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KEY POINTS 34 

 35 

● Recent observations of oculomotor plant response properties and neural activity 36 

across the oculomotor system have called into question classical formulations of both 37 

the oculomotor plant and the oculomotor integrator. 38 

 39 

● Here we use measurements from new and published experiments in the larval 40 

zebrafish together with modelling to reconcile recent oculomotor plant observations 41 

with oculomotor integrator function. 42 

 43 

● We developed computational techniques to characterize oculomotor plant responses 44 

over several seconds in awake animals, demonstrating that long timescale responses 45 

seen in anesthetized animals extend to the awake state.  46 

 47 

● Analysis of firing patterns of oculomotor integrator neurons demonstrates the 48 

sufficiency of this activity for stabilizing gaze given an oculomotor plant with 49 

multiple, distributed response timescales. 50 

 51 

● Our results support a formulation of gaze stabilization by the oculomotor system in 52 

which commands for stabilizing gaze are generated through integration on multiple, 53 

distributed timescales.  54 
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ABSTRACT 55 

A fundamental principle of biological motor control is that the neural commands driving 56 

movement must conform to the response properties of the motor plants they control. In the 57 

oculomotor system, characterizations of oculomotor plant dynamics traditionally supported 58 

models in which the plant responds to neural drive to extraocular muscles on exclusively 59 

short, subsecond timescales. These models predict that the stabilization of gaze during 60 

fixations between saccades requires neural drive that approximates eye position on longer 61 

timescales and is generated through the temporal integration of brief eye velocity-encoding 62 

signals that cause saccades. However, recent measurements of oculomotor plant behaviour 63 

have revealed responses on longer timescales, and measurements of firing patterns in the 64 

oculomotor integrator have revealed a more complex encoding of eye movement dynamics. 65 

Here we use measurements from new and published experiments in the larval zebrafish to 66 

link dynamics in the oculomotor plant to dynamics in the neural integrator. The oculomotor 67 

plant in both anaesthetized and awake larval zebrafish was characterized by a broad 68 

distribution of response timescales, including those much longer than one second. Analysis 69 

of the firing patterns of oculomotor integrator neurons, which exhibited a broadly distributed 70 

range of decay time constants, demonstrates the sufficiency of this activity for stabilizing 71 

gaze given an oculomotor plant with distributed response timescales. This work suggests that 72 

leaky integration on multiple, distributed timescales by the oculomotor integrator reflects an 73 

inverse model for generating oculomotor commands, and that multi-timescale dynamics may 74 

be a general feature of motor circuitry.  75 
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INTRODUCTION 76 

Motor plants transform commands from motor neurons into action. Because motor plant 77 

responses to neural drive can be complex and history-dependent, commands needed to elicit 78 

a particular movement differ from the desired patterns of muscle activation. Standard models 79 

of motor control assume that premotor circuitry generates appropriate motor commands by 80 

filtering intended muscle activation through an inverse model of the plant being controlled 81 

(Kawato 1999; Lisberger 2009). This filtering is then cancelled by the plant’s response to the 82 

command, resulting in the intended movement. In this manner, the filtering via the inverse 83 

model compensates for the response properties of the plant.  84 

This inverse model framework has proven useful in understanding motor command 85 

generation in the oculomotor system (Figure 1A; Green et al. 2007; Robinson 1989; Van 86 

Opstal et al. 1985). In the classical view, based on the work of Robinson (1964), passive 87 

oculomotor plant behaviour in the horizontal plane is modelled by a pair of one-dimensional 88 

viscoelastic (Voigt) elements in series, each characterized by a time constant that dictates the 89 

exponential time course of the element’s length change following a step change in applied 90 

force. These time constants have been estimated to be relatively short: 10-60 ms and 250-91 

660 ms (Goldstein 1984; Optican and Miles 1985; Robinson 1964; Sklavos et al. 2006; Stahl 92 

and Simpson 1995; Stahl et al. 2015). The motor command required for step changes in eye 93 

position (saccades), determined by inverting this two-element plant model, is composed of 94 

three components, each of which compensates for a different aspect of the plant model’s 95 

response properties (Goldstein 1984; Optican and Miles 1985; Robinson 1964). The first 96 

component is a brief eye velocity-encoding burst of firing (termed the “pulse”) that 97 

overcomes plant viscosity to quickly pull the eye to a new position. The second is an eye 98 

position-encoding “step” that counters the plant’s elasticity to maintain the eye at a fixed 99 

position during fixation. The final component is an exponential decay (termed the “slide”) 100 

with a time constant intermediate between the viscoelastic element time constants (see 101 

Mathematical Appendix), which reflects the attenuating force needed to stabilize gaze as the 102 

viscoelastic elements equilibrate following the saccade. 103 

Each component appears to be reflected in the firing patterns of ocular motor neurons 104 

during horizontal eye movements (Robinson 1981). The pulse arises from saccadic burst 105 
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neurons that project to the ocular motor nuclei. The step (Cohen and Komatsuzaki 1972; 106 

Robinson 1989; Scudder et al. 2002; Skavenski and Robinson 1973) and slide (Aksay et al. 107 

2000; McFarland and Fuchs 1992) components have been observed in the firing of premotor 108 

neurons constituting the velocity-to-position neural integrator for horizontal eye movements 109 

(hVPNI), which receives eye velocity burst signals and appears to compute their temporal 110 

integral, producing the step (Figure 1); the origins of the slide are less clear. Since gaze 111 

stability in the dark, when the oculomotor system cannot rely on visual feedback to generate 112 

motor commands, far exceeds that which could be attributed to the oculomotor plant alone, 113 

premotor circuits appear to use an inverse plant model that enables substantial gaze stability 114 

without visual feedback. 115 

More recent work has exposed deficiencies in the classical view of eye movement 116 

command generation. Sklavos et al. (2006; 2005) found evidence of additional time constants 117 

on the order of 1 and 10 s following long steps of force externally applied to the eye. Quaia 118 

et al. (2009) analysed the response of primate extraocular muscle to elongation steps, 119 

demonstrating muscle tension relaxation on a wide range of timescales, with time constants 120 

ranging up to at least 40 s. Davis-Lopez de Carrizosa et al. (2011) measured lateral rectus 121 

muscle tension in cats, finding that it decays on timescales of 1 to 10 s during fixations 122 

between saccades while eye position is approximately stable. Additionally, firing rates of 123 

abducens motor neurons in primates during different types of eye movement are not 124 

consistent with a common two-element plant model (Sylvestre and Cullen 1999). These 125 

results support an expanded model of the oculomotor plant having several viscoelastic 126 

elements with time constants distributed across several orders of magnitude, from 100 ms to 127 

10 s (Sklavos et al. 2005, 2006). The long timescale responses of such plant models imply 128 

that additional drive components that decay on long timescales are necessary to produce 129 

stable fixations (Figure 1B,C; Sklavos et al. 2005).   130 

However, questions remain about the relevance of long response timescales in the 131 

awake, behaving (active) state. Previous measurements of oculomotor plant dynamics in alert 132 

animals have been limited to short time intervals (< 400 ms in monkey, Anderson et al. 2009; 133 

< 2 s in mouse, Stahl et al. 2015), precluding observation of long timescale responses. These 134 

studies also used brief eye position steps < 1 s, which would not appreciably deform 135 
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viscoelastic elements with long time constants (Anderson et al. 2009; Sklavos et al. 2006). 136 

Furthermore, previous fitting of oculomotor plant models has depended on the assumption 137 

that viscoelastic elements were at equilibrium (Sklavos et al., 2005) and was therefore not 138 

suitable for fitting model parameters in awake animals. 139 

Other recent observations have revealed that neural activity in the hVPNI and ocular 140 

motor neurons does not simply encode eye position and a single fast slide, as predicted by 141 

classical models. We have reported that during fixations, firing rates in hVPNI neurons decay 142 

on long timescales that vary across an order of magnitude within individual larval zebrafish 143 

(Miri et al. 2011a). Such heterogeneity in firing rate decay timescales has also been measured 144 

during fixation in adult goldfish hVPNI (Miri et al. 2011a) and in monkey oculomotor 145 

integrator neurons (Joshua et al. 2013). In cats, abducens firing after saccades decays on 146 

varying timescales generally greater than 1 s, with such decays believed to arise from the 147 

oculomotor integrator (Davis-Lopez de Carrizosa et al. 2011). However, it remains to be seen 148 

whether firing in the hVPNI could constitute a signal sufficient to stabilize a plant with 149 

distributed response timescales.  150 

Here we used measurements of oculomotor plant dynamics and analysis of previously 151 

obtained neural recordings in the larval zebrafish to assess whether the hVPNI could be 152 

implementing an approximate inverse model that accommodates long timescale behaviour of 153 

the oculomotor plant to promote gaze stability. We performed very long mechanical 154 

displacements in both anaesthetized and awake, behaving animals in order to deform long 155 

timescale response elements. We developed analytical methods for measuring the eye’s 156 

return from long displacements in awake, behaving animals. Our measurements demonstrate 157 

the existence of both short (< 1 s time constant) and long (> 1 s) response timescales in the 158 

larval zebrafish oculomotor plant in both anaesthetized and awake animals. We used these 159 

measurements to fit oculomotor plant models for each animal, employing a new method that 160 

does not require an equilibrium assumption. We then compared the predictions of the neural 161 

drive during active state fixations with measurements of activity in the larval zebrafish 162 

hVPNI. Analysis of the distribution of decay times seen in hVPNI neuron firing rates 163 

suggests that this distribution is sufficient to enable stabilization of an oculomotor plant with 164 

the distributed response timescales we observed, including those longer than 1 s. Our results 165 
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support a view of integration in the oculomotor system in which hVPNI firing, rather than 166 

purely or primarily encoding eye position, compensates for plant viscoelasticity by 167 

generating firing rate decay on multiple, distributed timescales (Figure 1).  168 
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METHODS 169 

Ethical approval 170 

All experiments were performed in compliance with protocols approved by the Princeton 171 

University Institutional Animal Care and Use Committee (protocols #1726 and 1863), and in 172 

accordance with the policies of the Journal of Physiology. Following these guidelines 173 

ensured that animal distress was minimized in the course of our study. 174 

 175 

Framework for modelling oculomotor plant 176 

We modelled the oculomotor plant as a combination of viscoelastic Voigt elements in series 177 

that respond over 𝑛 effective timescales. This was represented as a linear filter whose impulse 178 

response function consists of a sum of exponentially decaying components (Robinson 1964; 179 

Sklavos et al. 2005), 180 
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that is, the response after release will be a sum of exponentials with the same time constants 190 

as the plant. 191 

 Based on the above, in order to model the oculomotor plant, we took the following 192 

steps, detailed in the sections below: 193 

1. Apply a transient external force (“displacement”) resulting in a step change in eye 194 

position, and measure the eye position after release from displacement (“step 195 

response”). 196 

2. Fit a multiexponential model to the step response and extract the plant time constants 197 

{𝜏𝑖}. 198 

3. Find the plant coefficients {𝑐𝑖} by fitting a model of the form in equation (2) to the 199 

eye position during and after displacement.  200 

 201 

Step response measurement 202 

mitfa-/- (nacre) mutant zebrafish (Danio rerio) larvae (Lister et al. 1999) ages 5-8 days post-203 

fertilization were used for all experiments. We obtained the nacre strain from Zebrafish 204 

International Resource Center. Embryos were reared in egg water (Westerfield, 2007) in petri 205 

dishes in an incubator at 28°C on a 12 h light/12 h dark cycle. Larvae at this age feed from 206 

their yolk and additional food was not provided.  207 

To enable eye tracking, larvae were immobilised by embedding in a thin layer of 208 

1.7% low melting point agarose (SeaPlaque, Lonza) immediately prior to data collection, and 209 

the agarose was removed from around the eyes to allow free eye movement. A rectangular 210 

agarose block containing the larva was excised and mounted on a Sylgard platform in a water-211 

filled chamber. Individual larvae were embedded for no more than 3 hours. Following data 212 

collection, larvae were removed from agarose and immediately euthanized by submerging in 213 

ice water for > 5 minutes, to which bleach was added to a concentration of 1% by volume. 214 

We used one of two methods to anaesthetize larvae. Ethyl 3-aminobenzoate 215 

methanesulfonate (MS-222, Sigma; 𝑛 =  10 larvae) was gradually added to the chamber 216 

water to achieve a concentration at which spontaneous eye movements stopped. Final 217 

concentrations were between 0.005 and 0.015% (weight/volume). For ketamine experiments 218 

(𝑛 =  6 larvae), embedded larvae were incubated for 15 minutes in 0.5% (weight/volume) 219 
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ketamine prior to mounting in the chamber; no ketamine was added to the chamber water. 220 

This ketamine concentration was found to be sufficient to abolish spontaneous eye movement 221 

in most larvae. Data were not collected from larvae that performed eye movements under 222 

anaesthesia. Separate sets of larvae were used for each of the experimental groups: MS-222 223 

anesthetized, ketamine anesthetized, and awake. 224 

 The left eye's response to step displacement was measured in the dark. In order to 225 

displace the eye, a blunt probe (hemispherical tip ~30 µm in diameter) controlled by a 226 

hydraulic micromanipulator (Siskiyou) was brought toward a point ~50 µm temporal of the 227 

centre of the left eye at an oblique angle relative to the eye's minor axis (considering the eye 228 

as an ellipsoid; Figure 2A). After gently contacting the eye, the probe was advanced to rotate 229 

the eye temporally in the horizontal plane. Probe advancement was performed quickly, taking 230 

less than a second. For active state measurements (𝑛 =  6 larvae), this displacement was 231 

performed 5-7 s following a saccade in which the eye moved nasally. This allowed the 232 

expected position of the eye in the absence of the displacement to be estimated by 233 

extrapolating a fit to the eye position between the saccade and the displacement (see below). 234 

The eye was released by quickly retracting the probe. Eye position was tracked at ~70 Hz for 235 

> 60 seconds following release using methods previously described (Beck et al. 2004; Miri 236 

et al. 2011b). Briefly, a 945-nm LED illuminated the chamber from below while a mirror, 237 

long-pass filter, and charge-coupled device (CCD) camera above the chamber collected video 238 

images that were processed in real-time to extract eye position measurements using software 239 

custom written in LabView (National Instruments). In this software, two regions of interest 240 

(ROIs) that included either the eyes or a fixed segment of the body were drawn on a reference 241 

CCD image. During data collection, the ROIs were thresholded, the two largest objects 242 

within the eye ROI were defined as the eyes, the largest object within the body field was 243 

defined as the body segment, and the edges of these three objects were smoothed. The body 244 

axis was defined as the line connecting the centre of the body segment and the midpoint 245 

between the centroids of the eyes. Horizontal eye positions were measured as the angle 246 

formed by the major axis of the eye and the body axis. Eye position measurements were 247 

digitized by a Digidata 1440A (Molecular Devices) and recorded at 5000 Hz in Clampex 248 

(v.10, Molecular Devices). Visual inspection of eye tracking images indicated that eye shape 249 
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was at most minimally disturbed by contact with the probe and any disturbance was confined 250 

to the site of probe contact. There was no visible deformation of the eye from contact with 251 

the probe that extended appreciably into the displacement response.  252 

 In each anaesthetized larva, two displacements of differing duration were performed: 253 

10 and 60 s in MS-222 experiments, 15 and 90 s in ketamine experiments. Displacements 254 

ranged from 14.8 to 22.2° under MS-222, and 8.5 to 20.9° under ketamine. Pairs of 255 

displacements performed on individual larvae were nearly equal, differing on average by 256 

only 1.5°. In awake larvae, up to five displacements were performed on each larva, each 257 

between 6.5 and 8.5 s in duration, and 11.6 and 26.0° in size. Active state trials in which 258 

spontaneous eye movements occurred during the applied displacement or within 8 s 259 

following the release were discarded. As a result, at most two responses from each larva were 260 

analysed. Spontaneous eye movements during displacement could be identified by motion of 261 

the undisplaced eye. At least 10 minutes elapsed between displacements. 262 

 263 

Step response fitting 264 

Eye position during the displacement prior to release was measured from an image captured 265 

while the eye was displaced. The time of release was defined as the time of the last sample 266 

during which the probe was contiguous with the eye in the video image. For MS-222 and 267 

ketamine experiments, baseline eye position was measured as the mean eye position during 268 

a 50 second epoch preceding the displacement and was subtracted from the eye position time 269 

series.  270 

 For active state responses, the centre of gaze was estimated from a plot of eye velocity 271 

versus eye position (a "PV plot"; Becker and Klein 1973; Goldman et al. 2002) assembled as 272 

follows from at least three minutes of eye position data collected during spontaneous eye 273 

movement prior to the displacement. First, data from 100 ms prior to each saccade until 500 274 

ms after each saccade were discarded. The remaining time series data were divided into non-275 

overlapping 0.3 s segments. Next, the mean eye position and the slope of a least-squares fit 276 

line to eye position over each segment were calculated to define the two coordinates of points 277 

comprising the PV plot. Finally, a linear function was least-squares fit to these points. The 278 
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intercept of this function with the eye position axis was defined as the centre of gaze and 279 

subtracted from all measurements in the eye position time series. 280 

 Since data were initially acquired at ~70 Hz and digitized at 5000 Hz, we 281 

downsampled eye position time series before performing any data analysis. We therefore 282 

subsampled traces every 72 time points, resulting in new traces at 69.44 Hz that we then 283 

analysed. Subsequent analysis of the power spectra of eye position traces showed 284 

anomalously large peaks at ~30 Hz, which are likely artefacts. These were removed, while 285 

preserving the phase in each frequency bin, by scaling the amplitudes of the Fourier transform 286 

in the peaks so that the amplitude was equal to that of the mean amplitude of the 6 frequency 287 

bins surrounding the peak (3 closest on each side of the peak). All analyses were performed 288 

in Python 3.7, using the Scientific Python stack (SciPy and NumPy). 289 

 290 

Anaesthetized step responses  Eye position step responses (Figure 2B) in anaesthetized larvae 291 

were fit with a multiexponential model, 292 
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where 𝜀 is independent Gaussian noise with mean 0 and variance 𝜎2, 𝑘𝑖 = 1/𝜏𝑖 are inverse 294 

time constants, and the number of components 𝑛 ranged between 1 and 6. Each coefficient 295 

was constrained to be nonnegative, 𝑎𝑖 ≥ 0, and the sum of the coefficients was constrained 296 

to equal 1. Visual inspection of these time series near the release time found 297 

ringing/oscillation present during the initial 50-200 ms following release in some cases, 298 

perhaps resulting from the manual control of the hydraulic manipulator. We therefore 299 

analysed responses beginning 230 ms and ending 60 s after release time  300 

 For each larva, we simultaneously fit the short and long step response with models of 301 

the form in equation (4) for each value of 𝑛 between 1 and 6. For each value of 𝑛, we defined 302 

the best 𝑛-component model to be the one which maximized the sum ℒ of log-likelihoods ℒ𝑗 303 

for each response 𝑗, 304 

 .j
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      (6) 307 

where 𝑇 is the total number of time points {𝑡𝑘} recorded in the response, 𝑦𝑗 is the recorded 308 

eye position, �̂�𝑗 is a model in the form of equation (4), and, for numerical stability, we defined 309 

𝜓𝑗 = 1/𝜎𝑗
2 where 𝜎𝑗 is the standard deviation of the noise. We allowed the fits to each of the 310 

two response durations to have different sets of coefficients {𝑎𝑖}, but we required a single set 311 

of inverse time constants {𝑘𝑖}, with time constants constrained to be greater than 43.2 ms, or 312 

3 samples. Separate standard deviations of the noise 𝜎𝑗 were fit for each response. To find 313 

sets of parameters that maximized ℒ, we used the nonlinear solver Truncated Newton 314 

Conjugate-Gradient (TNC; implemented in the “optimize” library of SciPy), which we 315 

provided with an analytical formula for the gradient of ℒ that was derived by hand. We used 316 

100 initial sets of parameter values by choosing coefficients uniformly at random between 0 317 

and 1 and then dividing each coefficient by the sum of all coefficients. Initial time constants 318 

were chosen by taking random powers of 10, generated by first taking 𝑛 evenly spaced 319 

powers between -1 and 2, and adding Gaussian noise with mean 0 and standard deviation 0.1 320 

to each. By examining the mean squared error curves of fits as 𝑛 increased, we saw clear 321 

“elbows” after which fit quality stopped visibly improving. Separately for each larva, we 322 

called the value of 𝑛 at which this elbow occurred 𝑛∗. For the sake of parsimony, we picked 323 

the best overall model for each larva to be the best 𝑛∗-component model. 324 

 To examine the sensitivity of the parameter estimates, we used a parametric bootstrap 325 

procedure as follows. For each larva, we used the best step response fit (coefficients, time 326 

constants, and measurement noise variances) to generate 100 new eye position traces 327 

according to the model in equation (4), and re-ran our fitting procedure on each of these, then 328 

calculated the standard deviations of the resulting bootstrap parameters, which we used as an 329 

estimate of the standard deviations of the true parameter distributions. 330 
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 In order to determine the necessity of including long time constant components, we 331 

next repeated the above procedure to find the best fits for each larva when time constants 332 

were constrained to be less than 10 s. 333 

 334 

Active state step responses  Because the eye moves spontaneously in the active state and is 335 

not at the centre of gaze prior to the imposed displacement, we did not model the active state 336 

step response as a decay toward the centre of gaze. Rather, we modelled it as returning to 337 

where the eye would have been had the displacement not occurred (Figure 2C). Let 𝑦target(𝑡) 338 

be the position of the eye if no displacement had occurred. Then, we modelled the active state 339 

step response as 340 

 sr release target( ) ( ) ( ),y t t y t y t     (7) 341 

where, as before, 𝑦(𝑡) is the measured eye position. 342 

We determined 𝑦target(𝑡) by extrapolating the changing position of the eye, based on 343 

the 4-6 s of post-saccadic eye relaxation immediately preceding displacement (Figure 2C). 344 

We found that this relaxation could also be modelled well by equation (4), which we fit by 345 

maximum likelihood estimation to the eye position from 500 ms after the previous saccade 346 

to displacement onset, using the method described above for anaesthetized step responses. 347 

For all active state responses we picked a 2-component model for the best extrapolation, as 348 

there was negligible improvement in fit quality for >2 components. 349 

 To test the quality of this extrapolation technique, we identified long nasal fixations 350 

lasting at least 14.75 s in eye position recordings prior to each active step response. We then 351 

performed the same fitting procedure used to find 𝑦target(𝑡) above, here fitting eye position 352 

from 500 ms to 6 s post-saccade (Figure 2D). We then calculated how much the resulting fit 353 

function deviated from the true eye position in a ~230 ms window of time centred at 14.64 s 354 

post-saccade by calculating the error relative to the extrapolation at each data point in this 355 

interval, 356 

 
target

target

( ) ( )
relative error at time .

( )

y t y t
t

y t


   (8) 357 
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For each fixation, we then calculated the average relative error over the 16 data points in this 358 

window (Figure 2D, inset; black point indicates the centre point of this window at time 359 

𝑡extrap = 14.64 s). A negative relative error meant that the extrapolation decayed more slowly 360 

than the true fixation. We found that the average relative error was positive, so that fits were 361 

likely to decay more quickly than the true fixation, but with relatively large variance (Figure 362 

2D, right; mean ± standard deviation [sd] = 0.14 ± 0.32; 𝑛 = 9). 3 out of the 9 fixations 363 

resulted in a negative average relative error, where the extrapolated eye position decayed 364 

more slowly than true eye position. Thus, a step response estimated from these extrapolations 365 

would also decay more slowly than the “true” step response and would be more likely to have 366 

long time constants. In order to make our fitting procedure more robust to such an artefact, 367 

which could lead to spurious identification of long time constant decays, we sought to also 368 

fit a more quickly decaying, “conservative” extrapolation of eye position for each active state 369 

step response. 370 

 We fit the conservative extrapolations by finding fit functions which fit the first 4-6 371 

s of eye position well, but also decayed faster than the best extrapolation. We did this by 372 

including a penalty term in our optimization that incentivized fit functions to pass through a 373 

virtual point at time 𝑡extrap that was closer to the null eye position than the best extrapolation 374 

would be. First, we defined Δ to be the most negative relative error, averaged over the 375 

window described above (Figure 2D, right, bottom blue point). Then, starting with the best 376 

extrapolation (Figure 2C,D, red curve), we fit a higher order model, i.e., 𝑛 + 1 components 377 

if the best extrapolation needed 𝑛 components, by maximum likelihood estimation, but where 378 

we augmented the model (4) by fitting an additional point 𝑦(𝑡extrap) = (1 + Δ)𝑦target(𝑡extrap). 379 

All of the fixations before displacement were less than 7 s long, so this additional point did 380 

not overwrite any actual data points.  We let the noise at this additional point, 𝜀(𝑡extrap), be 381 

normally distributed with mean 0 and variance 𝜎2/𝜆. Increasing 𝜆 increasingly penalizes fits 382 

that do not pass through 𝑦(𝑡extrap). By bisection search on 𝜆, we allowed the procedure to 383 

choose a fit whose sum of squared errors over the real data deviated from that of the best 384 

extrapolation by ~10% as follows (Figure 2C,D, black curve). For each value of 𝜆, we 385 

performed maximum likelihood estimation from 100 starting points and picked the most 386 
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parsimonious model, as described above (Anaesthetized step responses), to perform this 387 

comparison. The bisection search terminated when the deviation of the sum of squared errors 388 

fell between 9.9 and 10.1%. The eye position predicted by the maximum likelihood model 389 

for the value of 𝜆 for which the bisection search terminates was defined to be the conservative 390 

extrapolation.  391 

For both the best extrapolation and conservative extrapolation, we calculated the 392 

corresponding step response time series 𝑦sr(𝑡). For each displacement in each larva, we fit 393 

multiexponential models to both of these resulting active step response time series from 230 394 

ms to between 8 and 14 s after release from displacement, with the fits performed as above 395 

for anaesthetized responses. After discarding responses due to spontaneous eye movements, 396 

a single response was fit for 3 of 6 larvae and a pair of responses was fit for the remaining 3. 397 

We again ran the parametric bootstrap procedure, as in the anaesthetized case above, here 398 

using the best three-component fits in order to evaluate the sensitivity of parameter estimates. 399 

In order to evaluate the necessity of long time constant components, we also fit responses 400 

while constraining the time constants to be less than 5 s. This was again done assuming the 401 

best and conservative extrapolations. 402 

For comparison of anaesthetized and active state results, we also fit three-component 403 

models as above to just the first 15 s of eye position following the 10 s displacement in larvae 404 

anaesthetized with MS-222. 405 

 406 

Oculomotor plant model estimation 407 

To estimate an oculomotor plant model for each larva, we used measured step responses to 408 

calculate parameters of the linear filter given by equation (2) above. We assumed that each 409 

step response was the result of an applied force convolved with a linear filter representing 410 

the oculomotor plant. As described above, a linear filter model implies that the eye position 411 

after release from displacement will have the same number of components and the same time 412 

constants as the plant (see equation (3)). However, the coefficients of the plant {𝑐𝑖} must still 413 

be determined. Because the profile of the applied force is unknown, finding the coefficients 414 

of the plant requires simultaneously finding the appropriate applied force profile. This is a 415 

“blind deconvolution” problem and is generally under-constrained. Here, however, we have 416 
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two important constraints that facilitate finding a solution: first, we partially know the applied 417 

force profile, i.e., that it is zero after the time of release; and second, the plant is assumed to 418 

be a sum of exponentials with known time constants. 419 

For each larva, we assembled eye position time series 𝑦𝑗 starting from the onset of 420 

displacement for each response 𝑗 until 8 to 14 s after release. All of the anaesthetized larvae 421 

had 2 responses each, 3 of 6 awake larvae had two responses, and the remaining three had a 422 

single response. Eye position was considered to be constant during displacement (see Step 423 

response fitting). For awake larva time series, we used estimated step responses 𝑦sr(𝑡) 424 

resulting from both best and conservative extrapolations, as described above. Similarly to 425 

fitting step responses, we removed the first 230 ms of data after release from displacement 426 

due to ringing/oscillation shortly after release. Data points in this epoch were replaced with 427 

the prediction of the best fit exponential model to the step response. 428 

For linear filter estimation, we then defined the following loss function, 429 

 
2

1 1 1

1 1

1
( , , , , , ) [( ( , , ))( ) ( )] .

2

jTm

m n jk j n k j k

j k

E f f c c w f p c c t y t
 

        (9) 430 

Here, 𝑚 is the number of responses for the larva, 𝑓𝑗(𝑡) is the time-varying force applied for 431 

response 𝑗, 𝑝(𝑡; 𝑐1, … , 𝑐𝑛) represents the plant model parameterized by variable coefficients 432 

{𝑐𝑖} and fixed time constants {𝜏𝑖}, time is discretized as 𝑡𝑘 = 𝑘Δ𝑡 where 1/Δ𝑡 is the sampling 433 

rate, and 𝑇𝑗 is the number of time points in the response 𝑦𝑗. Each data point in the loss function 434 

is weighted by a factor 435 
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  436 

where 𝑇release,𝑗 is the number of data points in the displacement period. This weighting causes 437 

the loss function to be a sum of the mean squared fit error during displacement and the mean 438 

squared fit error during the step response, with errors in these periods weighted equally even 439 

though the period lengths are heterogeneous.  We approximated convolution of continuous 440 

signals with a discrete convolution, since Δ𝑡 is small, 441 
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      (10) 442 

 The blind deconvolution can then be computed by finding the forces {𝑓𝑗} and plant 443 

coefficients {𝑐𝑖} such that the loss 𝐸 is minimized. First, we used the nonlinear solver TNC 444 

from 100 starting points that consisted of {𝑐𝑖,initial} chosen uniformly at random on (0, 1) and 445 

normalized to sum to 1. These preliminary results were used as the initial point, {𝑐𝑖
(0)

} for an 446 

alternating least squares procedure, as follows: 447 

1. Applied force estimation step. On iteration 𝑙 + 1, given estimates for the plant 448 

coefficients {𝑐𝑖
(𝑙)

}, solve the optimization problem 449 
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  450 

2. Plant estimation step. Given these estimates of the applied forces, update the estimate 451 

of the plant coefficients, 452 

 1
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  453 

Note that the solutions obtained by this procedure are not unique: for example, if all 454 

the plant coefficients are divided by a constant 𝐾, then as long as the resulting applied 455 

forces are also multiplied by 𝐾, the new scaled coefficients still solve the problem. 456 

We resolve this degeneracy by imposing the condition that the final plant coefficient 457 

estimates sum to 1: 458 

 
( 1)

( 1) ( 1) ( 1) ( 1)
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     459 

 These two steps are then repeated until the decrease in error is smaller than a 460 

threshold, 𝐸(𝑙+1) − 𝐸(𝑙) ≤ 10−8. Note that the error cannot increase on any step, because in 461 

the worst case the same solution as the previous iteration can be chosen. Because the discrete 462 

convolution given by equation (10) is linear, we can write it as a matrix-vector product, and 463 
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each of the two steps above can be solved efficiently and accurately by a linear least squares 464 

solver (lsq_linear in SciPy's “optimize” library). The plant model for each larva was chosen 465 

to be the one of the 100 solutions that had the smallest final value for 𝐸. 466 

 We repeated this procedure using time constants and eye positions resulting from the 467 

conservative extrapolations in awake larvae. In order to evaluate the necessity of long time 468 

constants, we also repeated the procedure using only the fast (< 1 s) time constants resulting 469 

from the step response fit, both for anaesthetized and awake larvae. 470 

For each plant model, we calculated the fractional contribution of each exponential 471 

component to the total area under the curve by integrating over the range 𝑡 = 0 to 𝑡 = 60 s 472 

for anaesthetized plants, and to 𝑡 = 20 s for the active state plant models. 473 

 474 

Neural drive estimation 475 

Using the active state plant models, we estimated the force needed to produce the eye position 476 

profile observed during fixation. We assumed this force was proportional to the neural drive 477 

output by motor neurons. We computed neural drive estimates by deconvolving active state 478 

eye position during the period of fixation preceding displacement with the corresponding 479 

plant model for each larva. In order to reduce noise, we used 𝑦target(𝑡) as a smoothed 480 

representation of eye position before displacement (see Fitting step responses), and 481 

performed the deconvolution by solving a linear least squares problem with non-negative 482 

least squares, as described above (Oculomotor plant model estimation). We measured the 483 

persistence of both the estimated neural drive and the corresponding eye position by summing 484 

the time series during fixation starting from and normalized to the value at 0.25 s post-485 

saccade, and dividing this sum by the number of elements in the time series (Lee et al. 2015). 486 

With this measure, a perfectly stable time series would have a persistence value of 1. 487 

 We also directly calculated the time constants of the slide components of the neural 488 

drive for each plant by calculating the poles of the Laplace transform of the neural drive. This 489 

was equivalent to finding the roots of the polynomial 490 
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     (11) 491 
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where 𝑐𝑖 and 𝑘𝑖 are the amplitude and inverse time constant of the 𝑖th plant component, as in 492 

equations (1) and (4) (see Mathematical Appendix, Analytical calculation of neural drive for 493 

a multiexponential plant, for derivation). This was done numerically using the function 494 

“roots” in NumPy. 495 

 496 

Comparison of estimated neural drive to hVPNI activity 497 

Optical recordings  To compare the required neural drive to the activities of cells in the 498 

hVPNI, we used previous optical recordings of somatic calcium-sensitive fluorescence in a 499 

separate set of 6 larvae to estimate neuronal firing rates during fixations (Miri et al. 2011b). 500 

Calcium-sensitive dye loading and optical recording methods are described in the original 501 

reference. Data were collected using Oregon Green BAPTA-1 AM (Invitrogen) on a custom-502 

built laser-scanning two-photon microscope that allowed synchronous eye tracking and 503 

fluorescence image time series collection from sagittal planes within the hindbrain. 504 

Fluorescence data acquisition and microscope control were performed using Cfnt v.1.529 505 

(Michael Mueller, MPI, Heidelberg). Images were 256 x 256 pixels spanning 100 µm x 100 506 

µm regions and acquired at 2 ms per line (~2 Hz) in time series of 750 frames. For each larva, 507 

five or six fluorescence image time series were collected from image windows lying in 508 

parasagittal planes at fixed dorsoventral and rostrocaudal coordinates in the ventral ~2/3 of 509 

the caudal hindbrain (rhombomere 7/8). All data analysed here were collected in the dark to 510 

eliminate visual feedback. 511 

 512 

hVPNI firing rate estimation  For each cell, we determined baseline fluorescence to be the 513 

smaller of two quantities: the mean of the saccade-triggered average fluorescence from 2 s 514 

to 1 s before ipsiversive saccades, and the mean of the saccade-triggered average 515 

fluorescence from 4 s to 5 s after contraversive saccades. We fit a calcium impulse response 516 

function (CIRF), modelled by a single exponential decay, to baseline-subtracted 517 

contraversive saccade-triggered average fluorescence time series, as in previous studies 518 

(Daie et al. 2015; Miri et al. 2011b) and calculated the coefficient of determination, R2, for 519 

each fit. As in previous studies (Miri et al. 2011a , Miri et al. 2011b), cells for which CIRF 520 

fits had R2 ≥ 0.5, and the Pearson correlation between saccade-triggered average fluorescence 521 
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and CIRF-convolved eye position after a contraversive saccade was > 0.5, were used (167 of 522 

195 cells).  523 

For each cell 𝑗 satisfying these criteria, we modelled baseline-subtracted ipsiversive 524 

saccade-triggered average fluorescence 𝑥𝑗 as a convolution between the CIRF and the sum 525 

of two components: a delta function modelling the saccadic burst and a multiexponential 526 

function representing the saccade-triggered average firing rate, 527 

 CIRF,

0

1

( ) * ( ) ( ),j i

n
k t k t

j i j

i

x t e a t a e t 
 



 
   

 
   (12) 528 

where 𝑘CIRF,𝑗 is the cell-specific inverse CIRF time constant, 𝑘𝑖 are inverse time constants of 529 

the saccade-triggered average firing rate, with coefficients 𝑎𝑖 ≥ 0 for all components 𝑖, and 530 

𝜀𝑗 is Gaussian noise with mean 0 and variance 𝜎𝑗
2. For each number of exponential 531 

components 𝑛 between 1 and 3, we solved for the coefficients {𝑎𝑖} and inverse time constants 532 

{𝑘𝑖} that minimized the mean squared error of the model fit to data, using the nonlinear solver 533 

TNC from 100 initial sets of parameters.  For each number of components 𝑛, we picked the 534 

best 𝑛-component model fit to be the one with the smallest mean squared error. Separately 535 

for each cell, we called 𝑛∗ the value of 𝑛 after which adding another component decreased 536 

the mean squared error by less than 1%. Then, we defined the best overall firing rate model 537 

fit for each cell to be the best 𝑛∗-component model fit. We analysed responses from cells 538 

where the ratio of the sum of squared errors of the best firing rate model fit to the sum of 539 

squares of the data (sum of squares ratio, SSr) was less than 0.007 (151 of 167 cells)—cells 540 

with SSr greater than this value had fits that were notably worse upon visual inspection. For 541 

each cell, we calculated firing rate persistence values in the same manner described above 542 

for neural drive and eye position persistence (Neural drive estimation). 543 

 544 

Summary plant and neural drive estimation   For the 9 active state step responses from 6 545 

larvae, we simultaneously fit a single set of time constants, using the same procedure as above 546 

(Step response fitting). Then, using these time constants, we performed the blind 547 

deconvolution procedure (Oculomotor plant model estimation) to find the best fit plant model 548 
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for all 9 responses simultaneously (“summary plant”). We then computed the saccade-549 

triggered average eye position using smoothed versions of fixations from each of 6 separate 550 

larvae in which optical recording was performed. Smoothing was performed by fitting 551 

multiexponential functions to the saccade-triggered average eye position from each animal, 552 

as described above (Step response fitting).  A neural drive estimate was then generated for 553 

each larva by deconvolving the saccade-triggered average eye position with the summary 554 

plant. 555 

 We then performed a regularized linear regression of the saccade-triggered average 556 

firing rates of all hVPNI neurons onto the neural drive estimate for each larva, with regression 557 

weights constrained to be nonnegative, using a linear least squares solver (lsq_linear). We 558 

used a regularization term equal to the sum of squares (L2 norm) of the regression weights of 559 

each time series, multiplied by a regularization parameter. We chose this parameter 560 

separately for each larva by bisection search so that approximately 50% of the weights were 561 

nonzero, broadly in agreement with the fraction of putative hVPNI neurons that synapse onto 562 

motor neurons in electron microscopy data (Lee et al. 2015, Vishwanathan et al. 2017). 563 

 To show the importance of intermediate timescales in the neural drive (Mathematical 564 

Appendix), for each larva we generated 100 synthetic populations of 150 mock cells whose 565 

firing rates were each described by an exponential decay. For each population, 75 of the cells’ 566 

firing rates had time constants randomly drawn uniformly between 0 and 1 s, and 75 had time 567 

constants generated by taking 10 to the power of a uniform random number between 1.3 and 568 

2, resulting in random time constants between 20 s and 100 s. We then performed a 569 

regularized linear regression of the mock cells’ firing rates onto the estimated neural drive 570 

exactly as for the real cells.  571 
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RESULTS 572 

Measurement of zebrafish oculomotor plant response under anaesthesia 573 

All experiments described here were performed in the dark to prevent the influence of visual 574 

feedback. In order to determine whether the larval zebrafish oculomotor plant, like that of 575 

the anaesthetized primate, shows both short and long response timescales (Sklavos et al. 576 

2006; Sklavos et al. 2005), we first measured the response of the eye to horizontal step 577 

displacements (referred to below as “step responses”) of two different durations in larvae 578 

anaesthetized with MS-222. Because MS-222 inhibits action potential firing and thus input 579 

to neuromuscular junctions, active muscle tone is likely diminished or absent in this state so 580 

that the observed responses primarily reflect the passive properties of the plant. Similar 581 

amplitude abducting step displacements lasting 10 and 60 s were applied to one eye of 582 

anaesthetized larvae (n = 10) and the return trajectory of the eye was tracked following 583 

release (Figure 2A,B). The use of two different step durations helps expose both short and 584 

long response timescales; if the plant responded on exclusively short timescales, it would 585 

effectively reach steady state within 10 s, so that the responses to 10 and 60 s displacements 586 

would be similar. 587 

However, the responses to 10 and 60 s step displacements were strikingly different 588 

(Figure 3). To quantify response timescales present in these trajectories, for each larva we 589 

simultaneously fit with multiexponential functions the first 60 s following release of 590 

responses to both displacements. These functions had from 1 to 6 exponential decay 591 

components and were constrained at the time of release to equal the eye position prior to 592 

release. For each function with a given number of components, fits assumed a single set of 593 

time constants but distinct sets of corresponding amplitudes for the responses to the 10 and 594 

60 s displacements. Oscillatory artefacts sometimes present in responses during the first 200 595 

ms following release, perhaps resulting from the manual control of the hydraulic manipulator, 596 

led us to omit the first 230 ms of responses when fitting. Thus, our model fits cannot be 597 

expected to well capture response timescales faster than ~100 ms. Single exponential 598 

functions failed to capture much response structure, while models with 4 components 599 

provided a better fit (Figure 3A,B). Improvements in fit quality as the number of model 600 

components increased were similar to those observed previously for plant responses 601 
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measured in anaesthetized monkeys (Sklavos et al. 2005) and awake mice (Figure 3B; Stahl 602 

et al. 2015). 603 

In order to determine the minimum number of discernible timescales in step 604 

responses, we examined the change in mean squared error of fits as the number of exponential 605 

decay components used in the fits was increased. For each larva, there was an “elbow” at 4 606 

components, after which the reduction in mean squared error by adding more components 607 

was extremely small (Figure 3B).  The median values of the time constants of the four-608 

component fits were 0.092, 1.34, 7.95 and 91.6 s (Figure 3C). Bootstrapped variance 609 

estimates for time constant values were small relative to the gaps between values for 610 

successive components (median sd of estimates ranged between 2.1 and 6.6% as a fraction 611 

of the time constant values). Time constants greater than 10 s were necessary to well fit 612 

responses; multiexponential models constrained to have time constants less than 10 s failed 613 

to fit step responses as well as unconstrained models having equivalent numbers of 614 

components (Figure 3A; 39- to 172-fold increase in MSE for four-component models).  615 

We next measured step responses under another anaesthetic, the NMDA receptor 616 

antagonist ketamine. These experiments were performed for three reasons: (a) to demonstrate 617 

that aspects of the results obtained with MS-222 are not dependent on the choice of 618 

anaesthetic, (b) to better compare our results in the larval zebrafish with those of Sklavos et 619 

al. (2005) in the primate, and (c) because there is some indication in mammals that at 620 

ketamine doses near the threshold above which the animal becomes unresponsive to eye 621 

manipulation, some active muscle tone is preserved, making ketamine anaesthesia potentially 622 

closer to the active state (Blanks et al. 1977; King et al. 1978; Sklavos et al. 2005). We did 623 

not attempt to verify the presence of active muscle tone under ketamine. After anaesthetizing 624 

larvae (𝑛 = 6) with ketamine, we applied similarly sized abducting step displacements of 15 625 

and 90 s to one eye and tracked its return trajectory following release (Figure 3D).  626 

We simultaneously fit the responses following 15 and 90 s displacements using 627 

multiexponential functions as described above. The choice of slightly different step durations 628 

here was arbitrary and should not obscure the general agreement this similarity demonstrates. 629 

Fit results were similar to those obtained under MS-222 (Figure 3D-F). The median values 630 

of the time constants of four-component fits were 0.131, 2.01, 10.7, and 110.2 s, similar to 631 
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those obtained under MS-222 (Figure 3F). Bootstrap confidence interval estimates for time 632 

constant values were small relative to the gaps between values for successive components 633 

(median sd of estimates ranged between 4.7 and 8.4% as a fraction of the time constant 634 

values). Models constrained to have time constants less than 10 s again failed to fit step 635 

responses well (Figure 3D, 8- to 58-fold increase in MSE for four-component models). 636 

Collectively, the data from anaesthetized larvae suggest that the larval zebrafish 637 

oculomotor plant, like that of the primate, demonstrates both short (< 1 s) and long (> 1 s) 638 

response timescales. Moreover, our observation of time constants spread over several orders 639 

of magnitude under both types of anaesthesia matches results from comparable primate 640 

experiments (Sklavos et al. 2006; Sklavos et al. 2005).  641 

 642 

Measurement of oculomotor plant responses in the active state 643 

Because active tone in extraocular muscles could influence the response properties of the 644 

oculomotor plant, we examined whether long response timescales were discernible in awake, 645 

behaving larvae. Previous observations of active state plant responses have been limited to 646 

relatively brief time windows (< 400 ms in monkey, Anderson et al. 2009; < 2 s in mouse, 647 

Stahl et al. 2015), potentially obscuring the presence of long response timescales. Here we 648 

succeeded in measuring active state plant responses of longer duration thanks to the relatively 649 

low saccade frequency of larval zebrafish. Five to seven seconds after an adducting saccade 650 

in the dark, we applied abducting step displacements lasting 6.5 to 8.5 s. On 9 occasions 651 

across 6 larvae, we were able to record responses lasting > 8 s without any interrupting 652 

saccades. To our knowledge, active state measurements of comparable duration have not 653 

been previously reported. 654 

In order to properly fit these responses, we needed to estimate what the eye position 655 

would have been during the responses had the imposed displacements not occurred (Figure 656 

2C). Because eye position decays toward the centre of gaze appreciably during fixations in 657 

larval zebrafish, we could not use the eye position immediately prior to displacement as an 658 

estimate of the expected eye position in the absence of displacement. Instead, we estimated 659 

the expected eye position by fitting multiexponential models to eye position between the 660 

previous adducting saccade and the displacement, and then extrapolated the model fits 661 
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forward in time to estimate eye position in the absence of displacement. Models having 662 

between 1 and 6 components were initially fit, and the number of components used for 663 

subsequent analysis was chosen using the reduction in mean squared error from each added 664 

component as described above. In addition to this “best” extrapolated eye position fit, we 665 

also performed a second “conservative” fit with faster eye position decay (see Methods, 666 

Figure 2D) that conservatively accounts for possible over-estimates in the duration of the 667 

step response resulting from extrapolation. We extrapolated both the “best” and 668 

“conservative” fit functions through the step and subsequent response epochs to predict eye 669 

position had the displacement not been applied. We defined the step response as the 670 

difference between the eye position following release and these extrapolated fit functions 671 

(Figure 2C, grey arrows).  672 

To quantify response timescales in the active state, we fit multiexponential functions 673 

to responses from 230 ms to 8 - 21 s following release for each larva. For 3 larvae, a single 674 

response was fit. For 3 other larvae, responses to two separate displacements were 675 

simultaneously fit with a common set of time constants, but distinct component amplitudes 676 

for each displacement were permitted. Results assuming the best and conservative 677 

extrapolations were generally in agreement. Single exponential functions failed to well-678 

capture response structure (Figure 4A,B). For 5 of 6 larvae, responses were best fit by a three-679 

component model (Figure 4C), while responses from the remaining larva was best fit by a 680 

four-component model. Fit improvements upon inclusion of additional components beyond 681 

4 were again generally very small (Figure 4D). Time constants were broadly distributed for 682 

all larvae, assuming both the best and conservative eye position extrapolations (Figure 4E,F). 683 

Assuming the best extrapolation, the median values of the time constants of three-component 684 

fits for all 6 larvae were 0.166, 2.17, and 36.3 s. Bootstrapped variance estimates for time 685 

constant values were again small relative to the gaps between values for successive 686 

components (median sd of estimates was around 5% as a fraction of the inverse time constant 687 

values). Here again, very long time constants were necessary for an adequate fit; 688 

multiexponential models constrained to have time constants no greater than 5 s produced 689 

much worse fits to step responses than unconstrained models having equivalent numbers of 690 

components (Figure 4A,B, 3- to 459-fold increase in MSE for three-component models using 691 
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the best extrapolation and 1.3- to 356-fold increase using the conservative extrapolation). 692 

Collectively, these results demonstrate that, even when accounting for possible errors in 693 

extrapolation, active state step responses also display both short and long response 694 

timescales.  695 

Comparing the active state results to those obtained with anaesthesia reveals strong 696 

similarities. The mean time constants across larvae from active state fits are qualitatively 697 

similar to those found under both MS-222 and ketamine (Figure 3C,F), again ranging over 698 

several orders of magnitude. Quantitatively, the time constants for the active state fits tended 699 

to be a few times smaller than for the anaesthetized preparations. However, this may be an 700 

artefact of the limited measurement time in the active state; the mean time constants we found 701 

when we fit only the first 15 s of post-release eye position in anaesthetized larvae differed 702 

from those of the best 3 component fits to active state larvae by just 10-20%.  703 

 704 

Implications for neural drive 705 

We next addressed the implications of our above plant response observations for the nature 706 

of the neural drive extraocular muscles would require in order to stabilize gaze during 707 

fixation. To estimate this neural drive from eye position measurements, we used a simplified 708 

model that captures salient plant response properties. Our model assumes that eye position 709 

can be approximated by a convolution of neural drive with the plant’s response dynamics. 710 

We used the active state step responses to calculate the parameters of a linear filter 711 

representing the impulse response function of the oculomotor plant for each larva. To 712 

compute these plant models, we calculated filters that would best map a force applied to the 713 

eye during displacement onto the response observed after release (see Methods, Figure 5A). 714 

The response after release for a multiexponential plant model is a multiexponential decay 715 

with time constants equal to those of the plant model. Thus, we defined “distributed” plant 716 

models as multiexponential filters constrained to have the same number of components and 717 

time constant values as the fits to active state step responses.  718 

 We observed three pertinent features of the resulting plant models. First, we found 719 

that models derived from both the best and conservative extrapolations of eye position could 720 

accurately reproduce the active state step responses (best extrapolation: mean R2 ± sd = 0.965 721 
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± 0.032, conservative extrapolation: mean R2 ± sd = 0.948 ± 0.054; Figure 5B-D). Second, 722 

the functions inferred for force during displacement appeared to be composed of pulse, step, 723 

and some number of exponential slide components, as expected under a multiexponential 724 

plant model (Figure 5C, red; Mathematical Appendix). Lastly, plant model amplitudes were 725 

largest for the fastest components (Figure 5D,E). With component amplitudes summing to 726 

one, the median amplitude for the fastest component was 0.922 or 0.917 assuming the best 727 

or conservative extrapolations, respectively. 728 

Given the small relative amplitudes of the long timescale components, we asked what 729 

impact these components would make on gaze stabilization during fixation. Despite their 730 

small amplitudes, these components contribute a comparatively large fraction of the area 731 

under the curve of the plant model response functions up to 20 s post-impulse (Figure 5F), 732 

suggesting an important role in governing plant responses. To verify this, we repeated the 733 

plant model estimation using multiexponential filters in which the components with time 734 

constants greater than 1 s were removed, leaving the one or two fastest components (“fast 735 

plant” models). The remaining time constants align well with those of previous models of 736 

the mammalian oculomotor plant (Goldstein 1984; Optican and Miles 1985; Robinson 1964; 737 

Sklavos et al. 2006; Stahl and Simpson 1995; Stahl et al. 2015). However, using filters 738 

lacking long timescale components resulted in much poorer step response estimates (best 739 

extrapolation: mean R2 ± sd = -0.136 ± 0.068, conservative extrapolation: mean R2 ± sd = -740 

0.191 ± 0.090; Figure 5B). Results were similar using step response fits where time constants 741 

were constrained to be less than 1 s. Thus, long timescale components with even the small 742 

relative amplitudes we observed appear to play a critical role in dictating plant responses. 743 

The above observations rely on our measurements of active state step responses, 744 

which themselves involved the extrapolation of eye position expected in the absence of 745 

displacement. Therefore, we checked to see if substantially similar plant models are 746 

consistent with step responses measured under anaesthesia, which involved no extrapolation 747 

of eye position (Figure 6A). We again found that our models could reproduce measured step 748 

responses (Figure 6B,C), that inferred force functions were composed of pulse, step, and 749 

exponential slide components (data not shown), and that the fastest components had the 750 

largest amplitudes (Figure 6D). Importantly, the distributions of component time constants, 751 
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amplitudes, and fractional area under the curve for the inferred plant models (Figure 6D,E) 752 

were similar to the distributions observed for active state plant models (Figure 5E,F). Thus, 753 

the pertinent features of recovered plant models do not appear to be artefacts of our use of 754 

extrapolation in active state response measurements. 755 

Based on the estimated active state plant models, we next estimated the neural drive 756 

required to stabilize gaze during fixation (Figure 7A-D). We focus here on the neural drive 757 

needed long after the saccade has ended (> 0.25 s after initiation) to distinguish this drive 758 

from the large transient drive needed to quickly move the eye during a saccade. In the case 759 

of fast plant models that lack long timescale components, the neural drive needed to fully 760 

stabilize eye position is essentially constant over this epoch (Figure 7B, blue dashed line). 761 

This reflects the step component (Goldstein and Robinson 1986; Optican and Miles 1985; 762 

Robinson 1964) that has long been thought to be necessary for gaze stability during fixation, 763 

representing the temporal integral of eye velocity commands. The time course of this estimate 764 

is not dependent on the precise values of filter parameters – essentially constant drive will be 765 

necessary to stabilize eye position whenever filter time constants are exclusively fast 766 

(Mathematical Appendix). 767 

The addition of multiple long timescale components to the plant model markedly 768 

changes the character of the neural drive required to fully stabilize gaze (Figure 7B, red 769 

trace). First, the drive is no longer dominated by a step component, as substantial decay in 770 

drive provided by slide components is seen seconds into the fixation. This makes intuitive 771 

sense, as the step component is filtered by the plant’s long timescale components, so the step 772 

amplitude required is smaller. In fact, the step component amplitude can be shown to be 773 

inversely proportional to the area under the plant filter (Mathematical Appendix). Second, 774 

slow decay in the neural drive, generated by the slide components, is necessary to compensate 775 

for the slow equilibration of the viscoelastic elements to their steady states. We directly 776 

calculated the slide component time constants, finding that exactly one fell between each pair 777 

of consecutive plant model time constants and at least one slide time constant was always > 778 

1 s (Figure 7D). To test whether slide time constants fall between consecutive plant model 779 

time constants more generally, we directly calculated slide time constants for simulated three- 780 

or four-component plants and found that the observation held over the broad range of 781 
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parameters tested (Mathematical Appendix). Thus, the presence of long timescale plant 782 

responses appears to imply the presence of slowly decaying neural drive components. 783 

Actual measurements of larval zebrafish eye position show prolonged but imperfect 784 

fixations (Figure 7C, grey trace). Nevertheless, neural drive estimates obtained using 785 

distributed plant models, unlike those obtained using fast plant models, again decay more 786 

quickly than eye position (Figure 7C, red vs. blue trace). Furthermore, the neural drive 787 

contains long timescale slide components identical to those required to maintain perfect 788 

fixation (Figure 7D). We show in the Mathematical Appendix that, under the inverse model 789 

formulation, neural drive yielding imperfect fixations more generally has slide components 790 

identical to those that generate stable fixations, in addition to components resembling 791 

recorded eye position that are analogous to the step component for stable fixations. 792 

How much do neural drive estimates for distributed plant models differ from those 793 

for fast plant models, given actual eye position measurements? We used “persistence values” 794 

to quantify the difference in time course persistence expected between neural drive and eye 795 

position, assuming either distributed or fast plant models (9 fixations from 6 larvae; Lee et 796 

al. 2015). We defined the persistence value for a neural drive or eye position time series as 797 

its integral starting from 0.25 s post-saccade, normalized so that a stable time series yields a 798 

persistence value of 1. Hence larger persistence values correspond to increasingly persistent 799 

time courses. Distributed plant models lead to neural drive persistence that is substantially 800 

less than eye persistence, whereas fast plant models imply similar drive and eye persistence 801 

(Figure 7E). The median ratios between the persistence values of estimated neural drive and 802 

eye position were 0.72 and 1.04 for the distributed and fast plant models, respectively. Thus, 803 

distributed plant models predict neural drive will substantially diverge from eye position. 804 

 805 

The relationship between measured hVPNI activity and eye position 806 

We next assessed whether the activity of neurons in the hVPNI, which has traditionally been 807 

assumed to generate a constant step component, is consistent with a role in stabilizing gaze 808 

given the long response timescales in the plant and their implications for neural drive outlined 809 

above. We first compared the difference in time course persistence expected between the 810 

neural drive and eye position during fixation for individual larvae (Figure 7E) with that seen 811 
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between measurements of hVPNI firing and eye position recorded in a previous study (Miri 812 

et al., 2011a,b). Time course persistence was computed for hVPNI neurons whose saccade-813 

triggered average firing rates were estimated from calcium-sensitive cellular fluorescence 814 

measured during saccadic eye movement. We modelled saccade-triggered average 815 

fluorescence as a multiexponential firing rate function convolved with a calcium impulse 816 

response function describing the fluorescence response following an action potential (see 817 

Methods, Figure 8A,B; Miri et al. 2011a,b; Daie et al. 2015). Out of an initial dataset of 195 818 

neurons across 6 larvae, we excluded neurons that were not putative integrator neurons 819 

(28/195 neurons excluded) such as those exhibiting bursting activity in response to a saccade, 820 

and those for which fluorescence was not well fit by the saccade-triggered average 821 

fluorescence model (16/195 neurons excluded), leaving 151 neurons for subsequent analysis. 822 

Consistent with previous results, we observed a broad range of persistence values across this 823 

population (Figure 8C).  824 

 We then compared persistence values for hVPNI neurons with those of the saccade-825 

triggered average eye position calculated from simultaneously recorded eye position (Figure 826 

8D). We found that firing rate and eye persistence measurements were statistically unlikely 827 

to be drawn from the same distribution (p = 0.0106, two-sided Wilcoxon rank-sum). Firing 828 

rate persistence was lower than that for the corresponding eye position for 122/151 neurons 829 

(81%). The median ratio between the persistence values for firing rate and eye position across 830 

all neurons was 0.69, very close to the corresponding value for neural drive estimates (0.71, 831 

red line in Figure 8D). Overall, the distribution shown in Figure 8D is more consistent with 832 

what would be expected given the distributed plant models than given the fast plant models.  833 

 We next addressed whether the firing rates of the population of hVPNI neurons could 834 

be used to construct a neural drive that stabilizes gaze given long response timescales in the 835 

plant. For this analysis, we generated a three-component summary plant model computed as 836 

for the individual larvae but using a simultaneous fit to the active state responses from all six 837 

larvae (Figure 9A-C). This summary model had component amplitudes and time constants 838 

similar to the medians of the corresponding distributions from models for individual larvae 839 

(Figure 9B). We then deconvolved the saccade-triggered average eye position for each larva 840 

with this summary plant model to generate a neural drive estimate. Assuming that hVPNI 841 
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output could effectively be fed forward by motor neurons, we asked whether weighted sums 842 

of saccade-triggered average firing rates for recorded hVPNI neurons could well-843 

approximate these neural drive estimates (see Methods, Figure 9D-F). Weights were 844 

constrained so that 50% were positive, and the rest zero, in agreement with anatomical 845 

estimates of the proportion of integrator cells that synapse onto motor neurons (Lee et al. 846 

2015, Vishwanathan et al. 2017). We found that a weighted sum of hVPNI firing could well-847 

approximate the neural drive estimate for all 6 larvae (R2 = 0.989-1.000). This indicates that 848 

hVPNI firing is sufficient to constitute the neural drive needed to stabilize an oculomotor 849 

plant characterized by long response timescales. 850 

That such good fits can be achieved is perhaps not surprising given the range of 851 

persistence timescales present in hVPNI activity (Figure 8C). However, we note that 852 

intermediate timescales are critical to fit neural drive estimates well. Weighted sums of 853 

simulated cell populations containing only a distribution of short (<1 s) and very long (>20 854 

s) timescales could not reconstruct neural drive estimates (Figure 9E, cyan traces; 10- to 183-855 

fold increase in MSE). Thus, the intermediate persistence timescales not present in classical 856 

models of the oculomotor neural integrator are a necessary component of this drive.  857 
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DISCUSSION 858 

We report here two significant findings regarding the oculomotor plant and the motor circuits 859 

that control it. First, we extend the demonstration of both short and long response timescales 860 

in the plant (Quaia et al. 2009; Sklavos et al. 2006; Sklavos et al. 2005) to the active, 861 

unanaesthetized state, and to a new vertebrate model organism. Recent reports of long 862 

timescale responses in the primate plant have been conducted under anaesthesia. The 863 

relevance of these responses to the active state has been argued only indirectly using models 864 

(Sklavos et al. 2005). Second, our results establish that, despite such long timescales, the 865 

firing seen among hVPNI neurons (Daie et al. 2015; Miri et al. 2011a) can still be interpreted 866 

in terms of an inverse model-based compensation of plant viscoelasticity. While previous 867 

work has focused on the encoding of eye position in neuronal populations necessary for gaze 868 

stability during fixation (Aksay et al. 2000; Escudero et al. 1992; McFarland and Fuchs 1992; 869 

Pastor et al. 1994), a deviation from simply representing eye position appears crucial to the 870 

hVPNI’s function. As predicted for an inverse plant model that achieves substantially stable 871 

gaze, firing among larval zebrafish hVPNI neurons shows both less persistence on average 872 

than eye position itself, and a heterogeneity of persistence timescales.   873 

 Previous models of the oculomotor plant that included only fast response timescales 874 

implied that during fixation, neural drive to the plant would decrease over the first tens or 875 

hundreds of milliseconds and thereafter would stably approximate eye position (Goldstein 876 

1984; Optican and Miles 1985; Robinson 1964). This decrease in drive that follows the 877 

saccade-inducing burst, attributed to an exponentially decaying slide component, reflects the 878 

attenuating force needed to stabilize gaze as the viscoelastic elements equilibrate. The 879 

presence of distributed response timescales in the plant that range up to tens of seconds 880 

implies a reduced need for the constant, step component of neural drive; instead, distributed 881 

timescales of decaying drive extend long into fixations to compensate for the distributed 882 

timescales of force dissipation. Indeed, measurements of abducens motor neuron firing 883 

during approximately stable fixations in cats show evidence of firing rate decay on timescales 884 

greater than 1 s (Davis-Lopez de Carrizosa et al. 2011). Hysteresis observed between 885 

abducens motor neuron firing and eye position greater than 2.5 s into fixations (Goldstein 886 

and Robinson 1986) is also consistent with the presence of neural drive components on the 887 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 1, 2021. ; https://doi.org/10.1101/2021.06.30.450653doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.30.450653


 
 
 

34 

 
 

many seconds timescale, as is the hysteresis seen across timescales between hVPNI neuron 888 

firing and eye position (Aksay et al. 2003).  889 

The requirement for neural drive that decays across short and long timescales 890 

complicates descriptions of drive to the plant. The notion that the drive is composed of an 891 

eye velocity-encoding component, an eye-position component, and an exponentially 892 

decaying slide component can be extended to include multiple decaying slide components 893 

distributed across a range of timescales (see Mathematical Appendix). However, long 894 

response timescales in the plant imply that the drive required for stable gaze will have a step 895 

component with small relative amplitude. Furthermore, because sums of exponential 896 

components differing in component number, time constants, and amplitudes can well-897 

approximate the same function (Istratov and Vyvenko 1999), the presence of at least several 898 

response timescales implies that discerning precise values for these parameters may not be 899 

possible. However, parameters from the multiexponential fits we used to characterize plant 900 

responses do meaningfully reflect the distribution of response timescales. 901 

Despite this ambiguity regarding the neural drive needed to stabilize gaze, the need 902 

for multiple slide timescales does entail a coherent view of the transformation performed by 903 

the hVPNI in stabilizing gaze. Each slide timescale can be computed as a “leaky” integral of 904 

a brief eye velocity-encoding burst – an imperfect integral that "leaks" away over time with 905 

a particular time constant. The hVPNI can then be viewed as computing a sum of multiple 906 

leaky integrals of eye velocity (Figure 1A). Individual hVPNI neurons may reflect distinct 907 

combinations of these integrals in their firing, as would the ocular motor neurons they target. 908 

Since leaky integration can also be expressed as a convolution with an exponentially 909 

decaying filter, the hVPNI can be seen as convolving eye velocity with a multiexponential 910 

filter. One practical manifestation of this leaky integration of eye velocity is that hVPNI firing 911 

will decay faster than eye position (the pure integral of eye velocity), consistent with our 912 

observations of hVPNI firing in the aggregate. While pure integration remains a useful 913 

approximation of the transformation performed by the hVPNI, the distributed nature of its 914 

integration timescales may have important consequences for the underlying biological 915 

mechanisms (Daie et al. 2015; Miri et al. 2011a; Seung 1996; Seung et al. 2000). In previous 916 
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work, we have identified an array of neural circuit architectures capable of generating leaky 917 

integrals on multiple, distributed timescales (Miri et al. 2011a). 918 

 This view of the hVPNI as decaying on multiple timescales is conceptually similar to 919 

previous work suggesting power law decay of neural firing rates in the oculomotor integrator, 920 

since power law decays can be approximated by weighted sums of exponential decay terms. 921 

Previous work has proposed that the transformation of eye velocity signals by the hVPNI is 922 

not pure temporal integration, but fractional-order integration (Anastasio 1994). What is 923 

commonly referred to in calculus as integration (integration "of order 1") can be generalized 924 

to integrations of arbitrary real (hence "fractional") order (Podlubny 1999). Integration of an 925 

order between 0 and 1 is equivalent to convolution with a power function filter of the form 926 

𝑡𝛼, where 𝛼 is equal to the integration order minus one. Finding evidence for integration of 927 

order between 0 and 1 in oculomotor circuits, Anastasio (1994) posited that the neural drive 928 

to the oculomotor plant may constitute a fractional integral of eye velocity. He further 929 

proposed that this fractional integral relation might serve to compensate fractional integration 930 

of neural drive by the plant. That is, the motor circuitry and the plant itself may each be 931 

contributing a fraction of the integration necessary to transform eye velocity signals into a 932 

position signal.  933 

Our results here show that the range of persistence timescales present in hVPNI firing 934 

is broad enough to constitute a signal matching estimates of the neural drive needed to dictate 935 

eye position during fixation. Although contemporary multiexponential plant models imply 936 

that this drive should differ from previous descriptions of hVPNI output emphasizing the 937 

encoding of eye position, we show here that linear sums of larval zebrafish hVPNI neuron 938 

firing, relayed by motor neurons, could stabilize gaze assuming the plant models we 939 

computed. Observations of distributed persistence timescales in the hVPNI of adult goldfish 940 

(Major et al. 2004; Miri et al. 2011a) and cat (Davis-Lopez de Carrizosa et al. 2011) suggest 941 

that hVPNI output and oculomotor plant dynamics could be similarly reconciled for adult 942 

vertebrates.  943 

Despite the sufficiency of hVPNI firing for comprising a drive that can compensate 944 

for distributed response timescales in the oculomotor plant, the variation in persistence across 945 

neurons may still seem curious. If the plant is well modelled by a single filter, then there will 946 
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exist a single fixed mapping between eye velocity-encoding commands and the drive needed 947 

to produce observed eye position, reflecting a single inverse model of the plant. This single 948 

inverse model could be instantiated by the hVPNI such that all hVPNI neurons fired 949 

identically, counter to our observations. One possible explanation is that the variation in 950 

hVPNI persistence reflects the circuit architecture that gives rise to distributed persistence 951 

timescales, or an architecture that additionally enables context-dependence in the distribution 952 

of these timescales across neurons, as has recently been observed (Daie et al. 2015). Another 953 

possibility is that variation in neuronal persistence timescales provides a means for conferring 954 

robustness to gaze control. Changes in plant dynamics could be counterbalanced simply by 955 

reweighting inputs to motor neurons or the extraocular muscles, effecting a reweighting of 956 

different timescales in the neural drive. Lastly, it is also possible that our measurements belie 957 

a greater complexity in the plant. It could be that the plant comprises separate dynamic 958 

components that are independently compensated by drive to extraocular muscles (Dietrich et 959 

al. 2017; Hernandez et al. 2019). This would imply a need for premotor circuitry to instantiate 960 

not one but multiple inverse models, and to generate distinct drive components that would 961 

not always be in similar proportion. Variation in the firing persistence of hVPNI neurons 962 

would then be inevitable. 963 

Our results reported here indicate that long response timescales are not unique to the 964 

primate oculomotor plant. This adds to the demonstration by Davis-Lopez de Carrizosa et al. 965 

(2011) that abducens motor neuron firing decays faster than abducens muscle tension during 966 

fixation in cats, which suggests the presence of long response timescales in the plant as well. 967 

Thus, the implications of these timescales for compensation by motor circuits may be further 968 

addressed in a range of model organisms including the larval zebrafish, which is particularly 969 

amenable to circuit-level analysis (Ahrens et al. 2012; Arrenberg and Driever 2013; Friedrich 970 

et al. 2013; Orger et al. 2008) and has achieved prominence in the study of visuomotor 971 

behaviour (Bianco et al. 2011; Gahtan et al. 2005; Helmbrecht et al. 2018; Okamoto et al. 972 

2008; Portugues and Engert 2009; Sylvester et al. 2017). For example, how the cerebellum 973 

contributes to oculomotor integration by tuning brainstem circuits could also be fruitfully 974 

addressed using the larval zebrafish model (Miki et al. 2020; Aizenberg and Schuman 2011). 975 
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 While gaze stability appears to require something beyond pure temporal integration, 976 

the underlying circuitry remains a valuable model for circuit-level short-term memory (Major 977 

and Tank 2004). In particular, the multiple timescales of firing persistence seen in the hVPNI 978 

appear to be analogous to those seen in cortical short-term memory circuits (Bernacchia et 979 

al. 2011; Machens et al. 2010), suggesting that multi-timescale responses may represent a 980 

core feature of short-term memory systems throughout the brain. Moreover, models of neural 981 

integration proposed in previous work on the larval zebrafish hVPNI (Miri et al. 2011a) have 982 

been extended to interpret response diversity among oculomotor integrator neurons in 983 

monkeys (Joshua et al. 2013). We note that leaky integration of velocity signals on distributed 984 

timescales in the hVPNI still requires the generation of firing that persists much longer than 985 

typical membrane and synaptic time constants. Cellular and/or circuit mechanisms must exist 986 

that generate this persistence. Thus, elucidating these mechanisms in the larval zebrafish 987 

should contribute to our understanding of short-term memory in other circuits.   988 
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FIGURES 989 

 990 

Figure 1  Models of gaze stabilization. (A) Schematic illustration of the conversion of eye 991 

velocity commands into the neural drive 𝑓(𝑡) necessary to maintain stable fixation. This 992 

neural drive is conveyed by the ocular motor neurons to determine eye position 𝑦(𝑡). The 993 

oculomotor plant is modelled as a linear filter 𝑝(𝑡) operating on this drive. Premotor circuitry 994 

generates components of 𝑓(𝑡) from signals encoding eye velocity. The classical view, which 995 

predates recent results, held that the plant can be characterized by components that relaxed 996 

on 10’s and 100’s of ms timescales. Gaze stability on longer timescales then would require 997 

the generation of a neural drive that approximates the temporal integral of eye velocity. Here 998 

we argue that evidence for a broad distribution of response timescales in the plant redefines 999 

the role of premotor circuitry as involving a summation of leaky integrations on distributed 1000 

timescales. hVPNI: horizontal velocity-to-position neural integrator. (B) Decomposition of 1001 

the neural drive needed to stabilize gaze under classical and contemporary models of the 1002 

oculomotor plant. (C) Neural drive required to maintain stable fixation, from 500 ms to 10 s 1003 

after saccade termination, for a classical plant model (black) and ones with longer response 1004 

timescales (cyan, red).  1005 
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 1006 

 1007 

Figure 2  Methodological approach. (A) Schematic illustration of the method used to 1008 

measure the oculomotor plant step response. A blunt probe controlled by a hydraulic 1009 

micromanipulator was used to transiently displace the eye. (B) In anaesthetized larvae, the 1010 

step response was the eye position measured after release from an imposed step displacement. 1011 

(C) In awake larvae, the eye after displacement was assumed to return to the position it would 1012 

have occupied had no displacement occurred. Thus, the step response was estimated to be 1013 

the measured eye position after release from the step displacement (grey), minus the 1014 

extrapolation of pre-displacement eye position (red). A faster decaying conservative 1015 

extrapolation (black) was also calculated. (D) Left: to validate the extrapolations, fits to the 1016 

initial portion (darker grey) of long unperturbed fixations were extrapolated (red), and the 1017 

fractional error of the extrapolation relative to the true eye position was averaged over a ~230 1018 

ms window centred at 14.64 s (inset: cyan, data; dashed black, mean of these data). Right: 1019 

the average relative error across the 230 ms window for each measured fixation (red arrow 1020 

corresponds to the fixation shown on the left).  1021 

 1022 
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 1023 

Figure 3  The eye's return from step displacements in anaesthetized zebrafish larvae reveals 1024 

short and long response timescales in the oculomotor plant. (A) Example responses of the 1025 

eye (grey) following step displacements lasting 10 s (left) or 60 s (right), normalized by eye 1026 

position prior to release, in larvae anaesthetized with MS-222. Coloured traces: simultaneous 1027 

fits to both displacements with multiexponential models having one (cyan), two (black), or 1028 

four components with time constants unconstrained (red) or constrained to be less than 10 s 1029 

(purple). (B) Mean squared error (MSE) of fits with different numbers of components (black) 1030 

and percent change in MSE compared to the fit with one fewer component (red) in larvae 1031 

anaesthetized with MS-222. Boxes span the 25th to 75th percentile range; whiskers show 1032 

maximum and minimum values (𝑛 = 10 larvae). (C) Coefficient amplitudes and time 1033 

constants for four-component fits in larvae anaesthetized with MS-222. (D-F) Same as A-C 1034 

but for larvae anaesthetized with ketamine (𝑛 = 6), for which step displacements lasted 15 1035 

or 90 s.  1036 
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 1037 

Figure 4  The eye's return from step displacements in awake zebrafish larvae exhibits short 1038 

and long response timescales. (A,B) Example active state step response calculated using the 1039 

best (A) and conservative (B) extrapolation of eye position in the absence of displacement. 1040 

Fits of multiexponential models having one (cyan), two (black) or three components with 1041 

time constants unconstrained (red) or constrained to be less than 5 s (purple) are overlaid. 1042 

(C,D) Mean squared error (MSE) (C) and percent change in MSE (D) for step response fits 1043 

compared to models with one fewer component, calculated using the best (red) or 1044 

conservative (black) eye position extrapolations for each larva. Boxes span the 25th to 75th 1045 

percentile range; whiskers show maximum and minimum values (𝑛 = 6 larvae). (E,F) 1046 

Distributions of amplitudes and time constants for fits to step responses calculated using the 1047 

best (E) and conservative (F) eye position extrapolations. Dots and lines show parameter 1048 

combinations for larvae for which the best fit was a three-component model (red; best 1049 
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extrapolation: 𝑛 = 5, conservative extrapolation: 𝑛 = 4) or a four-component model (black; 1050 

best: 𝑛 = 1, conservative: 𝑛 = 2).   1051 
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 1052 

Figure 5  Oculomotor plant models can be recovered from step responses in awake zebrafish 1053 

larvae. (A) Schematic outlining the method used to estimate linear filters that capture plant 1054 

response properties. The measured eye position is assumed to derive from the sum of two 1055 

inputs to the plant: external force applied by the probe, which leads to the active state step 1056 

response 𝑦(𝑡), and internally generated neural drive, which would lead to the (extrapolated) 1057 

unperturbed eye position. We estimated the plant filter and applied force that best fit the 1058 

active state step responses. Active state step responses were estimated from the “best” 1059 

extrapolation procedure of Figure 2C and normalized to be 1 at the time of release. (B) 1060 

Example active state step response (grey), and predicted step responses from the best 1061 

recovered three-component plant model (red) or a plant model refit using only the fastest two 1062 

time constants from the three-component plant model (cyan). (C) Time course of recovered 1063 

applied force, normalized to be 1 immediately after pulse offset, assuming the best three-1064 

component (red) or fast two-component (cyan) plant. (D) Time course of the impulse 1065 

response of the best three-component (red) and fast two-component (cyan) plant models. (E) 1066 

Distribution of amplitudes and time constants for each component of the best recovered plant 1067 

models. Dots and lines show parameter combinations for larvae for which a three-component 1068 

model was best (red, 𝑛 = 5) or for which a four-component model was best (black, 𝑛 = 1). 1069 

(F) Fraction of the total area under the curve (AUC), calculated over 20 s, contributed by 1070 
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each plant component for the best recovered three- (red, 𝑛 = 5) or four-component (black, 1071 

𝑛 = 1) plant models.  1072 
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 1073 

Figure 6  Oculomotor plant model estimates for anaesthetized larvae are consistent with 1074 

active state estimates. (A) Schematic outlining the method used to estimate linear filters that 1075 

describe plant response properties. We estimated the plant filter and applied force that best 1076 

fit the measured anaesthetized step responses. (B) Example responses of the eye (grey) 1077 

following step displacements lasting 10 s (left) or 60 s (right), normalized by the eye position 1078 

prior to release, in larvae anaesthetized with MS-222. Coloured traces: predicted step 1079 

response from the best recovered four-component model (red) and a plant model refit using 1080 
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only the fastest two time constants from the four-component plant model (cyan). (C) Same 1081 

as B, but for larvae anaesthetized with ketamine, for which step displacements lasted 15 s or 1082 

90 s. (D) Coefficient amplitudes and time constants for each component of the best four-1083 

component plant models for larvae anaesthetized with MS-222 (red, 𝑛 = 10) or ketamine 1084 

(black, 𝑛 = 6). (E) Fraction of the total area under the curve (AUC) contributed by each 1085 

component for the best four-component plant models for larvae anaesthetized with MS-222 1086 

(red) or ketamine (black). Boxes span the 25th to 75th percentile range; whiskers show 1087 

maximum and minimum values (MS-222, 𝑛 = 10; ketamine, 𝑛 = 6).  1088 
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 1089 

 1090 

Figure 7  Estimating the neural drive to the oculomotor plant during fixation. (A) Eye 1091 

position was deconvolved with the filter from a given larva’s plant model to estimate the 1092 

neural drive needed to generate that eye position. (B) Perfectly stable eye position (grey) and 1093 

neural drive estimates calculated from the best three-component (red) and fast two-1094 

component (cyan) plant model for an example awake larva. Time courses were normalized 1095 

to be 1 at 250 ms after saccade termination. (C) Same as B, but for a measured fixation. (D) 1096 

Time constants of the distributed plant (black) and of the slide components of the neural drive 1097 

(red circles). (E) Persistence of estimated neural drive assuming the best three- or four-1098 

component (red) or the fast two-component (cyan) plant model plotted against eye position 1099 

persistence. Each point represents a fixation recorded from an awake larva. Dotted line 1100 

indicates a one-to-one ratio of drive persistence to eye persistence.  1101 

  1102 
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 1103 

Figure 8  The relationship between the persistence of eye position and of neuronal firing in 1104 

hVPNI neurons is consistent with the neural drive required for a plant with long timescale 1105 

responses. (A) Illustration of the method used to recover firing rates of hVPNI neurons. First, 1106 

the calcium impulse response function (CIRF) was fit to baseline subtracted saccade-1107 

triggered average (STA) Ca2+-sensitive fluorescence during a contralateral saccade (top). 1108 

Only cells to which the CIRF fit was relatively good (R2 > 0.5), and for which fluorescence 1109 

was correlated to eye position when convolved with the CIRF (corr > 0.5) were included in 1110 

further analysis (167/195 cells). For these cells, STA fluorescence during an ipsilateral 1111 

saccade was fit with a multiexponential model of post-saccadic firing convolved with the 1112 

CIRF (bottom; Methods, hVPNI firing rate estimation). If the ratio of the sum of squared 1113 

errors of fits to the sum of squares of ipsilateral STA fluorescence (sum of squares ratio, SSr) 1114 

was greater than 0.007, the cell was excluded (16/167 cells excluded). (B) Examples of the 1115 

worst, median and best quality fits to ipsilateral STA fluorescence of included cells (top) and 1116 

corresponding inferred firing rate functions, normalized to equal 1 at 0.25 s after saccade 1117 

time (bottom). (C) Distribution of firing rate persistence (sum of red shaded areas in B) across 1118 

all included neurons. (D) Histogram of the ratio of firing rate persistence to eye position 1119 

persistence. Grey line indicates the median ratio. Coloured lines indicate the median ratio of 1120 
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neural drive persistence to eye persistence across larvae assuming a distributed (red) or fast 1121 

(cyan) plant model for each larva.  1122 
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 1123 

 1124 

Figure 9  The distribution of hVPNI firing patterns is sufficient to stabilize gaze when the 1125 

plant has long timescale responses. (A,B) Time course (A) and component amplitudes and 1126 

time constants (B) of a single summary plant model fit to the active state step responses from 1127 

all awake larvae. (C) Predicted step response given the summary plant model (red) compared 1128 

to the predicted response given the best plant model for each individual larva (black). 1129 

Examples are the worst (top), median (middle) and best (bottom) of the 9 reconstructed step 1130 

responses, sorted by mean squared error. (D) Schematic of steps used to estimate the neural 1131 

drive during fixation as a linear combination of hVPNI firing rates. Saccade-triggered 1132 

average eye positions during fixation from the 6 larvae from which Ca2+-sensitive 1133 

fluorescence was recorded were deconvolved with the summary plant model to estimate the 1134 

required neural drive. For each larva we calculated a regularized linear regression of 1135 

estimated neural drive onto the firing rates of all recorded hVPNI cells (𝑛 = 151 cells). (E) 1136 

Grey: estimated neural drive calculated for the fish with the least (left) and most (right) 1137 

persistent average eye position during fixation using the summary plant model. Red: best 1138 

linear fit of hVPNI firing rates to the estimated neural drive. Cyan: band containing the best 1139 

95% of linear fits to the estimated neural drive from 100 synthetic populations of mock cells 1140 

whose firing rates were exponential decays with random time constants <1 s or >20 s. (F) 1141 
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Regression weight for each hVPNI cell, averaged across fits to all 6 average eye positions, 1142 

with cells sorted by increasing firing rate persistence.  1143 
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MATHEMATICAL APPENDIX 1320 

Analytical calculation of neural drive for a multiexponential plant 1321 

Here, we derive analytical expressions for the neural drive expected in the case of a linear 1322 

multi-exponential plant under the inverse model formulation, extending the work of Sklavos 1323 

et al. (2005). First, we provide a general formula, then specific formulae for the one- and 1324 

two-exponential cases, and finally discuss simulation results for three- and four-exponential 1325 

plants. 1326 

Suppose that the measured eye position during normal fixations can be described by 1327 

sums of 𝑛pos exponential decays with time constants 𝜏pos,𝑖 = 1/𝑘pos,𝑖 and amplitudes 𝑐pos,𝑖, 1328 
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with perfectly stable eye position represented by a single exponential decay with 𝑘pos = 0. 1330 

We assume that the eye position is generated by linear filtering of the neural drive by a plant 1331 

with a multiexponential impulse response function, as in equations (1) and (2). Taking the 1332 

Laplace transform of equations (1),  (2) and (A.1), equation (2) becomes 1333 
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where 𝑘𝑖 = 1/𝜏𝑖 are the inverse time constants, as before, and Laplace transformed variables 1335 

are represented with capital letters. Examining only 𝑃(𝑠), the Laplace transform of 𝑝(𝑡), we 1336 

can turn the sum of fractions into a single fraction, 1337 
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  (A.2) 1338 

where the numerator is an 𝑛 − 1 degree polynomial with roots −𝜆𝑖, and where we have used 1339 

that the sum of the amplitudes 𝑐𝑖 is 1. We can similarly write the Laplace transform of the 1340 
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eye position, 𝑌(𝑠), as a single fraction that is the ratio of two polynomials. Then, the Laplace 1341 

transform of the neural drive is 1342 
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  (A.3) 1343 

Assume that 𝜆pos,𝑖, 𝑘𝑖, 𝑘pos,𝑖 and 𝜆𝑖 are all unique. Then, by partial fraction decomposition, 1344 

equation (A.3) becomes 1345 
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and taking the inverse transform, the neural drive in the time domain is 1347 

 
pos

pos,

1
/

pos, slide,

11

( ) ( ) ,i i

n n
t t

i

i

i

i

f t at a e e
 


 



     (A.5) 1348 

which consists of a pulse, a set of components that decay as eye position, and 𝑛 − 1 1349 

exponentially decaying slides with time constants 1/𝜆𝑖 that may be complicated 1350 

combinations of the plant coefficients and time constants, but which do not depend on the 1351 

desired eye position. Note that if the desired eye position had had a component with time 1352 

constant given by the plant (such that 𝑘pos,𝑖 = 𝑘𝑗 for some 𝑖 and 𝑗), then a component with 1353 

this time constant would not be required in the drive. 1354 

From the residue theorem, the amplitude of any eye position component can be 1355 

calculated by evaluating (𝑠 + 𝑘pos,𝑖)𝐹(𝑠) at 𝑠 = −𝑘pos,𝑖, 1356 
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For the special case of perfectly stable eye position, a single component with inverse time 1358 

constant 𝑘𝑝𝑜𝑠 = 0, this component is a step with amplitude 1359 
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  (A.7) 1360 

That is, since the area contributed by each plant component 𝑖 is 𝑐𝑖𝜏𝑖, the amplitude of the step 1361 

component is equal to the inverse of the total area of the plant filter. To provide additional 1362 

intuition about the effect of long time constants on the neural drive, we below consider the 1363 

simple examples of plants with either a single exponential decay or a sum of two exponential 1364 

decays and for simplicity, eye position that can be described by a single exponential decay. 1365 

 1366 

A single exponential plant 1367 

Consider the case of a single exponential plant model, 1368 

 .( ) ktp t e   1369 

Then, the Laplace transform of the neural drive is 1370 
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and in the time domain, 1372 
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     1373 

where 𝑘 > 𝑘pos. Thus, in this simplest case, the neural drive consists of a pulse and a 1374 

decaying component that follows eye position. In the case of stable fixation (𝑘pos = 0, 𝜏pos →1375 

∞), this component is a step whose amplitude increases in proportion to the decay rate 𝑘 of 1376 

the plant. To interpret this result, note that convolution with an exponential filter can be 1377 

thought of conceptually as a leaky integral. To generate stable eye position, an eye velocity 1378 

command must be supplemented with an eye position command to compensate for the effect 1379 

of the plant’s leaky filter. As the time constant increases, i.e., as 𝑘 decreases, the plant’s 1380 

integration becomes less leaky, and the step-like position command becomes less necessary.  1381 
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 1382 

A double exponential plant 1383 

Next, consider a plant with two exponential components, 1384 
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    1385 

with 𝑐1 + 𝑐2 = 1 and 𝑘1 > 𝑘2, which implies 𝜏1 < 𝜏2. This has Laplace transform 1386 
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The required neural drive is 1388 
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which in the time domain is 1390 
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     1391 

a combination of a pulse, a position-like, and an exponentially decaying slide component, 1392 

where 𝑎pos and 𝑎slide are defined below. The decay rate of the slide is a linear combination 1393 

of the decay rates of the two plant components, 1394 
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or in terms of time constants, 1396 
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Since 𝑐2 = 1 − 𝑐1, the slide time constant is bounded by the two plant time constants. The 1398 

slide time constant is longest in the limit where the amplitude of the faster plant component 1399 

is large (𝑐1 → 1, 𝑐2 → 0), in which case it approaches 𝜏2, the time constant of the slower 1400 
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plant component. It is shortest in the limit in which the amplitude of the faster plant 1401 

component is very small (𝑐1 → 0, 𝑐2 → 1), in which case it approaches 𝜏1. 1402 

The purpose of the slide can be seen clearly in the case of perfectly stable desired eye 1403 

position, 𝑘pos = 0. Applying neural drive with only a pulse and position (step) component to 1404 

the plant, the eye position due to each plant component 𝑖 is  1405 
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where 𝑢(𝑡) is the Heaviside or unit step function. We can find a step amplitude 𝑎pos such 1407 

that the exponential decay term in the above expression is cancelled for each plant component 1408 

individually, but we will be unable to simultaneously cancel the corresponding exponential 1409 

decay resulting from the other plant component (a pulse/step mismatch). This is corrected by 1410 

adding the additional slide component to the drive.  1411 

The amplitudes of the position and slide components of the drive are respectively 1412 

given by 1413 
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For simplicity, let us consider perfectly stable fixations, 𝑘pos = 0, so that again the 1416 

eye position component is a step. Then, the ratio of the amplitude of the slide to the amplitude 1417 

of the step is given by 1418 
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For a fixed choice of time constants, the ratio is proportional to the product 𝑐1𝑐2 = 𝑐1(1 −1420 

𝑐1). If either 𝑐1 or 𝑐2 is sufficiently close to 1, then the amplitude of the slide will be extremely 1421 

small compared to the step. The ratio is maximized for 𝑐1 = 𝑐2 = 1/2. 1422 

 In this study, we encountered the situation in which plant components contributed 1423 

similar areas to the plant, an important parameter setting we will now consider. In the case 1424 

of two equal area components, with 𝑐1/𝑘1 = 𝑐2/𝑘2, the coefficients of the plant components 1425 

become  1426 

 

1
1

1 2

2
2

1 2

.

c

c

k

k k

k

k k







  1427 

Then, the time constant of the slide is the average of the two plant time constants, 1428 
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and the amplitudes of the step and the slide are 1430 
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  1431 

In this case, the contribution of the slide is appreciable only if the inverse time constants of 1432 

the two plant components are far apart. For the equal areas case, we also can understand 1433 

easily the effect of a long time constant on the required neural drive. For a fixed choice of 1434 

time constant 𝜏1  and amplitude 𝑐1 for the faster component, as the time constant of the slower 1435 

component becomes longer, the slide time constant increases, the amplitude of the step 1436 

decreases, and the amplitude of the slide increases.  1437 
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Three- and four-component plants 1438 

Using numerical simulations, we extended this analysis to three- and four-component 1439 

plants. In each case, we generated 1 million plants with coefficients and inverse time 1440 

constants chosen uniformly at random between 0 and 1, with coefficients then normalized so 1441 

that they sum to 1.  We calculated the time constants of the slide components by solving for 1442 

the zeros −𝜆𝑖  of the Laplace transform of each plant (equation (A.2)). We found that, in all 1443 

cases, there was exactly one slide time constant between each pair of neighbouring plant time 1444 

constants. 1445 
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