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Abstract

Neural responses are variable: even under identical experimental conditions, single
neuron and population responses typically differ from trial to trial and across time.
Recent work has demonstrated that this variability has predictable structure, can
be modulated by sensory input and behaviour, and bears critical signatures of the
underlying network dynamics and computations. However, current methods for
characterising neural variability are primarily geared towards sensory coding in the
laboratory: they require trials with repeatable experimental stimuli and behavioural
covariates. In addition, they make strong assumptions about the parametric form of
variability, rely on assumption-free but data-inefficient histogram-based approaches,
or are altogether ill-suited for capturing variability modulation by covariates. Here
we present a universal probabilistic spike count model that eliminates these short-
comings. Our method builds on sparse Gaussian processes and can model arbitrary
spike count distributions (SCDs) with flexible dependence on observed as well as
latent covariates, using scalable variational inference to jointly infer the covariate-
to-SCD mappings and latent trajectories in a data efficient way. Without requiring
repeatable trials, it can flexibly capture covariate-dependent joint SCDs, and pro-
vide interpretable latent causes underlying the statistical dependencies between
neurons. We apply the model to recordings from a canonical non-sensory neural
population: head direction cells in the mouse. We find that variability in these
cells defies a simple parametric relationship with mean spike count as assumed in
standard models, its modulation by external covariates can be comparably strong
to that of the mean firing rate, and slow low-dimensional latent factors explain
away neural correlations. Our approach paves the way to understanding the mecha-
nisms and computations underlying neural variability under naturalistic conditions,
beyond the realm of sensory coding with repeatable stimuli.

1 Introduction

Classical analyses of neural coding are based on mean spike counts or neural firing rates. Indeed,
some of the most paradigmatic examples of the neural code were discovered by regressing neural
firing rates to particular sensory stimuli [1, 2] or behavioural covariates [3, 4, 5, 6] to characterize their
tuning properties. However, neural spiking is generally not regular. Recordings from many cortical
areas show significantly different activity patterns within and across identical trials [7], despite fixing
experimentally controlled variables. This irregularity is also seen in continual neural recordings
without trial structure [8]. The resulting variability has classically been characterised as ‘Poisson’,
with a Fano factor (variance to mean ratio) of one [9], but experimental data also often exhibits
significantly more [10, 8, 11, 12] and sometimes less [13, 14] variability, respectively referred to
as over- or underdispersion. Moreover, experimental studies have revealed that neural variability
generally depends on stimulus input and behaviour [15, 16, 17, 18], and exhibits structured shared
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variability (‘noise correlations’) across neurons even after conditioning on such covariates. Such cor-
relations can have important consequences for decoding information from neural population activity
[19, 20, 21] and reveal key properties of the underlying circuit dynamics [22]. Moreover, theories
of neural representations of uncertainty have assigned computational significance to variability as
a signature of Bayesian inference [23, 24, 25, 26]. Thus, just as classical tuning curves for firing
rates have been crucial for understanding some of the fundamental properties of the neural code,
a principled statistical characterisation of neural variability, and its dependence on stimulus and
behavioral covariates, is a key step towards understanding the dynamics of neural circuits and the
computations they subserve.

The traditional approach to characterising neural variability has been pioneered in sensory areas,
and relies on repeatable trial structure with a sufficiently large number of trials using identical
stimulus and behavioral correlates [27, 15, 28]. Variability in this case can be quantified by simple
summary statistics of spike counts across trials of the same condition. However, this approach
does not readily generalise to more naturalistic conditions where covariates cannot be precisely
controlled and repeated in an experiment. This more general setting requires statistical methods that
take into account temporal variation of covariates for predicting neural count activity. Generalised
Linear Models are a popular choice [29], but they only model the dependence of firing rates on
covariates – with changes in variability directly coupled to changes in the rate inherent to Poisson
spiking. More complex methods for inferring neural tuning [30, 31] and latent structure [32, 33, 34]
similarly use restrictive parametric families for spike count distributions, and thus also cannot model
changes in variability that are not ‘just’ a consequence of changes in mean counts or firing rates.
Conversely, statistical models capable of capturing arbitrary single neuron count statistics, such as
histogram-based approaches or copulas [35], do not incorporate dependencies on covariates.

Here we unify these separate approaches, resulting in a single framework for jointly inferring neural
tuning, single neuron count statistics, neural correlations, and latent structure. Our semi-parametric
approach leads to a universal count model for counts ranging from 0 to K, in the sense that we can
model arbitrary distributions over the joint count space of size (K + 1)N of N neurons. The trade-off
between computational overhead and model expressivity is controlled by hyperparameters, with
expressivity upper bounded by the true universal model. Our approach extends the idea of a universal
binary count model [36] to a finite range of integer counts, while allowing flexible dependence
on observed and latent covariates to model non-stationary neural activity and correlations. The
flexibility reduces biases from restrictive assumptions in any of the model components. Scalability is
maintained by leveraging sparse Gaussian processes [37] with mini-batching [38, 39] to handle the
size of modern neural recordings.

We first introduce the universal count model, and then describe how to interpret as well as evaluate
model fits. As our model is able to capture arbitrary single neuron statistics, we build on the
Kolmogorov-Smirnov test to construct more absolute goodness-of-fit measures. After validating our
method on synthetic data that cannot be captured by currently used methods, we apply the model to
electrophysiological recordings from two distinct brain regions in mice that show significant tuning
to the head direction of the animal [40, 41]. We find that (1) neural activity tends to be more regular
than common Poisson-like models at higher firing rates, and more irregular at low rates; (2) mean and
variance of counts defy a simple parametric relationship imposed by parametric count distribution
families; (3) variability modulation by behaviour can be comparable or even exceed that of the mean
count or firing rate; (4) a two-dimensional latent trajectory varying on timescales of∼ 1 s is sufficient
to explain away neural correlations but not the non-Poisson nature of single neuron variability. Finally,
we discuss related work, limitations and proposed extensions of our model.

2 Universal count model

Notation Spike count activity of a population of N neurons recorded into T time bins is formally
represented as an N -dimensional time series of non-negative integers. Due to biological constraints,
the possible spike counts have some finite upper bound K, taken as the highest observed count. We
denote probabilities of a spike count distribution (SCD) by a vector π of length K + 1. Additionally,
we denote the count activity over neurons n and time steps t by a matrix Y ∈ [0,K]T×N with
elements ytn. The observed X ∈ RT×Dx and latent Z ∈ RT×Dz covariates (range depends on
topology [42]) similarly consist of elements xtd and ztq, respectively. Generally, we use capital
versions of quantities to denote multidimensional concatenations.
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Figure 1: Schematic of the universal spike count model and the workflow. Left: graphical model
corresponding to Equation 1, with shaded circles as observed, open circles as latent, and squares as
deterministic variables. Filled dots as at φ indicate fixed quantities. Middle: example inference of
model posterior Equation 3, with inferred latent trajectories (green, top) and covariate-dependent
SCDs (blue, bottom) that depend on both observed x and latent z covariates. Note we only show the
posterior over a single SCD evaluated on a (x,z) grid, whereas the full posterior defines SCDs over
all neurons. Right: obtaining interpretable spike count statistics from the SCDs (see subsection 2.3).
Examples show firing rate and Fano factor tuning curves over observed x and latent z covariates,
either jointly (heatmaps) or marginalized (grey curves). The depth of modulation in marginalized
tuning curves is used to extract a tuning index (TI) for the chosen subsets of covariates, see Equation 6.

2.1 Generative model

The big picture is to model counts Y with dependence on X . For each neuron, our model consists of
C Gaussian process (GP) priors, a basis expansion φ : RC → RC̃ , and a linear-softmax mapping

ztq ∼ p(Z; θpr), hcn(·) ∼ GP(0, kcn(·, · ; θGP
cn ))

fcnt = hcn(xt, zt)

πnt = softmax(Wn φ(fnt) + bn)

ynt ∼ Discrete(πnt)

(1)

where kcn is the GP covariance function with kernel hyperparameters θGP
cn . The use of non-parametric

GP mappings with point estimate parameters W and b leads to a semi-parametric model with parame-
ters θ, see details in Appendix E. The overall generative model Pθ(Y |X) is depicted schematically in
Figure 1. Note the model specifies a prior p(Π|X) over joint SCDs, conceptually similar to Dirichlet
priors [36] but allowing non-parametric dependence on X . With latent input Z, our model can
flexibly describe multivariate dependencies in joint SCDs as conditional independence across neurons
no longer holds when marginalizing over Z. In addition, p(Z) models temporal correlations in the
latent states. We use Markovian priors (details in Appendix E)

pθ(Z) = pθ(z1)
T∏
t=2

pθ(zt|zt−1) (2)

denoting θpr with generative model parameters θ for compactness. This allows the model to flexibly
capture both neural and temporal correlations in Y . To attain scalability, we use sparse GPs [37].

Depending on C and basis functions φ(·), we obtain an approximation to the true universal prior
on joint SCDs, with ‘universal’ referring to the ability to capture any joint SCD over all neurons.
Arbitrary single neuron statistics can be captured whenC = K withφ(f) = f , but is computationally
expensive whenN×C � 1. For capturing all correlations, the model also requires a sufficiently large
latent space. One controls the trade-off between model expressiveness and computational overhead
through C and φ. Larger expansions φ allow one to model count distributions more expressively
with small C, e.g. the linear-exponential φ(f) = (f1, e

f1 , f2, e
f2 . . .) covers a range of distributions

including the truncated Poisson with only C = 1 (see subsection B.3).
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2.2 Stochastic variational inference and learning

For the joint model distribution pθ(Y,Π, Z|X) = P (Y |Π) pθ(Π|X,Z) pθ(Z), with count distribu-
tions P (Y |Π), we approximate the posterior by qθ,χ,ϕ(Π, Z|X) of the form

qθ,χ(Π|X,Z) qϕ(Z) =

(
N∏
n

qθ,χ(Πn|X,Z)

) (
T∏
t

qϕ(zt)

)
(3)

with ϕ and χ the variational parameters for latent states and the sparse Gaussian process posterior
(Appendix E), respectively. Note that we use a factorized normal q(Z) for Euclidean Z, and a
wrapped normal for circular Z based on the framework of reparameterized Lie groups [43, 42]. The
posterior over count probabilities qθ,χ(Π|X,Z) is defined as mapping the sparse Gaussian process
posterior qθ,χ(F |X,Z) through Π(F ) (Equation 1), a deterministic many-to-one mapping. This is
analytically intractable, so in practice it is represented by Monte Carlo samples. An upper bound on
the negative log marginal likelihood can be minimized using stochastic variational inference [44]

Fθ,χ,ϕ = −EZ∼qϕ(Z)EΠ∼qθ(Π|XD,Z)

[
log

P (YD|Π) pθ(Π|XD, Z) pθ(Z)

qθ(Π|XD, Z)qϕ(Z)

]
(4)

with D denoting observed data. This objective leads to tractable terms (subsection E.1), allowing us
to infer the approximate posterior as well as a lower bound of the log marginal likelihood [45, 39].
We use Adam [46] for optimization, see details of implementation and model fitting in Appendix E.

2.3 Obtaining interpretable spike count statistics from the model

Characterizing spike count distributions From the posterior q(Π|X)1, we can compute samples
of the posterior of any statistic of spike counts as a function of covariates. Single neuron statistics in
particular can be characterized by tuning curves for both mean firing rates and Fano factors (FF)

ρ(X) =
1

∆
Eq(Π|X)EP (Y |Π)[Y ] FF(X) = Eq(Π|X)

[
VarP (Y |Π)[Y ]

EP (Y |Π)[Y ]

]
(5)

with time bin length ∆. The model also quantifies private neuron variability that cannot be explained
away by regressing to shared input (both observed and latent) through Pn(ytn|xt).

To quantify the sensitivity of a some aspect of neuron activity to a set of covariates x∗, we define a
tuning index (TI) with respect to a count statistic Ty(x∗)

TI =
maxx∗ Ty(x∗)−minx∗ Ty(x∗)

maxx∗ Ty(x∗) + minx∗ Ty(x∗)
(6)

that is evaluated under the mean posterior count distribution marginalized over all other covariate
dimensions complementary to x∗. These marginalized distributions are estimated using the input time
series, see Appendix F. Resulting marginalized tuning curves used for TIs are depicted in Figure 1.

Generalized Z-scores and noise correlations The deviation of activity from the predicted statis-
tics is commonly quantified through Z-scores [8, 47, 17], which are computed as (y − 〈y〉)/

√
〈y〉

with 〈y〉 being the mean count in the time bin. If neural activity followed a Poisson distribution, the
distribution of Z asymptotically tends to a unit normal when N � 1 (Appendix C). We generalize
the Z-score using the probability integral transform and the inverse normal CDF Φ−1(q)

Z = Φ−1(q) with q(y) =

∫ y+ε

0

p(ỹ) dỹ =

y−1∑
k=0

P (k) + εP (y), ε ∼ U(0, 1) (7)

which removes the bias away from Gaussianity at low counts and also generalizes to arbitrary count
distributions. The dequantization noise ε leads to continuous q and Z.

With the Z-score, one can completely describe single neuron statistics with respect to the model.
Correlations in the neural activity however will cause Z-scores to be correlated. We define generalized
lagged correlations rij(∆) ∈ [−1, 1] and Fisher Z ∈ R that is more convenient for statistical testing

rij(∆) = 〈Zi(t)Zj(t+ ∆)〉t, ZFisher =
1

2
log

1 + r

1− r
(8)

which describes spatio-temporal correlations not captured by the model. Noise correlations [48] refer
to the case of ∆ = 0, when rij becomes symmetric.

1For notational convenience, X denotes both observed and latent covariates here.
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2.4 Assessing model fit

Our model depends on a hyperparameter C ≤ K that trades off flexibility with computa-
tional burden. In practice, one likely captures the neural activity accurately with C well be-
low K and a simple basis expansion as the linear-exponential above or quadratic-exponential
φ(f) = (f1, f

2
1 , e

f1 , . . . , f1f2, . . .). This can be quantified by the statistical measures provided
below, and allows us to select appropriate hyperparameters to capture the data sufficiently well.

To assess the model fit to neural spike count data, a conventional machine learning approach is
to evaluate the expected log likelihood of the posterior predictive distribution on held-out data Y ,
leading to the cross-validated log-likelihood

cvLL = Eq(Z)Eq(Π|X,Z)[logP (Y |Π)] (9)

where we cross-validate over the neuron dimension by using the majority of neurons to infer the latent
states q(Z) in the held-out segment of the data, and then evaluate Equation 9 over the remaining
neurons. Without latent variables, we simply take the expectation with respect to q(Π|X). However,
the cvLL does not reveal how well the data is described by the model in an absolute sense. Likelihood
bootstrap methods are possible [28], but become cumbersome for large datasets. To assess whether
the neural data is statistically distinguishable from the single neuron statistics predicted by the model,
we use the Kolmogorov-Smirnov framework [49] along with and q and Z-scores from subsection F.4

TKS = max
i
|F (qi)− qi| (10)

with empirical distribution function F (q), for details see Appendix C. This scalar number is positive
and does not indicate whether the data is less or more regular than predicted by the model. A useful
measure of dispersion is the variance of Z, in particular its logarithm

TDS = log 〈Z2〉T +

(
1

T
+

1

3T 2

)
(11)

which provides a real number indicating over- and underdispersion for positive and negative signs,
respectively. T refers to the number of time steps or Z-score values. Its sampling distribution
under Z ∼ N (0, 1) is asymptotically normal, centered around 0 with a variance depending on T
(Appendix D). This extends the notion of over- and underdispersion beyond Poisson reference models
[50]. To quantify whether the model has captured noise correlations in the data, we can then compute
Z-scores with respect to the mean posterior predictive distribution

Qθ,ϕ(Y |X) =

∫ T∏
t

(
N∏
n

Eq(πnt|xt,zt) [P (ytn|πnt)]

)
qϕ(zt) dzt (12)

Correlations that are caused by co-modulation of neurons by low-dimensional factors can be captured
with latent states Z inferred from the same data. Intuitively, this can be seen as treating latent states Z
as if it was part of observed input or behaviour. Computing Equation 8 should then show a decrease
in correlations r, as the Z-scores are whitened under the posterior predictive distribution.

3 Results

In the following results, we use C = 3 with an elementwise linear-exponential basis expansion as
described in subsection 2.1. This empirically provided sufficient model flexibility to capture both the
synthetic and real data as can be seen in goodness-of-fit metrics. We use an RBF kernel with Euclidean
and cosine distances for Euclidean and angular input dimensions respectively (Appendix E).

3.1 Synthetic data

Animals maintain an internal estimate of their head direction in particular circuits of their brain
[4, 41, 51]. Here, we extend simple statistical models of head direction circuits [52] for validating the
ability of the universal model to capture complex count statistics, as well as neural correlations through
latent structure. The task is to jointly recover the ground truth count likelihoods, their tuning to
covariates, and latent trajectories if relevant from activity generated using two synthetic populations.
The first population was generated with a parametric heteroscedastic Conway-Maxwell-Poisson
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Figure 2: Model validation with two synthetic head direction cell populations. (A) Regression
and latent variable validation experiments with synthetic data from the heteroscedastic Conway-
Maxwell-Poisson population. Error bars indicate standard deviation over cross-validation runs. The
shaded region for TKS indicates a 95% confidence interval. The root mean squared error (RMSE) of
the inferred latent is evaluated with the geodesic distance on the ring Appendix F, with errors bars
indicating s.e.m. of RMSE. (B) Applying regression and latent-regression models to the modulated
Poisson population. We visualize the single neurons fits with Z-scores TDS, and correlations captured
with rij and corresponding Fisher Z values (see subsection 2.4). Variational uncertainties shaded in
tuning curves indicate 5th to 95th percentile bounds, while for q(Z) they indicate standard deviations.
Note that Z-scores are always computed under the posterior predictive distribution Equation 12, with
Z inferred from the same data when a latent space is present.

(CMP) model [53], which has decoupled mean and variance modulation as well as simultaneously
over- and underdispersed activity (Fano factors above and below 1). The second population consists of
Poisson neurons tuned to head direction and an additional hidden signal, which gives rise to apparent
overdispersion [28] as well as noise correlations when only regressing to observed covariates. For
mathematical details, see Appendix F (synthetic populations) and Appendix B (count distributions).

We compare our universal model to the log Cox Gaussian process or Poisson GP model [33] and
the heteroscedastic negative binomial GP (NBh) model which places GP priors on both the rate and
shape parameter, a non-parametric extension of [53]. The more flexible CMPh model, analogous
to NBh, has difficulty in scaling to large datasets due to the series approximation of the partition
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function (Appendix B). To show the power of GP based approaches, we also compare to a universal
model with an artificial neural network (ANN) mapping replacing the GP. For details of the baseline
models, see Appendix F. For cross-validation we split the data into 10 roughly equal non-overlapping
segments, and validated on 3 chosen segments that were evenly spread out across the data. When a
latent space was present, we used 90% of the neurons to infer the latent signal while validating on the
remaining neurons, and repeated this for non-overlapping subsets. We rescale the log likelihoods
by the ratio of total neurons to neurons in subset and then take the average over all subsets to obtain
comparable cross-validation runs to regression.

Figure 2A shows that the universal model successfully captures nontrivial count statistics of the
heteroscedastic CMP population. Baseline models cannot capture cases where the Fano factor drops
below 1, and indeed are outperformed. In addition, we observe that using a Bayesian GP over an
ANN mapping in the model leads to a reduction in overfitting, especially in the latent setting where
the ANN model fails to recover the ground truth latent signal. Figure 2B shows that the modulated
Poisson population activity is seen by a Poisson regression model as overdispersed, indicated by
TDS. Our universal model flexibly captures the overdispersed single neuron statistics, independent
from noise correlations rij that are captured when we introduce a Euclidean latent dimension. As
expected, the Z-score scatter plots shows whitening under the posterior predictive distribution when
the correlations are captured.

3.2 Mouse head direction cells

We apply our universal model to a recording of 33 head direction cells in the anterior nucleus of the
thalamus (ANT) and the postsubiculum (PoS) of freely moving mice [40, 41]. Neural data was binned
into 40 ms intervals, see details in Appendix F. Note that observed count statistics differ with bin sizes
(Appendix A), which is expected as consecutive bins are not independent. Regression was performed
against head direction (HD), angular head velocity (AHV), animal speed and position, and absolute
time, which collectively form XD in this model. We used 64 inducing points for regression, and
added 8 for every latent dimension added (Appendix E). Cross-validation was performed similarly to
the validation experiments, except that we used subsets with 85% of the neurons to infer Z.

Figure 3A shows that for regression NBh performs worst, likely due to overfitting, despite containing
Poisson as a special case (only approximately reachable in practice though, see Appendix B). Only
the universal model captures the training data satisfactorily with respect to confidence bounds for TKS
and TDS, although the data remained slightly underdispersed to the model with TDS values slightly
skewed to negative. Compared to the Poisson model, the cvLL is only slightly higher for the universal
model as the data deviates from Poisson statistics in subtle ways. We see both FF above and below
1 (over- and underdispersed) across the neural firing range in Figure 3B, with quite some neurons
crossing 1. Correspondingly, FF-mean correlations coefficients are often negative. Their spread away
from ±1 indicates firing rate and FF do not generally satisfy a simple relationship, especially for
examples such as cell 27. Furthermore, ANT neurons seem to deviate less from Poisson statistics.
From Figure 3C, we note in particular that FFs tend to decrease at the preferred head direction, but
rise transiently as the head direction approaches the preferred value. We also see that tuning to speed
and time primarily modulates variability rather than firing rates. All of this is impossible to pick up
with baseline models, which constrain FF ≥ 1 as well as FF increasing with firing rate (Appendix B).
Finally, we see more tuning of the firing rate to position in PoS cells.

When adding latent dimensions, Figure 3D shows a peak in the cvLL at two dimensions, where
correspondingly the Fisher Z samples are well described by a unit normal for the first time. Kernel
length scales however did not indicate redundant latent subspaces for higher dimensions as expected
for automatic relevance determination, possibly due to mixing of latent dimensions. Notice the
noise correlation patterns in Figure 3E tend to show positive correlations for similarly tuned neurons
roughly around the diagonal of blocks, as expected from ring attractor models [22]. Intrinsic neuron
variability, roughly quantified by the average FF, further decreased and thus become even more
underdispersed when considering additional tuning to latents, in particular for ANT. In addition,
latent signals primarily modulate firing rate as seen from TIs in Figure 3F. When looking at time
scales of covariates in Figure 3G (computed as the decay time constant of the autocorrelogram
(Appendix F), the latent processes vary on time scales right in the gap of behavioural time scales.

Beside our main contribution of characterising the fine structure of neural variability, our results
have another novel element. Using GP-based non-parametric methods, we successfully estimated
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Figure 3: Application to mouse head direction cells in the anterior nucleus of the thalamus
(ANT) and the postsubiculum (PoS). (A) Goodness-of-fit measures for Poisson, heteroscedastic
negative binomial (NBh) and universal regression models. Error bars indicate standard deviations over
cross-validation runs. Shaded regions for TKS and TDS indicate a 95% confidence interval. (B) Fano
factor (FF) versus the mean count of the predictive distribution across time bins (i.e. marginalising
over input covariates). We also plot the average of the FFs and the Pearson r correlation between FF
and mean count per cell. (C) Visualizing conditional tuning curves, obtained by varying the relevant
covariates while keeping all others fixed (at preferred HD and centre of the arena, with zero speed,
AHV and at time t = 0). These are generally different from marginal tuning curves used for TIs.
Variational uncertainties indicate 5th to 95th percentile bounds. (D) Adding latent dimensions to
the universal regression model. (E) Comparison between the universal model without (Dz = 0)
and with Dz = 2 latent covariates. Neurons in the noise correlation (diagonal elements of rij are
always 1 and not included) plots are ordered by area first (PoS and ANT), and then by preferred head
direction within area. Note that average FF is the same as in (B) but with sampled latents from q(Z)
as part of the input, as if they were observed. (F) Inferred latent timeseries for the 2D latent space
with corresponding TIs. Variational uncertainties indicate standard deviations. (G) Time scales for
covariates computed from their auto-correlations. For reference, horizontal line shows the estimated
lower bound for the time scale of representational drift, computed as the minimum kernel length scale
over absolute time across all neurons.

the tuning of cells to as many as 8 different covariates (6 observed + 2 latent) in a statistically sound
fashion (even previous GP-based approaches considered a maximum of 4 covariates). Specifically,
one of our covariates was absolute experimental time to capture non-stationarities in neural tuning.
As a result, our model captured several experimental phenomena that are studied separately in the
literature: drifting neural representations [54, 55, 56], anticipatory time intervals [52] and conjunctive
tuning to behaviour [57]. We also applied the model in a purely latent setting similar to the example
in Figure 2A, with the universal model uncovering a latent signal more closely correlated to the head
direction compared to baseline models. These additional results are presented in Appendix A.
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4 Discussion

Related work Neural encoding model provide a statistical description of neural count activity,
and typically rely on a parametric count likelihood such as the Poisson [33], negative binomial
[30, 31] or Conway-Maxwell-Poisson distribution [53]. This choice is independent of the empirical
count statistics and is often mismatched to the data. Heteroscedastic count models, characterized by
input-dependent noise [58], additionally regress the dispersion parameter of count distributions to
covariates [59, 60]. This has shown improvements in stimulus decoding and more calibrated posterior
uncertainties [53]. Copula-based models [35, 61] separate marginal distributions of single neurons
from the multivariate dependency structure of the population parameterized by the copula family, and
thus do not place parametric constraints on single neuron count statistics. The idea of a universal
model that can capture arbitrary joint distributions has been explored for binary spike trains [36],
using Bayesian non-parametric models to provide regularization and flexibility [36, 62]. However,
neither approach naturally incorporates modulation of spike count distributions by input covariates.

Our model deals with discrete spike counts ranging from 0 to K in a manner similar to categorical
output variables often considered in machine learning. Similar models have been proposed mainly in
the context of Gaussian process classification [63, 64], which directly pass Gaussian process function
points through a softmax nonlinearity. Our approach instead passes separate Gaussian processes
through a linear-softmax mapping to compute count probabilities. Introducing unobserved input
variables in a Gaussian process model leads to Gaussian process latent variable models [65, 66]. Such
models have recently been applied to neural data to performs dimensionality reduction [33], with
extensions to non-Euclidean latent spaces and non-reversible temporal priors [42, 67].

Limitations and further work The empirical choice of hyperparameters C and basis functions
φ is based on achieving sufficient model flexibility, as confirmed with the Kolmogorov-Smirnov
approach. Recently, a multivariate extension of the Kolmogorov-Smirnov test has been proposed
to directly test multivariate samples against the model [68], instead of looking at single neuron
statistics. Alternatively, one could perform ARD [69, 70] by placing a Gaussian prior on W , allowing
automatic selection of relevant dimensions once a basis expansion is chosen. Another avenue for
future work could consider going completely non-parametric and adding a count dimension to the
input space, which is evaluated at counts 0 to K for every time bin. This however increases the
number of evaluation points by a factor K + 1. In addition, extending our model with more powerful
priors for latent covariates, such as Gaussian process priors [33, 67], can improve latent variable
analysis, especially at smaller time bins where the temporal prior influence becomes more important.
Regularization methods may help to decorrelate inferred trajectories [71, 72].

Conclusion and impact We introduced a universal probabilistic encoding model for neural spike
count data. Our model flexibly capture both single neuron count statistics and their modulation
by covariates. By adding latent variables, one can additionally capture neural correlations with
potentially interpretable unobserved signals underlying the neural activity. We applied our model to
mouse head direction cells and found count statistics that cannot be captured with current methods.
Neural activity tends to be less variable at higher firing rates, with many cells showing both over- and
underdispersion. Fano factors and mean counts generally do not show a simple relation and can even
be decoupled, with Fano factor modulation comparable or in some cases even exceeding that of the
rate. Finally, we found that a 2D latent trajectory with a timescale of around a second explained away
noise correlations in these cells.

Neural variability is usually not considered on the same footing as mean firing rates, with models
assigning most computational relevance to rates [73, 74]. However, recent work on V1 has started
to explore variability as playing a computationally well-defined useful role in the representation of
uncertainty [24, 25, 22, 26]. The framework introduced in this paper provides a principled tool for
empirically characterising neural variability and its modulations – without the biases inherent in
traditional approaches, which would likely miss potentially meaningful patterns in neural activities
beyond mean rates. Our model has the potential to reveal new aspects of neural coding, and may
find practical applications in designing and improving algorithms for brain-machine interfaces. As
progress is made in scaling and applying such technology beyond research environments [75], it
becomes increasingly more important to maintain transparency, e.g. through open source code, and to
raise awareness of potential ethical issues [76].
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Figure 4: Additional analysis on head direction data. (A) Model comparison of universal re-
gression models as in Figure 3 but with different regressors. Adding more behaviour improves the
cross-validated log likelihood, indicating the model does not overfit when including many behavioural
regressors. Error bars here indicate s.e.m. over cross-validation runs. (B) Fano factor and mean
counts as predicted by the mean posterior count distribution, similar to panel (B) in Figure 3. Note
that increasing the bin size leads to higher Fano factors. In addition, notice the consistent decrease
of variability at higher firing rates. (C) Joint tuning curves of firing rate of AHV-HD and time-HD
show two distinct experimental phenomena: anticipatory tuning and neural representational drift,
respectively. The ATI and drifts are quantified by the circular-linear regression method as described
in subsection A.2, with cells selected based on goodness-of-fit to the circular-linear relation. (D) A
pure latent model with a ring topology of the latent variable uncovers a signal closely correlated to the
animal head direction, up to a constant offset, linear drift term and reflection sign (Equation 57). The
universal model outperforms baseline models, and interestingly its RMSE with respect to behavioural
head direction is smallest. In fact, comparing to head direction shifted in time with respect to the
spike train reveals the latent signal to be most correlated to behaviour ∼ −100 ms in the past. Errors
bars in RMSE and cvLL are s.e.m. over cross-validation runs.

A Additional analysis of head direction cells

A.1 Temporal bin sizes

In Figure 4B, we can see the sensitivity of the count analysis to bin length. Note when the bin size
becomes very small leading to low spike counts, differences in count distributions matter less. In the
limit of binary spikes, the count distribution will always be a Bernoulli distribution. In these cases,
the latent trajectory dynamics becomes more important as it captures more of the correlations in time
that were previously captured by non-Poisson count distributions in larger bins. The different results
for different bin lengths is a consequence of consecutive bins being temporally correlated, leading to
more extreme fluctuations in activity and thus higher or lower variability.

Spike count based approaches are inherently more coarse grained than methods dealing directly with
individual spike times based on point processes [1, 2, 49]. In particular, when studying phenomena at
time scales comparable to the interspike intervals, such as theta precession [4, 5], spike count binning
may average away such effects if the bin size is too large. However, binning does reduce the number
of total time points and may be more practical for studying large population activities recorded over
long time periods. Point process models [6] are more suited for describing neural data at shorter time
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scales. However, dependencies of consecutive spike intervals are complicated to model, and often
models based on Markovian dependencies called renewal processes are used [2, 49]. Recent work
with recurrent neural networks [7, 8, 9] and triangular mappings [10] have improved expressivity of
such models.

A.2 Drifting and ATIs

Joint tuning curves can reveal neural representations that are not factorized over a set of covariates.
The Bayesian nature of Gaussian processes takes care of undersampled regions that are rife in high
dimensional input spaces, which is the setting in this work for studying joint tuning to behaviour.

In addition to behaviour, one can pick up representational drift [54, 55] by regressing against absolute
time of the recording. The time regressor needs to be considered carefully as it may confound at
time scales of latent trajectories. As long as the time scale in the kernel is much larger than the time
scale over which the latent variables vary, we can interpret the temporal drift as a separate process
from the latent trajectories. Indeed, by initializing at time scales equal to half the total recording time,
these time scales of the Gaussian process kernel remain significantly higher than any behavioural
time scale (Figure 3G). We find most cells cluster at a drift of ≈ 20 ◦/hr.

The joint AHV-HD plot reveals anticipatory tuning: when animals turn their head, the head direction
tuning curves shift in response to head rotations such that cells expected to spike appear to fire earlier
than expected. Theoretical studies have shown that this improves temporal decoding, in the sense that
the bias-variance trade-off for decoding downstream can be improved with anticipatory tuning [52].
It appears that the head direction population anticipates the future head direction based on current
movement statistics, which allows one to reduce the bias introduced with causal decoding. However,
the ATI values in Figure 4C are negative, while in the literature they are postive and differ per region.
The neural data description files [40] did mention that the zero time frame of behaviour was randomly
misaligned to neural spiking data up to 60 ms. Behaviour may be shifted with respect to the neural
spike train, indeed in preliminary analyses with shifted spike trains we found values consistent with
literature for ATIs when shifiting ≈ 60 ms [52].

A.3 Latent variable analysis of head direction data

In Figure 4D, we see the inferred angular latent signal is closely correlated to the head direction.
The linear drift 3.1 ± 1.2 ◦/hr is smaller but in the same direction as the drift found in the tuning
curves in panel C, which cluster around 20 ◦/hr. The universal model again shows improvement
over baseline models, and in particular the latent signal is more correlated to the behavioural head
direction. and tentatively identify a delay in the signal represented compared to measured behaviour.
Latent trajectory RMSE was computed with 3-fold cross-validation. We align the latent trajectory
Equation 57 to the behaviour in the fitting segment, and compute the geodesic RMSE on the held-out
validation segment (Appendix F).

At a bin size of 40 ms, the continuity of the trajectory breaks down more often. This shows up as more
spread out off-diagonal points in the scatter plot in panel D of Figure 4. Weak prior, Gaussian process
priors are more powerful. However, in this work they were not explored due to scalability issues
of sampling functions from Gaussian process posteriors. However, recent work [15] has addressed
this issue, and specialized techniques for regularly spaced input such as time points [16, 17] can be
applied when using temporal Gaussian process priors for latent trajectories.

B Parametric count distributions

B.1 Poisson distribution

The Poisson count distribution is defined with a mean count λ

PPoiss(n|λ) =
λn

n!
e−λ. (13)

where n ∈ N0. It describes a process where discrete events arriving in a time window are all
independent of each other. Mathematically, this is consistent with Equation 13 being the limit of a
binomial distribution PBin(n, p) with n→∞ and p→ 0, such that Np = λ.
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The Poisson distribution is characterized by the equality of its mean and variance, leading to a Fano
factor V[n]/E[n] = 1. Another convenient property is that the sum of two independent Poisson
processes is itself a Poisson process with λ = λ1 + λ2. This can be shown directly by considering
P (n) =

∑n
0 P (k)P (n−k) or casting it as a limit of the sum of two Bernoulli processes, and follows

intuitively from the fact that spike times are independent of each other. As a consequence, for the
inhomogeneous case where we have a time-dependent rate λ(t) the count distribution over a longer
interval is still Poisson with average

∫ T
0
λ(t) dt. Note that this property does generally not hold for

non-Poisson distributions, where the count distribution of a sum of counts in separate time windows
is not related to the original count distribution in a simple way.

B.2 Non-Poisson count distributions

To account for over- and underdispersed neural activity in real data, i.e. Fano factors above and below
1, other distributions than the Poisson count distribution have been used, and we present common
families below.

B.2.1 Zero-inflated Poisson

A common way to introduce overdispersion is to model excess zero counts, which in this context
leads to the zero-inflated Poisson (ZIP) process [12]. The count distribution is given by

PZIP(n|λ, α) =

{
α+ (1− α) e−λ if n = 0

(1− α) λ
n

n! e
−λ if n > 0.

(14)

The parameterization leads to E[n] = λ(1− α) and V[n] = λ(1− α) + λ2α(1− α) using the law
of total variance.

B.2.2 Modulated Poisson distributions

One perspective of non-Poisson distributions is that they arise from noise in the rate parameters λ.
Such count processes are referred to as modulated Poisson processes. From a probabilistic point of
view, the resulting count distribution is a marginalization

P (n|θ) =

∫
P (n|λ, θ) p(λ|θ) dλ, (15)

with noise parameters θ. A recently proposed flexible spike count model that can give rise to different
mean-variance relationships, including decreasing Fano factors at high firing rates similar to what is
observed in Figure 4B, builds on this framework [50]. However, the modulated Poisson process can
only account for overdispersion with respect to the base Poisson process. Adding noise cannot lead
less variability here, and this implies that Fano factors are bounded from below by 1.

B.2.3 Negative binomial

The negative binomial distribution is based on independent Bernoulli trials like the binomial distri-
bution. However, now we count the number of successes before r failures are observed. If we have
Bernoulli trials with success probability p, one can obtain the negative binomial distribution with
parameterization p = λ

r+λ

PNB(n|λ, r) =
λn

n!

Γ(r + n)

Γ(r) (r + λ)n

(
1 +

λ

r

)−r
. (16)

Note this distribution is a specific instance of a modulated Poisson process (Equation 15), with
λ ∼ fGamma(λ; r, λr ). The parameterization is such that E[n] = λ holds, but V[n] = λ(1 + λ

r )
making it overdispersed with respect to a Poisson distribution. In practice, numerical evaluation of
the Poisson limit when r = 0 is only approximate due to the numerical precision of the relevant
function implementations.
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B.2.4 Conway-Maxwell-Poisson

A distribution that handles both over- and underdispersed count distributions is the Conway-Maxwell-
Poisson distribution [20]

PCMP(n|λ, ν) =
1

Z(λ, ν)

λn

(n!)ν
. (17)

The normalization constant has no closed form expression and must be evaluated numerically

Z(λ, ν) =
∞∑
k=0

λk

(k!)ν
. (18)

It contains the Bernoulli (ν →∞), Poisson (ν = 1) and geometric (ν → 0) distributions as limiting
cases. The notably property is that the CMP distribution provides a smooth transition between these
well-known distributions. At integer ν, the The moments of this distribution do not have a closed
form expression in general, but can be computed using the partition function through the cumulant
generating function K(t) = logE[etn] = logZ(λet, ν)− logZ(λ, ν). The expression for the mean
and variance follow to be

E[n] = λ
d

dλ
logZ(λ, ν)

Var[n] = λ
d

dλ
E[n].

(19)

with approximate expressions [20]

E[n] = λ1/ν +
1

2ν
− 1

2

Var[n] =
1

ν
λ1/ν .

(20)

which hold well for ν ≈ 1 and λ > 10ν .

B.3 Linear-softmax count distributions

The count distributions used in this work rely on a linear mapping of the input a combined with a
softmax

P (n|a;W, b) = softmax(Wa+ b), softmax(x)i =
exi

e
∑
j xj

(21)

To illustrate the connection of this softmax count distribution used in Equation 1 to Poisson models,
consider the distribution specified by the softmax mapping for C = 1 and an element-wise linear-
exponential φ(f) = (f1, e

f1 , . . .). This choice contains the truncated Poisson distribution with f as
the logarithm of the mean count, corresponding to Wj0 = j, Wj1 = −1 and bj = 0 with a = φ(f).
Hence for C > 1, our model is a generalization of rate-based models that implicitly assume neurons
can be described by a single scalar rate parameter. The variability in such models is determined by a
simple parametric relationship to the rate set by the count distribution, as can be seen for the count
distribution families above.

C Neural dispersion and goodness-of-fit quantification

C.1 Fano factors and traditional Z-scores

The traditional Z-score [8, 47, 23] and Fano factor [28, 50] have been used widely in the literature to
quantify the variability in neural responses. The two measures are directly related

FF = 〈Z2〉 with Z =
y − 〈y〉√
〈y〉

, (22)

with y denoting spike counts and 〈·〉 the average over the relevant set of trials or time segments
of experimental data. These measures are mostly applied to trial-based data, but they can also be
applied across separate time windows within a given trial or run in continual recordings. In fact,
under stationarity the Fano factor across trials is related to the coefficient of variation in spike time
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intervals within trials [25]. In continuous tasks as free animal navigation, the Z-score is often used to
quantify dispersion [8, 23, 12].

Note the normality of Z under Poisson data is only asymptotically true, in the sense that we require
the predicted average count 〈y〉 � 1. The generalized Z-score in subsection F.4 are Gaussian under
the true model by design, independent of the spike count magnitudes. However, segments with low
expected spike counts around 1 are affected significantly by the dequantization noise, hence the
normality in those cases is due to the dequantization rather than model fit.

From Equation 22, we can see that our definition of a dispersion measure TDS in Equation 11 is
very similar to the Fano factor. However, its 0 value (corresponding to the unity Fano factor) is
defined with an arbitrary reference count models, while unity Fano factors refer specifically to Poisson
models. The logarithm reduces skewness of the quantity, leading to a more Gaussian TDS at finite data
points. This is useful for statistical testing and computing accurate approximations of its sampling
distribution.

C.2 Kolmogorov-Smirnov framework

For finite N , TKS as in Equation 10 has an asymptotic sampling distribution from the Brownian
bridge [26]. This statistic can be interpreted as an out-of-distribution score for the observed sample,
with significant misfit when TKS is above significance value.

Conventional statistics uses hypothesis testing to assess the model fit, with the null hypothesis being
our model. We can obtain model acceptance regions based on some cutoff significance value of
the test statistic under its sampling distribution, often taken to be 5%. An alternative is to assess
how close the empirical distribution of the test statistic is to the sampling distribution, which is
the expected distribution of the statistic under the predictive model. This can be done with another
Kolmogorov-Smirnoff test. In this paper, we plot the acceptance regions of TKS and show them
compared to baseline models to highlight the model fit improvement on the data it was fit on. TDS
was treated similarly as a test statistic.

As we use a predictive model in the Kolmogorov-Smirnov framework, our method is applicable to data
beyond repeating trial structure. Continual recordings such as freely moving animals in navigation
can therefore be analyzed directly. Our model predicts neural activity at any input point, hence we do
not need to rely on repetitive structure in the inputs to learn the activity distribution at a given point.
The model plays the role of a reference distribution for evaluating Z-scores (subsection F.4), and thus
quantifying dispersion TDS (Equation 11) and goodness-of-fit TKS (Equation 10) of the data to our
predictive model.

D The sampling distribution of TDS

Under the true model, generalized Z-scores subsection F.4 are i.i.d. Gaussian variables across
neurons and time, hence the dispersion measure TDS based on the sample variance of Z follows
a χ2-distribution. Here we present its asymptotic properties that justify our definition of TDS in
Equation 11, and provides the expressions of the moments for the asymptotic normal sampling
distribution of TDS used for statistical testing and confidence intervals.

For i.i.d. Gaussian Zi ∼ N (0, 1), the population variance

s2 =
1

N

∑
i

Z2
i (23)

has Ns2 distributed as a χ2-distribution with N degrees of freedom.

The moment generating function defined as M(t) = 〈e−tX〉X is a useful quantity for computing the
moments of a distribution p(X). Note that M (n)(0), indicating the n-th derivative with respect to
time, gives us (−1)n〈Xn〉X . When we consider the asymptotic convergence to a normal distribution
of the χ2-distribution, the distribution of log s2 has more favourable convergence property as it is
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less skewed due to the logarithmic transformation [27]. The moment generating function is

M(t) =

∫ ∞
0

(s2)−t
(
Ns2

2σ2

)N
2 −1

e−
Ns2

2σ2
Ns

σ2
ds /Γ

(
N

2

)
=

(
2σ2

N

)−t
Γ

(
N

2
− t
)
/Γ

(
N

2

) (24)

which gives rise to the cumulant function

K(t) = logM(t) = t log
N

2
+ log Γ

(
N

2
− t
)
− log Γ

(
N

2

)
(25)

From here we can compute the first two cumulants as κn = K(n)(0) similar to the moment generating
function, which are equivalent to the mean and variance of the distribution

µ = κ1 = ψ

(
N

2

)
− log

1

2
N

σ2 = κ2 = ψ′
(
N

2

) (26)

with ψ(x) = Γ′(x) i.e. the first derivative of the Gamma function, and the notation f ′(x) =
df(x)/dx. For values N ' 20, the following asymptotic expression hold well [27]

µ = −
(

1

N
+

1

3N2

)
σ2 =

2

N − 1

(27)

E Implementation details

E.1 Mathematical details of the optimization objective

E.1.1 The sparse Gaussian process posterior

The Variational Sparse Gaussian Process (VSGP) combines Sparse Gaussian Processes [37] with
variational inference [45] to deal with general likelihoods beyond Gaussian. To get scalability to large
datasets with batched training, we apply stochastic variational inference (SVI) to obtain stochastic
estimates of the ELBO for terms that are not tractable analytically [44]. To make the GP model
amenable to subsampling, the sparse approximation fulfills a double role. Inducing points provide a
set of global variables that allow subsampling or minibatching common in deep learning [38]. SVI
relies on minibatching to estimate the ELBO with subsampled data, and allows scalability to very
large datasets. This is similar to amortizing the inference into the inducing points, like neural networks
and their weight parameters. Additionally, the inducing points reduce the overall computational
complexity for evaluating the GP model to O(TM2) with M inducing points, assuming M � T
total number of time or data points.

For simplicity, we work with vectors of scalar GP function values f as locations X . We define the
function values at inducing point locations u. The GP kernel is evaluated as functions points Kff or
at inducing point locations Xu, denoted by Kuu. Cross-covariances are denoted by Kfu and Kuf .
The joint variational distribution to the augmented posterior p(f ,u|y) is defined as

q(f ,u) = p(f |u) q(u) (28)

where the variational distribution q(u) = N (m, S). The variational distribution over GP function
values q(f) is simply obtained by marginalizing out u, which leads to a Gaussian with

E[f ] = KfuK
−1
uum

Cov[f ] = Kff −KfuK
−1
uuKuf +KfuK

−1
uu SK

−1
uuKuf .

(29)

this variational posterior can then be used in the variational inference objective Equation 4, more
precisely as q(F |X,Z) appearing in Equation 33. This allows one to learn the inducing point
locations Xu, as well as the meanm and covariance S of q(u).
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To accelerate convergence, whitening was used. One performs a change of variables v = L−1
uuu

with LuuLTuu = Kuu. This transforms p(u) into p(v) = N (0, I), and we now directly optimize
q(v) = N (mv, Sv) [39]. As in practice matrix products with K−1

uu are evaluated using (LuuL
T
uu)−1,

which splits up into two triangular matrices that are readily inverted, the whitened representation
simplifies Equation 29 as we no longer explicitly compute L−1

uum and L−1
uuS(L−1

uu )T . The KL-
divergence also simplifies as we now have unit normal p(v).

To increase the expressivity of multi-output GPs, a separate set of inducing points locations is used
for each output dimension (neuron in this work), along with separate kernel hyperparameters as
lengthscales for each input and output dimension. This is equivalent to modelling each output
dimension by a separate GP, and leads to an overall computational complexity of O(NCTM2) for
our model (see section 2 for notation of quantities). A thorough description of a scalable multi-output
VSGP framework is given in [33]. We denote the multi-output variational posterior by q(F |X,Z)
with inputs X and Z.

E.1.2 Generative model and variational inference

The overall generative model Equation 1 as depicted in Figure 1 is

Pθ(Y |X) =

∫ ∫
P (Y |Π) pθ(Π|X,Z) pθ(Z) dΠ dZ (30)

with the product of individual count distributions P (Y |Π). The model parameters θ include the GP
θGP and the prior θpr (hyper)parameters, as well as the softmax mapping weights Wn and biases bn.
Note that the distribution over count probabilities

p(Π|X,Z) =

∫
p(Π|F ) p(F |X,Z) dF (31)

contains the Gaussian process prior over F . The mapping from F to Π denoted by Π(F ) (Equation 1)
is deterministic, and therefore p(Π|F ) is a delta distribution δ(Π−Π(F )).

The exact Bayesian posterior over Π and Z is intractable, hence we use an approximate posterior as
defined in Equation 3. The variational parameters ϕ specify the latent variational posterior, while
χ consists of inducing point locations Xu and the means and covariance matrices of q(U) for the
sparse Gaussian process posterior q(F |X,Z) (Equation 28). The wrapped normal distribution used
for circular dimensions in q(Z), i.e. dimensions with z ∈ [0, 2π), takes the form [43]

Nwrap(z|µ, σ2) =
∞∑

k=−∞

N (z|µ+ 2πk, σ2) (32)

and was evaluated with a finite cutoff at k = ±5 of the infinite sum. This is an accurate approximation
as long as σ � 2π. When plotting the standard deviations of the approximate posterior q(Z), we
plot σ for both Euclidean as well as circular variables. This is similarly an accurate approximation in
the circular case when σ � 2π, which was true in practice.

The marginal likelihood in Equation 30 is intractable. Instead, we minimize the negative ELBO or
free energy loss objective using our approximate posterior

Fθ,ϕ = −EZ∼qϕ(Z)EΠ∼qθ,χ(Π|XD,Z)

[
log

P (YD|Π) pθ(Π|XD, Z) pθ(Z)

qθ,χ(Π|XD, Z) qϕ(Z)

]
= Flik + Freg

(33)

which is an upper bound to the negative log marginal likelihood [45, 39]. The objective decomposes
into a log likelihood expectation term Flik and some regularization terms arising from the model
priors Freg. These terms are amenable to Monte Carlo evaluation or quadrature approximation as we
show next, and in some cases are even available in closed form.

The variational expectation of the log likelihood
Flik = −EZ∼qϕ(Z)EΠ∼qθ,χ(Π|XD,Z)[P (YD|Π)] (34)

can be evaluated using Monte Carlo sampling to obtain unbiased estimates in the general case. As
an alternative method, Gauss-Hermite quadratures can provide a deterministic approximation to the
expectation with respect to q(F |X,Z) [39]

EΠ∼qθ,χ(Π|XD,Z)[P (YD|Π)] = EF∼qθ,χ(F |XD,Z)[P (YD|Π(F ))] (35)
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where Π(F ) denotes the transformation from F to count probabilities as in Equation 1. Here we used

q(Π|X,Z) =

∫
δ(Π−Π(F )) q(F |X,Z) dF (36)

analogous to Equation 31. This corresponds to a zero variance estimator with a small bias for
sufficiently many quadrature points. To allow fast MC sampling, the variational posterior q(F ) is
approximated with its diagonal covariance matrix. This removes the correlations between posterior
function points at different input values, but allows sampling from very high dimensional distributions
(i.e. many time points, large batch sizes). The issue of efficiently sampling from the full posterior has
been considered in [15].

As the ratio of Pθ(Π|XD, Z) and qθ,χ(Π|XD, Z) has the transformation from F to Π cancel out

DKL(qθ,χ(Π|XD, Z)||pθ(Π|XD, Z)) = q(Π|X,Z) =

∫
δ(Π−Π(F )) q(F |X,Z) dF (37)

the regularization terms consist of Kullback-Leibler divergences

Freg = DKL(qθ,χ(F |XD, Z)||pθ(F |XD, Z)) +DKL(qϕ(Z)||pθ(Z)) (38)

that can be computed with analytical expressions in the case when all distributions are normal.

E.2 Latent space priors

We use the Markovian priors as specified in Equation 2. These priors can be specified on different
manifolds, in particular we use for Euclidean spaces the linear dynamical system prior

p(zt+1|zt) = N (Azt,Σ) (39)

In particular, we use diagonal Σ and A to learn factorized latent states. We constrain Aii = ai ∈
(−1, 1) for stability, and we fix Σii = σ2

i = 1/(1 − a2
i ) to obtain a prior process with stationary

variance 1 while optimizing for ai. On the toroidal manifold, we use

p(zt+1|zt) = N (zt + c,Σ) (40)

as due to rotational symmetry A = I . Again, we use diagonal Σ. Both c and Σii = σ2
i are learned as

part of the generative model.

When temporally batching input, one has to be careful to retain the continuity in the prior p(Z) with
the previous batch (beyond the first batch at the start). This is done by ensuring that the first zt in the
batch is the last step in the previous batch, and this will correctly subsample the prior p(Z) defined
over the entire input time series. When performing cross-validation with validation segments within
the overall input time series, we treat the gap as a discontinuity in the latent trajectory and do not
include the latent state right before the validation segment.

E.3 Gaussian process kernel functions

In this work, we used the RBF kernel defined on Euclidean and toroidal manifolds [42]. In particular,
this kernel function is given by

k(x,y) = σ2 e−
1
2

∑D
i=1 d

2
i (xi,yi;li) (41)

with rescaled distances

d2
R(x, y; l) =

(
x− y
l

)2

d2
T(x, y; l) = 2

(
1− cos (x− y)

l

)2
(42)

for Euclidean and toroidal spaces R and T, respectively. To cover different input dimensions of
different topologies, we use product kernels with suitable distances d per input dimension, resulting
in sums over dimensions in Equation 41. These distance functions can be used to extend other kernels
such as Matérn kernels to non-Euclidean spaces [42].
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Algorithm 1 Joint latent-regression inference scheme
Input spike counts YD, observed covariates (e.g. behaviour) XD
Define neurons N , maximum spike count K, channels C

1: Batch data over temporal dimension while taking into account continuity in the prior p(Z) (see
subsection E.2)

2: while not converged and iterations below bound do
3: Adapt learning rates (if annealing)
4: for each batch do
5: Generate m MC samples z ∼ qϕ(z) (if relevant), m copies of x = X
6: With C Gaussian processes for neuron compute posterior q(F |X,Z)
7: Generate k MC samples per input sample of x and z
8: Concatenate posterior C function values per neuron into vectors f
9: Evaluate the basis expansion a = φ(f)

10: Compute probabilities P (y|a) = softmax(Wa+ b) for all neurons
11: Compute the loss from the mean of m× k MC samples of the cross-entropy

− logP (yD|a) rescaled by ratio of time points in data over batch size
12: Perform the backward pass using automatic differentiation to compute gradients for

parameters θ, χ and ϕ
13: Take a gradient step with some optimizer
14: end for
15: end while

E.4 Overall algorithm and code

Additionally, instead of drawing Monte Carlo samples for the Gaussian variational posterior q(F ),
we provide the option to compute the Gaussian expectation using Gauss-Hermite quadratures []. This
was used to estimate the cvLLs (Equation 9) for models after training, which reduced stochasticity in
the cvLL estimate with a negligible bias using 100 quadrature points.

MC sample or quadrature point dimensions are parallelized over in addition to other dimensions like
neurons or time, using extra tensor dimensions in modern automatic differentiation libraries. We
use PyTorch [36] to implement the algorithm for inference of our model. We use Adam [46] as our
optimizer, with no weight decay and default optimizer hyperparameters in PyTorch.

The code provided contains a library with implementations of Gaussian process and GLM based
models with different likelihoods as used for baseline models in this paper. In addition to count
likelihoods, it contains an implementation of spike-spike and spike-history couplings [29, 39] and
modulated renewal processes [2, 49] to deal with data at the individual spike time level. All models
can be run with both observed and latent inputs on Euclidean and toroidal manifolds [42].

E.5 Model fitting

E.5.1 Inducing point initialization

The first input dimension had its inducing points uniformly spaced between 0 and 2π for circular
dimensions, and −1 to 1 for Euclidean latent dimensions. Observed dimensions had natural intervals
defined by the behavioural statistics (e.g. 0 to the mean animal speed), and we placed inducing points
uniformly throughout this interval. For the other dimensions, we initialized random inducing point
locations based on the topology of the input variable. We place Euclidean variables as a random
uniform distribution in its corresponding interval as described previously, while circular variables
took on random uniform values in [0, 2π].

The number of inducing points has been shown to scale favourably as O((log T )D) for standard
Gaussian process regression models [40]. In this work, we used O(D log T ) which captured rich
tuning and satisfactory model fits combined with the flexible count distributions. The suggested
O((log T )D) does become computationally expensive for high dimensional input, and was not tried
with the high-dimensional regression models.
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E.5.2 Fitting details

We select the model with the lowest loss from 3 separate model fits, initialized with randomized
inducing points as described above. The maximum number of training epochs was 3000, but we
stopped training before if the loss did not decrease more than ≈ 10−3 percent over 100 steps. The
learning rate was set to 10−2, and we also anneal the learning rate every 100 steps by a factor 0.9. In
the case of latent spaces, we used a learning rate of 10−3 for standard deviations of the variational
distribution q(Z). All cases lead to satisfactory convergence of the model.

For latent variable models with a single angular latent, we initialize the lengthscale at large values.
This avoided the model to overfit and fold the latent space as seen in panel A of Figure 3 for the ANN
model. For these models, the best fits were achieved with an initial learning rate of 3 · 10−2 and
5 · 10−3 for the kernel lengthscale and the standard deviations of the variational distribution q(Z).

E.5.3 Hardware and fitting time

Synthetic data was analyzed with GeForce RTX 2070 (8 GB of memory). Real data was analyzed
with Nvidia GeForce RTX 2080Ti GPUs (with 11 GB of memory). Fitting 33 neurons with ∼ 6 · 104

time points with the regression model in Figure 3 takes around 20 minutes, while fitting with a four
dimensional latent spaces added takes around 50 minutes. These numbers can fluctuate depending on
the flexible stopping criterion above. Generally, there is a trade-off between memory usage and speed
by setting the batch size, with larger batch sizes being generally faster but taking more memory.

F Analysis details

F.1 Synthetic data

We construct a synthetic head direction cell population inspired by bump attractor models [4, 42, 42].
Firing rate tuning curves to head direction are modelled as von Mises bumps with some constant
offset

f(θ; b, A, β, θ0) = Aeβ cos θ−θ0 + b (43)
with b > 0 and A > 0. This results in f ≥ 0 for all valid inputs and parameters. For modelling
firing rates, we additionally restrict ourselves to β > 0 to avoid inverted bumps at the preferred head
direction θ0.

For the modulation by a hidden Euclidean signal in the modulated Poisson population, we additionally
place Gaussian tuning curves on the latent dimensions with varying standard deviations and means.
The Gaussian tuning curves tile the latent space that was traversed, which allows the model to infer the
full trajectory. Note that tuning is factorized across the two dimensions (head direction x and latent
signal z). Parameters were chosen from random distributions that led to firing rates and variability
within the physiological regime.

In the Conway-Maxwell-Poisson (CMP) synthetic population, we place the tuning curves from
Equation 43 on parameters ν and the approximate mean µy = E[y] in Equation 20. Note both
parameters have to non-negative to be in the valid range. Furthermore, the tuning curves of ν had
potentially negative β ∈ R and different parameter statistics than for µy. Again, these were chosen
such that firing rates and variability were within the physiological regime. From the approximate
relation Equation 20 of the mean, we obtain

λ ==

(
µy −

1

2ν
+

1

2

)ν
(44)

to match roughly the mean counts with von Mises bump patterns. To sample from the CMP
distribution once we specified λ and ν, we use the fast rejection sampling method [43].

F.2 Neural data

Data was taken from Mouse 28, session 140313, during the wake phase [40]. The spiking data was
recorded at a resolution of 20000 Hz, whereas behaviour was extracted from video recordings of
animal body tracking at a resolution of 39.06 Hz. Note the time of the first video frame was randomly
misaligned by 0–60 ms to the neural spike trains. We removed invalid behavioural segments in the
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data and performed linear interpolation across those segments. For circular variables, interpolation
was taken in the shortest geodesic distance. We binned spiking data at 1 ms, and interpolated
behavioural data to reach the same sampling frequency that is higher than the behavioural recording
frequency. At a binning of 40 ms used in our analysis, we had K = 11 as the maximum count value.

We selected head direction cells based on a sparsity criterion, after trying several criteria as mutual
information typically used for place cells [44]. First, we binned the head direction variable into 60
equal bins over the range [0, 2π]. For each bin, we now compute the average spike counts yi for head
directions within bin i, and the relative occupancy Pi. Note

∑
i Pi = 1 is a probability distribution.

Sparsity is defined as

1−
(
∑
i Pi yi)

2∑
i Pi y

2
i

(45)

and with a selection criterion of sparsity ≥ 0.2 we obtained 33 head direction cells, of which 15
are in postsubiculum. Alternatively, although more computationally intensive, we could directly
regress a Gaussian process model (e.g. Poisson baseline model Equation 46) and look at the kernel
lengthscales on the angular input dimension. These will be appreciably larger than 2π for cells that
are not tuned much to head direction.

Note that quite a few head direction units, which are supposed to represent single cells, show bimodal
tuning curves or more to head direction. This is likely due to multiple neurons as signals can pollute
in electrophysiological recordings and spike sorting can fail to distinguish between them [45, 46].

F.3 Baseline models

The log Cox Gaussian process model puts a GP prior on the rate function of an inhomogeneous
Poisson process (Equation 13) with an inverse link function f(x) = ex that is exponential

h(x) ∼ GP(µx, kxx)

λ(x) = f(h(x))

y ∼ PPoiss(y|λ ·∆, θ)
(46)

where the time bin length is ∆, which turns λ into a proper rate quantity.

The heteroscedastic negative binomial model builds on this encoding model, More precisely, two
GPs with an exponential inverse link function are used to model tuning to covariates of the rate λ and
inverse shape 1/r of the negative binomial likelihood (Equation 16), leading to the model

h(x) ∼ GP(µx, kxx), g(x) ∼ GP(µx, kxx)

λ(x) = f(h(x)),
1

r
= f(g(x))

y ∼ PNB(y|λ ·∆, r)

(47)

F.4 Generalized Z-scores

The generalized Z-scores in provide a normalized quantification of neural activity under the predictive
model. The count distribution P (y) is taken to be the mean posterior count distribution of the posterior
q(Π|X,Z). In the case of baseline models, the reference P (y) is given by the parametric distribution
(Poisson in Equation 13, negative binomial in Equation 16) evaluated at the mean posterior values
of the count distribution parameters given by the Gaussian process mapping (see Equation 46 and
Equation 47). This is strictly speaking different from the mean posterior count distribution, as
the parametric distribution depends non-linearly on these parameters. However, the difference is
insignificant when the variational uncertainties are small, which was often the case in practice.

F.5 Marginal and conditional tuning curves

Due to the high dimensional input space, we can either visualize slices of the tuning curve over the
relevant input variables x∗ or instead marginalize over other input variables. The conditional tuning
curves are based on the count distributions P (y|x∗,xc), where xc are fixed and cover the dimensions
complementary to x∗ (these are plotted in Figure 3C). On the other hand, marginalizing over xc is
equivalent to an experimenter only looking at neural tuning to x∗, which automatically marginalizes
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over all other behaviour not included. Mathematically, this can be interpreted as considering the
xc-dimensions of a Markov Chain Monte Carlo path sampled from the joint density pD(x)

P (y|x∗) =

∫
P (y|x∗, x̃c) pD(x̃) dx̃ ≈

∑
t

P (y|x∗, (xcD)t) (48)

which defines the marginalization through the computation done in practice (summing over the time
series of observed xc while keeping x∗ fixed). From this marginalized distribution, we can compute
similar quantities as before.

For the tuning indices, we evaluate the the count statistic Ty(x∗) with respect to the posterior mean
distribution P (y|x∗) after marginalizing (order does not matter as both are sums) to compute the
tuning indices as described in Equation 6. Optimization over x∗ of Ty(x∗) is done by grid search, as
x∗ is low-dimensional and we compute its values over a grid anyway for plotting tuning curves of
mean, Fano factor or any other count statistic.

We used 300 Monte Carlo samples from q(Π|X,Z) to compute the conditional tuning curves plotted
in this paper. For marginalized tuning curves, we use 100 MC samples and temporally subsampled
the observed input XD to retain the first time step for every 10 time steps, and used this to evaluate
Equation 48. As behaviour shows strong temporal correlations at short time scales (Figure 3G), this
allows us to estimate the marginal tuning curves more efficiently. The mean of these samples was
used to compute the mean posterior tuning curves for evaluating the TIs. When evaluating the average
mean count and Fano factor at every time step (Figure 3B and Figure 4B), we used 10 MC samples
from q(Π|X,Z). When latent variables were present (Figure 3E), the 10 MC samples were drawn
from q(Z), corresponding to m = 10 and k = 1 in Algorithm 1.

F.6 Temporal cross-correlations of covariates

We use the cross-correlation between time series xt and yt

rxy(∆) =
〈(xt+∆ − 〈xt+∆〉)(yt − 〈yt〉)〉

σxσy
(49)

which includes the auto-correlation as a special case, e.g. rxx(∆). When one of the variables is a
circular variable θt, we use the linear-circular correlation coefficient in [47]

st = sin θt, ct = cos θt
Rxs = rxs(∆), Rxc = rxs(∆), Rcs = rcs(∆)

rxθ =
R2
xs +R2

xc − 2RxsRxcRcs
1−R2

cs

(50)

and for the case when both are circular, we use the circular correlation coefficient proposed by [48]

sθ = sin (θt − ArgE[eiθt ]), same for φ

rθφ(∆) =
E[sθ · sφ]

E[s2
θ]

1
2E[s2

φ]
1
2

(51)

Time scales are estimated from the auto-correlations of covariates. The time scale τ is then chosen as
the time step at which the value of the auto-correlation dropped by a factor e from 1 at ∆ = 0.

F.7 Preferred head direction

To compute the preferred head direction θpref , we use the centre-of-mass of the firing rate profile
r(θ) of head direction θ

θpref = Arg[r(θ)eiθ] (52)

which is more robust to noise than taking the angle at which r(θ) is at a maximum. We can evaluate
θpref as a function of angular head velocity (AHV) and absolute time to compute the ATIs and the
neural drift as described in Appendix A.
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F.8 Circular-linear regression

We computed the circular-linear regression [49] using a measure of the correlation between circular
variables θ1 and θ2

R = |E[ei(θ1−θ2)]| (53)

By computing R between a circular-linear function φ(t)

φ(t) = 2πat+ b (54)

and the circular data time series θt, we can perform the regression by maximizing R through
optimizing the parameter a with gradient descent. The offset b is obtained analytically

b = ArgEt[ei(θt−φ(t))] (55)

From the values a after fitting, one can compute the linear drift values and ATIs as described in
Appendix A. In addition, not all cells are well-described by the linear drift or ATIs, so we discarded
cells which had an optimized value of R < 0.999. This cutoff was chosen as it retains cells that are
visually in agreement with linear relations as seen in Figure 4, while discarding a few outlier cells.

F.9 Latent alignments

To align 1D circular latent trajectories zc to a target trajectory, we minimize their mean geodesic
distance under a constant shift µ and potential sign flip s = ±1

z̃c = s · zc + µ (56)

We add a linear drift ∆
z̃c = s · zc + µ+ t ·∆ (57)

to find potential drifting of the inferred trajectory as done in panel D of Figure 4. This is similar to
the circular-linear regression above [49], but with the geodesic distance on the ring instead. This is
consistent with root-mean-square errors in the latent signal from behaviour that are computed with
the geodesic distances. For 1D Euclidean latent trajectories, we align by fitting a translation and
scaling parameter.

In all cases, the root mean squared error (RMSE) of the alignment is evaluated in a cross-validated
manner. For circular variables, we use the geodesic distance for computing the squared error just as
in aligning. In more detail, we fit the trajectory transformation parameters such that we minimize the
errors on the validation segment, and then use these fitted parameters to compute the transformed
latent trajectory in the held-out segment. This is then used to compute the RMSE for the alignment
of the cross-validation fold.
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