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Abstract 
Sensory cortices are increasingly thought to encode multisensory information. For instance, primary 
visual cortex (V1) appears to be influenced by sounds. Here we show that sound-evoked responses 
in mouse V1 are low-dimensional, similar across neurons and across brains, and can be explained 
by highly stereotyped uninstructed movements of eyes and body. Thus, neural activity previously 
interpreted as being sensory or multisensory may have a behavioral origin. 

Introduction 
Many studies suggest that all of sensory cortex, 
including primary sensory areas, is 
multisensory1. For instance, mouse primary 
visual cortex (V1) appears to be influenced by 
auditory signals (Figure 1, top), which may 
provide global inhibition2, modify the neurons’ 
orientation tuning3,4, boost detection of visual 
events5, or even provide tone-specific 
information, reinforced by prolonged 
exposure6 or training7. These effects may be 
due to projections from the auditory system to 
the visual cortex3,5,7.  

However, there is a possible alternative 
explanation for these apparent multisensory 
signals. Sounds can change internal state and 
evoke uninstructed body movements8–11. 
Internal state and body movements correlate 
with activity in many brain regions12–14, 
including V115–17. It is thus possible that sounds 
affect visual cortex because they change 
internal state or behavior (Figure 1, bottom).  

To test this possibility, we asked whether 
sound-evoked signals in mouse V1 could be 
predicted by uninstructed sound-evoked 
movements. We recorded the responses of 
hundreds of V1 neurons to audiovisual stimuli, 
while filming the mouse. We observed that V1 
encoded a low-dimensional representation of 
sounds, which was tightly correlated to the 
movements evoked by these sounds. Different 
sounds evoked different temporal patterns of 
movement, which were stereotyped across 

trials and across mice, and these movements 
could predict the responses of V1 neurons to 
sounds. Thus, the multisensory activity that 
has been widely observed across the brain may 
have a simpler, behavioral origin.  

 

Figure 1. Explaining auditory effects in visual cortex. 
Top. Activity in visual cortex is influenced by sounds. 
Bottom. Our proposal: sounds influence visual cortex by 
evoking changes in internal state and behavior.   

Results 
To explore the influence of sounds on V1 
activity, we implanted Neuropixels 1.0 and 2.0 
probes18,19 in 8 mice, and recorded during head 
fixation while playing artificial and naturalistic 
audiovisual stimuli (Figure 2a). Here, we 
illustrate the results with the naturalistic 
stimuli (results with artificial stimuli were 
similar; data not shown). We selected eleven 4 
s naturalistic movie clips20, each made of a 
video (gray-scaled) and a sound (loudness 50-
80 dB SPL, Suppl. Figure 1), together with a 
blank movie (gray screen, no sound). On each 
trial, we presented a combination of the sound 
from one clip and the video from another, and 
repeated each of the 144 combinations 4 
times, in random order. 
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Sounds evoke stereotyped responses in 
visual cortex  
We then identified the visual and auditory 
components of each neuron’s sensory 
response (Figure 2a-d). A typical V1 neuron 
responded differently to different 
combinations of videos and sounds (Figure 2a). 
To characterize these responses, we used a 
marginalization procedure similar to factorial 
ANOVA (see Methods). To measure a neuron’s 
video-related responses (Figure 2b) we 
computed its mean response to each video 
(averaged across all concurrent sounds) and 
subtracted the grand average over all videos 
and sounds (Figure 2d). Similarly, to 
characterize the neuron’s sound-related 
responses (Figure 2c) we computed the mean 
response to each sound (averaged across all 
concurrent videos) and subtracted the grand 
average.  

Sounds evoked stereotyped, mostly one-
dimensional responses in V1 neurons (Figure 
2c,e-g). For instance, the time courses of sound 
responses in two additional example neurons 
were very similar to that of our first example 
neuron (Figure 2e). The population activity 
evoked by sounds was close to one-
dimensional. Indeed, applying cross-validated 
Principal Component Analysis (cvPCA, Ref. 21) 
to the sound-related activity of the population 
(69 neurons in this example animal) revealed 
that a single dimension explained 54 ± 3% (s.e., 
n=8 mice) of the sound-related variance 
(Figure 2f). The time course of population 
activity projected onto this dimension 
(“auditory PC1”) differed between sounds, but 

was similar to the responses evoked in 
individual neurons (Figure 2g). Because this 
first component captured most of sound-
evoked activity in V1, we use its time course to 
illustrate auditory responses throughout the 
paper. 

The population responses evoked by sounds 
were also similar across brains (Figure 2h-j). In 
all mice, the representation of sounds was 
largely one-dimensional (Figure 2i) and its 
dependence on sounds was similar across mice 
(Figure 2j). Indeed, the correlation of auditory 
PC1 timecourses evoked in different mice was 
0.34, close to the test-retest correlation of 0.43 
measured within individual mice (Figure 2h). 
Thus, sounds evoke essentially one-
dimensional population activity, which follows 
a similar time course even across brains. 

In contrast, videos elicited responses that were 
both larger and high-dimensional. Applying the 
same analysis methods showed that the first 
visual PC explained more total variance than 
the first auditory PC (17.3 ± 1.4% vs 1.7% ± 0.3, 
s.e., n=8 mice; Suppl. Figure 2). Furthermore, 
higher visual PCs explained substantial 
amounts of variance, as previously reported21, 
while higher auditory PCs did not. This higher-
dimensional visual code allowed better 
decoding of stimulus identity: the accuracy of 
a template-matching decoder was 94 ± 2% 
(s.e., n=8 mice)  for videos but only 18 ± 2% 
(s.e., n=8 mice) for sounds, much lower (p = 
0.0313, paired Wilcoxon sign rank test) yet still 
significantly above chance (p = 0.0078, 
Wilcoxon sign rank test, Figure 2k). 
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Figure 2. Sounds evoke stereotyped responses in visual cortex. a. Responses of an example neuron (cell 1) to combinations 
of sounds (columns) and videos (rows). Rasters (grayscale images) show single trial responses for each sound-video 
combination. Curves show the average response over 4 repeats. b. Video–related time courses (averaged over all repeats 
and sound conditions, relative to grand average) for the example cell in a. c. Sound-related time courses for the same cell, 
relative to grand average. d. Grand average over all conditions for the cell (same scale bars as in b,c). e. Same as c-d for two 
other cells. f. Cross-validated principal components analysis (cvPCA) of the sound-related population responses for the 
example mouse shows that sound-related population responses are essentially one-dimensional, i.e. captured by a single 
time course. g. Time courses of the sound-evoked responses along the first auditory dimension (‘auditory PC1’, arbitrary 
units) for the example mouse. h. Test-retest correlation of the auditory PC1 time courses, within and between all 8 mice.  i,j. 
Same as f and g for three other mice, and for all mice (average in black, each individual mouse in gray). k. Decoding accuracy 
for both video and sound decoding (left) for all 8 mice (colors from brown to orange) and their average (thick black line) (*: 
p-value < 0.05, **: p-value < 0.01).  
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Figure 3. Sounds evoke stereotyped, uninstructed behavioral responses. a. Sounds evoked changes in pupil area, whose 
time course was different across sounds (columns) but similar across mice (rows). Last row shows average across 6 out of 8 
mice that were monitored with an eye camera (inset) (scale bar: 1 s.d.). b. The grand average across sounds was an increase 
in pupil area (the time courses in a are deviations from this grand average). c. Cross-validated auto- and cross-correlation of 
the sound-related pupil responses across 6/8 mice. d. Decoding of video and sound identity using pupil area. e-h. Same as a-
d but for body motion, displaying the time course of the first principal component, and for 8/8 mice. (*: p-value < 0.05, **: 
p-value < 0.01). 

Sounds evoke stereotyped, 
uninstructed behavioral responses 
Sounds triggered temporally stereotyped 
changes in arousal5 (Figure 3a-b). During the 
same experiments, in 6 of the 8 mice, we 
pointed a camera at the eye to measure pupil 
area, a measure of arousal12,17,22,23. Sounds 
evoked characteristic changes in pupil area, 
which differed across sounds (Figure 3a) but 
were consistent across trials and mice, 
regardless of the video that accompanied the 
sound (Figure 3a-d).   

Moreover, sounds evoked stereotyped, 
uninstructed eye and body movements13 
(Figure 3e-h). In all mice we measured overall 
body movements using a wider-angle camera 

that imaged the head, front paws, and back. 
We illustrate these movements by plotting the 
first principal component of facial motion 
energy14 (Figure 3e). Sounds evoked large 
movements, ranging from immediate startle-
like responses (<50 ms after sound onset) to 
more complex, gradual movements (Figure 3e, 
see Suppl. Figure 3 for all sounds). Sound-
evoked body movements were remarkably 
similar across trials and mice (Figure 3g,h). 
Similarly, different sounds evoked different 
eye movements, which were consistent across 
trials and mice (Suppl. Figure 4). Because 
sound-evoked movements were different 
across sounds and similar across trials, we 
could use them to decode sound identity with 
16 ± 2% accuracy (s.e., n=8 mice, Figure 3h). 
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This accuracy was not statistically different 
from the 18 ± 2%  accuracy of sound decoding 
from neural activity in visual cortex (p=0.31, 
paired Wilcoxon sign rank test). 

Sound-evoked behaviors predict sound-
evoked responses in visual cortex 
The body movements evoked by sounds 
(Figure 3) had a remarkably similar time course 
to the neural responses evoked by sounds in 
area V1 (Figure 2), for all sounds (Suppl. Figure 
3).  

We thus asked to what extent body 
movements could predict sound-evoked 

neural activity in V1 (Figure 4a-d). We 
predicted the sound-evoked population 
activity in V1 using three models: (1) a purely 
auditory model where the time course of 
activity depends only on sound identity 
(equivalent to a test-retest, Figure 4b); (2) a 
purely behavioral model where activity is 
predicted by pupil area, eye position/motion, 
and facial movements (Figure 4c); (3) a full 
model where activity is due to an additive 
combination of both factors (Figure 4d). The 
models were fitted on the single-trial data but 
used to predict trial-averages.

 

Figure 4. Sound-evoked behaviors predict sound-evoked responses in visual cortex. a. Average of the sound-evoked 
responses along neural auditory PC1 over odd trials from all mice. b-d. Cross-validated predictions of neural auditory PC1 
responses using only sound stimulus identity (b.), eye and body predictors (c.), or both at the same time (d.), computed using 
even trials and used to predict odd trials. e. Cross-validated correlation of the actual sound responses and their predictions 
for all mice, comparing different models (full: all predictors, auditory: sounds only, Behavioral: eye and body movements 
only). f. Same as e, but for video responses. h. Correlation between the single-trial noise in neural activity along auditory PC1 
and the single-trial noise in the prediction. Correlation values for all mice are shown on the right. (*: p-value < 0.05, **: p-
value < 0.01). 

The body movements evoked by sounds were 
sufficient to explain sound-evoked responses 
in visual cortex (Figure 4a-f). Indeed, the 
behavioral model outperformed the full model 
in predicting trial-averaged responses to 
sounds (p = 0.0078, paired Wilcoxon sign rank 

test, Figure 4e, left). This indicates the extra 
predictors were unnecessary and led only to 
overfitting. In contrast, the full model 
performed better than the auditory model (p = 
0.0078, paired Wilcoxon sign rank test, Figure 
4e, right). Further analysis indicated that the 
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main behavioral correlate of these responses 
were movements of the body (as opposed to 
movements of the eyes), and especially of the 
whiskers (Suppl. Figure 5). By contrast, the 
behavioral model explained a much smaller 
fraction of the trial-averaged video-evoked 
neural responses than video stimulus identity, 
consistent with the fact that visual cortex is, 
indeed, largely visual (Figure 4f).  

Variations in body movement across trials 
predicted trial-by-trial variations in sound-
evoked visual cortical activity (Figure 4g,h). The 
movements each sound elicited were 
stereotyped, but not identical across trials. 
Trial-by-trial variations in visual cortical activity 
could not be explained by the auditory model 
(by definition) but were well captured by the 
behavioral model (Figure 4g). The mean 
correlation between the trial-by-trial 
variations of the visual cortex’s auditory PC1 
and the first principal components of body 
motion was 0.37, significantly above zero (p = 
0.0078, Wilcoxon sign rank test, Figure 4h). In 
other words, the V1 responses evoked by 
sounds in individual trials followed a similar 
time course as the body movements observed 
in those trials. 

Discussion 
These results confirm the many previous 
reports of sound-evoked responses in visual 
cortex2–7, but provide an alternative 
interpretation for these responses. We found 
that sounds evoke highly stereotyped changes 
in arousal and uninstructed body movements. 
These behavioral effects, in turn, can explain 
the responses evoked by sounds in visual 
cortex.  

Our results do not imply that movements 
themselves cause visual cortical activity; 
instead, changes in internal state may both 
drive movements and modulate visual cortical 
activity. Sound-evoked activity in V1 was low-
dimensional, consistent with state modulation, 
and in contrast to the high-dimensional 
representation of visual stimuli. A similar 
mechanism may explain sound-evoked activity 
in visual cortex under anesthesia2,3, where 
movements are not possible but state changes 
can still occur24,25.  

These observations suggest that other aspects 
of neural activity previously interpreted as 
being multisensory might also arise from 
changes in states or behavior. Stereotyped 
body movements can be elicited not only by 
sounds8–11 but also by images26–30 and 
odors27,31. Given the extensive correlates of 
body movement observed throughout the 
brain12–14,32,33 these observations reinforce the 
importance of monitoring behavioral state and 
body movement when interpreting sensory-
evoked activity. 
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Methods 
Experimental procedures at UCL were 
conducted according to the UK Animals 
Scientific Procedures Act (1986) and under 
personal and project licenses released by the 
Home Office following appropriate ethics 
review. 

Surgery and recordings 
Experiments were performed on 8 mice (6 
male and 2 female), between 16 and 38 weeks 
of age. Visual cortex activity was recorded 
using Neuropixels 1.0 and 2.0 probes 
implanted in left primary visual cortex (2.5 mm 
lateral, 3.5 mm posterior from Bregma). In 5 of 
the 8 mice the probes were implanted 
permanently or with a recoverable implant as 
described in Refs. 19,34 and in the remaining 3 
they were implanted with a recoverable 
implant of a different design (Yoh Isogai and 
Daniel Regester, personal communication). 
Results were not affected by the implantation 
strategy. Sessions were automatically spike-
sorted using Kilosort2 
(www.github.com/MouseLand/Kilosort2, Ref. 
35) and manually curated to select isolated 
single cells. Probe location was checked post-
hoc by aligning it to the Allen Brain Atlas36 
visually or through custom software 
(www.github.com/petersaj/AP_histology).  

Stimuli 
In each session, mice were presented with a 
sequence of audio, visual or audiovisual 
movies. The stimuli consisted of all 
combinations of auditory and visual streams 
extracted from a set of 11 naturalistic movies 
depicting the movement of animals such as 
cats, donkeys and seals, from the AudioSet 
database20. An additional visual stream 

consisted of a static full-field gray image and an 
additional auditory stream contained no 
sound. Movies lasted for 4 s, and were 
separated by an inter-trial interval of 2 s. The 
same randomized sequence of movies was 
repeated 4 times during each experiment, with 
the second and third repeat separated by a 5 
min interval.  

The movies were gray-scaled, spatially re-
scaled to match the dimensions of a single 
screen of the display, and duplicated across the 
three screens. The visual stream was sampled 
at 30 frames per second. Visual stimuli were 
presented through three displays (Adafruit, 
LP097QX1) each with a resolution of 1024 by 
768 pixels. The screens covered approximately 
270 x 70 degrees of visual angle, with 0 degree 
being directly in front of the mouse. The 
screens had a refresh rate of 60 frames per 
second and were fitted with Fresnel lenses 
(Wuxi Bohai Optics, BHPA220-2-5) to ensure 
approximately equal luminance across viewing 
angles. 

Sounds were presented through a pair of 
Logitech Z313 speakers placed below the 
screens. The auditory stream was sampled at 
44.1 kHz with 2 channels and was scaled to a 
sound level of -20 decibels relative to full scale.  

In situ sound intensity and spectral content 
was estimated using a calibrated microphone 
(GRAS 40BF 1/4" Ext. Polarized Free-field 
Microphone) positioned where the mice sit, 
and reference loudness was estimated using 
an acoustic calibrator (SV 30A, Suppl. Figure 1). 
Mice were systematically habituated to the rig 
but not to the specific stimuli before the 
experiment. Presentation of the sounds over 
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days did not alter the observed behavioral and 
neural responses. 

Videography 
Eye and body movements were monitored by 
illuminating the subject with infrared light (830 
nm, Mightex SLS-0208-A). The right eye was 
monitored with a camera (The Imaging Source, 
DMK 23U618) fitted with zoom lens (Thorlabs 
MVL7000) and long-pass filter (Thorlabs 
FEL0750), recording at 100 Hz. Body 
movements were monitored with another 
camera (same model but with a different lens, 
Thorlabs MVL16M23) situated above the 
central screen, recording at 40 Hz. Video and 
stimulus time were aligned using the strobe 
pulses generated by the cameras, recorded 
alongside with the output of a screen-
monitoring photodiode and the speakers 
input, all sampled at 2500Hz. Singular Value 
Decompositions of the face movie and fitting 
of the pupil area and position were computed 
using the facemap algorithm 
(www.github.com/MouseLand/facemap).  

Data processing 
For each experiment, the neural responses 
constitute a 5-dimensional array 𝐃 of size 𝑁𝑡 
time bins x 𝑁𝑣 videos x 𝑁𝑎  sounds x 𝑁𝑟  repeats 
x 𝑁𝑐 cells. The elements of this matrix are the 
responses 𝐷𝑡𝑣𝑎𝑟𝑐 measured at time 𝑡, in video 
𝑣, sound 𝑎, repeat 𝑟, and cell 𝑐. 𝐃 contains the 
binned firing rates (30 ms bin size) around the 
stimulus onset (from 1 s before onset to 3.8 s 
after onset), smoothed with a causal half 
gaussian filter (standard deviation of 43 ms), 
and z-scored for each neuron. 

Pupil area and eye position were baseline-
corrected to remove the slow fluctuations and 
focus on the fast, stimulus-evoked and trial-
based fluctuations: the mean value of the pupil 
area or eye position over the second preceding 
stimulus onset was subtracted from each trial. 
Signed eye motion (horizontal and vertical) 
was computed as the difference of the eye 
position between time bins. The unsigned 
motion was obtained as the absolute value of 
the signed motion. The global eye motion was 
estimated as the absolute value of the 
movement in any direction (L2 norm). Eye 
variables values during identified blinks were 
interpolated based on their values before and 

after the identified blink. Body motion 
variables were defined as the first 128 body 
motion PCs. Both eye-related and body-related 
variables were then binned similarly to the 
neural data. We note that the timing precision 
for the face motion is limited by both the 
camera acquisition frame rate (40 fps, not 
aligned to stimulus onset), and the binning 
used here (30ms bins, aligned on stimulus 
onset). Thus, real timings can differ by up to 
25ms.  

All analyses that needed cross-validation (test-
retest component covariance, decoding, 
prediction) were performed using a training 
set consisting of half of the trials (odd trials) 
and a test set based on the other half (even 
trials). Models were computed on the train set 
and tested on the test set. Then test and train 
sets were swapped, and quantities of interest 
were averaged over the two folds. 

To estimate the auto- and cross-correlation of 
the sound-evoked time courses, the variable of 
interest was split between training and test 
set, averaged over all trials (e.g., for sound-
related responses, over videos and repeats), 
and the Pearson correlation coefficient was 
computed between the training set responses 
for each mouse and the test set responses of 
all mice (thus giving a cross-validated estimate 
of the auto- and the cross-correlation). 

Marginalization  
To isolate the contribution of videos or sounds 
in the neural responses we used a 
marginalization procedure similar to the one 
used in factorial ANOVA. By 𝐷𝑡𝑣𝑎𝑟𝑐 we denote 
the firing rate of cell 𝑐 to repeat 𝑟 of the 
combination of auditory stimulus 𝑎 and visual 
stimulus 𝑣, a time 𝑡 after stimulus onset. The 
marginalization procedure decomposes 𝐷𝑡𝑣𝑎𝑟𝑐 
into components that are equal across stimuli, 
related to videos, related to sounds, related to 
audiovisual interactions, and noise: 

𝐷𝑡𝑣𝑎𝑟𝑐 = 𝑀𝑡𝑐 + 𝑉𝑡𝑣𝑐 + 𝐴𝑡𝑎𝑐 + 𝐼𝑡𝑣𝑎𝑐 +  𝜖𝑡𝑣𝑎𝑟𝑐 

The first term is the mean of the population 
responses across videos, sounds, and repeats: 

𝑀𝑡𝑐 = 𝐷𝑡∙∙∙𝑐 =  
1

𝑁𝑣𝑁𝑎𝑁𝑟
 ∑ ∑ ∑ 𝐷𝑡𝑣𝑎𝑟𝑐𝑟𝑎𝑣 . 

where dots in the second term indicate 
averages over the missing subscripts, and 𝑁𝑣, 
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𝑁𝑎, 𝑁𝑟  denote the total number of visual 
stimuli, auditory stimuli, and repeats. 

The second term, the video-related 
component, is the average of the population 
responses over sounds and repeats, relative to 
this mean response: 

𝑉𝑡𝑣𝑐 = 𝐷𝑡𝑣∙∙𝑐 − 𝑀𝑡𝑐 

Similarly, the sound-related component is the 
average over videos and repeats, relative to 
the mean response: 

𝐴𝑡𝑎𝑐 = 𝐷𝑡∙𝑎∙𝑐 − 𝑀𝑡𝑐 

The audiovisual interaction component is the 
variation in population responses that is 
specific to each pair of sound and video: 

𝐼𝑡𝑣𝑎𝑐 = 𝐷𝑡𝑣𝑎∙𝑐 − 𝑀𝑡𝑐 −  𝑉𝑡𝑣𝑐 −  𝐴𝑡𝑎𝑐  

Finally, the noise component is the variation 
across trials: 

𝜖𝑡𝑣𝑎𝑟𝑐 =  𝐷𝑡𝑣𝑎𝑟𝑐 −  𝐷𝑡𝑣𝑎∙𝑐   

In matrix notation, we will call 𝐀, 𝐕, and 𝐈 the 
arrays with elements 𝐴𝑡𝑎𝑐, 𝑉𝑡𝑣𝑐, and 𝐼𝑡𝑣𝑎𝑐 and 
size 𝑁𝑡 × 𝑁𝑎 × 𝑁𝑐, 𝑁𝑡 × 𝑁𝑣 × 𝑁𝑐  and 𝑁𝑡 ×
𝑁𝑣 × 𝑁𝑎 × 𝑁𝑐.  

Dimensionality reduction 
The arrays of sound-related responses 𝐀, of 
video-related responses 𝐕, and of audiovisual 
interactions 𝐈, describe the activity of many 
neurons. To summarize this activity, we used 
cross-validated Principal Component Analysis 
(cvPCA, Ref. 21). In this approach, principal 
component projections are found from one 
half of the data, and an unbiased estimate of 
the reliable signal variance is found by 
computing their covariance with the same 
projections on a second half of the data.  

We illustrate this procedure on the auditory 
responses. In what follows, all arrays, array 
elements, and averages (e.g. 𝐀, 𝐴𝑡𝑎𝑐, 𝐴𝑡⋅𝑐) 
refer to training-set data (odd-numbered 
repeats), unless explicitly indicated with the 
subscript test (e.g. 𝐀𝑡𝑒𝑠𝑡, 𝐴𝑡𝑎𝑐;𝑡𝑒𝑠𝑡, 𝐴𝑡⋅𝑐;𝑡𝑒𝑠𝑡).  

We first isolate the auditory responses 𝐀 as 
described above from training set data (odd-
numbered trials). We reshape this array to 
have two dimensions 𝑁𝑡𝑁𝑎 × 𝑁𝑐; and perform 
PCA: 

𝐓 = 𝐀𝐖 

where 𝐓 (𝑁𝑡𝑁𝑎 × 𝑁𝑝) is a set of time courses 

of the top 𝑁𝑝 principal components of 𝐀, and 

𝐖 is the PCA weight matrix (𝑁𝑐 × 𝑁𝑝).  

For cvPCA analysis, we took 𝑁𝑝 = 𝑁𝑐  to  

estimate the amount of reliable stimulus-
triggered variance in each dimension (Fig.  2f,i; 
Supp. Fig. 2). We computed the projections of 
the mean response over a test set of even-
numbered trials, using the same weight matrix: 
𝐓𝑡𝑒𝑠𝑡 = 𝐀𝑡𝑒𝑠𝑡𝐖 and evaluated their 
covariance with the training-set projections: 

𝑉̂𝑘 =
1

𝑁𝑡𝑁𝑎 − 1
∑ (𝑇𝑗𝑘 − 𝑇⋅𝑘)(𝑇𝑗𝑘;𝑡𝑒𝑠𝑡 − 𝑇⋅𝑘;𝑡𝑒𝑠𝑡)

𝑁𝑡𝑁𝑎

𝑗=1

 

This method provides an unbiased estimate of 
the stimulus-related variance of each 
component 21. Analogous methods were used 
to obtain the signal variance for principal 
components of the visual response and 
interaction, by replacing 𝐀 with  𝐕 or 𝐈 (Supp. 
Fig 2). The cvPCA variances were normalized 
either by the sum for all auditory dimensions 
(Figure 2f,i), or the sum for all dimensions from 
video-related, sound-related and interaction-
related decompositions (Suppl. Figure 2).  

To determine if a cvPCA dimension had 
variance significantly above 0, we used a 
shuffling method. The shuffling was done by 
changing the labels of both the videos and the 
sounds for each repeat. We performed this 
randomization 1,000 times and chose a 
component to be significant if its test-retest 
covariance value was above the 99th percentile 
of the shuffled distribution. We defined the 
dimensionality as the number of significant 
components.  

For the video-related responses, we found an 
average of 74 significant components (± 20, 
s.e., n = 8 mice). As expected, this number grew 
with the number of recorded neurons21 (data 
not shown). For the auditory-related 
responses, instead, we found only 4 significant 
components on average (± 0.7, s.e., n = 8 mice). 
For the interactions between videos and 
sounds, finally, we found zero significant 
components (0 ± 0, s.e., n = 8 mice) indicating 
that the population responses did not reflect 
significant interactions between videos and 
sounds. 
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For visualization of PC time courses (Figure 
2g,j), the weight matrices 𝐖 were computed 
from the training set but the projection of the 
full dataset was used to compute the time 
courses of the first component.  

Decoding 
Single-trial decoding for video- or sound-
identity was performed using a template-
matching decoder applied to neural or 
behavioral data. In this description, we will 
focus on decoding sound identity from neural 
data. The data were again split into training 
and test sets consisting of odd and even trials.  

When decoding auditory-related neural 
activity (Figure 2k), we took 𝑁𝑝 = 4,  so the 

matrix 𝐓 containing PC projections of the mean 
training-set auditory responses had size 
𝑁𝑡𝑁𝑎 × 4; using more components did not 
affect the results. To decode the auditory 
stimulus presented on a given test-set trial, we 
first removed the video-related component by 
subtracting the mean response to the video 
presented on that trial (averaged over all 
training-set trials) We then projected this using 
the training-set weight matrix 𝐖 to obtain a 
𝑁𝑡 × 4 timecourse for the top auditory PCs, 
and found the best-matching auditory stimulus 
by comparing to the mean training-set 
timecourses for each auditory stimulus using 
Euclidean distance.  A similar analysis was used 
to decode visual stimuli, using 𝑁𝑝 = 30 

components.   

To decode the sound identity from movement 
data, we used the z-scored eye variables (pupil 
area in Figure 3, and eye motion in Suppl. 
Figure 4), or the 128 first principal components 
of the motion energy of the face movie, and 
performed the template-matching the same 
way as the with the neural data.  

The significance of the decoding accuracy 
(compared to chance) was computed by 
performing a Wilcoxon sign rank test to 

compare to chance level (
1

12
), treating each 

mouse as independent. The comparison 
between video identity and sound identity 
decoding accuracy was computed by 
performing a paired Wilcoxon sign rank test 
across mice.   

Encoding 
To predict neural activity from 
stimuli/behavioral variables (“encoding 
model”; Figure 4), we again started by 
extracting audio- or video-related components 
and performing Principal Component Analysis, 
as described above, however this time the 
weight matrices were computed from the full 
dataset rather than only the training set. Again, 
we illustrate by describing how auditory-
related activity was predicted, for which we 
kept 𝑁𝑝 = 4 components; video-related 

activity was predicted similarly but with 𝑁𝑝 =

30. 

We predicted neural activity using linear 
regression. The target 𝐘 contained the 
auditory-related activity on each trial, 
projected onto the top 4 auditory components: 
specifically, we compute 𝐷𝑡𝑣𝑎𝑟𝑐 − 𝑀𝑡𝑐 − 𝑉𝑡𝑣𝑐, 
reshape to a matrix of size 𝑁𝑡𝑁𝑣𝑁𝑎𝑁𝑟 × 𝑁𝑐, 
and multiply by the matrix of PC weights 𝐖. 
We predicted 𝐘 by regression: 𝐘 ≈ 𝐗𝐁, where 
𝐗 is a feature matrix and 𝐁 are weights fit by 
unpenalized, cross-validated reduced-rank 
least squares.   

The feature matrix depended on the type of 
prediction being made. To predict from 
sensory stimulus identity, 𝐗 had one column 
for each combination of auditory stimulus and 
peristimulus timepoint, making 𝑁𝑎𝑁𝑡 =1,524 
columns, 𝑁𝑡𝑁𝑣𝑁𝑎𝑁𝑟 rows, and contained 1 
during stimulus presentations in a column 
reflecting the stimulus identity and 
peristimulus time.  With this feature matrix, 
the weights 𝐁 represent the mean activity time 
course for each dimension and stimulus, and 
estimation is equivalent to time averaging.  

To predict from behavior, we used features for 
pupil area, pupil position (horizontal and 
vertical), eye motion (horizontal and vertical -- 
signed and unsigned), global eye motion (L2 
norm of x and y motion, unsigned), blinks (thus 
9 eye-related predictors) and the first 128 face 
motion, with lags from -100 ms to 200 ms (thus 
12 lags per predictor, 1644 predictors total). To 
predict from both stimulus identity and 
behavior, we concatenated the feature 
matrices, obtaining a matrix with 3,168 
columns. The beginning and end of the time 
course for each trial were padded with NaNs 
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(12 – the number of lags – at the beginning and 
end of each trial, to avoid cross-trial 
predictions by temporal filters. Thus, the 
feature matrix has (𝑁𝑡 + 24)𝑁𝑣𝑁𝑎𝑁𝑟 rows. A 
model with the eye variables only, and a model 
with the face motion variables only was also 
constructed (Suppl. Figure 5). 

We used Reduced Rank Regression to predict 
the single trial version of 𝐘 from 𝐗 on the 
training set. The best rank was selected using a 
6-fold cross-validation within the training set.  

To measure the accuracy of predicting trial-
averaged auditory responses (Figure 4a-f), we 
averaged the 𝑁𝑡𝑁𝑣𝑁𝑎𝑁𝑟 × 𝑁𝑝 activity matrix 

𝐘𝑡𝑒𝑠𝑡 over all test-set trials of a given auditory 
stimulus, to obtain a matrix of size 𝑁𝑡𝑁𝑎 × 𝑁𝑐, 
and did the same for the prediction matrix 
𝐗𝑡𝑒𝑠𝑡𝐁, and evaluated prediction quality by the 
elementwise Pearson correlation of these two 
matrices. 

To evaluate predictions of trial-to-trial 
fluctuations (Figure 4g-h), we computed a 
"noise” matrix of size 𝑁𝑡𝑁𝑣𝑁𝑎𝑁𝑟 × 𝑁𝑝 by 

subtracting the mean response to each sound: 
𝑌𝑡𝑣𝑎𝑟𝑝; 𝑡𝑒𝑠𝑡 − 𝑌𝑡⋅𝑎⋅𝑝; 𝑡𝑒𝑠𝑡,  performed the same 

subtraction on the prediction matrix 𝐗𝑡𝑒𝑠𝑡𝐁, 
and evaluated prediction quality by the 
elementwise Pearson correlation of these two 
matrices. 

To visualize the facial areas important to 
explain neural activity (Suppl. Figure 5b), we 
reconstructed the weights of the auditory PC1 

prediction in pixel space. Let 𝐛0
body

  (1 ×  128) 

be the weights predicting neural auditory PC1 
at lag 0 from each of the 128 body motion PCs. 
Let 𝛚  (128 × total number of pixels in the 
video) be the weights of each of these 128 face 
motion PCs in pixel space (as an output of the 
facemap algorithm). We obtained an image 𝐈 
of the pixel-to-neural weights by computing 

𝐈 =  𝐛0
body

𝛚. 

Supplementary Figures 
 

 

Suppl. Figure 1. Naturalistic sounds used in this study: spectral content and loudness. For each sound is displayed: top: 
amplitude; middle: frequency spectrum; bottom: loudness.  
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Suppl. Figure 2. Neural responses are largely visually driven. a. Test-retest covariance for videos PCs (left), auditory PCs 
(middle) and interactions PCs (right), for all 8 mice (colors from brown to orange) and their average (black). Test-retest 
covariance was normalized by the total amount of test-retest covariance across components and video/sound/interaction 
conditions to show comparable proportions. b. Same as a but with a logarithmic scale for both x- and y-axes. Negative values 
are not displayed. 

 

 

Suppl. Figure 3. Neural and behavioral responses differ across sounds but resemble each other. Responses along neural 
auditory PC1 (black), and behavioral PC1 (blue) sampled at 30ms time bins for all sounds. Responses are averaged over trials, 
videos, and mice, and z-scored. On the background is visible the envelope of the corresponding sound.  
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Suppl. Figure 4. Sounds trigger eye-movements. a. Sound-related responses eye movement for each sound condition, for 4 
example mice, and all mice (6 out of 8 were monitored with an eye camera). b. Grand average. c. Cross-validated auto- and 
cross-correlation of the pupil area sound-related responses across all 6 mice. d. Decoding of video and sound identity using 
eye movement. 

 

 

Suppl. Figure 5. Sound-evoked V1 responses were mainly driven by whisker movements. a. Correlation of the actual data 
and their predictions for all mice, comparing different models (eye/body: a model containing both eye and body movements 
predictors; body: a model containing body movements predictors only). b. Top: image of a front camera recording from an 
example mouse. Bottom: Reconstruction weights of the auditory PC1’s best prediction for the same mouse. Most of the 
weights are related to the whiskers. 
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