoints, the mean and398
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variance are given by:399

µ(t) = µ0e
λt +

t∫
0

(δR,s · C (R(s))− δL,s · C (L(s))) ds

=

#Rt∑
i

eλ(t−R(i))C(R(i))−
#Lt∑
i

eλ(t−L(i))C(L(i)) (6)

σ2(t) = σ2
i e

2λt +
σ2
a

2λ

(
e2λt − 1

)
+

t∫
0

σ2
s (δR,s · C (R(s))− δL,s · C (L(s))) e2λtds

= σ2
i e

2λt +
σ2
a

2λ

(
e2λt − 1

)
+

#Rt∑
i

σ2
sC(R(i))e2λ(t−R(i)) +

#Lt∑
i

σ2
sC(L(i))e2λ(t−L(i)) (7)

Where #Rt is the number of right clicks on this trial up to time t, R(i) is the time of the ith400

right click and δR,i is a delta function at time R(i). C(R(i)) tells us the effective adaptation for401

that click.402

The model parameters θ can be described in words as an initial noise variance σ2
i , a per-click403

noise variance σ2
s , a memory noise variance σ2

a, a discounting rate λ, the strength and time404

constant of adaptation φ and τφ, a bias B and a lapse rate l.405

To determine the probability of a right versus left choice, we first integrate the accumulation406

value distribution in the last timepoint of the trial P (a|t = tN , δR, δL, θ) = N (µ(tN), σ2(tN))407

from the bias parameter B to +∞408

P (a > B|t = tN , δR, δL, θ) =
1

2

(
1 + erf

(
− (B − µ(tN))

σ(tN)
√

2

))
. (8)

On each trial, the rat makes a random choice with probability determined by lapse rate l. Then,409

the probability of a ‘go right’ choice is given by410

P
(
yi = 1|θ

)
= (1− l)P (a > B|t = tiN , δ

i
R, δ

i
L, θ) + l/2 (9)

P (yi = −1|θ) = (1− l)
(
1− P

(
a > B|t = tiN , δ

i
R, δ

i
L, θ
))

+ l/2 (10)

Where411

yi =

{
1, if rat chooses right on trial i

−1, if rat chooses left on trial i
(11)

Parameters θ were fit to each rat individually by maximizing the likelihood function:412

L =

#trials∏
i

P (yi|θ). (12)

A half-gaussian prior was included on the initial noise σi and accumulation noise parame-413

ters σa. The priors were set to match the respective best fit values from Brunton et al. 5 . The414

numerical optimization was performed in MATLAB, using the function fmincon. To estimate415

the uncertainty on the parameter estimates, we used the inverse hessian matrix as a parameter416

covariance matrix27. To compute the hessian of the model, we performed automatic differen-417

tiation in julia to exactly compute the local curvature28. See the Supplemental Materials for418
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parameter estimates and uncertainty values. Brunton et al. 5 extensively analyzed how well a419

similar model with an additional bound parameter recovers generative parameters, finding the420

model contains one maximum likelihood point in parameter space (See Section 2.3.3-6 of the421

supplement to Brunton et al. 5). We compared parameter fits in this task to those reported in422

Brunton et al. 5 , which developed the stationary version of this task.423

Posterior model The forward model gives us a probability distribution over accumulation424

values at each time point in a trial as well as an estimated probability of the rat choosing to425

go right or left on that trial. Observing the rat’s choice y at the end of each trial allows us to426

constrain the distribution of possible trajectories that the accumulation value could have taken.427

The resulting posterior distribution (previously called the backward pass distribution in Brunton428

et al. 5) is useful for analyzing the neural encoding of accumulated evidence.429

The posterior distribution can be computed by taking the product of the forward model430

distribution and a backward distribution. While the forward distribution is constrained to the431

start the trial with mean 0 and variance σ2
i , the backward distribution is constrained to finish432

the trial with the probability density uniformly distributed on one side of the decision boundary433

B according to the rat’s choice. To distinguish between the two distributions and to make the434

constraints on the initial and final distributions explicit, we will write the forward distribution435

f(a) = P (a|t, δR, δL, θ, a0 = N (0, σ2
i )) (13)

and the backward distribution436

b(a) =

{
P (a|t, δR, δL, θ, aN = U(B,∞)), if yi = 1

P (a|t, δR, δL, θ, aN = U(−∞, B)), if yi = −1.
(14)

Importantly, the forward and backward distributions are conditionally independent, conditioned437

on the final value of the accumulated evidence. Given that they are independent, the posterior438

distribution that combines the initial and final constraints is the product of the forward and439

backward distributions.440

P
(
a|t, δR, δL, θ, a0 = N

(
0, σ2

i

)
, y
)

= f(a)b(a) (15)

We approximated the backward distribution as a mixture distribution over a grid of final441

accumulation values with spacing ∆a. A unit of probability mass is initialized at each point in442

the grid and the solution is given by:443

b(a) =
±∞∑
i=0

wiP (a|t, δR, δL, θ, aN = N (B + i∆a, 0)) (16)

The mixture weights wi are all equal if the bin spacing is uniform. Each unit of probability mass444

evolves using the same solution as the forward model, but with time reversed. This solution is445

exact as ∆a→ 0.446

For tuning curve analyses we use the full posterior distribution, for the state change triggered447

response analyses we use the mean of the posterior. See the Supplementary Materials for a448

detailed discussion on the derivation and evaluation of the backward and posterior model.449

Microwire array recordings Microwire array implant surgery: Four rats were implanted with450

microwire arrays in their left or right FOF (n= 2 in lFOF,n = 2 in rFOF) The target region was451

accessed by craniotomy, using standard stereotaxic techniques (centred 2 mm anterior to the452

bregma and 1.3mm lateral to the midline). Dura mater was removed over the entire craniotomy453

with a small syringe needle. The remaining pia mater, even if not usually considered to be454
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resistant to penetration, nevertheless presents a barrier to the entry of the microelectrode arrays455

because of the high-density arrangement of electrodes in the multi-channel electrode arrays.456

This dimpling phenomenon, when the electrodes are pushing the brain cortex down without457

penetrating, is more pronounced for arrays with larger numbers of electrodes. In addition to458

potentially injuring the brain tissue, dimpling is a source of error in the determination of depth459

measurements. Ideally, if dimpling could be eliminated, the electrodes would move in relation460

to the pial surface, allowing for effective and accurate electrode placement. To overcome the461

dimpling problem, we implemented the following procedure. After the craniotomy was made,462

and the dura was carefully removed over the entire craniotomy, a petroleum-based ointment463

(such as bacitracin ointment or sterile petroleum jelly (Puralube Vet Ointment)) was applied to464

the exact site of electrode implantation. The cyanoacrylate adhesive (Vetbond Tissue Adhesive)465

was then applied to the zone of the pia surrounding the penetration area. This procedure466

fastens the pia mater to the overlying bone and the resulting surface tension prevents the brain467

from compressing under the advancing electrodes. Once the polymerization of cyanoacrylate468

adhesive was complete, over a period of few minutes, the petroleum ointment at the target site469

was removed, and the 32-electrode microwire array (Tucker-Davis Technologies) was inserted470

by slowly advancing a Narishige hydraulic micromanipulator. After inserting the array(s), the471

remaining exposed cortex was covered with biocompatible silicone (kwik-sil), and the microwire472

array was secured to the skull with C&B Metabond and dental acrylic.473

During a ten-day recovery period, rats had unlimited access to water and food. Recording474

sessions in the apparatus began thereafter, using Neuralynx acquisition systems. Once rats had475

recovered from surgery, recording sessions were performed in a behavioral chamber outfitted476

with a 32 channel recording system (Neuralynx). Spiking data was acquired using a bandpass477

filter between 600 and 6000 Hz and a spike detection threshold of 30 microV.478

For array recordings, clusters were manually cut (Spikesort 3D, Neuralynx), and both single-479

and multi-units were considered.480

Tetrode recordings Tetrode drives were 3d printed from custom designs (design files available481

upon request) on a Form2 3d printer in tough resin. Each drive consists of a drive body, a482

cone and cap to protect the drive body, and four bundles of 8 tetrodes in glass tubes. Each483

bundle was glued together and to a cannula. Each cannula was attached to a screw using dental484

cement, and cured with UV light. Each wire from each tetrode was fed through a unique channel485

in a 128 channel Electrode Interface Board (SpikeGadgets) and pinned with a gold pin. After486

loading all tetrodes, trimming, and building of the drive, the day-of or night before the surgery,487

we electroplated the drive in gold using a nanoZ impedence tester (White Matter LLC) and488

measured impedences.489

Tetrode drive implant surgery proceded as described for microwire arrays, except we did not490

need to vetbond the brain surface because each tetrode bundle produced very little dimpling. A491

silver wire and skull screw were used to ground the drive. Drives were secured with metabond492

and acrylic until secure. Tetrodes were advanced 0.1mm into the brain.493

During a seven-day recovery period, animals had unlimited access to water and food. Animals494

were then returned to training and water restriction. To acclimate animals to the weight of the495

wireless apparatus, every three days, we replaced the cap on the implant with a new cap 3g496

heavier than the previous cap. If animals’ behavioral performance or weight dropped, or if we497

noticed any excess tilting of the head from the weight, we returned the animal to the previous498

weight and waited an additional 2 days before moving to the next weight. This process was499

repeated until the animals were behaving well with caps weighing 27g.500

Once animals were acclimated to the weight, recordings could begin. Tetrodes were advanced501

0.25mm at a time, at least 20 hours before recording. For each recording session, the animal’s502

cap was replaced with a 500mAh lithium battery, 128Gb Sandisk extreme plus SD card, a 160-503

pin Amphenol Lynx connector, and datalogger (SpikeGadgets). At the end of each session, the504
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datalogger, SD card, and battery were removed and the 27g cap replaced.505

The tetrode recordings were automatically clustered using Kilosort229. Automatically de-506

termined clusters were manually curated using the Phy GUI (https://github.com/kwikteam/507

phy).508

Electrophysiological analysis We computed the firing rates for all neurons aligned to the509

time of stimulus onset (when the rat first broke the center port IR beam triggering playback of510

the stimulus) and to movement (when the rat first stopped breaking the center port IR beam to511

make its choice). Firing rates were computed by binning spikes into 25ms bins and smoothing512

them with a casual gaussian filter with a standard deviation of 100ms. Stimulus onset aligned513

firing rates were masked on each trial after the movement and movement aligned firing rates514

were masked prior to stimlus onset. Firing rates for example cells were averaged over trials515

conditioned on choice and outcome.516

Cells were considered active if their average stimulus onset aligned firing rate was greater517

than 1 Hz during the time from 1 second prior to the stimulus onset to the time of movement518

onset. Cells were considered pre-movement side-selective if the spike counts during the period519

between stimulus onset and movement were different on trials that resulted in a left versus a520

right choice ( 2-tailed t-test, p < .05). The side with the higher firing rate is referred to as the521

cell’s preferred side.522

A population-average PSTH was computed by averaging over all trials from all pre-movement523

side-selective cells conditioned on final state duration and whether the trial ended in a choice to524

the cell’s preferred side.525

We analyzed the timecourse of choice selectivity by computing the area under the receiver526

operating characteristic curve (AUC) at each 25ms time bin in for the smoothed firing rates in527

left choice versus right choice trials. To compute significance, we performed a permutation test528

where the left/right choice labels were permuted relative to the firing rates across trials. For529

visualization purposes, we sorted cells by latency to reach 8 significant 25ms time bins in a row530

(2-tailed permutation test, 250 permutations, p < .05).531

Evidence tuning curves We compute evidence tuning curves using a method based on the
one used in Hanks et al. 6 . First, the posterior accumulation distribution

P
(
a|t, δR, δL, θ, a0 = N

(
0, σ2

i

)
, y
)

(17)

for each trial is computed. To simplify notation, we will refer to this distribution as P (a|θ, y).532

The joint distribution of P (a|θ, y), the firing rate r, and time t, which we will call P (r, a, t)533

is computed by binning time, accumulation values, and firing rates. For each trial and each534

timepoint, the probability mass in each accumulation value bin in P (a|θ, y) is added to the bin535

in P (r, a, t) associated with that timepoint and that firing rate. Because the shortest trials are536

500ms, not all trials contribute to each time point, so each time bin is normalized according to537

the number of trials that contribute to it. Each neuron’s firing rate was divided into 100 bins538

spanning the minimum to the maximum firing rate of the neuron. Time was binned into 25ms539

bins. Accumulation value bin size was divided into 10 bins with width set to 1.625 except the540

last bin which was larger to capture the tails of the distribution.541

The expected firing rate as a function of accumulation value a and time t is computed by542

marginalizing with respect to the firing rate E[r(a, t)] = ΣiriP (ri, a, t). The expected difference543

from the average firing rate is computed by computing the average firing rate as a function of544

time E[r|t] = ΣjriΣjP (ri, aj, t) and subtracting this from average expected firing rate at each545

timepoint E[∆r|a, t] = E[r|a, t] − E[r|t]. Average accumulation value tuning over the trial is546

computed by averaging over time E[∆r|a] = 1
N

ΣiE[∆r|a, ti] where N is the number of time547

bins. The same procedure is used to compute a map of z-scored firing rates. And these maps548

are averaged across pre-movement side-selective cells to produce a population average.549
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Rank 1 approximations of the E[∆r|a, t] are computing using the singular value decomposi-550

tion. The approximation is equal to the outer product of the first left singular vector u1 and the551

first right singular vector v1, scaled by the first singular value s1. These terms are rearranged552

to give the outer product of a firing rate modulation, m̂(t) = u1s1range(v1) and a tuning curve553

f̂(a) = v1/range(v1). Scaling by range(v1) gives f̂(a) unit scale and m̂(t) units of spikes/s. Our554

complete tuning curve approximation becomes:555

r(a, t) ≈ E[r(t)] + m̂(t) ∗ f̂(a). (18)

The variance explained by this approximation is given by the ratio between the first singular556

value and the sum of all singular values:557

s1∑N
i=1 si

. (19)

State change triggered response On each trial, we computed a residual firing rate by sub-558

tracting the average firing rate at each time point during the trial. We then aligned these residual559

firing rates to either the model-predicted state changes or the generative environmental state560

changes. We masked firing rates before the preceding state change and after the following state561

change when applicable. We computed the mean of these residual firing rates for visualization.562

To test for significant discrimination of state, we compared d′ in the real data to a permutation563

distribution created by permuting state labels across state changes (2-tailed permutation test,564

250 permutations, p < .05).565

We defined model-predicted state changes as time points where the running average of the566

mean of the posterior accumulator value crossed 0. The running average was computed over 100567

bins of 1ms. To avoid introducing noisy state changes, we excluded state changes from the first568

and last 200ms of the trial. We also excluded state changes that did not meet two change strength569

criteria designed to identify state changes that were immediately reversed. The first, was based570

on the average value of the posterior mean in the 100ms before the change compared to the571

100ms after the change. State changes were excluded if these strength values were inconsistent572

with the direction of the identified state change. The second state change strength was based on573

the slope of the running average of the posterior mean at the time of the change. If the sign of574

the slope was inconsistent with the sign of the state following the state change, this means that575

the accumulation value immediately returned back to the previous state. We excluded these576

state changes. Our results were robust to variations in the state change inclusion criteria.577

State change triggered tuning State change triggered tuning maps E[∆r(a, t − tc)] were578

computed using the tuning curve methods described above, but using time relative to state579

changes instead of stimulus onset. Firing rates were masked before and after the preceding and580

following state changes as described above. Data was also masked in the 300ms around the581

state change where the accumulated value distribution is too narrow to estimate tuning. Rank582

1 approximations and population tuning maps were computed as above.583
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making in dynamic environments. Current Opinion in Neurobiology, 58:54–60, 2019. ISSN 0959-4388. doi:638

https://doi.org/10.1016/j.conb.2019.06.006. URL https://www.sciencedirect.com/science/article/639

pii/S095943881830223X. Computational Neuroscience.640

[19] Diogo Peixoto, J. R. Verhein, Roozbeh Kiani, Jonathan C. Kao, Paul Nuyujukian, Chandramouli Chan-641

drasekaran, Julian Brown, Sania Fong, Stephen I. Ryu, Krishna V. Shenoy, and William T. Newsome.642

Decoding and perturbing decision states in real time. Nature, 591:604–609, 2021. doi: https://doi.org/10.643

1038/s41586-020-03181-9. URL https://www.nature.com/articles/s41586-020-03181-9#citeas.644

[20] Arbora Resulaj, Roozbeh Kiani, Daniel M. Wolpert, and Michael N. Shadlen. Changes of mind in decision-645

making. Nature, 461(7261):263–266, 2009.646

[21] Ignasi Cos, Giovanni Pezzulo, and Paul Cisek. Changes of mind after movement onset: a motor-state647

dependent decision-making process. bioRxiv, 2021. doi: 10.1101/2021.02.15.431196. URL https://www.648

biorxiv.org/content/early/2021/02/16/2021.02.15.431196.649

[22] Peter R. Murphy, Niklas Wilming, Diana C. Hernandez-Bocanegra, Genis Prat-Ortega, and Tobias H. Don-650

ner. Adaptive circuit dynamics across human cortex during evidence accumulation in changing environments.651

Nature Neuroscience, 2021.652

[23] Jeffrey C Erlich, Bingni W Brunton, Chunyu A Duan, Timothy D Hanks, and Carlos D Brody. Distinct653

effects of prefrontal and parietal cortex inactivations on an accumulation of evidence task in the rat. eLife,654

4:e05457, apr 2015. ISSN 2050-084X. doi: 10.7554/eLife.05457.655

[24] Nuo Li, Kayvon Daie, Karel Svoboda, and Shaul Druckmann. Robust neuronal dynamics in premotor cortex656

during motor planning. Nature, 532:459–464, 2016. doi: doi:10.1038/nature17643.657

[25] Arseny Finkelstein, Lorenzo Fontolan, Michael N. Economo, Nuo Li, Sandro Romani, and Karel Svo-658

boda. Attractor dynamics gate cortical information flow during decision-making. Nature Neuroscience,659

Apr 2021. ISSN 1546-1726. doi: 10.1038/s41593-021-00840-6. URL https://doi.org/10.1038/660

s41593-021-00840-6.661
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Supplementary Materials673

The supplementary materials contains extended figures, control analyses, and in-depth method674

discussions.675
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2. Electrophysiology, Table of Rats681
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3.1. Mathematical Details683
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4. Switch Triggered Averages686
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Supplementary Materials - Individual Rat Behavior
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Figure S1: Accumulation Model Parameters. Best fit model parameters and 95% confidence
intervals for each rat in this study. In addition the model parameter fits reported in Brunton
et al. 5 for 19 rats in a stationary environment are included for comparison.
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Figure S2: All rats’ psychometric curves. Each plot shows the probability of a right choice
given an ideal observer’s log-odds supporting a go-right choice.
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Figure S3: All rats’ final state chronometric curves. Each plot shows the probability the
rat made the correct choice as a function of the final state duration, and the total number of state
changes in the trial. The final state duration was defined as the time from the last environmental
state change to the end of the stimulus period. The best fit model prediction averaged over the
total number of state switches is shown in pink.
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Figure S4: All rats’ psychophysical reverse correlation kernels. Each plot shows the
reverse correlation kernel for the rat (blue/green) and the best fit model (pink).
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Supplementary Materials - Table of Electrophysiology De-688

tails689

Rat Implant Location Recording Type
H191 blFOF tetrode
H037 rFOF array
H129 lFOF array
H084 lFOF array
H066 rFOF array

690

691

Table 1. List of rats used in the study, and the recording location692
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Supplementary Materials - Posterior Accumulation Model693

The accumulation model has two components, the forward model and the backward model.694

When these components are combined it creates the posterior model used for analyzing neural695

data. The forward model is used to estimate a set of model parameters θ. It assumes the initial696

distribution of accumulation values is gaussian distributed with mean zero and variance σ2
i ∈ θ,697

P (a|t = 0) = N
(
µ0 = 0, σ2

i

)
. (20)

So we can write the full forward model as:698

f(a) = P (a|t, δR, δL, θ, a0 = N
(
µ0 = 0, σ2

i

)
) (21)

At each moment in the trial, the forward model distribution of accumulation values f(a) is699

Gaussian distributed with mean µ and variance σ2 given by:700

µ(t) = µ0e
λt +

t∫
0

(δR,s · C (R(s))− δL,s · C (L(s))) ds (22)

=

#Rt∑
i

eλ(t−R(i))C(R(i))−
#Lt∑
i

eλ(t−L(i))C(L(i)) (23)

σ2(t) = σ2
i e
λt +

σ2
a

2λ

(
e2λt − 1

)
+

t∫
0

σ2
s (δR,s · C (R(s))− δL,s · C (L(s))) e2λtds (24)

= σ2
i e
λt +

σ2
a

2λ

(
e2λt − 1

)
+

#Rt∑
i

σ2
sC(R(i))e2λ(t−R(i)) +

#Lt∑
i

σ2
sC(L(i))e2λ(t−L(i)) (25)

Where #Rt is the number of right clicks on this trial up to time t, and R(i) is the time of the701

ith right click. C(R(i)) tells us the effective adaptation for that click.702

Computing the posterior distribution is more complicated than the forward model. First,703

we find the parameter set that best explains the choices y on each trial by maximizing P (y|θ).704

Then we use the best fit parameter set to evaluate the forward model for each trial, producing a705

probability distribution over accumulated evidence value at each time point consistent with the706

initial conditions. Next, we compute the backward model b(a). Note this is not the “backward707

pass distribution” discussed by Brunton et al. 5 . The backward model here ignores the forward708

model, and instead computes the probability distribution over observing accumulated evidence709

values at each time point consistent with the stimulus and the choice at the end of the trial tN .710

b(a) =

{
P (a|t, δR, δL, θ, aN = U(B,∞)), if y = 1

P (a|t, δR, δL, θ, aN = U(−∞, B)), if y = −1.
(26)

Importantly, the forward and backward distributions are conditionally independent, condi-711

tioned on the final value of the accumulated evidence. Given that they are independent, the712

posterior distribution that combines both observations is the product of the forward and back-713

ward distributions.714

P
(
a|t, δR, δL, θ, a0 = N

(
0, σ2

i

)
, y
)

= f(a)b(a) (27)

One technical wrinkle is that our analytical solution for solving the model (forward or back-715

ward) relies on initial conditions that are gaussian. The forward model assumes an initial716

distribution N (0, σ2
i ). However, for the backward model the choice data only constrains the717
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sign of a at the end of the trial, meaning our initial conditions for the backward model is a718

uniform distribution over (B,±∞). Therefore, we constructed a solution by discretizing the719

a-value axis into small bins of width ∆a, and solved the backward model for each bin assuming720

a delta function of initial probability mass in each bin. We refer to the backward distribution721

from each bin i as the delta-backward solution bi(a). Our entire backward distribution is the722

mixture distribution over all the individual delta-backward solutions.723

b(a) =
±∞∑
i=0

wibi(a) (28)

bi(a) = P (a|t, δR, δL, θ, aN = N (B + i∆a, 0)) (29)

To solve each delta-backward solution bi(a), we use the time-reversed solution to the forward724

model. The mixture weights wi are all equal if the bin spacing is uniform. Note that it might be725

tempting to think that we need to weight each individual delta-backward solution by the forward726

model’s probability mass in each bin; however, this is not correct. Given that the backward model727

is independent of the forward model, we want the complete backward distribution to reflect all728

possible states consistent with the choice observation, which is the uniform distribution over the729

correct sign of a. With a set of bi(a) solutions, we can now combine them into the posterior730

distribution, p(a). The exact solution as ∆a→ 0 is given by:731

p(a|t, δR, δL, θ, a0 = N
(
0, σ2

initial

)
, y) ∝ f(a)

±∞∑
i=0

wibi(a). (30)

To clarify notation, we now write the initial variance of the distribution as σ2
initial to distinquish732

this parameter from the series of grid solutions indexed by “i”. In practice we truncate the733

infinite series at a suitable extrema value of a, and use a finite bin spacing ∆a = 1. On each734

trial, the extent of the grid of delta solutions was determined by finding the accumulation value735

where less than 1e − 4 probability mass of the posterior model lay beyond that point at the736

end of the trial. Given that f(a), and bi(a) will be gaussian, let pi(a) = f(a)bi(a), which is also737

gaussian. This lets us write the posterior distribution as the sum of many delta-posterior modes.738

p(a|t, δR, δL, θ, a0 = N
(
0, σ2

initial

)
, y) ∝

±∞∑
i=0

wipi(a). (31)

Toy Model Example739

To illustrate the posterior model, consider a simple random walk process. On each time step740

there is a 1/3 probability of staying in place, 1/3 probability of taking a step of size +1, and741

a 1/3 probability of taking a step of size −1. We start at a(t = 0) = 0, and then observe the742

process ten time steps later, t = 10. We now want to compute the forward model, and the743

posterior distribution for this data.744

Using a binomial distribution we can analytically compute the forward model, which describes745

the probability of observing the process given the initial conditions and an elapsed duration (Fig.746

S5A). To compute a backward model, we must define the final value. For example, if we let747

the final value of the random walk be a(t = 10) = 2, then we can again use the binomial748

distribution to compute the distribution of possible values at earlier time steps (Fig. S5B). We749

can alternatively let the final value be the sign of the random walk process and compute the750

full backwards distribution. Combining the independent forward and backwards distributions,751

we can predict the posterior distribution, which is all possible states the random walk could be752

in given these two observations (Fig. S5E). We can check this against a particle simulation by753

sampling 2, 000, 000 trajectories from the random walk process to get the forward distribution754

(Fig. S5C). To get the posterior distribution we filter our samples for trajectories that ended755
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Figure S5: Toy Model Demonstration (A) Forward model analytical solution for the toy
model. (B) Delta-Backward model analytical solution for final accumulation value of aN = 2.
(C) Distribution of the forward model from sampling. (D) Comparing the distributions from E
(red) and F (blue) at t = 5. (E) Posterior model analytical solution for initial conditions a0 = 0
and final “choice” a > 0. (F) Posterior model solution from sampling.

up with positive value (Fig. S5F). We can compare these two distributions by taking a slice in756

time (Fig. S5D). We can now move on to the accumulation model, which has the same basic757

random walk structure, but with a few more bells and whistles.758

Verification of Accumulation Model Posterior Solution759

To illustrate the posterior model solution on the full accumulation model we can again compare760

the analytical solution to sampled trajectories, this time for an example trial. Each trajectory761

has a unique noise realization.762

For both the model and sample trajectories, we have four distributions (Fig. S6). The forward763

distribution showing the predicted trajectories given the initial conditions. The backwards-delta764

distribution showing the possible trajectories that result in a single final accumulation value. The765

posterior-delta distribution showing the possible trajectories that start at the initial condition766

and result in a single final accumulation value. Finally, the full posterior distribution that shows767

the possible accumulation values that start at the initial condition and result in the appropriate768

choice or sign of the accumulation value. In this example trial we consider a trial where there is769

change in state at 750ms, and we evaluate a left choice (a < B) at t = 1s. The entire solution was770

computed using 51 backward-delta solutions on a grid from (−50, B) with ∆i = 1. We can also771

examine slices through the posterior distribution at various time points to confirm agreement772

between the trajectories and the analytical solution (Fig. S7).773

A few notes on the advantages of the analytical solution. First, the analytical model offers774
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a large increase in accuracy of the model over previous numerical approaches. Second, the775

analytical model is much faster to fit and evaluate. Second, we can compute the posterior776

distribution for only a subset of all time points without computing the solution for all time777

points. This fact allows for very rapid computation of the posterior distribution.778
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E F G H

I J K

Figure S6: Posterior Model Validation. Comparison of the model distributions computed
from the analytical solution (top and bottom) and sampled trajectories (middle) for an example
trial. Green ticks mark times of right clicks, blue ticks mark times of left clicks. (A,E) Forward
distribution assuming a0 = 0. (B,F) Backwards-delta distribution assuming a final accumulation
value of aN = 6. (C,G) Posterior-delta distribution assuming aN = 6 and a0 = 0. (D,H)
Full posterior distribution assuming a0 = 0 and a right choice (a > 0). (I) Backwards-delta
distribution assuming a final accumulation value of aN = −6. (J) Posterior-delta distribution
assuming aN = 6 and a0 = 0. (K) Full posterior distribution assuming a0 = 0 and a left choice
(a < 0).
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Figure S7: Posterior Model Validation. Comparison of the posterior model distribution
computed from the analytical solution (blue) and sampled trajectories (red) for an example
trial. This figure shows the same distribution as Fig. S6K (Red). (A) Mean of posterior over
time. (B) Variance of posterior over time. (C-I) Posterior comparisons at specific time points.

32

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted May 15, 2021. ; https://doi.org/10.1101/2021.05.13.444020doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.13.444020


Supplementary Materials - Switch Triggered Averages779

To determine the times of changes of mind, we used the mean of the posterior distribution780

P (a|t, δR, δL, θ, y) on each trial. These trajectories have several sources of noise that complicated781

our analysis. First, they have sharp discontinuities at the times of each stimulus click. This782

sometimes resulted in the mean trajectory repeatedly crossing the decision boundary in a short783

period of time. It is unlikely that each of these crossing represented a true change of mind,784

since the subject was likely in a general state of indecision (Fig S8A). To resolve this issue we785

smoothed the mean trajectories with a 100 ms running average. This smoothing resolved the786

flickering changes of mind from individual stimuli (Fig S8B). However, this reveals a second issue.787

There are changes of mind that briefly cross the decision boundary, or still oscillate around the788

decision boundary. To detect and remove these time points we estimated the local slope of the789

smoothed trajectory, and filtered out changes of mind where the local slope had an inconsistent790

sign with the direction of the change of mind (Fig S8C). We excluded any changes of mind that791

occurred in the first or last 200ms of the trial.792
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Figure S8: Analysis of smoothing model mean and weak and strong state switches (A)
The mean trajectory of the posterior model is shown in gray, along with the categorical decision
taken from the sign of the model accumulation value in pink. The generative state (dashed
black traces) is overlaid on the model state indicator. Each change of mind is marked with a
circle. Changes of mind to the ‘go right’ state are in green, and changes of mind to the ‘go left’
state in blue. The local slope is marked with a colored line. The initial decision at the start of
the trial was excluded (empty circle). (B) The mean trajectory was smoothed, removing many
spurious changes of mind when the trajectory flickered near the decision boundary. (C) In this
example trial around 750ms, the mean trajectory is generally moving to the ‘go right’ (positive
accumulation value) state, but briefly returns to the go-left state. This creates a situation where
there are multiple changes of mind at the same time, with an incongruent slope (red arrow).
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