
 1 

Efficient and stochastic mouse action switching during probabilistic decision making  1 

 2 

Celia Beron1, Shay Neufeld1, Scott Linderman2, Bernardo Sabatini1 3 

 4 

1. Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, 5 

Boston, MA 6 

2. Department of Statistics and Wu Tsai Neurosciences Institute, Stanford University, Stanford, 7 

CA 8 

 9 

Contact info: 10 

bsabatini@hms.harvard.edu 11 

scott.linderman@stanford.edu 12 

 13 

Abstract 14 

To gain insight into the process by which animals choose between actions, we trained mice in a 15 

two-armed bandit task with time-varying reward probabilities. Whereas past work has modeled 16 

the selection of the higher rewarding port in such tasks, we sought to also model the trial-to-trial 17 

changes in port selection – i.e. the action switching behavior. We find that mouse behavior 18 

deviates from the theoretically optimal agent performing Bayesian inference in a hidden Markov 19 

model (HMM). Instead the strategy of mice can be well-described by a set of models that we 20 

demonstrate are mathematically equivalent: a logistic regression, drift diffusion model, and 21 

‘sticky’ Bayesian model. Here we show that switching behavior of mice is characterized by 22 

several components that are conserved across models, namely a stochastic action policy, a 23 

representation of action value, and a tendency to repeat actions despite incoming evidence. When 24 

fit to mouse behavior, the expected reward under these models lies near a plateau of the value 25 

landscape even in changing reward probability contexts. These results indicate that mouse 26 

behavior reaches near-maximal performance with reduced action switching and can be described 27 

by models with a small number of relatively fixed-parameters.  28 

Introduction 29 

Animals must select appropriate actions to achieve their goals. Furthermore, animals must adapt 30 

their decision-making process as the environment changes. During foraging, for example, 31 
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animals must make decisions about when and where to search to safely acquire sufficient 32 

nutrients. This requires balancing the tradeoff between exploiting known sources of food while 33 

continuing to explore unknown, potentially more profitable options. In a dynamic environment, 34 

continued exploration and adaptation are required to detect and react to changing conditions, 35 

such as the depletion or appearance of a food source, that may influence the optimal decision at a 36 

given time.  37 

 38 

The dynamic multi-armed bandit task is an experimental paradigm used to investigate analogs of 39 

these decision-making behaviors in a laboratory setting (Samejima et al. 2005; Daw et al. 2006; 40 

Tai et al. 2012; Parker et al. 2016; Ebitz, Albarran, and Moore 2018; Hattori et al. 2019; Bari et 41 

al. 2019; Donahue, Liu, and Kreitzer 2018; Costa, Mitz, and Averbeck 2019). In this task, 42 

animals choose between a small number of actions, each of which offers a nonstationary 43 

probability of reward. In this paradigm the dynamic reward contingencies require the players to 44 

flexibly modulate their actions in response to evidence accumulated over multiple trials. 45 

Therefore, switching between behaviors is a key component of performing this task. However, 46 

analysis of behavior in this task is often reduced to examining the animal’s selection of the 47 

higher rewarding port, and trials in which the animal switches between actions are not explicitly 48 

considered. 49 

 50 

The neural mechanisms underlying the decision-making strategy employed by animals in the 51 

multi-armed bandit are poorly understood, but are thought to involve basal ganglia and medial 52 

prefrontal cortex, including key inputs from neuromodulatory systems such as dopaminergic 53 

neurons (Ebitz, Albarran, and Moore 2018; Verharen, Adan, and Vanderschuren 2019; Bari et al. 54 

2019; Gershman and Uchida 2019). Recent work has shown the suitability of logistic regression 55 

and reinforcement learning-based models in predicting the choice behavior of agents, providing 56 

insight into how simple algorithms can reduce a series of actions and outcomes to features that 57 

are neurally tractable (Ito and Doya 2009; Miller, Botvinick, and Brody 2018). These models of 58 

behavior have facilitated the identification of neural correlates of action value representations, as 59 

well as neural activity corresponding to exploration in which the expressed behavior deviates 60 

from the action with the highest expected value (Tai et al. 2012; Ebitz, Albarran, and Moore 61 

2018; Donahue, Liu, and Kreitzer 2018; Verharen, Adan, and Vanderschuren 2019).  62 
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 63 

Here, we develop a statistical analysis of the relatively infrequent subset of trials in which the 64 

agent switches between actions, enabling examination of the features that contribute to the 65 

flexible and exploratory components of behavior. We use these models to study mouse behavior 66 

in a two-armed bandit task and gain insight into the strategy that animals use to select actions to 67 

achieve reward. We find that trial-to-trial action switching is a stochastic component of the 68 

behavior and sets theoretical limits on the performance of behavioral models in predicting action 69 

choice. Although the optimal agent in this task would perform inference in a hidden Markov 70 

model (HMM), mouse behavior is not consistent with that of such an agent. Instead it is better-71 

described by a simple logistic regression using a stochastic action-selection policy. By 72 

leveraging the simple form of the logistic regression weights, we formulate a drift diffusion 73 

model with a choice-history bias that not only captures mouse choice and switching behavior, 74 

but generalizes to new environmental parameters through a parsimonious solution that costs the 75 

agent minimal expected rewards. Finally, we relate this drift diffusion model to a ‘sticky’ hidden 76 

Markov model, yielding multiple equivalent models that capture animal behavior and make 77 

predictions about the neural mechanisms underlying the observed behavior. 78 

 79 

Results 80 

Task structure and performance 81 

To study probabilistic decision making, we trained mice in a Markovian two-armed bandit task. 82 

During each behavior session, the mouse moved freely in a chamber containing three ports into 83 

which it could place its snout (i.e. nose poke) to engage with the task (Figure 1A). The center 84 

port was used for trial initiation, and the two side ports delivered fixed-sized water rewards 85 

according to preassigned reward probabilities, such that on any given trial the mouse had a high 86 

and low reward probability option. The probability of water delivery at the high probability port 87 

was 0.8 (i.e., P(reward|high-choice)=0.8) and that at the low probability port was 0.2 (i.e., 88 

P(reward|low-choice)=0.2).  The state of the reward probabilities was assigned on a trial-by-trial 89 

basis following a Markovian process, such that the high and low assignments reversed with a 90 

probability of 0.02 after completion of each trial. This stochastic process produced blocks of 91 

consecutive trials during which the high reward probability was assigned to the right or left port 92 

(Figure 1B), with a mean block length of 50 trials. 93 
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 94 

Wild-type mice learned to perform this task and typically achieved an average of 514  77 water 95 

rewards in a 40 min session ( SD, n=6).  Overall, right and left port selection was unbiased 96 

(51% left, 49% right) and mice performed each trial quickly (center port to center port elapsed 97 

time or trial durations of mean  SD = 2.05  3.14 s or median  MAD = 1.65  0.79 s). The 98 

mean time between center and choice port was 0.47 s, much faster than the 2 s upper limit 99 

imposed by the task structure. Decision times (center port to side port) were broad, with trials in 100 

which the mouse switched between ports taking longer on average, and some mice also exhibited 101 

behavior consistent with the post-reinforcement pause (Ferster and Skinner 1957) 102 

(Supplementary Figure 1). Information about action timing was not used in the analyses and 103 

models presented below. 104 

 105 

To quantify task performance and characterize the behavioral strategy, we considered two 106 

aspects of the mouse choice on each trial. First, we determined the probability of selecting the 107 

higher rewarding port (Phighchoice), which reflects the ability of the mouse to collect information 108 

across trials to form a model of the optimal action. Second, we measured the probability of 109 

switching port selection from one trial to the next (Pswitch), which reflects the trial-to-trial 110 

propensity of the mouse to alter its action choices. Switch trials occurred infrequently, making up 111 

only 0.07 of all trials. Each mouse made decisions in a clearly non-random pattern: across all 112 

mice, Phighchoice was 0.83 (range of 0.81 to 0.84 across mice) resulting in reward delivery on 0.70 113 

(range of 0.69 to 0.70 across mice, Supplementary Table 1) of trials (compared to expected 114 

reward rate for random choices of 0.5 = 0.8*0.5 + 0.2*0.5). Furthermore, the strategy employed 115 

by the mice deviated from a simple “win-repeat, lose-switch” strategy as Pswitch was 0.02 116 

following rewarded choices and 0.18 following unrewarded choices (as opposed to the 0.0 and 117 

1.0 rates predicted by win-repeat, lose-switch). 118 

 119 
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Figure 1. Mouse behavior in a two-armed bandit task. (A) Task structure: A mouse initiates a trial by putting its 

snout (i.e. “poking”) into the center port. It then selects one of the two side ports in order to enter the “choice” state.  

In this illustration, the mouse chose the right port. Depending on the choice and preassigned port reward 

probabilities, reward is or is not delivered. The mouse “terminates” the trial by withdrawing from the side port, 

which initiates the “inter-trial interval” state.  During this 1 s period, the computer assigns reward probabilities for 

the subsequent trial using a Markov process. (B) Example mouse behavior across part of a session.  Blue and white 

shading indicates the location of the high reward probability port as left and right, respectively. Dot position and size 

indicate the port chosen by the mouse and the outcome of the trial, respectively (large = rewarded). (C) Summary of 

probabilities with which mice chose the high reward probability port (P(reward)=0.8) as a function of trial number 

surrounding the trial at which the reward probabilities reverse (block position=0). Each thin line shows the behavior 

of an individual mouse (N=6) whereas the thicker line and the shading around it show the mean and standard error, 

respectively, across mice. (D) As in (C) but showing the probability that mice switch port choice on trial n (block 

position) compared to their choice on trial n-1. 

 

Mice were sensitive to the task structure and dynamic reward probability assignments: mice 120 

generally chose the higher rewarding port but adjusted their behavior in response to reward 121 
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probability reversals at block transitions (Figure 1C). The rate of selection of the high probability 122 

port fell steeply following the block transition as perseverance of mice on their previous port 123 

choice corresponded to selection of the lower rewarding port. The mice required multiple trials 124 

to stably select the new high reward probability port after a block transition ( = 6.17  0.65 125 

s.e.m. trials) (Figure 1C, Supplementary Table 1). This performance was achieved through an 126 

increased switch rate immediately after the block transition: although across all trials Pswitch was 127 

low, it increased after the block transition (Figure 1D), paralleling the recovery of Phighchoice. The 128 

dynamics of Phighchoice and Pswitch following the block transitions indicates that mice, as expected, 129 

modulate their behavior in response to the outcomes of choices and motivates our pursuit of 130 

models that capture this behavioral strategy (Tai et al. 2012; Parker et al. 2016; Donahue, Liu, 131 

and Kreitzer 2018; Bari et al. 2019). 132 

 133 

History dependence of behavior 134 

To examine the contribution of trial history to mouse choice, we computed the conditional 135 

probability that the mouse switched ports given each unique combination of choice-reward 136 

sequences in the preceding trials (P(switch|sequence)). This can be thought of as a nonparametric 137 

policy in which the combination of previous choices and rewards (implicitly across varying 138 

latent states) guides future choice (Figure 2A). To represent the conditioned history sequences, 139 

each trial was given a label that captured both action (relative choice direction) and the outcome 140 

of that action (reward or no reward): the letter (a/A vs b/B) denoted the action and the case 141 

(lower vs. upper) denoted the outcome with upper case indicating a rewarded trial. We defined 142 

the first choice direction of the sequence as “A”, so that, depending on reward outcome, choices 143 

in this direction were also labeled “A/a” whereas those in the other direction were labeled “B/b.” 144 

This code was used to build a “word” (e.g. Aab) that fully specifies port choice and action 145 

outcome over a chosen history length (3 in the given example) leading up to each trial (Figure 146 

2B). For a history length of 3 trials, switching behavior has left-right symmetry, confirming our 147 

ability to represent direction in relative terms (Figure 2C).  148 

 149 

The number of possible conditioned sequences expands exponentially as history length 150 

increases: there are 4 possibilities when considering a trial history of length 1 but over 106 for 151 

length 10. Across all sessions (~115,000 trials) the observed mouse behavior contained a large 152 
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number of unique sequences (e.g. >21,000 unique sequences of length 10). However, the rapid 153 

expansion of possible sequences prevents full analysis of the contribution of histories beyond 154 

length 3 or 4 trials, as evidenced by the proportion of sequences that occur with a standard error 155 

greater than, for example, 20% (Supplementary Figure 2). Previous analyses of similar tasks (Tai 156 

et al. 2012; Hattori et al. 2019; Belkaid et al. 2020) found the contributions of trial history 157 

beyond length 3 or 4 was negligible. Based on cross-validated likelihood estimates on held-out 158 

data (Supplementary Figure 2), we will present here analysis of conditional switch probability 159 

using history length 3. Nevertheless, we included in the supplementary figures an extension to 160 

longer history lengths by restricting analysis to sequences that are sufficiently represented in the 161 

behavioral data, which are consistent with the results described for history length 3 162 

(Supplementary Figure 2). 163 

 164 

Stochasticity of behavior limits the single trial accuracy of predictive models 165 

To characterize the history dependence of the mouse switching behavior, we examined 166 

conditional switch probabilities for all unique action and outcome sequences for history length 3 167 

(Figure 2D). Two notable features emerge from this analysis. First, the probability of switching 168 

varies as a function of trial history, confirming that mouse behavior depends on action and 169 

outcome history. Broad trends can be identified such as the tendency to repeat the previous 170 

action after rewarded trials. Second, although mice exhibit a regime of behavior in which they 171 

nearly deterministically repeat the same port choice on subsequent trials (Pswitch~0), the 172 

maximum conditional Pswitch does not approach 1 for any action/outcome sequence, instead 173 

reaching a maximum of ~0.5 (P(switch | “Abb”) =0.47  0.078 s.e.m.). Thus, switches cannot be 174 

predicted with certainty for any combination of three past actions and outcomes. This apparent 175 

stochasticity persists for longer history sequences that are expressed sufficiently often to reliably 176 

calculate P(switch | sequence): for history lengths 4 and 5, the maximum conditional Pswitch 177 

among sequences with standard error below 20% were P(switch | “Abbb”)=0.54  0.13 and 178 

P(switch | “aAAAb”)=0.58  0.19, respectively (Supplementary Figure 2). Thus, mouse behavior 179 

can, in this framework, be qualitatively described as moving from an “exploit” state of repeating 180 

recently rewarded actions to an “explore” state of random port choice after recent failures to 181 

receive reward.   182 

 183 
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Figure 2. Switching behavior is probabilistic and history dependent. (A) Schematic of world model (black lines) 

for the two-armed bandit task: rewards (r) depend on mouse choice (c) and the underlying state (z) for each trial (t). 

World state evolves according to a Markov process. A nonparametric policy (blue) shows previous choices and 

rewards contributing to future choice. (B) The action-outcome combination for each trial is fully specified by one of 

four symbols: “L” or “R” for left or right rewarded trial, “l” or “r” for left or right unrewarded trial, respectively. 

These can form “words” that represent action-outcome combinations across sequences of trials. Each sequence 

starting with right port selection has a mirror sequence starting with a left port selection (e.g. r-L and l-R, in panel 

A) and can be combined by defining the initial direction in the sequence as “A/a.”  The probability of switching 
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ports on the next trial is calculated, conditioned on each trial sequence for history length n. (C) The conditional 

switch probabilities after R/L mirror pairs of history length 3 are plotted for histories starting on the left vs. right 

port. The clustering of points around the unity line confirms the symmetry of mouse switching (correlation 

coefficient = 0.91).  One such pair (l-r-R and r-l-L) is highlighted, which becomes a single sequence (a-b-B). (D) 

top: Conditional switch probability across all mice for each action-outcome trial sequence of history length 3, sorted 

by switch probability. Each bar height indicates the mean switch probability following the corresponding action-

outcome history across all trials and mice.  The error bars show binomial standard errors. Sequences that occur with 

s.e.m.>20% are shown in lighter gray. bottom: As above for data collected across all sessions for a single 

representative mouse. Sequences are presented along the x-axis using the same order as in the top graph. (E) 

Confusion matrices for the nonparametric policy for right and left port choice (left) and repeat and switch (right). 

On-diagonal values represent the theoretical maximum for sensitivity, or the proportion of predicted positives 

relative to all positives, under the mouse’s conditional probability distribution. Off-diagonal values represent 

expected proportion of false negatives, normalized to one across the row with true positives.   

 

For a history of length 3, this nonparametric model of mouse behavior is defined by 
43

2
= 32 184 

conditional probabilities. A more concise summary is given by its confusion matrices, the 185 

average probability it assigns to the mouse’s choices (Figure 2E). We considered two 186 

representations of these choices: the chosen port (left/right) and whether the mouse switched port 187 

from the last trial (repeat/switch). These confusion matrices show that left and right port choice 188 

are highly predictable actions, each with an average probability of 0.90. In contrast, although the 189 

repetition of action selection from one trial to the next is highly predictable, with an average 190 

probability of 0.94, the stochastic nature of switching events makes them highly unpredictable, 191 

such that the probability of predicting the mouse will switch its port choice from one trial to the 192 

next is only 0.23.  Nevertheless, this prediction is better than that expected by chance given the 193 

0.06 basal switch rate. 194 

 195 

To maximize the overall likelihood of the mouse’s behavior, a model should calibrate its 196 

predictions to match the conditional probability of the next choice, just like the nonparametric 197 

model. We use confusion matrices like the ones in Figure 2E to evaluate the subsequent models, 198 

which incorporate constraints to shed light on the algorithms by which mice make decisions. A 199 

good model should assign high likelihood to the mouse’s choices, capture the stochasticity of 200 

behavior in its conditional probabilities of switching, and exhibit similar confusion matrices as 201 

the nonparametric model. 202 

 203 

Models of mouse behavior 204 

Our goal in the analysis of mouse behavior presented above was to extract features that could be 205 

quantified and used to constrain and test models of behavior.  Based on this analysis we selected 206 
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three criteria to evaluate models of mouse behavior, alongside canonical model comparison with 207 

held-out log likelihood: 208 

1) The ability of the model to accurately predict port selection and switching events on a 209 

trial-by-trial basis, as compared to the expected confusion matrices defined above (Figure 210 

2E, Methods). 211 

2) The ability of the model to capture the conditional action and outcome history 212 

dependence of Pswitch (Figure 2D).  213 

3) The ability of the model to reproduce the dynamics of Phighchoice and Pswitch around 214 

block transitions (Figure 1C-D).    215 

These features of behavior were stable within and across sessions (Supplementary Figures 3,4).  216 

 217 

We separately consider two components underlying the observed behavior: algorithm and policy, 218 

in which the former is the process used to generate ‘beliefs’ about the state of the environment 219 

(i.e. level of confidence that the higher reward port is left vs. right), and the latter relates those 220 

computed beliefs to a decision to select a port.  Due to the stochasticity of mouse conditional 221 

switch probabilities, we hypothesized that a stochastic action policy is needed to best describe 222 

the observed behaviors. Therefore, in testing models that perform deterministic computations, we 223 

expect that “greedy” type policies in which the action associated with the higher probability of 224 

reward is always selected will perform less well than stochastic policies in which some subset of 225 

actions are selected randomly.  226 

 227 

Hidden Markov Model as the ideal agent fails to capture mouse behavior 228 

The behavioral task was designed to evolve according to a discrete Markovian process and, 229 

therefore, from the agent’s perspective the world can be described as governed by a hidden 230 

Markov model. In our two-armed bandit task, there are two environmental states, 𝑧𝑡 (i.e., 231 

corresponding to states in which either the left or right port is the higher reward probability port) 232 

that are not directly observable by the mouse. Instead, these states are relayed to the mouse 233 

through the state emission probabilities – the probability that the mouse receives reward given 234 

the current state and its port selection, 𝑃(𝑟𝑡|𝑧𝑡 , 𝑐𝑡). Thus, an optimal agent uses Bayesian 235 

inference in a hidden Markov model (HMM) to estimate its belief in the environmental state (see 236 

Methods): computing and recursively updating its posterior belief (𝑏𝑡) in the latent state by 237 
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incorporating incoming evidence from sequences of mouse actions and reward outcomes (Figure 238 

3A, Methods): 239 

 240 

𝑏𝑡+1 = ∑ 𝑃

𝑘

(𝑧𝑡+1|𝑧𝑡 = 𝑘) ∙ 𝑃(𝑟𝑡|𝑧𝑡 = 𝑘, 𝑐𝑡) ∙ 𝑏𝑡,𝑘 241 

 242 

In which 𝑐𝑡 is the mouse’s choice and 𝑟𝑡 is the reward outcome for trial 𝑡.  This belief estimate is 243 

then passed through an action policy to predict the mouse’s choice on the next trial.  244 

 245 

To test if an HMM could accurately model the mouse’s behavior, we used a grid search over all 246 

parameters and selected the model that maximized the log likelihood of the data given the model. 247 

The best-fit model accurately represents the temporal structure of the environment (maximized at 248 

a transition probability of 0.02) but underestimates the high port reward probability (maximized 249 

at an emission probability of 0.65 whereas the true probability was 0.8). We predicted mouse 250 

behavior using a stochastic probability matching policy, in which the port favored by the model 251 

is selected at a rate proportional to the model’s belief (also known as Thompson sampling) 252 

(Thompson 1933). 253 
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Figure 3. Hidden Markov model overpredicts mouse switching behavior. (A) The Hidden Markov model 

(HMM) recursively updates belief state (bt+1) by incorporating evidence from choice (ct) and reward (rt) of the recent 

trial. The next choice (ct+1) depends on the model posterior and the policy (blue). (B) Absolute values of the 

differences between the HMM confusion matrices and nonparametric confusion matrix (Figure 2E) for each action 

type. (C) Conditional switch probabilities generated from the HMM plotted against those observed from mice (SSE 

= 4.102). (D) Conditional switch probabilities as predicted by the HMM (blue, ‘model’) overlaid on the observed 

mouse behavior (gray) for all history sequences of length 3. Sequences on the x-axis are sorted by increasing 

P(switch)mouse as in Figure 2D. The bar heights show the mean switch probability across mice for each 

corresponding sequence history, and the error bars show the binomial standard error for the mouse test data. (E) 

HMM-generated probability (blue) of choosing the high reward probability port (left) and of switching ports (right) 

as a function of trial number surrounding state transition (block position 0) as compared to the mouse behavior 

(gray). Dark lines show the mean across trials at the same block position and the shading shows the standard error. 

 

Thompson sampling in an HMM fails to capture essential features of the mouse behavior by 254 

systematically overpredicting the probability of switching (Figure 3B-E). This is reflected by the 255 

deviation of the model from the expected confusion matrices of the nonparametric policy, which 256 

we compute as the absolute values of the differences between the model’s values and expected 257 

values for each action (Figure 3B ∆s, compared to the data in Figure 2E). Accordingly, the 258 
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model overpredicts the conditional switch probabilities. (Figure 3C-D). (Note: Here we present 259 

the analyses of the held-out data not used for training, which is only 30% of the data presented in 260 

Figure 2D.  For this reason, the orderings of history sequences by mouse conditional switch 261 

probabilities and the binomial standard error estimates differ across figures.) Finally, the HMM 262 

fails to capture the dynamics of Phighchoice and Pswitch around block transitions of reward 263 

probabilities (Figure 3E). We also examined the HMM parameters that correspond to the ideal 264 

observer, acting under both a Thompson sampling and greedy policy (i.e. one that 265 

deterministically selects the port that has a higher probability according to the model’s belief), 266 

but on each of the behavioral features outlined above, these models also failed to capture the 267 

mouse behavior (Supplementary Figure 5). 268 

 269 

Logistic regression with a stochastic policy better predicts mouse behavior 270 

We next considered logistic regression, which has been used previously to describe rodent 271 

behavior in similar tasks (Tai et al. 2012; Parker et al. 2016; Donahue, Liu, and Kreitzer 2018; 272 

Miller, Botvinick, and Brody 2018), as an alternative model. Although this simpler model was 273 

shown to perform well at predicting the right and left choice of animals in these tasks, its ability 274 

to predict switches has not been evaluated. We built a logistic regression that computed the log-275 

odds of the mouse’s next choice as a function of past choices and rewards, 276 

 277 

ψt+1 = ∑ 𝛼𝑖𝑐𝑡̅−𝑖

𝐿1

𝑖=0

+ ∑ 𝛽𝑖𝑐𝑡̅−𝑖𝑟𝑡−𝑖 + ∑ 𝛾𝑖𝑟𝑡−𝑖

𝐿3

𝑖=0

+ 𝜖

𝐿2

𝑖=0

 278 

 279 

where 𝛼, 𝛽, and 𝛾 represent the weights on input features for choice (𝑐𝑡̅), encoding of choice-280 

reward interaction (𝑐𝑡̅𝑟𝑡), and reward (𝑟𝑡) across trials back to L1, L2, and L3, respectively. In this 281 

logistic model the choice is represented by 𝑐𝑡̅, in which -1 indicates a right port choice and 1 a 282 

left port choice, and the reward output is represented by 𝑟𝑡 , in which 0 indicates no reward and 1 283 

reward. We fit the model and used cross validation to select the number of past trials to include 284 

for each feature. This confirmed that there is minimal left-right port choice bias (i.e., 𝜖 = 0.04). 285 

We also found that rewards alone did not contribute significantly to choice prediction (i.e., L3 = 286 

0) but that the history of choice-reward encoded trials benefited the model (i.e., L2=5, Figure 287 
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4B). Furthermore, only information about the most recent port choice was necessary (i.e., L1=1). 288 

This enabled us to use a reduced form of the model log-odds computation: 289 

 290 

ψt+1 = 𝛼𝑐𝑡̅ + ∑ 𝛽𝑖𝑐𝑡̅−𝑖𝑟𝑡−𝑖

5

𝑖=0

 291 

 292 

The feature weights indicate a propensity of mice to repeat their previous action, as denoted by 293 

the positive coefficient on previous choice (hereby denoted by 𝛼, Figure 4B).  294 

 295 

We tested the fit model on the remaining (held-out) data to predict the left or right choice of the 296 

mouse and found that this model coupled with a stochastic action policy recapitulated all features 297 

of the behavior and achieved comparable log-likelihood estimates on held-out data to those of 298 

the nonparametric model (Figure 4C-F, blue traces; Supplementary Table 2). The stochastic 299 

policy used here, and in all models below, selects a port at a rate proportional to the model 300 

estimate (see Methods). The stochastic logistic regression captured both the port choice and 301 

switching behavior of the mouse as well as possible given the stochastic nature of behavior (i.e., 302 

∆ ~ 0, Figure 4C). This is further supported by the conditional switch probabilities predicted by 303 

the model as compared to the mouse (Figure 4E), in which it is evident the model captures both 304 

the history dependence of the mouse’s switching behavior, as well as the stochastic nature with 305 

which it applies a decision-making policy. Finally, the model recapitulates the time course over 306 

which the block transition perturbs stable port selection and uses increased switch prediction as a 307 

mechanism to recover the selection of the high port (Figure 4F). 308 

 309 

These results differ from those of the Bayesian model (i.e. HMM) as well as from the same 310 

logistic regression model using a deterministic policy (greedy policy maximizing log-odds 311 

choice from the model; Figure 4, red traces). Interestingly, the impact of policy on model 312 

performance is most evident when evaluating model fit on switching behavior, with surprisingly 313 

subtle effects on the model’s accuracy in predicting left vs. right choice (Figure 4F). Although 314 

the greedy logistic regression captures much of the dynamics of Phighchoice (Figure 4F, left), it 315 

does so without predicting switching between ports (Figure 4F, right). These results emphasize 316 

the need for explicit examination of switch trials in behavioral modeling. 317 
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Figure 4. Stochastic logistic regression policy captures mouse behavior comprehensively, whereas greedy 

logistic regression fails to predict switches. (A) The logistic regression computes the probability of choice (bt+1) 

from choice (ct) and reward (rt) information across a series of trials. Here we represent the model estimate as b for 

consistency across graphical representations, but note that it in this case it corresponds to the log-odds of choice, 𝜓, 

in the text. (B) left: Feature weights for a logistic regression predicting the log-odds of mouse port selection for the 

choices, rewards, and the choice-reward interactions in the previous 10 trials. right: Feature weights after cross-
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validation for hyperparameters and refitting the model.  is the weight on the previous choice, and  is the set of 

weights on choice-reward information for the previous 5 trials. (C) Absolute value of the differences between the 

logistic regression confusion matrices and nonparametric confusion matrix (Figure 2E) for each action.  scores are 

shown for stochastic logistic regression across three sets of probability conditions, as well as for greedy logistic 

regression in the P(reward|high-choice)=0.8 condition. (D) Conditional switch probabilities generated by the logistic 

regression model using a stochastic (blue) or greedy (red) policy plotted against those observed in mice (stochastic-

SSE = 0.378, greedy-SSE = 1.548). (E) top: Conditional switch probabilities for the stochastic logistic regression 

(blue) across sequences of history length 3 overlaid on those from the mouse data (gray). Sequences on the x-axis 

are sorted according to mouse conditional switch probabilities. Error bars show binomial standard errors for the 

mouse. bottom: As above but for a greedy policy (red). (F) Probabilities of choosing the high reward probability port 

(left) and of switching ports (right) as a function of trial number surrounding state transition (block position 0). 

Logistic regression predictions with a stochastic (blue) and greedy (red) policy are overlaid on probabilities 

observed for mice (gray). Dark lines show the mean across trials at the same block position and the shading shows 

the standard error.  

 

Reduced logistic regression captures behavior in different reward probability conditions 318 

To determine whether the reduced form of the logistic regression model generalizes to other 319 

environmental conditions, we tested the same mice on two new sets of reward probabilities 320 

(P(reward | high-choice)=0.9 and P(reward | low-choice)=0.1,   P(reward | high-choice)=0.7 and 321 

P(reward | low-choice)=0.3). We found that the mice modified their behavior in the different task 322 

conditions (Supplementary Figure 6). Nevertheless, the same model structure fit to the data 323 

obtained under these new probability conditions produced predictions that matched the values of 324 

the expected confusion matrices across the four action types (Figure 4C), demonstrating the 325 

generalizability of this model. 326 

 327 

Drift diffusion formulation of the reduced logistic regression 328 

Our goal in modeling behavior was to uncover the task features and algorithms that lead to the 329 

expressed decision-making strategy.  Although a reduced logistic regression can accurately 330 

capture the mouse behavior, it provides an inefficient neural solution by requiring the weights on 331 

each of these features to be learned and the past choices and rewards to be stored in memory. We 332 

therefore asked how such an algorithm could be approximated by the animal and learned over 333 

time. 334 

 335 

We inspected the structure of the logistic regression model to determine whether we could 336 

achieve similar predictive accuracies with a recursively updated algorithm. We found that the 337 

weights assigned to past choices and rewards were well fit by an exponential curve, with initial 338 

magnitude 𝛽 that decays across trials at a rate of 𝜏 (Figure 5B). Plugging in the exponential 339 
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approximation, and approximating the finite sum with an infinite one (since 𝜏 < 𝐿2), we can 340 

rewrite the log-odds of port selection on the next trial (𝜓𝑡+1) as, 341 

𝜓𝑡+1 ≈ 𝛼𝑐𝑡̅ + 𝛽 ∑ 𝑒−𝑖/𝜏𝑐𝑡̅−𝑖𝑟𝑡−𝑖

∞

𝑖=0

 342 

Furthermore, we can define this exponential term as the recursive quantity 𝜙𝑡,  343 

𝜙𝑡 ≜ 𝛽 ∑ 𝑒−𝑗/𝜏𝑐𝑡̅−𝑗𝑟𝑡−𝑗

∞

𝑗=0

 344 

= 𝛽𝑐𝑡̅𝑟𝑡 + 𝑒−𝑗/𝜏 ∙ 𝛽 ∑ 𝑒−𝑗/𝜏𝑐𝑡̅−1−𝑗𝑟𝑡—1−𝑗

∞

𝑗=0

   345 

= 𝛽𝑐𝑡̅𝑟𝑡 + 𝑒−1/𝜏𝜙𝑡−1. 346 

 347 

We recognize the resulting form as a type of drift diffusion model (DDM) (Ratcliff and McKoon 348 

2008; Pedersen, Frank, and Biele 2017; Urai et al. 2019) that decays toward zero with time 349 

constant 𝜏, but receives additive inputs depending on the most recent choice and whether or not it 350 

yielded a reward. The magnitude 𝛽 determines the weight given to incoming evidence. 351 

Therefore, our computation of the log-odds can be given as a filtering of choices and rewards 352 

biased by 𝛼 toward the most recent choice (Figure 5A): 353 

𝜓𝑡+1 = 𝛼𝑐𝑡̅ + 𝜙𝑡 . 354 

This form of the model offers two advantages over the original logistic regression when 355 

considering a potential neural implementation of the algorithm: 1) the exponential representation 356 

of choice and reward history captures the behavior using a model with only three free parameters 357 

(𝛼, 𝛽, 𝜏), whereas the logistic regression used six, and 2) the recursive definition of this choice-358 

reward representation reduces the memory demands of the model. 359 

 360 

We tested the drift diffusion model on all three task variants (P(reward|high-361 

choice)∈{0.9,0.8,0.7}), and found it predicted all features of mouse behavior excellently (Figure 362 

5D-G, Supplementary Table 2). Interestingly, we found that the 𝛼 parameter varied the most 363 

across reward probability conditions, while 𝛽 and 𝜏 remained relatively constant (Figure 5C), 364 

suggesting that the mechanism by which mice adapted their behavior can be explained by 365 
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increasing or decreasing their bias toward repeating their previous choice. Notably, 𝛼>0 in all 366 

contexts, such that there was always some tendency to repeat the previous choice (“stickiness”).  367 

 

 

Figure 5. A drift diffusion model formulation of the logistic regression recapitulates behavior in multiple 

reward probability conditions. (A) A drift diffusion model with choice history bias recursively updates a single 

state belief (bt+1) using evidence from recent choice (ct) and reward (rt). The policy (blue) shows an additional 

contribution on next choice prediction from the previous choice. (B)  weights for choice-reward information are 

described by an exponential function (black curve). (C) Summary of the fit DDM parameters for data from mice 

performing in the three sets of reward probability conditions. Each data point shows the mean parameter estimate 

with error bars indicating the bootstrapped 95% confidence intervals. (D)  scores for absolute values of the 

differences between the DDM confusion matrices and nonparametric confusion matrix (Figure 2E) for each action 
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across the three reward probability conditions. (E) Conditional switch probabilities calculated from the DDM 

predictions plotted against those of the observed mouse behavior for each set of reward probability conditions (top: 

90-10 (SSE=0.243), middle: 80-20 (SSE=0.417), bottom: 70-30 (SSE=0.33)). (F) Conditional switch probabilities 

predicted by the DDM (model) across sequences of history length 3 overlaid on those from the mouse data (gray) for 

the three sets of reward probability conditions. Error bars show binomial standard error for the mouse. (G) 

Probabilities of choosing the high reward probability port (left) and of switching ports (right) as a function of trial 

number surrounding state transition (block position 0) for the three sets of probability conditions. Dashed lines show 

mean of model predictions, solid lines show mean of true mouse probabilities across trials at the same block 

position. Shading shows the standard error.  

 

Returning to the HMM 368 

The drift diffusion model derived from the empirical logistic regression resembles the optimal 369 

Bayesian model, but with an additional influence of previous choice on future choice (compare 370 

graphical representations in Figures 3A and 5A). To gain insight into the differences between 371 

these models, we developed a mathematical correspondence for the log-odds computation by the 372 

DDM with that of the HMM (see Methods), allowing direct comparison of parameter estimates. 373 

This revealed that the deviation of the mouse from the optimal player (HMM) can be explained 374 

by the constraints on 𝛼, the stickiness or bias towards repeating the last action, in the HMM. 375 

Whereas for all reward probability conditions the fit with a DDM yields 𝛼>0 (Figure 5C), the 376 

optimal HMM requires 𝛼<0. This difference can be conceptualized as a sticky tendency in the 377 

empirical model that biases the mouse to repeat its previous action, in contrast to the HMM, 378 

which makes its selection considering only its posterior belief and independent of any additional 379 

choice history. Phrased in a different way, the HMM retains no information about the identity of 380 

the last port choice but instead actively uses evidence of a reward on the last trial to update its 381 

prior belief about the identity of the highly rewarded port.   382 

 383 

To explicitly capture the concept of “port switching”, we incorporated a second state variable 384 

into the HMM to capture the influence of recent choice history on future choice. We model this 385 

as a dynamic cost for the mouse of switching actions as the difference in log-odds between the 386 

HMM’s current belief state and that of the DDM (see Methods). Including this additional term 387 

makes the computed trial-by-trial log-odds of the HMM the same as those of the DDM, ensuring 388 

that both capture all features of the behavior equally well.  389 

 390 

Comparison of behavior of models performing the two-armed bandit task  391 
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Analysis of the trial-by-trial log-odds estimates for the DDM (and accordingly for the sticky 392 

HMM) reveal asymmetrical use of rewarded vs. unrewarded choice information, whereby 393 

rewarded choices provide evidence toward the selected port, but unrewarded choices result in a 394 

decay toward 𝛼 (and therefore maintaining a slight preference for the most recent choice, Figure 395 

6A). This asymmetry has been previously reported in analysis of mouse evidence accumulation 396 

(Vertechi et al. 2019). This contrasts the mechanics of the optimal agent, where unrewarded 397 

trials provide evidence toward the alternative port (Figure 6A). For an optimal agent, an 398 

unrewarded choice (or series of unrewarded choices) at the current selection port can flip the 399 

sign of belief or log-odds ratio, providing evidence in favor of switching ports (Pswitch>0.5, and 400 

even nearing deterministic Pswitch) in conflict with the actual mouse behavior. In other words, a 401 

switch can be caused by a change in the belief of which port has the higher reward probability.  402 

 403 

In contrast, for the empirically better-fitting models (logistic regression, DDM, and sticky 404 

HMM), the effect of unrewarded trials on the log-odds estimate is to drift towards its choice 405 

history bias (i.e. 𝛼) and, therefore, like the mouse, cause increasingly random port selection. 406 

Shifting the port favored by the empirical models requires achieving a reward on the alternative 407 

port from the current preference, which causes an update and sign flip in the belief parameter. 408 

This suggests that switches under the empirical models rely on the combination of the odds ratio 409 

approaching 1 (i.e. log-odds=0) and a stochastic action policy to facilitate random sampling of 410 

the low-probability port. It is these stochastic switches – rather than evidence-based switching – 411 

that allows the model to update its belief to favor a new action in the future. In rare cases, 412 

unrewarded switches flip the sign of 𝛼, and so potentially shift the log-odds in favor of the new 413 

port (depending on the magnitude of 𝜙𝑡), but this behavior is consistent with the necessity for a 414 

stochastic switch to precede evidence favoring the alternative port over the previous port.  415 
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Figure 6. Simulations with a generative drift diffusion model recapitulate mouse behavior. (A) Representative 

session depicting equivalent trial-by-trial log-odds computations for the DDM vs. the sticky HMM (orange vs. black 

traces). These model estimates contrast the log-odds of the posterior computed by the ideal HMM (light blue), which 

specifically diverges in prediction updating following unrewarded trials. Stem plot shows the choice*reward 

interaction that provides action-outcome evidence to the DDM. Horizontal dashed lines indicate ±, and vertical 

dashed lines indicate state transitions. Inset: Expanded segment of session with unrewarded trials labeled by red 

dots. (B) Probabilities of choosing the high reward probability port (left) and of switching ports (right) as a function 

of trial number surrounding a state transition (block position 0) in the P(reward|high-choice)=0.8 context for the 

generative DDM (orange) and generative ideal HMM (light blue) overlaid with the observed mouse probabilities 

(grey). The lines show the means across trials at the same block position and the shadings show the standard errors. 

 

Comparison of dynamics of the model algorithms also reveals that they exhibit different bounds 416 

on the maximum and minimum trial-to-trial switching probability (see Methods; Figure 6A).  417 

The upper and lower bounds of switching probability in the ideal HMM are constrained by the 418 

odds ratio of the transition probability – the model’s log-odds belief in the identity of high 419 

reward probability port is bounded by the probability that the port reward probability stays the 420 

same from trial-to-trial. In contrast, the DDM and sticky HMM reach steady-state near-421 

deterministic behavior (Figure 6A, Methods). These bounds explain the elevated switch rate 422 

produced by Thompson sampling on the HMM belief state, even outside of the block transition. 423 

Following reward, the belief log-odds of the HMM are further constrained to the product of the 424 

odds ratios of the emission probability and transition probability.   425 

 426 

The deviation of the empirical behavior from the theoretically optimal model appears striking 427 

when considering history-dependent action selection. However, it is unclear that these deviations 428 

have a significant cost in terms of the total rewards received.  Surprisingly, the expected reward 429 

rate of the original Thompson sampling HMM predicting choice from mouse behavior was only 430 
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marginally better than that actually achieved by the mice (71% vs. 70% trials rewarded in 431 

sessions where P(reward|high-choice)=0.8, respectively). To determine whether this was an 432 

effect of the suboptimality of the mouse history crippling the HMM performance, we simulated 433 

data under the ideal HMM unbounded from mouse history. We initialized an HMM with the true 434 

task parameters (P(reward|high-choice)=0.8 and P(zt+1≠zt)=0.02) and allowed it to play the game 435 

using its own past choices and rewards as history. This model did not perform better, achieving 436 

71%  0.4% rewards per session (mean  s.e.m.). We compared this performance to simulations 437 

run under a generative form of the DDM using the empirically fit parameters, which achieved 438 

69%  0.0% rewards per session (mean  s.e.m.). Notably, even without the mouse history as 439 

input features to guide action selection, the DDM behavior resembles the characteristic patterns 440 

of mouse behavior (Figure 6B).  441 

 442 

We hypothesized that the mice converged to a local maximum or plateau of expected reward 443 

within the parameter space in which further optimization of behavior driven by reward rate is 444 

challenging. For each of the three reward contexts we held 𝜏 constant at the corresponding 445 

empirically fit value and examined expected reward across the two-dimensional parameter space 446 

for varying 𝛼 and 𝛽. In each, there is a wide plateau over which expected reward stabilizes, and 447 

both the 𝛼 and 𝛽 values for the true task parameters under the original HMM and the fit values 448 

under the DDM lie near this plateau (Figure 7A).  For this reason, near maximal performance can 449 

be achieved with a broad range of 𝛼 and 𝛽 values (Figure 7B). 450 

 451 

We also considered that the mice may optimize reward relative to a cognitive or physical cost, as 452 

opposite to optimizing reward rate at any cost. Specifically, we hypothesized that the stickiness 453 

of the empirical models might indicate a preference for the mice not just for reward 454 

maximization, but efficient collection of reward in terms of behavioral effort, in this case as 455 

reflected in the switching rate. Comparing the ratio of rewards to switches, we found that the 456 

DDM achieves twice as many rewards per switch as the Thompson sampling HMM in the 457 

P(reward|high-choice)=0.8 condition (i.e. an average of 9.95 vs. 4.46 rewards/switch, 458 

respectively). Calculating this ratio of rewards per switch for models simulating behavior in each 459 

reward context, we find that the DDM exceeds the original HMM in all three (Figure 7C). 460 

Interestingly, this parallels minimal differences between the models in overall expected reward 461 
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(Figure 7C), and so can be attributed to the DDM’s efficient reduction in switching. However, 462 

both of these models are outperformed by a greedy HMM, suggesting that the DDM’s advantage 463 

to maximizing rewards per switch depends on first selecting a stochastic policy. This suggests 464 

that, under the assumption that switching ports bears a cognitive and/or physical cost, and given 465 

a tendency for exploration, the objective of the mice is not exclusively reward maximization, but 466 

rather optimizing the tradeoff between reward maximization and cost. 467 

 

 

Figure 7. Reward per switch ratios differentiate models and policies that all achieve near-maximal expected 

reward. (A) Expected reward landscape for the generative DDM across varying  (y-axis) and  (x-axis) values 

with the empirically observed 𝜏 in each of the three reward contexts (𝜏90−10 =1.25, 𝜏80−20=1.43, 𝜏70−30=1.54). 

Color bars indicate expected reward rate across simulated trials, and isoclines mark increments above random (0.5). 

The DDM-fit  and  values are depicted at the asterisk (*), and the relative  and  specified for the HMM lie 

along the dashed line. (B) Profile of expected reward as a function of  for varying values of  (color bar, ranging 

from =1 to =5, with fit  in black). Expected reward rate at the fit  (black vertical dashed line) suggests minimal 

additional benefit of modulating . (C) top: Expected reward in each of the three probability contexts for the 

generative DDM using mouse-fit parameters and generative HMM using the true task parameters. HMM 

performance is shown using either a greedy or stochastic (Thompson sampling) policy. bottom: Ratio of rewards to 

switches for each of the three models across contexts. Each data point shows the mean across simulated sessions and 

error bars show standard error but are smaller than the symbol size. 

 

Discussion 468 

Switch trials reveal stochasticity in mouse behavior 469 

Many behavioral tasks, including the two-armed bandit, are described as having components of 470 

“explore vs. exploit” in which an agent at times exploits existing knowledge and executes an 471 

action most likely to lead to reward, whereas at other times it explores the environment by 472 

choosing an action with a less certain outcome that reveals information about the environment 473 
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(Daw et al. 2006; Dayan and Daw 2008; Costa, Mitz, and Averbeck 2019; Hattori et al. 2019; 474 

Pisupati et al. 2021; Rosenberg et al. 2021).   475 

 476 

Despite the richness offered by the analysis of behavioral dynamics and of deviations from 477 

“optimal” strategies, the description of mouse behavior in the two-armed bandit task is often 478 

reduced to simply stating the agent’s propensity to select the higher rewarding port (Phighchoice) 479 

across the behavioral session. Similarly, the performance of models of behavior in the two-armed 480 

bandit task is typically evaluated by their ability to predict port selection across the session. This 481 

often reduces to examining the model’s ability to identify the highly rewarded port, as the 482 

majority of trials occur in extended stretches of steady-state exploit-like behavior in which the 483 

mouse repeatedly selects the more highly rewarded port.   484 

 485 

In contrast, few studies explicitly describe or model trials in which the animal switches its action 486 

choice from that expressed in the previous trial. Since these switch trials occur infrequently, the 487 

overall performance of models of behavior in a two-armed bandit task is relatively unaffected by 488 

categorically failing to accurately predict their occurrence. However, in a two-armed bandit task, 489 

the trials in which the agent switches ports are the manifestation of behavioral flexibility (i.e., 490 

changes in action due to accumulating information) and exploration, and are highly informative 491 

components of the behavior. Analysis of these trials provides an important insight by revealing 492 

the stochastic nature of mouse decision making. Although mice enter a regime of nearly 493 

deterministic repetition of actions (i.e., during exploit phases), they do not enter a corresponding 494 

regime of deterministic switching (i.e., no accumulation of evidence will consistently push the 495 

mouse to switch actions).  Thus, even following a series of ‘no reward’ outcomes at a single port, 496 

the mouse will choose its next action apparently at random rather than reliably switch selection 497 

to the other port.   498 

 499 

This understanding propels our selection of a stochastic policy to best represent the action policy 500 

of the mice, which captures the tendency of the mice to make decisions at a rate proportional to 501 

their confidence in those decisions. The stochastic action policy evident during behavior in the 502 

two-armed bandit task balances trials in which mice exploit information (i.e., favors the port with 503 

the higher probability of providing a reward, given the trial history) and explore alternatives (i.e. 504 
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deviates from this prediction) (Hattori et al. 2019; Vertechi et al. 2019). It should be noted that 505 

the stochasticity we describe is observed under the constraints of our model variables and history 506 

length, but does not necessarily characterize the decision to switch given an unconstrained model 507 

(i.e. given a complete history or access to neural activity).  Clearly, at the extreme, the exact 508 

sequence of actions and action outcomes expressed by the mouse leading up to a trial late in a 509 

session is likely unique (given the exponential growth in sequence possibilities as a function of 510 

trial number), and thus it is not possible to determine if the action choice is stochastic given the 511 

full history.    512 

 513 

Stochasticity of behavior constrains maximum predictability of behavior by models 514 

There has been a recent push in behavioral studies to account for behavioral events at the 515 

resolution of single trials (Williams and Linderman 2021). This is a worthwhile goal, especially 516 

in evaluating the predictive performance of behavioral models. However, we found that the 517 

stochastic component of behavior creates a tradeoff between model accuracy at the single trial 518 

level and across the full distribution of trials. Therefore, we compared the performance of each 519 

model against the theoretical probabilities of predicting each action (i.e., expected confusion 520 

matrices from the nonparametric model) set by the stochasticity of the mouse behavior on the 521 

same type of trial. This proved a powerful approach, allowing us to evaluate our models in the 522 

context of the constraints imposed by the inherent stochastic nature of the behavior. In the 523 

context of exploratory behavior, the method described here or a similar approach to constraining 524 

models under the true distribution of the data (Rosenberg et al. 2021), enables testing of models 525 

against realistic boundaries of predictive accuracy.  526 

 527 

Stickiness captures the deviation of mouse behavior from optimality  528 

Interestingly, although perhaps not surprisingly, we find that the model that best recapitulates the 529 

mouse behavior does not use the algorithm that maximizes reward in this task (the HMM). 530 

Single latent variable HMMs can be implemented in artificial neural networks and therefore at 531 

least in principle by the brain, so it is unclear why mice do not perform this optimal strategy 532 

(Tran et al. 2016). An ethological explanation can be proposed from our observation that using 533 

the optimal strategy offers only marginal increases in expected reward over another simple 534 

computational algorithm (i.e., the drift diffusion model derived from the logistic regression) 535 
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(Roy et al. 2021). Moreover, given a tendency for exploration or stochasticity, the HMM requires 536 

more trials in which the agent switches between ports to achieve equal reward. This hypothesis 537 

suggests that constraints imposed by learning the task and task structure or asymmetric costs 538 

associated with the selection or executions of actions lead the mouse away from the HMM 539 

implementation. Additionally, it brings up an interesting question as to whether mice have an 540 

innate tendency for exploration in environments with uncertainty (Grunow and Neuringer 2002; 541 

Tervo et al. 2014; Belkaid et al. 2020; Lai and Gershman 2021). 542 

 543 

The differences between the HMM and the empirical logistic regression (drift diffusion model 544 

with choice history bias) can be captured by an additional influence of past choice on future 545 

choice. We account for this by building a sticky HMM, which, by construction, produces 546 

equivalent trial-by-trial log-odds predictions as the DDM. Therefore, we find two models with 547 

distinct mechanics that equivalently recapitulate mouse behavior, and can thus examine 548 

conserved aspects of the two models to make hypotheses about features necessary to generate the 549 

observed behavioral strategy. The first feature we have discussed extensively, namely the 550 

necessity for a stochastic action policy on the model estimate. Secondly, both models encode the 551 

interaction between choice and reward rather than the variables independently, consistent with 552 

previous accounts of action value encoding in brain regions such as striatum (Samejima et al. 553 

2005; Kim et al. 2009; Tai et al. 2012; Donahue, Liu, and Kreitzer 2018). Both models use a 554 

state representation to efficiently store the memory of the computed estimate, which is 555 

recursively updated with incoming evidence on each trial. Lastly, as discussed above, both 556 

models require “stickiness” in action choice. 557 

 558 

This stickiness has been reported in analyses of behavior across tasks and species, and is also 559 

called perseveration, choice history bias, and the law of exercise (Thorndike 1911; Ito and Doya 560 

2009; Balcarras et al. 2016; Miller, Botvinick, and Brody 2018; Urai et al. 2019; Lak et al. 2020; 561 

Gershman 2020; Lai and Gershman 2021). We find that this bias to repeat previous actions offers 562 

a parsimonious mechanism for adapting an existing action policy to novel environmental 563 

conditions. When we changed the reward probability conditions in our two-armed bandit task, 564 

we found that mice minimally updated the weights on incoming evidence and memory decay (𝛽 565 

and 𝜏, respectively), but instead modulated their behavior by increasing or decreasing their level 566 
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of perseveration. This behavioral adaptation, represented largely by a single parameter, comes at 567 

low cost to the animal in terms of expected reward, and therefore may be an efficient strategy for 568 

minimizing effort necessary to learn new behavioral strategies (Fan, Gold, and Ding 2018; 569 

Drugowitsch et al. 2019; Gershman 2020).  570 

 571 

Implications for the neural mechanism 572 

One of the goals of this study was to increase our understanding of decision making in order to 573 

guide future interrogation of circuit function and the neural underpinnings of behavior. However, 574 

the specific algorithms that we found best fit the mouse behavior may or may not be directly 575 

implemented in the brain. The demonstration that multiple distinct algorithms can similarly 576 

model behavior underscores this point, and draws our focus in considering neural representations 577 

to the features described above that are shared by the models. We hypothesize that whatever 578 

algorithm the brain relies on for this task, it is combined with a stochastic action policy to 579 

produce the behavior we observe. We note that it is possible that a policy that appears stochastic 580 

behaviorally can be traced to neural origins that are deterministic.   581 

 582 

Furthermore, past work has hypothesized that recursive algorithms that compress information 583 

over a sequence of trials to a small number of variables are neurally plausible (Dayan and Daw 584 

2008). Here, we show that some recursive algorithms (i.e., original HMM) struggle to explain 585 

switching behavior, while non-recursive models (i.e., logistic regression) perform well. This 586 

poses a potential challenge to this hypothesis. However, we were to able derive alternative 587 

recursive algorithms (i.e., DDM and sticky HMM) that explain behavior. Additional models that 588 

capture more complex state representations beyond the latent structure of the task will likely be 589 

important in parsing neural activity that corresponds to nonstationary decision policies, as 590 

described in recent work (Ashwood, Roy, and Bak 2020; Zoltowski, Pillow, and Linderman 591 

2020). 592 

 593 

 594 

Materials and Methods 595 

Behavior apparatus 596 
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The arena for the two-armed bandit task was inspired by previous work (Tai et al. 2012). 597 

Behavior experiments were conducted in 4.9” x 6” custom acrylic chambers. Each chamber 598 

contained three nose ports with an infrared-beam sensor (Digi-Key, 365-1769-ND) to detect 599 

entry of the snout into the port. A colored LED was positioned above each port. For the two side 600 

ports, water was delivered in 2.5 µL increments via stainless steel tubes controlled by solenoids 601 

(The Lee Co, LHQA0531220H). The timing of task events was controlled by a microcontroller 602 

(Arduino) and custom software (MATLAB).  Plans for an updated version of the behavioral 603 

system, including the most recent hardware and software, are available online: 604 

https://edspace.american.edu/openbehavior/project/2abt/ and 605 

https://github.com/bernardosabatinilab/two-armed-bandit-task 606 

 607 

Behavior task 608 

Wild-type mice (C56BL/6N from Charles River and bred in house) aged 6-10 weeks were water 609 

restricted to 1-2 mL per day prior to training and maintained at >80% of full body weight. While 610 

performing the task, mice moved freely in the chamber. Activation of an LED above the center 611 

port indicated that the mouse could initiate a trial by nose poking into the center port. Doing so 612 

activated LEDs above the two side ports, prompting the mouse to choose to nose poke to the 613 

right or left. The mouse had 2 s to make its selection. Following side port entry, the computer 614 

determined whether or not to deliver a water reward according to the corresponding port reward 615 

probability and the result of pseudo-random number generation. Withdrawal from the side port 616 

ended the trial and started an inter-trial interval (ITI). The 1 s ITI followed selection, during 617 

which time the system assigned the reward probabilities for the next trial according to a Markov 618 

decision process (0.98 probability that high and low port assignments remained the same, 0.02 619 

probability the assignments reversed). After the 1 s minimum ITI, the center port LED turned on 620 

and the mouse was permitted to initiate the next trial (with no upper limit to trial initiation time). 621 

The duration of each behavior session was 40 minutes, over which the mouse typically earned 622 

>350 rewards. All training sessions were conducted in the dark or under red-light conditions. 623 

 624 

Data Analysis 625 

 626 

Models of mouse behavior 627 
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All behavior models were trained on 70% of sessions and tested on the remaining held-out data. 628 

For models predicting mouse choice on previous mouse behavior (Figures 3-5), model 629 

predictions were taken as the mean across 1000 repetitions on bootstrapped test data to acquire 630 

representative estimates of choice and switch probabilities.  631 

 632 

Hidden Markov model of mouse port choice behavior 633 

We built an HMM that computes its posterior belief (𝑏𝑡+1) that on the next trial 𝑡 the latent state 634 

of the system (𝑧𝑡+1), i.e., the port most likely to yield reward, is equal to 𝑘. This belief state is 635 

recursively updated by incorporating evidence from the previous trial, and used as a predictive 636 

estimate by incorporating knowledge of the transition matrix. To compute the probability 𝑏𝑡+1, 637 

we take the sum across the joint probability of transitioning from state 𝑧 = 𝑘 on the next trial and 638 

the likelihood of observing the specific action-outcome combination given that state (emission 639 

probability), weighted by the prior belief for both right and left states (the exhaustive set of 640 

states): 641 

 642 

𝑏𝑡+1 = ∑ 𝑃𝑘 (𝑧𝑡+1|𝑧𝑡 = 𝑘) ∙ 𝑃(𝑟𝑡|𝑧𝑡 = 𝑘, 𝑐𝑡) ∙ 𝑏𝑡,𝑘. 643 

 644 

Here, as a single order Markovian model, the probability of a state transition is fully captured by 645 

the current state so that 𝑃(𝑧𝑡+1|𝑧𝑡) = 𝑃(𝑧𝑡+1|𝑧1:𝑡), where 𝑧𝑡 represents the state at trial 𝑡 and 𝑧1:𝑡 646 

all the states up to the current one. The likelihood of evidence from the most recent trial 647 

(emission probability) is captured by the conditional probability of reward (𝑟), given the latent 648 

state (𝑧) and the mouse’s choice (𝑐).  649 

 650 

We implemented the ideal HMM using Python code available on GitHub 651 

(https://github.com/lindermanlab/ssm). For the ideal agent we built a model with two discrete 652 

latent states and access to the true transition and emission matrices. For example, for the version 653 

of the task where P(reward|high-choice)=0.8, the emission probabilities 𝑃(𝑟𝑡|𝑧𝑡 , 𝑐𝑡) = [0.8, 0.2] 654 

and transition probabilities 𝑃(𝑧𝑡+1|𝑧𝑡) = [0.98, 0.02]. To test the HMM’s performance at 655 

predicting mouse choice, we fed the model action and outcome data from sequences of trials. For 656 

each session, the model was initialized with equal priors for the right and left state, after which 657 

the model iteratively updated its belief by advancing through the trial sequence. 𝑏𝑡+1 has upper 658 
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and lower bounds constrained by the nonstationary dynamics of the latent state, captured by the 659 

predictive probability of 𝑃(𝑧𝑡+1|𝑧𝑡). The posterior estimate for each trial was passed through an 660 

action policy to make a prediction of mouse behavior (see below). 661 

 662 

Hidden Markov model fit to mouse behavior 663 

We considered that the world-state transition and emission probabilities hard-coded into the 664 

HMM are not known to the mouse. To optimize the fit of our HMM to the mouse’s behavior, we 665 

ran a grid search over transition and emission probabilities on bootstrapped training data and 666 

calculated the log likelihood of the data given the model using each parameter set. We 667 

maximized this function to select the parameters used in our “fit HMM” and evaluated on 668 

bootstrapped test dataset (30% of data) as presented. 669 

 670 

Logistic regression  671 

We compute the conditional probability of choice given data from previous choices and rewards 672 

using a logistic regression to compute the log-odds, ψ: 673 

 674 

P(𝑐𝑡+1 = 1|c1:t, r1:t) = σ(ψt+1) 675 

 676 

The full logistic regression model uses the weighted linear combination of the action (choice), 677 

reward outcome, and action-outcome interaction history from previous trials to calculate the log-678 

odds of mouse choice for the next trial: 679 

 680 

ψt+1 = ∑ 𝛼𝑖𝑐𝑡̅−𝑖
𝐿1
𝑖=0 + ∑ 𝛽𝑖𝑐𝑡̅−𝑖𝑟𝑡−𝑖 + ∑ 𝛾𝑖𝑟𝑡−𝑖

𝐿3
𝑖=0 + 𝜖

𝐿2
𝑖=0 , 681 

 682 

where 𝛼, 𝛽, and 𝛾 represent the weights on input features for choice, encoding of choice-reward 683 

interaction, and reward across trials back to L1, L2, and L3, respectively. For the features, 𝑐𝑡̅−𝑖 684 

represents whether the mouse made a choice to the left or right (1 or -1 respectively), 𝑟𝑡−𝑖 685 

represents whether or not the mouse received a reward (1 or 0, respectively), and 𝑐𝑡̅−𝑖𝑟𝑡−𝑖 the 686 

interaction between choice and reward (1 when rewarded left, -1 when rewarded right, 0 687 

otherwise) on the ith-back trial. 𝜖 represents the overall port bias. To fit the model, we split our 688 

data into training and testing datasets. We used cross validation to fit the hyperparameters L1, L2, 689 
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and L3 as 1, 5, and 0 respectively, to arrive at the reduced form of the model presented in the text 690 

and Figure 4: 691 

ψt+1 = 𝛼𝑐𝑡̅ + ∑ 𝛽𝑖𝑐𝑡̅−𝑖𝑟𝑡−𝑖

5

𝑖=0

 692 

 693 

Formulation of a drift diffusion model from empirical logistic regression 694 

We use the exponential function, 695 

𝛽𝑖 = 𝛽𝑒−
𝑖

𝜏, 696 

 697 

to approximate the weights on the encoded choice-reward history. Substituting this 698 

approximation in the reduced logistic regression, we compute the log-odds as: 699 

 700 

𝜓𝑡+1 ≈ 𝛼𝑐𝑡̅ + 𝛽 ∑ 𝑒−𝑖/𝜏𝑐𝑡̅−𝑖𝑟𝑡−𝑖

∞

𝑖=0

 701 

 702 

from which we define the recursive quantity, 𝜙𝑡, 703 

 704 

𝜙𝑡 ≜ 𝛽 ∑ 𝑒−𝑗/𝜏𝑐𝑡̅−𝑗𝑟𝑡−𝑗

∞

𝑗=0

 705 

= 𝛽𝑐𝑡̅𝑟𝑡 + 𝑒−𝑗/𝜏 ∙ 𝛽 ∑ 𝑒−𝑗/𝜏𝑐𝑡̅−1−𝑗𝑟𝑡—1−𝑗

∞

𝑗=0

   706 

= 𝛽𝑐𝑡̅𝑟𝑡 + 𝑒−𝑗/𝜏𝜙𝑡−1. 707 

Thus, we define the log-odds as: 708 

𝜓𝑡+1 = 𝛼𝑐𝑡̅ + 𝜙𝑡 . 709 

 710 

We fit the free parameters 𝛼, 𝛽, and 𝜏 using stochastic gradient descent on the training set and 711 

estimated parameter error with bootstrapped confidence intervals. 712 

 713 

Mathematical correspondence between HMM and DDM 714 
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The HMM is characterized by the belief state 𝑏𝑡+1 = (𝑏𝑡+1,𝐿 , 𝑏𝑡+1,𝑅) representing the 715 

distribution over the latent state 𝑧𝑡+1 given preceding choices and rewards. Since the belief state 716 

is a probability vector, we know 𝑏𝑡+1,𝑅 = 1 − 𝑏𝑡+1,𝐿. As described above, the belief states can be 717 

computed recursively to account for information obtained on each trial. Here we show how the 718 

recursive belief state updates are related to the recursive log-odds calculations of the DDM.  719 

 720 

To make the correspondence, rewrite the belief state updates in terms of the log-odds ratios. Let 721 

Ψ𝑡+1 = 𝜎−1(𝑏𝑡+1,𝐿) =  log
𝑏𝑡+1,𝐿

1−𝑏𝑡+1,𝐿
  denote the log-odds ratio of the belief state at trial 𝑡 + 1. 722 

Like the belief state, the log-odds can be computed recursively,  723 

 724 

Ψ𝑡+1 = 𝑓(Ψ𝑡
(𝑐)

; 𝑞)  where Ψ𝑡
(𝑐)

= 𝜎−1(𝑝) 𝑐𝑡̅𝑟𝑡̅ + Ψ𝑡 725 

and where 726 

𝑓(Ψ𝑡
(𝑐)

; 𝑞) = −σ−1(q) + log
1 + 𝑒Ψ𝑡

(𝑐)
+𝜎−1(𝑞)

1 + 𝑒Ψ𝑡
(𝑐)

−𝜎−1(𝑞)
 ≈ 𝜎−1(𝑞) tanh(

2𝑞 − 1

𝜎−1(𝑞)
Ψ𝑡

(𝑐)
) 727 

In these equations, in a manner analogous to the definition of  𝑐𝑡̅, we use  𝑟𝑡̅ which takes the 728 

value 1 if a reward was delivered and -1 if no reward was received. 𝑟𝑡̅ can be calculated from 𝑟𝑡 729 

(which was used above and takes values of 0 and 1 for unrewarded and rewarded outcomes, 730 

respectively) as  𝑟𝑡̅ = 2𝑟 − 1.  In addition, 𝑞 ∈ [0.5, 1) is the probability that the system state 731 

remains the same, 𝑝 is the probability of receiving a reward upon choosing the correct port, and 732 

𝜎−1(𝑥) = log
𝑥

1−𝑥
 denotes the “logit” function; i.e. the inverse of the logistic function. (Due to 733 

the symmetric design of the experiment, 𝑝 is also the probability of not receiving a reward upon 734 

choosing the incorrect port.)  735 

 736 

Though these equations may look rather complicated, they have many intuitive properties. First, 737 

the log-odds recursions split into a “conditioning” step in which current log-odds Ψ𝑡 are updated 738 

with new information from the current choice 𝑐𝑡̅ and reward 𝑟𝑡̅ to obtain Ψ𝑡
(𝑐)

. This step depends 739 

on the same features as the logistic regression model presented above, and the coefficients are 740 

functions of the reward probability 𝑝.  741 

 742 
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Second, the “prediction” step passes the conditioned log-odds through a nonlinear transformation 743 

𝑓(Ψ𝑡
(𝑐)

; 𝑞) to obtain log-odds for the next trial. This nonlinear function saturates at ±𝜎−1(𝑞), 744 

implying that the log-odds cannot exceed the log-odds of the transition probability. This makes 745 

sense since, even if the mouse knew the state at trial 𝑡, there is always probability 1 − 𝑞 that it 746 

will change on the next trial. Moreover, the nonlinearity is steepest when there is substantial 747 

uncertainty (Ψ𝑡
(𝑐)

≈ 0). In that regime, a rewarded choice has a large influence, whereas when 748 

the mouse is already quite certain, one more rewarded choice won’t change the log-odds by 749 

much.  750 

 751 

An important difference from the empirically determined logistic regression model is that here 752 

the model treats rewarded and unrewarded actions symmetrically – i.e. repeating an action and 753 

receiving a reward updates the log-odds ratio in the same way as switching actions and not 754 

receiving a reward (and similarly for repeat-no reward and switch-reward). In reality, the mice 755 

are less sensitive to omitted rewards with repeated actions and repeat themselves much more 756 

than the HMM predicts, as shown in the main text. This discrepancy suggests a simple 757 

modification of the ideal HMM model to account for the stickiness of observed behavior. 758 

 759 

Augmenting the HMM with “sticky” dependencies 760 

We proposed a hybrid model that combines the belief states of the HMM with the stickiness of 761 

the logistic regression model.  The log-odds are given by, 762 

Pr( 𝑐𝑡+1 = 1 ∣∣ 𝑐1:𝑡 , 𝑟1:𝑡 ) = 𝜎(∑ 𝛼𝑖𝑐𝑡̅−𝑖

𝐿1

𝑖=0

+ 𝛽 Ψ𝑡+1)  763 

in which Ψ𝑡+1 are the log-odds of the belief state from the HMM, which are a function of the 764 

past choices and rewards, as well as the reward probability 𝑝 and the transition probability 𝑞. In 765 

this case, the previous actions are explicitly given to the model, allowing a bias towards 766 

repeating the last action if 𝛼>0. This model achieves the same performance as the logistic 767 

regression model with 𝐿1 = 3 preceding choices. Note that the mouse does not have access to the 768 

true rewards and transition probabilities, and the best model of mouse behavior may be obtained 769 

with different values of those parameters. Indeed, we find that the best model of mouse behavior 770 

uses an overestimate of the reward probability (0.91 when the true probability is 0.80) and an 771 
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underestimate of the transition probability (0.86 when the true probability is 0.98). This suggests 772 

that the mice tend to attribute randomness of rewards to changing world state.  773 

 774 

Simplified HMM log-odds update  775 

We can further simplify the log-odds calculation by the HMM to build intuition for the model 776 

behavior. From above, if we start with the predictive log-odds as: 777 

Ψ𝑡+1 = −σ−1(q) + log
1 + 𝑒Ψ𝑡

(𝑐)
+𝜎−1(𝑞)

1 + 𝑒Ψ𝑡
(𝑐)

−𝜎−1(𝑞)
, 778 

and we define the odds ratio as: 779 

𝑅 = 𝑒Ψ, 780 

then taking the logit function, σ−1, as defined above such that: 781 

𝑒σ−1
=

𝑞

1 − 𝑞
, 782 

we can write: 783 

𝑒Ψ𝑡
(𝑐)

+𝜎−1(𝑞) = 𝑅𝑡
(𝑐)

(
𝑞

1 − 𝑞
) 784 

and 785 

𝑒Ψ𝑡
(𝑐)

−𝜎−1(𝑞) = 𝑅𝑡
(𝑐)

(
1 − 𝑞

𝑞
). 786 

Plugging this into our predictive log-odds from above, we obtained a simplified formula for the 787 

predictive odds ratio for the next trial: 788 

𝑅𝑡+1 = (
1 − 𝑞

𝑞
) (

1 + 𝑒Ψ𝑡
(𝑐)

+𝜎−1(𝑞)

1 + 𝑒Ψ𝑡
(𝑐)

−𝜎−1(𝑞)
) = (

1 − 𝑞

𝑞
) (

1 + 𝑅𝑡
(𝑐)

(
𝑞

1 − 𝑞
)

1 + 𝑅𝑡
(𝑐)

(
1 − 𝑞

𝑞 )
) =

1 − 𝑞 + 𝑅𝑡
(𝑐)

𝑞

𝑞 + 𝑅𝑡
(𝑐)(1 − 𝑞)

 789 

which is a function of the conditional odds ratio and the state transition probability q. We can 790 

define the odds that the state stays the same, as: 791 

𝑠 =
𝑞

1 − 𝑞
 792 

such that, 793 

𝑅𝑡+1 =
1 + 𝑠𝑅𝑡

(𝑐)

𝑠 + 𝑅𝑡
(𝑐)

  794 

and 795 
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𝑅𝑡+1 =
1 + 𝑠𝑥𝑐𝑡̅𝑟𝑡̅𝑅𝑡

𝑠 + 𝑥𝑐𝑡̅𝑟𝑡̅𝑅𝑡
 796 

for which we defining the odds of the emission probabilities as: 797 

𝑥 =
𝑝

1 − 𝑝
 798 

We know that the conditional log-odds of port choice are a recursive function of previous 799 

choices and rewards: 800 

Ψ𝑡
(𝑐+1)

= 𝜎−1(𝑝) 𝑐𝑡̅𝑟𝑡̅ + Ψ𝑡 801 

such that we arrive at a simplified form of the conditional odds ratio: 802 

𝑅𝑡
(𝑐)

= 𝑒Ψ𝑡
(𝑐)

= 𝑥𝑐𝑡̅𝑟𝑡̅𝑅𝑡 . 803 

Therefore, given that 𝑐𝑡̅𝑟𝑡̅ is either +1 or -1, we need only consider two cases by which the odds 804 

ratio from the previous trial is updated using this current evidence, the odds ratio that the world 805 

state has changed, and the emission probabilities.  806 

 807 

In the +1 case: 808 

𝑅𝑡+1 =
1 + 𝑠𝑥𝑅𝑡

𝑠 + 𝑥𝑅𝑡
 809 

and in the -1 case:  810 

𝑅𝑡+1 =
1 + 𝑠𝑥−1𝑅𝑡

𝑠 + 𝑥−1𝑅𝑡
=

𝑥 + 𝑠𝑅𝑡

𝑠𝑥 + 𝑅𝑡
 811 

Describing the update in terms of these variables provides intuition for the behavior of the ideal 812 

HMM in several key ways. First, the upper bound of the predictive odds ratio is the odds that the 813 

state stays the same, 𝑠 =
𝑞

1−𝑞
, and the lower bound is the odds that the state changes, 𝑠−1. 814 

Additionally, after receiving a reward, the odds ratio is further constrained by the values of the 815 

emission probabilities, such that 
1

𝑠𝑥
≤  𝑅𝑡+1 ≤ 𝑠𝑥. Finally, both states are equally likely under the 816 

HMM when the conditional odds ratio, 𝑅𝑡
(𝑐)

, and accordingly the predictive odds ratio, 𝑅𝑡+1, are 817 

equal to 1. 818 

 819 

Generative model simulations of behavior and expected reward 820 

To evaluate model performance independent of the actual history of mouse behavior, we ran 821 

both the HMM and DDM as generative models to produce a simulated dataset of model 822 
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behavior. We simulated the task with the location of the high rewarding port (P(reward|high-823 

choice)=0.8) determined by a Markovian process with a transition probability of 0.02, and 824 

preserved the session structure that the mice experienced, such that the number of trials in each 825 

session was drawn from a distribution based on the mouse behavior. Each model was given the 826 

same set of sessions, and played until a simulated dataset the same size as the mouse dataset was 827 

generated. We ran this simulation for 1000 repetitions to create the averaged performance 828 

presented in Figure 6. 829 

 830 

For the HMM, we used the ideal model given the true task parameters, and after random 831 

initialization for the first choice allowed the model to recursively update its belief given its own 832 

actions and associated outcomes to guide future choices. We generated behavior from an HMM 833 

Thompson sampling on its belief to correspond with the stochastic policy of the DDM (Figure 834 

6B, 7C) and acting greedily on its belief (Figure 7C). For the DDM, the model played using the 835 

fit parameters of the mouse in the corresponding P(reward|high-choice) task condition. The 836 

expected reward landscape was calculated by performing a parameter grid search with this 837 

simulation.  838 

 839 

Policy implementation 840 

We used both deterministic and stochastic action policies to predict choice on the subsequent 841 

trial from model posterior. The greedy policy was implemented such that the model 842 

deterministically selected the higher probability choice from the model estimate as its prediction 843 

of the mouse’s choice: 844 

𝑐𝑡+1 = 𝑎𝑟𝑔𝑚𝑎𝑥 (𝑚𝑡+1), 845 

 846 

where 𝑚𝑡+1 corresponds to the HMM’s 𝑏𝑡+1 and the logistic regression-derived probabilities 847 

𝜎(𝜓𝑡+1), and 𝑐𝑡+1 corresponds to the predicted choice. The stochastic policy we used selects 848 

choice at a rate proportional to the model posterior: 849 

𝑐𝑡+1 = {
0 ∝ 𝑚𝑡+1(0)

1 ∝ 𝑚𝑡+1(1)
 850 

 851 
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Supplementary Figure 1. Individual mouse behavior and decision times. (A) Probability density distributions of 

trial times for each mouse (thin line). left: Distribution of time from center port to side port (decision time), right: 

distribution of time from center port to center port (trial initiation to next trial initiation). The most extreme trials 

(𝛥𝑡 > 10𝑠, comprising <1% trials) were excluded. Probability densities integrate to 1 across the continuous 

distribution of durations. (B) left: Probability density distributions of decision times (center port to side port) for 

trials in which the mouse switched ports vs. those in which the mouse repeated its decision at the same port. middle: 

Distributions for individual mice on “repeat” trials, right: distributions for individual mice on “switch” trials. (C) 

left: Probability density distributions of trial duration (center port to center port, including intertrial interval) 

following reward vs. following no reward. middle: Distributions for individual mice following no reward, right: 

distributions for individual mice following reward. (D) Conditional switch probabilities for each action-outcome 

trial sequence of history length 3 for each mouse. Each symbol indicates the mean switch probability following the 

corresponding action-outcome history across all trials for each mouse. History sequences are sorted by the aggregate 

conditional switch probabilities of all mice (black line). 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 14, 2021. ; https://doi.org/10.1101/2021.05.13.444094doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.13.444094
http://creativecommons.org/licenses/by-nc-nd/4.0/


 42 

 
 
Supplementary Figure 2. Contribution of longer trial histories to conditional switch probabilities. (A) 

Proportion of expressed action and outcome history sequences with standard error (SEM) less than 20% (solid line), 

and the corresponding proportion of trials (dashed line) as a function of increasing history length. (B) Average 

likelihood estimates for the empirical nonparametric policies on training and testing data, using 5-fold cross 

validation. Error bars show standard error of the estimates. (C) Conditional switch probabilities given action-

outcome trial sequences of length 4 (top), 5 (middle), and 6 (bottom), where high error (s.e.m.>20%) history 

sequences, which correspond to infrequent sequences, have been excluded. Exclusion of these sequences is 

necessary since, if a sequence is expressed only once it will trivially deterministically evoke a single behavior. 

Similarly, at low trial numbers, stochasticity is difficult to establish.  Insets: Confusion matrices for nonparametric 

policies of each history length for right and left port choice (left) and repeat and switch (right). 
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Supplementary Figure 3. Stationarity of behavioral characteristics within sessions. (A) Conditional switch 

probabilities for each quartile of a session (Q1 to Q4), overlaid on aggregate switch probabilities (black line). 

Binomial standard error shown for aggregate conditional switch probabilities. (B) Absolute value differences () for 

each action from the confusion matrices in Figure 2E (aggregate data) for each within-session quartile. (C) 

Probability that the mouse chose the high reward probability port (left) and switched ports (right) as a function of 

trial number surrounding state transition (block position 0) for each quartile of a session. Dark lines show the mean 

across trials at the same block position and the shading shows the standard error. (D) Probability density 

distributions of trial times for each quartile in a session. Left: Distribution of time from center port to side port 

(decision time), right: distribution of time from center port to center port (trial initiation to next trial initiation). 

Probability densities integrate to 1 across the continuous distribution of durations. 
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Supplementary Figure 4. Stationarity of behavioral characteristics across sessions. (A) Conditional switch 

probabilities for session quartiles over the duration of training (i.e., Q1 for early training sessions, Q4 for late 

training sessions), overlaid on aggregate switch probabilities (black line). Binomial standard error shown for 

aggregate conditional switch probabilities. (B) Absolute value differences () for each action from the confusion 

matrices in Figure 2E (aggregate data) for each across-session quartile. (C) Probability that the mouse chose the high 

reward probability port (left) and switched ports (right) as a function of trial number surrounding state transition 

(block position 0) for each across-session quartile. Dark lines show the mean across trials at the same block position 

and the shading shows the standard error. (D) Probability density distributions of trial times for each across-session 

quartile. Left: Distribution of time from center port to side port (decision time), right: distribution of time from 

center port to center port (trial initiation to next trial initiation). Probability densities integrate to 1 across the 

continuous distribution of durations.  
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Supplementary Figure 5. Alternative parameterizations of Hidden Markov models fail to capture mouse 

behavior. (A) Absolute values of the differences between each of the HMM's confusion matrices and nonparametric 

confusion matrix (Figure 2E). Models, as designated by the labeled indicators: an HMM using the true emission and 

transition probabilities from the task coupled with a greedy policy, and separately with a stochastic probability 

matching policy, as well as an HMM using the mouse-fit emission and transition probabilities with each policy. (B) 

Conditional switch probabilities predicted by each HMM plotted against those observed in mice. Dashed line 

indicates the unity line. Model indicators correspond to those of (A). (C) Conditional switch probabilities predicted 

by each HMM, overlaid on the conditional switch probabilities of the mouse (black line). Each data point represents 

the predicted conditional switch probability by the associated HMM for a given history sequence. Error bars show 

the binomial standard error for the mouse conditional switch probabilities. Histories are sorted by mouse conditional 

switch probability. (D) Probabilities of choosing the high reward probability port (left) and of switching ports (right) 

as a function of trial number surrounding state transition (block position 0) for each HMM (colors, corresponding to 

(A)), as well as for the observed mouse behavior (gray). Dark lines show the mean across trials at the same block 

position, and the shading shows the standard error. 
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Supplementary Figure 6. Mouse behavior across different reward probability conditions. (A) Conditional 

switch probabilities for mice performing the task with P(reward|high-choice)=0.9 (top), P(reward|high-choice)=0.8 

(middle, as in Figure 2D), and P(reward|high-choice)=0.7 (bottom). For each reward probability set, P(reward|low-

choice) = 1-P(reward|high-choice). (B) Summary of probabilities with which mice chose the high reward probability 

port (left) and switched ports (right) as a function of trial number surrounding the state transition (block position 0) 

for each reward probability set. Dark lines show the mean across trials at the same block position and the shading 

shows the binomial standard error. 
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Supplementary Table 1. Individual mouse summary statistics for task performance. 

 

 
Supplementary Table 2. Log-likelihoods of held-out data given each model. The nonparametric model uses 

history length 3, and the logistic regression is the reduced logistic regression with six input features. ‘HMM, true’ 

refers to the Thompson sampling HMM with the true task parameters, and ‘HMM, fit’ refers to that with the mouse-  
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