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Abstract1

The representation of episodes is a fundamental requirement for forming episodic memories,2

but the specific electrophysiological mechanisms supporting episode construction in the human hip-3

pocampus remain unknown. Experiments in rodent models indicate that a population of neurons4

sensitive to edges of an environment, termed border or boundary neurons in spatial navigation,5

fulfills a role analogous to episode demarcation. We hypothesized that such boundary neurons6

could be identified in the human mesial temporal lobe, with firing rates sensitive specifically to7

the beginning and end of mnemonically-relevant episodes in the free recall task. Using a general-8

ized linear model to control for factors such as encoding success and item onset times along with9

other variables, we found 44 Boundary neurons out of a total 736 single neurons recorded across 2710

subjects. We distinguish boundary neurons from a separate population of ramping neurons, which11

are time-sensitive neurons whose activity provides complementary but distinct information during12

episodic representation. We also describe evidence that the firing of boundary neurons within the13
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preferred windows (at the beginning and end of episodes) is organized by hippocampal theta oscil-14

lations, using spike-field coherence metrics.15

Keywords: Episodic memory, MTL, Episodic boundary, Local field potential, Single unit, Tem-16

poral clustering17

Main18

A key feature of episodic memory is the ability to construct distinct episodes out of continuous19

experience (Howard et al., 2012). Episode construction requires demarcation of when an episode20

begins and ends, facilitating item associations within these temporal boundaries (Clewett et al.,21

2019). Behavioral evidence indicates that the boundaries create a discontinuity in the temporal22

associations of encoded items (Ezzyat & Davachi, 2011), promote the clustering of events by rela-23

tive contexts (DuBrow & Davachi, 2013), and affect the temporal structure of retrieved memories24

(Heusser et al., 2018). The electrophysiological mechanisms of boundary construction constitute25

a critical question in human neuroscience. A direct analogy to episode demarcation may be the26

representation of boundaries in space, a function supported by border neurons or boundary neurons27

(Barry et al., 2006; Savelli et al., 2008; Solstad et al., 2008), which exhibit sensitivity of firing28

rate to geometric boundaries. Based on the hypothesized similarity between spatial and temporal29

contextual representations (see Eichenbaum, 2017), these data predict that temporal analogues of30

border neurons may demarcate episodic boundaries. Preliminary evidence for boundary-like MTL31

activity has come from human subjects viewing movie scenes (Zheng et al., 2021). Another class32

of MTL neurons that may participate in boundary construction is ramping neurons (Tsao et al.,33

2018). Ramping cells exhibit logarithmic decreases (or increases) in firing rate relative to the be-34

ginning or end of groups of events across different time scales (Umbach et al., 2020). However,35

whether ramping neurons co-exist with boundary neurons and how their properties differ remain36

unknown. We sought to find a population of temporal boundary neurons that are distinct from37

ramping neurons as subjects performed an episodic memory task. We identified both classes of38

neurons using activity recorded from microelectrodes implanted in human MTL.39

The microelectrode recordings and initial processing used in this study were previously described40
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in Umbach et al., 2020. Twenty-seven human epilepsy patients with implanted intracranial micro-41

electrodes for seizure recording at Thomas Jefferson University Hospital (TJ) or University of Texas42

Southwestern (UT) participated in the study. The IRBs from both institutions approved this study.43

A total of 40 recording sessions were collected using Behnke-Fried style microelectrodes (Ad-Tech,44

Oak Creek, WI). Identification and isolation of individual units utilized Combinato (Niediek et al.,45

2016), with results directly comparable to other studies in humans (Faraut et al., 2018; Umbach46

et al., 2020). Specifics are reported in Detailed Methods.47

Participants performed a free recall episodic memory task, consisting of between four and 2548

lists comprised of 12 or 15 memory items (common nouns) followed by a math distractor task and49

then a 30- or 45-second retrieval period during which participants freely recalled as many items as50

possible. During the encoding period for each list, subjects were given a sequence of words on a51

laptop screen that each lasted for 1.6 seconds. Each word was temporally separated by a jittered52

gap ranging from 0.8 to 1.2 seconds. In the distractor period, subjects typed in answers to simple53

arithmetic problems (A + B + C = ?), where A, B, and C were random nonzero one-digit integers.54

We defined Boundary and Ramping cells using a generalized linear model (GLM) based identi-55

fication routine motivated by previous studies (Reddy et al., 2020; Tsao et al., 2018; Umbach et al.,56

2020). First, a continuous time series representing probabilistic firing rate was constructed per57

neuron by applying a Gaussian kernel function on the spike train whose values are one at the time a58

spike is detected. The firing rate curve was incorporated into a GLM as the dependent variable. We59

selected independent variables as: 1) boundary for encoding and retrieval epochs in free recall, 2)60

ramping (positive or negative direction corresponding to up or down ramping) during task-relevant61

epochs, 3) item onset of encoded words regardless of recall status, 4) onset of successfully encoded62

words, 5) vocalization at retrieval, and 6) resting or inactive task condition between completion of a63

retrieval epoch and the subsequent encoding epoch. The first two were the predictors of interest in64

modeling, whereas the rest were control predictors for excluding neurons responding to these other65

factors (most importantly, recall success). We used stepwiseglm with log-link function (MATLAB66

2019b, The MathWorks Inc, Natick, MA) to model the firing rate curve assuming an exponential67
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relationship between predictors and the activity. The model selected relevant independent variables68

based on the goodness-of-fit estimated by R2 so that if ∆R2 was larger than 0.01 the model in-69

cluded the predictor, but removed those with ∆R2 lower than 0.005. Further specifics are shown in70

Detailed Methods.71

We required the following three conditions for the definition of a Boundary or Ramping cell: 1)72

the neuron’s firing rate should be modeled significantly by the final model that includes either the73

boundary or ramping predictor (but not both), 2) the magnitude of t score of boundary or ramping74

should be the highest among all included predictors, and 3) log-likelihood for the unrestricted model75

that includes all predictors should be significantly greater than a restricted model excluding only76

boundary or ramping predictor depending on the neuron type of interest (MATLAB’s lratiotest,77

df = 1, p < 0.05). Additionally for Boundary cells, only those with a positive model coefficient78

(U-shape) firing rate changes were included. Boundary or Ramping cell populations were mutually79

exclusive based on these requirements. As a result, we separately identified 44 Boundary (6%)80

and 75 Ramping (10%) neurons out of a total 736 single units. The proportion of Boundary cells81

was significantly smaller than Ramping (Z test, Z = −3.777, p < 0.001). Out of 40 sessions, 1182

contributed at least one Boundary cell, and 18 contributed at least one Ramping cell. Figure 183

shows two sample neurons, and their normalized firing rate curves averaged across all encoding84

and retrieval periods. The resulting curves are consistent with expectations based on the modeling85

criteria, i.e. a Boundary cell exhibits an asymmetric U-shaped curve, while a Ramping cell exhibits86

an increase across the epoch. Figure 2a shows that the average activity curve from all Boundary87

and Ramping cells demonstrate the expected pattern of activity during encoding and retrieval. We88

emphasize that Boundary cell activity does not reflect memory success effects (namely, primacy and89

recency in the free recall task) as neurons responding to encoding success separate from boundary90

conditions are explicitly excluded based on the parameters of the GLM.91

We performed a permutation test to confirm the robustness of Boundary and Ramping detection92

via the GLMs. For each neuron, spike times were circularly randomized maintaining their gap93

lengths to create 1,000 random firing rate curves. The same independent variables modeled the94
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randomized curves. We compared the ratios of positive calls (true positive + false positive) over95

the total (736) for Boundary and Ramping models and compared them against the actual likelihood96

ratios (44/736, 75/736 respectively). Permutation test showed that the actual likelihood ratio is97

significantly higher than the randomized positive likelihood ratio (p < 0.001 for both groups),98

confirming that the actual fraction of Boundary and Ramping found using model definitions is99

significant over chance.100

Figure 1: Characteristics of sample Boundary and Ramping cells. a, Activity (black) of a sample Boundary cell
modeled by predictors of interest (blue) on the top row, excluding the effect of control predictors (red). Activity
curve averaged across all encoding and retrieval conditions of the sample Boundary cell is demonstrated on the right.
b, Activity (black) of a sample Ramping cell modeled by predictors of interest (blue) on the top row, excluding the
effect of control predictors (red). Activity curve averaged across all encoding and retrieval conditions of the sample
Ramping cell on the right.

We related the model coefficients of Boundary and Ramping cells with behavior using 1) perfor-101

mance of free recall, 2) successful recall ratio of the first and last (boundary) items on lists within102

the free recall task, and 3) temporal clustering factor values (TCF), which quantify the tendency of103

recalling contiguously presented items during retrieval (Howard & Kahana, 2002; Manning et al.,104

2012; Polyn et al., 2009; Umbach et al., 2020). We tested for correlations between the magnitude105

of t scores from Boundary and Ramping models and these three behavioral scores observed from106
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sessions corresponding to each neuron, using a median split applied to the magnitude of model-107

derived t scores, with a rank-sum test to compare the behavioral scores from the higher versus108

lower t score groups. Boundary model t scores did not significantly relate to any behavioral score109

(p > 0.182). However, Ramping model t scores predicted the magnitude of temporal clustering110

(p < 0.001) and boundary recall (p = 0.037). Figure 2b represents the result of comparing TCF111

between lower and higher model coefficient groups of Boundary and Ramping cells using rank-sum112

test. Non-parametric Spearman’s correlation confirmed that higher Ramping t scores correlate with113

higher TCF (r = 0.491, p < 0.001), and higher boundary recall (r = 0.326, p = 0.004). Correlation114

with TCF remained significant when incorporating overall performance or boundary recall success115

into the predictive model (partial correlation, r = 0.453, p < 0.001, r = 0.430, p < 0.001, respec-116

tively). This finding for Ramping cells is consistent with our previously published findings related117

to time sensitive cells in the MTL (Umbach et al., 2020). When we compared these two populations118

(Boundary vs Ramping cells) directly using the median difference in temporal clustering score, we119

observed a trend towards significance (Figure 2c, p = 0.086). These findings provide preliminary120

evidence that Ramping but not Boundary cell firing provides the information necessary for making121

temporal associations in the free recall task. We discuss some possible interpretations of these122

findings below.123

We examined whether Boundary and Ramping cells exhibit co-firing. This analysis was mo-124

tivated first by the question of whether Boundary cells represent an integration of Ramping cell125

activity, a model that would entail the expectation of significant co-firing during task. The time126

scale we selected (25 ms) over which to test for co-firing was motivated by the findings of Harris127

et al., 2003, indicating that this specific scale is highly relevant for the construction of neuronal128

assemblies in associative memory formation. Our analysis of co-firing was necessarily limited to129

(six) sessions in which both Boundary and Ramping cells were identified. To maximize sensitivity,130

co-firing instances were separately counted for the earlier and later halves of the entire encoding131

and retrieval periods. A graphical illustration of co-firing analysis is shown in Figure 2d. As such,132

we tested for co-firing during four temporal epochs: earlier and later encoding, and retrieval. Per-133

6

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 29, 2021. ; https://doi.org/10.1101/2021.05.28.446233doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.28.446233


mutation testing using randomized spike times was performed to compare the proportion of real134

co-firing over chance. We found that the Boundary cells co-fire with Ramping cells significantly135

less than chance throughout encoding and retrieval (p ≤ 0.006), except during the second half of136

encoding lists (p = 0.644, Figure 2e). At minimum, these findings indicate that MTL Boundary137

cell firing cannot be explained directly as the integration of Ramping cell activity, although the138

relative scarcity of Boundary cells (with few simultaneous Boundary/Ramping sessions available139

for analysis) limits our conclusions in this regard. However, our observations have some support in140

findings from rodents during spatial navigation, addressed below in the Discussion section.141

Figure 2: Boundary and Ramping cells’ characteristics, behavioral associations and the co-firing of two groups.
a, Activity curve averaged across all encoding and retrieval conditions of Boundary (left) and Ramping (right)
cells. Shades denote SEM. Green denotes average of neurons that have positive model coefficients, and red negative
coefficients. b, Comparison of temporal clustering behavior associated with Boundary (blue) and Ramping (red) cells
demonstrating median-split higher- (darker) and lower- (lighter) magnitude model coefficients. Bar height represents
the mean and error bars the SEM. Star indicates a significant difference (p < 0.05) via rank-sum test. c, Permutation
testing comparing the correlations between the model coefficient and temporal clustering factor for Ramping than
Boundary cells. d, Representation of three cases where any Ramping cells co-fire within ± 25 ms of a Boundary cell
spike, which are labeled Before, After and Both, and a null case where no co-firing occurs. Four time windows of
interest were considered, namely the earlier and later halves of encoding and retrieval periods. e, Permutation tests
comparing the real versus random medians of co-firing fractions. Co-firing was more sparse than chance except for
the later half of encoding.

Phase locking relative to hippocampal theta oscillations may be a mechanism for integrating142

Boundary neurons’ activity with other features of episode representation. We therefore hypothesized143

that phase locking would be greater for spikes occurring at boundaries for Boundary cells, as144
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compared to non-boundary windows. Thus, we tested for theta (<10 Hz) phase locking in Boundary145

cells via spike-field coherence (SFC) (Fries et al., 2001; Fries et al., 1997; Rutishauser et al., 2010), to146

test if they fire more in-phase at boundaries than non-boundary windows. We calculated SFC for all147

spikes in and out of boundary windows per neuron (3 seconds, see Detailed Methods). Boundary148

cells that have at least ten spikes within boundary windows were counted for the calculation,149

and the number of sampled spikes in and out of boundary windows were equalized (via random150

downsampling) to avoid biasing the results based on spike frequency. SFC in and out of boundary151

windows was compared using a permutation test for paired groups per frequency bin, with Holm-152

Bonferroni correction (Holm, 1979). Figure 3 demonstrates that for slower theta (<5 Hz), Boundary153

cells exhibit a significant field coherence in boundary versus non-boundary windows (* correctedp <154

0.01). We also tested for phase precession in Boundary cells, motivated by the properties of place155

cells (Mehta et al., 2002; O’Keefe & Burgess, 2005) and our previous report on phase precession156

of time cells (Umbach et al., 2020). Precession was measured following the approach of Kempter157

et al., 2012. We did not find evidence of phase precession for Boundary cells, as only n ≤ 4 out of158

44 Boundary cells exhibited a significant circular-linear relationship between spike phase and time159

within these firing windows. This is somewhat unsurprising, as phase locking and phase precession160

are complementary mechanisms for organization of spiking activity relative to theta phase.161

This study demonstrates the existence of unique Boundary cells that represent the demarcation162

of events in an episodic memory task, using a GLM-based method to eliminate the effects of item163

onset or recall success. The identification of Boundary cells in the MTL helps explicate the electro-164

physiological mechanisms supporting episodic memory, and their properties have the potential to165

inform models of mnemonic processing. Boundary cells may provide an “anchor” signal to promote166

context reinstatement in models such as the temporal context model (Alexander, Robinson, et al.,167

2020; Hinman et al., 2019; Julian et al., 2018). Boundary signals further establish important par-168

allels between spatial navigation in rodent models and episodic associations in humans (Alexander,169

Robinson, et al., 2020; Barry et al., 2006; Horner et al., 2016; van Wijngaarden et al., 2020; Zheng170

et al., 2021). The significant theta phase locking among Boundary cells specifically during bound-171
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Figure 3: Significant spike-field coherence occurs in boundary compared to non-boundary windows. a, A schematic
description of selecting boundary and non-boundary spikes out of a spike train. A sample segment of firing rate
curve from a Boundary cell (solid blue) is shown superposed on its boundary model predictor (solid green) that
mark boundary windows around the beginning and the end of encoding and retrieval periods (green shade). Arrows
indicate some boundary (blue) and non-boundary (gray) spikes that are potentially included in the SFC analysis.
b, Spike-field coherence for boundary windows in Boundary cells is compared against non-boundary windows in the
same group of neurons using permutation tests. Stars indicate p-values that are corrected with Holm-Bonferroni
method and lower than 0.01. Frequency log-spaced in 1–54 Hz is demonstrated for visualization.

ary representation may provide a direct mechanism for integration of episodic information with172

other populations in the MTL and cortex, potentially incorporating inter-regional phase amplitude173

coupling (D. X. Wang et al., 2021).174

Our data propose important questions regarding the information provided by Boundary cells that175

will require further investigation. First, we found that Boundary cells are relatively less frequent in176

the MTL as compared to Ramping cells (and time cells, see Umbach et al., 2020), which may indicate177

that Boundary cell activity in the MTL reflects sparse coding of a more detailed boundary/episode178

representation occurring elsewhere in the cortex. Our findings have support in existing rodent data,179

in which border-type cells were statistically sparser than ramping cells and are more prominent180

outside the hippocampus (Alexander, Carstensen, et al., 2020; Bjerknes et al., 2014; C. Wang181

et al., 2018; Zheng et al., 2021), such as in rhinal (Gofman et al., 2019) and retrosplenial cortex182
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(Alexander, Carstensen, et al., 2020). Boundary cell activity in regions such as the retrosplenial183

cortex may reflect the integration of cognitive goals and sensory information necessary to determine184

boundary moments and construct episodes (Alexander, Carstensen, et al., 2020; Barry et al., 2006;185

Ezzyat & Davachi, 2011) – such extensive information may not be processed directly in the MTL. By186

contrast, the detailed temporal information from time sensitive cells (ramping and time cells, which187

occur more frequently in the MTL) suggests that time within an episode may be represented more188

directly within the MTL (Umbach et al., 2020). This distinction may reflect the proposed difference189

between more allocentric representations in the MTL, and egocentric representations occurring in190

regions outside the MTL (Alexander, Carstensen, et al., 2020; Bicanski & Burgess, 2020; Gofman191

et al., 2019).192

A distinction in the type of information represented by Boundary versus Ramping cells is also193

suggested by a lack of co-firing on short time scales in our data. This observation has some support194

from rodent findings, in which Bjerknes et al., 2014 showed that border neurons mature earlier195

than grid cells (a proposed spatial memory analogue of Ramping cells) and contribute differently196

to spatial memory. We acknowledge, however, that one must be cautious not to over-interpret197

null results, because only six experimental sessions included both time cells and ramping cells, and198

the identified Boundary and Ramping cells were both in the MTL. Certainly, one would predict199

that two cell groups contribute cooperatively to episode representations. A rodent model shows200

that boundary representation in retrosplenial cortex is at least partially driven by the upstream201

allocentric information from the MTL (van Wijngaarden et al., 2020), and grid cells are known to202

change their mapping depending on environment represented by boundaries (Barry et al., 2007).203

The mechanism of Boundary and Ramping cell integration, perhaps using theta time scales, will204

ultimately require further investigation, potentially combining microelectrode data across regions.205

The lack of a significant behavioral association between Boundary cell firing and temporal clus-206

tering, or recall fraction, may be explained by the fact that episode construction is a fundamental207

requirement of task participation. In other words, the absence of a boundary signal may only occur208

in patients incapable of understanding the task structure who do not participate in memory test-209
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ing, and as such a link with memory behavior is not apparent in our task paradigm. A behavioral210

association for boundary signals may be more readily discernible using experimental paradigms211

that make behavioral demands on transitions among episodes, as suggested by Zheng et al., 2021.212

We note that these preliminary findings echo our own results in which boundary activity was a213

negative predictor of temporal clustering behavior. Such alternate paradigms may further explicate214

whether Boundary cells can fill a hypothesized role as an “anchor” signal in episodic representations215

(Alexander, Robinson, et al., 2020), as boundary information can theoretically provide an internal216

cue for guiding the “tracing” characteristic of episodic representations (Alexander, Robinson, et al.,217

2020; Bicanski & Burgess, 2020; Bicanski & Burgess, 2018). However, our own data do not test218

this idea, since the free recall paradigm cannot identify Boundary cell activity that is unique for219

different contexts. We also note that the specific firing characteristics of the Boundary cells we220

observed, with asymmetrical firing between beginning versus end of temporal epochs, may further221

inform how models of episodic memory account for boundary information in delineating episodes.222

Detailed Methods223

Single cell separations224

Before spike detection and sorting, We filtered the LFP for broadband noise using a volume225

conduction subtraction algorithm (Kota et al., n.d.). Using Combinato, we applied a band-pass226

filter to the raw LFP at 300-1000 Hz for threshold crossing (spike identification), then extracted227

spike features filters at 300-3000 Hz (Niediek et al., 2016). We inspected: i) the shape of the mean228

spike waveform; ii) the fraction of inter-spike intervals shorter than 3 ms; iii) the shape of the229

distribution of inter-spike intervals; iv) the stationarity of unit spiking; and v) similarity to other230

mean spike waveforms (Faraut et al., 2018). We separated 736 single neurons, and their spike trains231

were aligned with the corresponding source microwire’s LFP time series data and downsampled to232

1000 Hz (1 kHz).233

Design of generalized linear model234

We defined the dependent variable of neuronal model using a probabilistic firing rate curve. It235

was constructed from a neuron’s spike train referring to Baranauskas et al., 2012, as shown below:236
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p(t) = exp

(
−(t− ts)

2

2σ2

)
In this equation, p(t) represents the probability of observing spikes or firing rate (Hz), t current237

time, ts the spike time, σ corresponds to the kernel width in our study, fit to 1 second or 1000 ms238

for the unit of Hz.239

Each independent variable was defined as follows. Boundary in active task conditions referred240

to the beginning and the end of encoding and retrieval conditions. The distractor condition is241

automatically accounted for by the boundaries of these two conditions. The beginning and the end242

of the encoding period is defined as the first word onset and 1.5 seconds after the last word onset,243

respectively. Retrieval boundaries are defined at the retrieval onset (beginning) and the end, which244

are at 30 or 45 seconds after the onset. To mitigate the edge effect at the end in case encoding245

and retrieval are close, we subtracted one second margin of error at the retrieval end. At each246

boundary we assigned a value of one, and applied the Gaussian kernel function with σ = 2000 (ms).247

Ramping was modeled as a linear increase of probability from 0 to 1 across encoding, distractor and248

retrieval periods. All encoded words (σ = 500), the successfully encoded words (σ = 1000), and249

vocalizations during retrieval (σ = 1000) were all assigned a value of one at the onset of each event,250

and the Gaussian kernel function with designated σ values was applied. The resting or inactive251

task condition was modeled as uniform one between retrieval and the encoding of the next list.252

Because the result of modeling is dependent on the definition of predictors, we confirmed that the253

Boundary and Ramping cells are significantly categorized over chance with a permutation test using254

a randomized spike times and the same predictors multiple times against the real neurons.255

Detection of preferred theta frequency256

For precession and phase locking analyses, we focused on theta frequency that is divided into257

slower (2–5 Hz) and faster (5–9 Hz) ranges based on previous studies showed that two sub–bands258

have functional dissociation in hippocampus (Goyal et al., 2020; B. C. Lega et al., 2012; B. Lega259

et al., 2016). We defined a preferred theta for both ranges by calculating the oscillatory frequency.260
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We modeled the actual power spectrum of the encoding period (starting at the first encoded item,261

ending at 1.5 seconds post the last encoded item) averaged across all lists to a function A ∗ fα262

referring to Milstein et al., 2009. The power spectra were calculated using Welch’s method (Welch,263

1967) with a 1 kHz sampling rate at each of the log-spaced frequencies for the encoding periods of264

all lists. We first calculated the power difference of the original against the modeled, then selected265

the frequency within slower or faster band that showed the maximum elevation of actual power266

compared to the modeled. Spike phase values were extracted using wavelet transform for each267

neuron’s representative frequency.268

Spike-field coherence269

Spike-field coherence (SFC) is a measure of periodic timing relationship between spikes and the270

background oscillation independent of power spectrum of the LFP as a function of frequency, as271

described in Fries et al., 2001. This is represented as the percentage (0–100%) of the oscillation272

power triggered by spikes above the power averaged across all windows around spikes per frequency273

bins. A higher SFC indicates that spikes follow a particular phase at that frequency band (Fries274

et al., 2001; Rutishauser et al., 2010). To calculate SFC, we acquired spike-triggered average (STA)275

and spike-triggered power (STP). We took a 500 ms long time window of the LFP before and after276

spike time (total 1.001 seconds), downsampled the signal by the factor of four reducing the sampling277

frequency to 250 Hz, and obtained the STA by averaging the time series across all windows. We278

quantified STP by first taking the power spectrum using the multitaper method using Chronux279

toolbox (Jarvis & Mitra, 2001; Mitra, 2007), at 250 Hz (frequency resolution = 4 Hz) with time-280

bandwidth product of four and seven tapers, following Rutishauser et al., 2010. The power spectrum281

from each window was averaged to obtain STP. SFC was the percentage of the power spectrum282

of STA over STP for each frequency bin covered by the multitaper method (<125 Hz). In this283

study, we calculated SFC counting spikes in and out of boundary windows, which are defined as 1.5284

seconds before and after a boundary epoch marking the beginning and the end of encoding, and285

retrieval periods (total four per list). To account for the shorter boundary windows (3.001 secs) in286

comparison to the outside windows, we first counted all spikes in boundary windows and randomly287
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downsampled spikes from non-boundary windows to equalize spike sample sizes.288

Data Availability289

Please contact the corresponding author, Bradley Lega (Bradley.Lega@utsouthwestern.edu) for290

the access to the data and codes implemented for this study.291
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Figure Legends429

Figure 1430

Characteristics of sample Boundary and Ramping cells. a, Activity (black) of a sample Boundary431

cell modeled by predictors of interest (blue) on the top row, excluding the effect of control predictors432

(red). Activity curve averaged across all encoding and retrieval conditions of the sample Boundary433

cell is demonstrated on the right. b, Activity (black) of a sample Ramping cell modeled by predictors434

of interest (blue) on the top row, excluding the effect of control predictors (red). Activity curve435

averaged across all encoding and retrieval conditions of the sample Ramping cell on the right.436

Figure 2437

Boundary and Ramping cells’ characteristics, behavioral associations and the co-firing of two groups.438

a, Activity curve averaged across all encoding and retrieval conditions of Boundary (left) and Ramp-439

ing (right) cells. Shades denote SEM. Green denotes average of neurons that have positive model440

coefficients, and red negative coefficients. b, Comparison of temporal clustering behavior associ-441

ated with Boundary (blue) and Ramping (red) cells demonstrating median-split higher- (darker)442

and lower- (lighter) magnitude model coefficients. Bar height represents the mean and error bars443

the SEM. Star indicates a significant difference (p < 0.05) via rank-sum test. c, Permutation testing444

comparing the correlations between the model coefficient and temporal clustering factor for Ramp-445

ing than Boundary cells. d, Representation of three cases where any Ramping cells co-fire within ±446

25 ms of a Boundary cell spike, which are labeled Before, After and Both, and a null case where no447

co-firing occurs. Four time windows of interest were considered, namely the earlier and later halves448

of encoding and retrieval periods. e, Permutation tests comparing the real versus random medians449

of co-firing fractions. Co-firing was more sparse than chance except for the later half of encoding.450

Figure 3451

Significant spike-field coherence occurs in boundary compared to non-boundary windows. a, A452

schematic description of selecting boundary and non-boundary spikes out of a spike train. A453

sample segment of firing rate curve from a Boundary cell (solid blue) is shown superposed on454

its boundary model predictor (solid green) that mark boundary windows around the beginning and455
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the end of encoding and retrieval periods (green shade). Arrows indicate some boundary (blue)456

and non-boundary (gray) spikes that are potentially included in the SFC analysis. b, Spike-field457

coherence for boundary windows in Boundary cells is compared against non-boundary windows in458

the same group of neurons using permutation tests. Stars indicate p-values that are corrected with459

Holm-Bonferroni method and lower than 0.01. Frequency log-spaced in 1–54 Hz is demonstrated460

for visualization.461
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