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Abstract 
Relating	neural	activity	to	behavior	requires	an	understanding	of	how	neural	computations	1	

arise	 from	 the	 coordinated	 dynamics	 of	 distributed,	 recurrently	 connected	 neural	2	

populations.	However,	inferring	the	nature	of	recurrent	dynamics	from	partial	recordings	of	3	

a	neural	circuit	presents	significant	challenges.	Here,	we	show	that	some	of	these	challenges	4	

can	be	overcome	by	a	fine-grained	analysis	of	the	dynamics	of	neural	residuals,	i.e.	trial-by-5	

trial	 variability	 around	 the	mean	neural	 population	 trajectory	 for	 a	given	 task	 condition.	6	

Residual	 dynamics	 in	 macaque	 pre-frontal	 cortex	 (PFC)	 in	 a	 saccade-based	 perceptual	7	

decision-making	task	reveals	recurrent	dynamics	that	 is	 time-dependent,	but	consistently	8	

stable,	and	implies	that	pronounced	rotational	structure	in	PFC	trajectories	during	saccades	9	

are	driven	by	inputs	from	upstream	areas.	The	properties	of	residual	dynamics	restrict	the	10	

possible	contributions	of	PFC	to	decision-making	and	saccade	generation,	and	suggest	a	path	11	

towards	 fully	 characterizing	 distributed	 neural	 computations	 with	 large-scale	 neural	12	

recordings	and	targeted	causal	perturbations.	13	

Introduction 
Perception,	decisions,	and	the	resulting	actions	reflect	neural	computations	implemented	by	14	

large,	 interacting	 neuronal	 populations	 acting	 in	 concert.	 Inferring	 the	 nature	 of	 these	15	

interactions	from	recordings	of	neural	activity	is	a	key	step	towards	uncovering	the	neural	16	

computations	underlying	behavior1–4.	One	promising	approach	is	based	on	the	premise	that	17	

neural	computations	reflect	the	action	of	a	dynamical	system5–7,	whereby	the	computations	18	

implemented	by	a	neural	population	emerge	from	the	interplay	between	external	inputs	into	19	

a	 distributed	 neural	 population	 and	 the	 internal	 dynamics	 resulting	 from	 the	 recurrent	20	

connections	 between	 neurons.	 The	 utility	 of	 such	 a	 “computation-through-dynamics”	21	
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framework	hinges	critically	on	our	ability	to	characterize	the	nature	of	this	interplay,	and	22	

disentangle	 the	 individual	 contributions	 of	 inputs	 and	 recurrent	 dynamics.	 In	 practice,	23	

disentangling	these	two	factors	based	on	recordings	of	neural	responses	alone	is	challenging,	24	

as	 typically	neither	the	exact	properties	of	 the	 inputs	 into	a	brain	area,	nor	the	nature	of	25	

recurrent	connectivity	within	and	across	areas,	are	known	a	priori8–11.		26	

Here,	we	show	that	some	of	the	challenges	inherent	to	inferring	the	contribution	of	recurrent	27	

dynamics	 to	 neural	 responses	 can	 be	 overcome	 by	 analyzing	 the	 dynamical	 structure	 of	28	

neural	population	residuals,	i.e.	the	trial-to-trial	variability	in	neural	population	responses12–29	
22.	Our	approach	involves	solving	a	statistical	inference	problem,	but	is	ultimately	based	on	30	

the	intuitive	idea	that	the	effect	of	recurrent	computations	can	be	revealed	by	observing	how	31	

a	local	perturbation	of	the	state	of	the	neural	population	evolves	over	time11,23–27.	Unlike	in	32	

causal	perturbation	experiments,	where	the	perturbations	are	generated	externally28–30,	we	33	

rely	entirely	on	an	analysis	of	recorded	response	residuals,	which	we	interpret	as	naturally	34	

occurring	perturbations	within	the	repertoire	of	neural	patterns	produced	by	a	recurrent	35	

neural	network31,32.	We	term	the	time-varying	dynamics	of	response	residuals	as	“residual	36	

dynamics”,	and	show	that	 in	many	settings	 it	can	resolve	key	properties	of	 the	recurrent	37	

dynamics	 underlying	 recorded	 neural	 responses.	 Obtaining	 a	 complete	 and	 quantitative	38	

description	 of	 residual	 dynamics	 is	 difficult,	 because	 neural	 population	 residuals	 are	39	

typically	 dominated	 by	 unstructured	 noise.	 To	 obtain	 reliable	 and	 unbiased	 estimates	 of	40	

residual	 dynamics,	 we	 thus	 developed	 novel	 statistical	 methods	 based	 on	 subspace	41	

identification33,34	and	instrumental	variable	regression35.	42	

Our	 findings	 are	 organized	 in	 three	 sections.	 First,	 we	 illustrate	 the	 challenges	 in	43	

disentangling	 inputs	 and	 recurrent	 dynamics	 based	 on	 the	 simulations	 of	 a	 few,	 simple	44	

dynamical	 systems	 (Fig.	 1-2).	 These	 dynamical	 systems	 are	 analogous	 to	 single-area,	45	

artificial	recurrent	neural	networks	(RNN)	previously	proposed	for	explaining	the	network-46	

level	mechanisms	underlying	sensory	evidence	integration36–42	and	movement	generation	in	47	

cortical	areas43–47.	We	demonstrate	that	our	estimates	of	residual	dynamics	can	reveal	the	48	

essential	features	of	the	computations	implemented	by	these	models,	even	when	the	time-49	

course	of	the	inputs	are	unknown.	Second,	we	study	neural	population	recordings	from	pre-50	

frontal	cortex	(PFC)	of	macaque	monkeys	during	decision-making	and	saccadic	choices	(Fig.	51	

3-5).	While	neural	population	trajectories	in	PFC	are	consistent	with	a	number	of	previously	52	

proposed	models	of	evidence	integration	and	movement	generation,	we	are	able	to	rule	out	53	

several	candidate	models	based	on	the	properties	of	the	inferred	residual	dynamics.	Third,	54	

we	analyze	simulated	responses	of	a	previously	proposed	multi-area	RNN	model	of	decision-55	

making48,	to	illustrate	how	inferred	residual	dynamics	can	be	used	to	deduce	circuit-level	56	

implementations	of	distributed	recurrent	computations.	(Fig.	6-8).		57	
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Results 
A	prevalent	approach	for	studying	population-level	neural	computations	relies	on	extracting	58	

low-dimensional	neural	trajectories	from	the	population	response49–55.	The	time-course	of	59	

such	 trajectories	 and	 their	 dependency	 on	 task-variables	 can	 be	 compared	 to	 those	60	

generated	by	hand-designed41,56–60	and	task-optimized	RNN	models42,46,47,61–66,	or	statistical	61	

models	of	neural	dynamics67–75.	Such	an	approach	has	been	very	successful	 in	generating	62	

hypotheses	about	 the	nature	of	neural	computations,	but	 typically	cannot	unambiguously	63	

resolve	 the	 properties	 of	 recurrent	 dynamics	 based	 on	 the	 measured	 population	64	

responses10,11—estimating	 these	 properties	 is	 generally	 an	 ill-posed	 problem	 whenever	65	

other	 factors	 contributing	 to	 the	 responses,	 like	 external	 inputs,	 are	 unknown	 or	66	

unobserved.		67	

Neural	population	trajectories	poorly	constrain	recurrent	computations	

To	illustrate	the	nature	of	 this	problem,	we	consider	simulated	responses	of	a	number	of	68	

distinct	models	 of	 neural	 population	 dynamics	 during	 perceptual	 decision-making40	 and	69	

movement	 generation43	 (Fig.	 1).	 While	 these	 hand-designed	 models	 are	 not	 meant	 to	70	

precisely	 reproduce	 neural	 recordings,	 they	 do	 capture	 the	 distinctive	 features	 of	 rather	71	

complex,	non-linear	RNNs	trained	to	integrate	sensory	evidence	towards	a	choice41,42,76	(Fig.	72	

1a)	or	generate	complex	motor	sequences46,47	(Fig.	1b).		73	

In	 the	models,	 the	 temporal	 evolution	of	 the	neural	population	 response	 (𝐳𝒕)	 at	 time	 t	 is	74	

governed	by	a	non-linear	differential	equation,	which	describes	the	momentary	change	in	75	

the	response	(𝐳̇$)	as	resulting	from	the	combined	action	of	the	recurrent	dynamics	(𝐅),	the	76	

input	(𝐮'),	and	the	noise	(𝛜'):	77	

𝐳̇$ = 𝐅(𝐳𝒕) + 𝐮' + 𝛜' (1)	78	

Any	solution	to	the	above	equation	is	also	determined	by	the	initial	condition	𝐳/	(the	neural	79	

state	at	the	start	of	the	trial).	Differences	in	responses	across	task-conditions	(e.g.,	different	80	

choices	or	movements)	are	explained	by	allowing	𝐮'	or	𝐳/	to	vary	across	conditions	(Fig.	1c,	81	

red	vs.	blue;	Fig.	1b,	initial	conditions	IC1	vs.	IC2).		82	

We	 simulated	 single-trial	 responses	 for	 two	 task-conditions	 and	 represented	 them	 as	83	

trajectories	in	a	2-dimensional	neural	state-space	(Fig.	1a,b,	choice	1	&	2;	dark-gray	curves).	84	

The	recurrent	dynamics	(𝐅)	can	be	represented	as	a	flow	field	(Fig.	1a,b,	black	arrows	and	85	

light-gray	curves),	which	describes	how	the	instantaneous	neural	state	(𝐳𝒕)	evolves	from	a	86	

given	location	in	state-space	in	the	absence	of	inputs	and	noise.	The	action	of	the	external	87	

input	 (𝐮')	 corresponds	 to	 injecting	 a	 pattern	 of	 activity	 into	 the	 neural	 population,	 and	88	

therefore	pushing	the	trajectory	along	a	direction	in	state	space	that	can	vary	both	across	89	
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time	 and	 task	 conditions	 (Fig.	 1a;	 red	 and	 blue	 arrows;	 Fig.	 1c).	 For	 simplicity,	𝐮'	 only	90	

captures	the	component	of	the	inputs	that	is	deterministic,	i.e.	repeatable	across	trials	of	the	91	

same	condition.	Any	trial-to-trial	variability	in	the	inputs,	together	with	moment-to-moment	92	

variability	 generated	 intrinsically	 within	 the	 recurrent	 population,	 are	 explained	 by	 the	93	

noise	𝛜' 	and	the	initial-condition	𝐳/.		94	

Critically,	the	simulations	show	that	very	different	combinations	of	these	factors	can	result	95	

in	very	similar	trajectories.	For	example,	the	three	models	of	decision-making	differ	in	the	96	

nature	 of	 their	 inputs	 and	 recurrent	 dynamics,	 each	 mimicking	 a	 specific	 behavioral	97	

“strategy”	for	perceptual	decision-making36–38,77–80,	from	unstable,	impulsive	decisions	(Fig.	98	

1a,	 saddle	 point),	 to	 optimal	 accumulation	 of	 evidence	 (Fig1a,	 line	 attractor),	 and	 leaky,	99	

forgetful	accumulation	(Fig.	1a,	point	attractor).	Yet,	for	the	chosen	inputs,	which	depending	100	

on	the	model	are	either	constant	(Fig.	1c,	saddle	point)	or	transient	(Fig.	1c,	line	and	point	101	

attractor),	all	three	models	result	in	similar	single-trial	trajectories	(Fig.	1a,	gray	curves)	and	102	

essentially	indistinguishable	condition-averaged	trajectories	(Fig.	1a,	blue	and	red	curves).		103	

Analogous	observations	hold	for	the	models	of	movement	generation	(Fig.	1b).	Two	of	the	104	

models	 have	 no	 inputs,	 and	 are	 driven	 entirely	 by	 recurrent	 dynamics	 starting	 from	105	

Fig.	1.	Dynamical	models	of	population-level	computations	underlying	decisions	and	movements.	

Each	 panel	 shows	 simulated	 single	 trials	 (dark-gray	 trajectories)	 and	 condition-averaged	 trajectories	 (blue	 and	 red	
trajectories)	for	two	task	conditions	(choice	1	and	2).	Black	arrows	show	the	effect	of	the	recurrent	dynamics	on	the	response	
at	any	location	in	state-space.	The	effect	of	the	inputs	is	constant	across	state-space,	but	can	change	over	time	and	across	task	
conditions	(middle,	example	inputs	at	bottom).	a,	Models	of	decision-making.	Left:	a	model	implementing	a	saddle	point	close	
to	the	initial	conditions	for	both	choice	1	and	2.	Middle:	a	line	attractor	model.	Right:	a	point-attractor	model.	The	three	models	
implement	 unstable	 (left),	 perfect	 (middle),	 and	 leaky	 integration	 (right)	 of	 an	 appropriately	 chosen	 input.	b,	 Models	 of	
movement-generation.	Left:	purely	rotational	dynamics.	Perturbations	of	the	condition-averaged	trajectory	along	both	state-
space	dimensions	are	persistent;	Middle:	funnel	model.	Perturbations	along	the	radial	dimension	decay,	perturbations	along	
the	circular	“channel”	are	persistent.	Right:	point	attractor	model.	Responses	are	pushed	away	from	the	point	attractor	by	
strong	 inputs.	 IC:	approximate	extent	of	 the	 initial	conditions,	shown	as	an	example	 for	the	 funnel	model.	c,	Deterministic	
component	of	the	inputs,	for	the	models	in	a	and	b.	Curves	indicate	the	components	of	the	input	along	the	two	state-space	
dimensions	(solid	vs	dashed)	as	a	function	of	time	(horizontal	axis)	and	condition	(red	vs	blue).	The	inputs	are	chosen	such	that	
the	different	models	of	decision-making	in	a,	and	of	movement-generation	in	b,	cannot	be	distinguished	based	on	the	condition-
averaged	trajectories.	Boxes	in	a	and	b	(left)	show	the	regions	of	state-space	analyzed	in	Fig.	2.	
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condition-dependent	 initial	 conditions—one	model	 implements	 rotational	 dynamics45,46,	106	

implying	that	any	variability	in	the	initial	condition	on	a	given	trial	is	reflected	throughout	107	

the	entire	trajectory	(Fig.	1b	rotations;	gray	curves);	the	other	implements	what	we	refer	to	108	

as	“funnel”	dynamics47,61,	whereby	neural	activity	 is	pushed	through	a	narrow	channel	 in	109	

state	space,	and	any	variability	along	directions	orthogonal	to	the	channel	is	suppressed	(Fig.	110	

1b,	 funnel).	 In	 the	third	model,	 the	recurrent	dynamics	 implements	a	point	attractor,	and	111	

responses	 are	 mostly	 input	 driven11	 (Fig.	 1b,	 point	 attractor).	 The	 simulated	 condition-112	

averages	can	neither	distinguish	between	the	models	with	or	without	inputs,	nor	between	113	

the	different	recurrent	dynamics	associated	with	models	that	lack	an	input.		114	

Residual	dynamics	as	a	window	onto	recurrent	dynamics	

More	 insights	 into	 the	 underlying	 computations	 can	 be	 obtained	 by	 considering	 the	115	

dynamics	of	response	residuals,	the	component	of	single-trial	responses	that	is	not	explained	116	

by	 the	 condition-averaged	 responses12,17,20,81.	 Residuals	 are	 defined	 as	 the	 difference	117	

between	a	given	single-trial	trajectory	and	the	corresponding	condition-averaged	trajectory	118	

(Extended	Data	Fig.	1).	We	 interpret	residuals	as	perturbations	away	from	the	condition-119	

averaged	trajectory,	and	then	describe	how	these	perturbations	evolve	over	time	(Extended	120	

Data	Fig.	1).		121	

In	 the	 simulated	 models,	 the	 dynamics	 of	 residuals	 can	 be	 derived	 analytically	 (Fig.	 2a,	122	

Extended	 Data	 Fig.	 1).	 First,	 we	 define	 the	 effective	 dynamics,	 which	 describes	 how	 the	123	

population	response	would	evolve	 from	any	given	 location	 in	state-space	and	time	 in	the	124	

absence	of	noise.	The	effective	dynamics	is	obtained	by	summing	the	contributions	of	the	125	

recurrent	dynamics	and	the	 input.	The	residual	dynamics	 is	 then	obtained	by	subtracting,	126	

from	the	effective	dynamics,	a	component	corresponding	to	the	instantaneous	direction	of	127	

change	along	the	condition-averaged	trajectory	(Fig.	2a,	see	labels	over	each	panel).		128	

The	 residual	 dynamics	 describes	 how	 a	 perturbation	 away	 from	 the	 condition-averaged	129	

neural	state	would	evolve	relative	to	the	trajectory	over	the	course	of	one	time-step.	In	Fig.	130	

2c,d,	the	blue	dot	indicates	the	unperturbed,	“reference”	neural	state,	which	lies	along	the	131	

average	trajectory.	The	tail	of	each	arrow	indicates	the	residual	(the	perturbed	state),	and	132	

the	arrow-head	shows	how	this	residual	evolves	over	one	time-step.	For	the	saddle	point	133	

model	(Fig.	2c,	saddle	point),	perturbations	along	the	horizontal	direction,	away	from	the	134	

trajectory,	 expand	 over	 time	 (arrows	 point	 away	 from	 the	 reference	 state),	 whereas	135	

perturbations	along	the	vertical	direction	decay	back	to	the	trajectory	(arrows	point	towards	136	

the	reference	state).	These	dynamics	correctly	reflect	the	influence	of	a	saddle	point	in	the	137	

vicinity	of	the	examined	region	of	state	space	(Fig.	1a,	box).	Likewise,	the	residual	dynamics		138	
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correctly	 reveals	 line	 attractor	 and	 point	 attractor	 dynamics	 in	 the	 other	 two	models	 of	139	

Fig.	2.	Residual	dynamics	reveals	population-level	computations.	

a,	Different	factors	contributing	to	the	local	dynamics	of	the	saddle	point	model,	shown	in	the	state-space	region	marked	in	
Fig.	1a	for	an	early	time	in	choice	1	trials	(box).	Same	conventions	as	in	Fig.	1a.	Recurrent	dynamics	and	input	sum	to	generate	
the	 effective	 dynamics,	 determining	 the	 evolution	 of	 the	 response	 in	 the	 absence	 of	 noise.	 The	 residual	 dynamics	 is	 the	
component	of	the	effective	dynamics	that	explains	the	evolution	of	perturbations	away	from	the	condition-averaged	trajectory	
(blue	line;	blue	dot:	reference	time).	b,	Effective	and	residual	dynamics	estimated	directly	from	simulated	single-trial	responses	
match	 the	ground-truth	 in	a.	c,	 Ground-truth	residual	dynamics	 for	 the	models	 of	 decisions,	same	 state-space	 region	and	
reference	time	as	in	a.	The	residual	dynamics	reflects	the	key	properties	of	the	recurrent	dynamics	at	the	corresponding	state-
space	region	 in	Fig.	1a.	The	arrows	 in	each	flow	field	were	scaled	by	a	 fixed	 factor	that	differed	across	models	and	with	a	
(numbers	close	to	arrows	at	the	bottom).	d,	Analogous	to	c,	but	for	the	models	of	movement	at	an	early	time	in	choice	1	trials	
(box	in	Fig.	1b).	e-g,	Properties	of	the	estimated	residual	dynamics	for	the	models	in	Fig.	1.	Only	residual	dynamics	for	choice	1	
is	shown.	The	residual	dynamics	is	described	by	a	time	and	condition-dependent,	autonomous,	linear	dynamical	system.	The	
corresponding	dynamics	matrices	describe	the	residual	dynamics	at	particular	locations	along	one	of	the	condition-averaged	
trajectories	(Extended	Data	Fig.	1).	e,	Magnitude	of	the	eigen-values	(EV,	y-axis)	of	the	2-dimensional	dynamics	matrix	as	a	
function	of	time	(x-axis).	f,	Singular	values	(SV)	of	the	dynamics	matrix	as	a	function	of	time	for	the	models	of	decisions.	The	
difference	between	EV	and	SV	in	the	line-attractor	model	is	a	consequence	of	non-normal	dynamics.	g,	Angular	phase	associated	
with	complex-valued	EV	for	models	of	movement.	Larger	angular	phase	implies	faster	rotational	dynamics.	EV,	SV,	and	angular	
phase	together	distinguish	between	the	different	models.	
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decisions	(Fig.	2c),	as	well	as	the	main	properties	of	the	recurrent	dynamics	in	the	models	of	140	

movement,	i.e.	rotational	dynamics,	decay	towards	the	funnel,	and	point	attractor	dynamics	141	

(Fig.	2d).	More	generally,	the	residual	dynamics	only	reflects	the	recurrent	dynamics,	rather	142	

than	any	external	inputs,	when	two	constraints	are	met.	First,	inputs	and	recurrent	dynamics	143	

must	combine	additively.	Second,	the	noise	in	the	inputs	(captured	by	𝛜' 	in	Eq.	1)	must	be	144	

temporally	uncorrelated.	Both	constraints	hold	exactly	for	the	models	in	Fig.	1,	and	at	least	145	

approximately	for	many	previously	proposed	RNN	models.	The	second	constraint,	however,	146	

is	 likely	 to	 be	 violated	 at	 the	 level	 of	many	 single	 areas	 in	 biological	 networks,	 as	 input	147	

variability	may	be	temporally	correlated	when	the	input	originates	in	upstream	areas	that	148	

themselves	implement	recurrent	dynamics.	Nonetheless,	we	show	below	that	even	in	such	149	

scenarios	residual	dynamics	can	provide	insights	into	the	nature	of	recurrent	dynamics	in	150	

the	 recorded	 area.	 Unlike	 residual	 dynamics,	 the	 effective	 dynamics	 and	 the	 condition-151	

averaged	trajectories	always	reflect	the	properties	of	both,	the	recurrent	dynamics	and	the	152	

inputs,	even	when	the	two	constraints	above	are	met.	153	

A	further,	key	property	of	residual	dynamics	simplifies	the	task	of	estimating	it	directly	from	154	

neural	responses,	even	when	the	underlying	computations	are	non-linear	and	vary	both	in	155	

time	and	across	state-space	 location.	Residual	dynamics	 is	always	expressed	relative	to	a	156	

“reference”	neural	state,	corresponding	to	a	particular	time	and	location	along	a	condition-157	

averaged	trajectory	(Fig.	2c,d,	blue	dot).	By	this	definition,	residual	dynamics	always	has	a	158	

fixed	point	at	the	location	of	the	reference	state	(Fig.	2c,d,	blue	dot;	see	methods)	making	it	159	

amenable	 to	 be	 estimated	 using	 easily	 interpretable,	 statistical	 models	 characterized	 by	160	

dynamics	 that	 is	 linear	 and	 autonomous	 (i.e.	 without	 inputs).	 Specifically,	 the	 residual	161	

dynamics	can	be	approximated	by	a	condition	and	time-dependent,	 locally	 linear	system,	162	

whereby	time	parameterizes	location	in	state-space	along	the	condition-averaged	trajectory	163	

(Extended	Data	Fig.	1).	We	estimate	these	linear	systems	from	neural	response	residuals	by	164	

combining	methods	from	subspace	identification33,34	and	instrumental	variable	regression35	165	

(Extended	Data	 Fig.	 2).	 These	methods,	 unlike	 simpler	 linear	 regression	 approaches,	 can	166	

produce	robust	and	unbiased	estimates	of	residual	dynamics	in	biologically	realistic	settings	167	

(Extended	Data	Fig.	3).	168	

We	summarize	 the	 residual	dynamics	through	 the	main	properties	of	 the	estimated	 local	169	

linear	dynamical	systems,	specifically	the	magnitude	of	the	eigen-values	(EV),	the	singular	170	

values	(SV),	and	the	rotation	frequency	associated	with	the	EV	(Fig.	2e-g).	For	locations	close	171	

to	the	saddle	point	in	the	model	of	decision-making,	one	of	the	EV	is	larger	than	1,	implying	172	

that	perturbations	along	the	associated	eigen-vector	(the	horizontal	direction	in	Fig.	1a,	left)	173	

expand	over	time;	the	other	EV	is	smaller	than	one,	corresponding	to	decay	along	the	vertical	174	

direction	 (Fig.	 1a,	 left;	 center	 of	 flow	 field;	 Fig.	 2e,	 left-most	 panel;	 early	 times).	 A	 line	175	

attractor	results	in	a	single	EV	of	1	(Fig.	2e,	second	from	left)	as	horizontal	perturbations	are	176	
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persistent,	i.e.	neither	expand	nor	decay,	and	a	point	attractor	in	all	EV	smaller	than	1	(Fig.	177	

2e,	third	from	left;	all	directions	decay).	Rotational	dynamics	results	in	EV	that	are	complex-178	

valued	and	thus	associated	with	a	non-zero	rotation	frequency	(Fig.	2g).	Finally,	differences	179	

between	 the	magnitude	of	 SV	and	EV	 reflect	non-normal	dynamics,	 a	 critical	 feature	of	 a	180	

number	 of	 previous	models	 of	 neural	 computation82–87.	 The	 SV	 larger	 than	 1	 in	 the	 line	181	

attractor	 model	 implies	 that	 small	 perturbations	 along	 the	 corresponding	 right	 singular	182	

vector	 transiently	expand,	 even	 though	 they	are	persistent	 (EV=1)	or	decay	 (EV<1)	over	183	

longer	time-scales	(Fig.	2e,f).	184	

Neural	population	responses	of	decisions	and	movements	in	PFC	

We	compared	these	model	dynamics	to	neural	population	responses	recorded	in	the	pre-185	

frontal	 cortex	 (PFC;	 area	 8Ar)	 of	 two	 macaque	 monkeys	 performing	 a	 saccade-based	186	

perceptual	decision-making	 task39,81,88,89	 (Fig	3a,b;	Extended	Data	Fig.	4).	To	 increase	 the	187	

statistical	 power	 of	 our	 analyses,	 we	 employed	 a	 dimensionality	 reduction	 technique	 to	188	

“align”	 the	 task-related	 subspaces	 of	 neural	 activity	 from	 different	 experiments	 with	 a	189	

similar	task-configuration	(Extended	Data	Fig.	4;	14-61	experiments	per	configuration;	150-190	

200	units	per	experiment).	This	alignment	yielded	a	shared,	20-dimensional	neural	state-191	

space	explaining	>90%	of	task-related	variance	in	the	average	neural	responses	measured	192	

across	different	experiments90	(Extended	Data	Fig.	5).	All	the	analyses	below	are	performed	193	

within	this	aligned	subspace,	although	the	main	results	can	be	reproduced	from	sufficiently	194	

long	single	experiments	(Extended	Data	Fig.	6).		195	

The	condition-averaged	population	trajectories	in	PFC	shared	important	features	with	the	196	

average	trajectories	of	the	models	in	Fig.	1.	We	visualized	the	population	trajectories	through	197	

projections	 onto	 four	 distinct,	 two-dimensional	 activity	 subspaces:	 a	 “choice”	 plane,	198	

emphasizing	 choice-related	 activity;	 a	 “time”	 plane,	 emphasizing	 time-varying	 activity	199	

common	to	both	choices;	and	two	“jPC”	planes45,	emphasizing	rotational	dynamics	(Fig.	3c,d;	200	

left	to	right).	We	estimated	these	planes	separately	during	a	decision-epoch,	which	coincided	201	

with	 the	presentation	of	 a	 random-dots	 stimulus	 (Fig	3c),	 and	during	a	movement-epoch	202	

aligned	to	the	execution	of	 the	saccade	(Fig.	3d).	As	 in	 the	decision-models	(Fig.	1a),	PFC	203	

responses	started	in	an	undifferentiated	state	prior	to	stimulus	onset	(Fig	3c;	choice	plane;	204	

filled	dots	mark	stimulus	onset)	and	gradually	diverged	based	on	the	upcoming	choice	of	the	205	

animal	 (Fig.	 3c,	 red	 vs.	 blue).	 PFC	 responses	 during	 the	 movement	 period	 showed	206	

pronounced	rotational	components	(Fig.	3d,	jPC12	plane;	filled	dots	mark	movement	onset)	207	

similar	to	those	in	the	movement	models	(Fig.	1b).	Prior	to	saccade-onset,	PFC	responses	fell	208	

into	 largely	 stationary,	 choice-dependent	 states	 and	 then	 transitioned	 into	 rotational	209	

dynamics	following	the	presentation	of	the	go	cue	(Fig.	3d,	jPC	planes).		210	
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The	 measured	 PFC	 responses	 also	 differed	 from	 the	 model	 responses	 in	 several	 ways.	211	

Consistent	with	past	reports	of	population	dynamics	during	decisions,	working	memory		and	212	

movements,	PFC	responses	reflected	strong	condition-independent	components	during	both	213	

task-epochs	(e.g.	Fig.	3c,d,	time-plane)	23,25,51,91–95.	Such	condition-independent	components	214	

were	 not	 implemented	 in	 the	models	 in	Fig	1.	 Unlike	 in	 the	models,	 pronounced	 choice-215	

related	activity	occurred	along	more	than	one	state-space	direction	(Fig.	3c,	choice	plane)	216	

and	rotational	dynamics	within	more	than	one	plane.	Moreover,	rotational	dynamics	was	217	

Fig.	3.	Average	neural	dynamics	in	prefrontal	cortex	during	perceptual	decisions	and	saccades.	

a,	Behavioral	task.	Monkeys	fixating	at	the	center	of	a	screen	(fixation	point,	black	cross)	viewed	a	random	dot	stimulus	for	
800ms.	After	a	delay	period	of	random	duration,	they	reported	the	perceived	direction	of	motion	with	a	saccade	to	one	of	two	
targets	(red	and	blue	circles;	blue:	choice	1;	red:	choice	2).	Following	the	saccade,	the	monkeys	had	to	fixate	on	the	chosen	
target	during	a	hold	period	of	random	duration.	Saccade	targets	were	 located	at	different	 locations	 in	the	visual	 field	 for	
different	recording	sessions	(see	Extended	Data	Fig.	4).	b,	Position	of	the	10	x	10	electrode	array	in	pre-arcuate	cortex	of	the	
two	monkeys.	Black	circles	indicate	the	cortical	locations	of	the	96	electrodes	used	for	recordings.	c-d,	Neural	trajectories	in	
monkey	T,	averaged	over	trials	of	the	same	choice.	Trajectories	are	obtained	after	aligning	neural	responses	(see	Extended	
Data	Fig.	5)	from	experimental	sessions	with	a	similar	configuration	of	saccade	targets	(config-3	in	Extended	Data	Fig.	4).	
Aligned	responses	are	projected	into	four	activity-subspaces:	the	choice,	time,	jPC12,	and	jPC34	planes,	capturing	variance	due	
to	choice,	time,	and	rotations,	respectively	(R2:	fraction	of	variance	explained;	f:	rotation	frequency	associated	with	the	jPC	
plane).	c,	Trajectories	in	the	decision-epoch	(-0.2	to	1s	relative	to	stimulus	onset,	filled	circle).	d,	Trajectories	in	the	movement-
epoch	(-0.7	to	0.5s	relative	to	saccade	onset,	filled	circle).	
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observed	also	during	the	decision-epoch	(Fig.	3c,	jPC	planes).	As	for	the	models	in	Fig.	1,	it	is	218	

not	clear	which	of	these	features	of	the	condition-averaged	trajectories	reflect	the	influence	219	

of	inputs,	recurrent	dynamics,	or	both.		220	

Residual	dynamics	in	PFC	

To	better	 resolve	 the	 contributions	of	recurrent	dynamics	to	 the	 recorded	 responses,	we	221	

characterized	residual	dynamics	in	PFC,	by	proceeding	in	two	steps.	First,	we	estimated	a	222	

“dynamics	 subspace”,	 contained	within	 the	 previously	 defined	 aligned	 subspace	 (Fig.	 4a,	223	

Extended	Data	Figs.	2,5,7).	The	dynamics	subspace	was	defined	such	that	within	it,	but	not	224	

outside	 of	 it,	 residuals	 at	 any	 given	 time	 are	 significantly	 correlated	 with	 residuals	 at	225	

previous	 or	 future	 times.	 Second,	 we	 exploited	 these	 correlations	 to	 estimate	 residual	226	

dynamics	 within	 the	 dynamics	 subspace,	 following	 the	 same	 approach	 as	 for	 responses	227	

simulated	from	the	models	above	(Fig.	2e-g,	Extended	Data	Fig.	2,8).		228	

We	found	that	residual	dynamics	 in	PFC	was	stable	and	decaying	across	the	decision	and	229	

movement	 epochs	 (Fig.	 4b),	 as	 the	 largest	 estimated	 EV	 magnitudes	 were	 consistently	230	

smaller	than	1	in	both	monkeys	(Fig.	4e;	p	<	0.001,	single	tailed	t-test,	n=	144	data	points	231	

across	 times,	 choices	 and	 configurations).	 The	 dynamics	 subspace	 was	 close	 to	 8-232	

dimensional	in	all	configurations	(Fig	4a,	Extended	Data	Fig.	7,8)	and	was	best	aligned	with	233	

directions	that	explained	most	 task-related	variance	within	the	aligned	subspace	(Fig.	4a,	234	

largest	dot	products	at	small	values	along	y-axis;	Extended	Data	Fig.	5).	Any	directions	lying	235	

outside	the	dynamics	subspace	can	be	thought	of	as	being	associated	with	an	EV	equal	zero,	236	

meaning	 that	perturbations	along	 these	directions	 completely	decay	within	a	 single	 time	237	

step.		238	

The	EV	magnitudes	were	strongly	time-dependent.	For	all	task	configurations,	the	largest	EV	239	

were	attained	during	the	decision	epoch	or	the	delay	period	preceding	the	saccade.	These	240	

EV	were	associated	with	decay	time-constants	in	the	range	187-745ms	during	the	decision	241	

period	(0s	to	+0.8s	following	stimulus	onset)	and	110-913ms	during	the	delay	period	(-0.5s	242	

to	+0.3s	relative	to	saccade	onset)	for	monkey	T	(95%	CI,	medians	=	352ms	and	293ms;	Fig.	243	

4e,	top),	and	309-1064ms	and	192-3586ms	for	monkey	V	(95%	CI,	medians	=	489ms	and	244	

491ms;	Fig.	4e,	bottom).	Concurrently	with	the	saccade	onset,	the	EV	consistently	underwent	245	

a	strong	contraction—the	largest	measured	time	constants	at	saccade	onset	fell	to	median	246	

values	of	159ms	in	monkey	T	and	310ms	in	monkey	V	(Fig.	4e),	implying	that	perturbations	247	

away	from	the	average	trajectory	during	movement	quickly	fall	back	to	the	trajectory.		248	

These	findings	alone	rule	out	several	models	of	recurrent	dynamics	in	PFC.	Even	the	largest	249	

EV	in	PFC	during	the	decision	epoch	are	inconsistent	with	unstable	dynamics	(EV>1,	Figs.	250	

1a,2e;	saddle	point)	and	for	the	most	part	substantially	smaller	than	what	would	be	expected		251	
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from	persistent	dynamics	(EV≈1,	Figs.	1a,2e;	line	attractor).	Likewise,	the	small	EV	around	252	

the	time	of	the	saccade	are	inconsistent	with	purely	rotational	or	funnel	dynamics,	which	253	

would	 both	 result	 in	 directions	 with	 very	 slow	 decay	 (EV≈1,	 Figs.	 1b,2e;	 rotations	 and	254	

Fig.	4.	Residual	dynamics	in	prefrontal	cortex	during	perceptual	decisions	and	saccades.	

a-d,	 Estimated	 residual	 dynamics	 in	 prefrontal	 cortex	 in	monkey	 T,	 same	 task	 configuration	 as	 in	 Fig	 3c-d.	The	 residual	
dynamics	was	8-dimensional	for	this	example	dataset.	a,	Relative	alignment	between	the	modes	spanning	the	8d-dynamics	
subspace	and	the	modes	spanning	the	20d-aligned	subspace	(see	Extended	Data	Fig.	5),	measured	as	the	absolute	value	of	the	
corresponding	dot-product.	The	dynamics	modes	project	strongly	onto	the	first	few	aligned	modes,	which	capture	most	of	the	
task-relevant	variance	in	the	responses.	b-d,	Properties	of	the	residual	dynamics	for	a	single	choice	condition	(choice	1).	Error	
bars:	 95%	bootstrap	 confidence	 intervals	 (shown	at	 selected	 times).	b,	 Eigen-values	 (EV)	of	 the	dynamics	 (left	 axis),	 and	
associated	time-constants	of	decay	(right	axis)	as	a	function	of	time	(x-axis).	c,	Angular	phase	of	the	EV	(left	axis;	angular	phase	
=	0:	real-valued	EV)	and	associated	rotation	frequencies	(right	axis).	d,	Singular	values	(SV)	of	the	dynamics.	The	eigenvectors	
and	singular	vectors	associated	with	the	shown	EV	and	SV	can	vary	over	time.	Line	colors	reflect	the	magnitude	of	the	EV	or	SV	
at	 the	 first	 time	of	 the	decision	 epoch.	At	 later	 times,	 colors	match	 those	associated	with	 the	 closest	 eigen-vector	or	right	
singular	vector	at	the	previous	time.	e-h,	Properties	of	the	residual	dynamics	across	all	animals	(Monkey	T,	top;	Monkey	V,	
bottom),	choices	(blue:	choice	1;	red:	choice	2),	and	task	configurations	(markers;	see	Extended	Data	Fig.	4).	Black	curves:	
averages	 across	 all	 choices	and	 configurations.	 e,	Magnitude	 of	 the	 largest	EV	 (left	 axis)	and	 the	 associated	 decay	 time-
constants	(right	axis).	f,	Largest	angular	phase	of	the	EV	and	the	corresponding	frequency	of	rotation.	g,	Largest	singular	value.	
h,	Time	course	of	the	index	of	non-normality.	
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funnel).	Rather,	 the	 inferred	EV	are	 consistent	with	quickly	decaying	 recurrent	dynamics	255	

(Figs.	1b,2e;	point	attractor).		256	

The	 absence	 of	 strong	 rotational	 dynamics	 is	 bolstered	 by	 the	 finding	 that	 the	 largest	257	

estimated	rotation	 frequencies	are	either	close	to	zero	or	very	small	 for	most	EV	 in	both	258	

monkeys	(Fig.	4f).	We	did	observe	a	few	EV	with	rotation	frequency	considerably	larger	than	259	

zero	 (≈0.5-1Hz)	 in	 monkey	 T	 (Fig.	 4c).	 However,	 around	 the	 time	 of	 movement	 the	260	

associated	EV	magnitudes	were	small	(e.g.	time	constants	between	70-110ms,	Fig.	4b;	dark	261	

blue)	 implying	that	perturbations	decay	within	1/15th	of	a	rotational	cycle.	Overall,	 these	262	

findings	are	 inconsistent	with	the	 large	rotation	 frequencies	and	slow	decay	expected	 for	263	

purely	rotational	recurrent	dynamics	(Fig.	2e,g;	rotations).	264	

Finally,	the	largest	SV	had	a	somewhat	larger	magnitude	than	the	largest	EV	throughout	both	265	

task	epochs,	particularly	 in	monkey	T	 (compare	Fig	4e	 to	4g).	This	 finding	 indicates	 that	266	

dynamics	in	PFC	is	non-normal,	albeit	only	weakly.	Even	the	largest	SV	are	smaller	than	1,	267	

implying	that	 the	non-normal	recurrent	dynamics	does	not	amplify	perturbations,	 it	only	268	

transiently	 slows	 down	 their	 decay.	 The	 degree	 of	 non-normality,	 quantified	 as	 the	269	

discrepancy	between	the	EV	and	the	SV,	followed	a	consistent	time-course	across	animals	270	

and	configurations,	and	was	most	pronounced	around	the	time	of	the	saccade	(Fig.	4h).		271	

Condition-averaged	trajectories	reflect	time-dependent	input	contributions	

Additional	 insights	 into	 the	 relative	 strengths	 of	 recurrent	 dynamics	 and	 inputs	 can	 be	272	

gained	 by	 comparing	 the	 properties	 of	 residual	 dynamics	 and	 condition-averaged	273	

trajectories.	 When	 inputs	 are	 weak,	 the	 trajectories	mostly	 reflect	 the	 properties	 of	 the	274	

recurrent	 dynamics,	 which	 in	 turn	 results	 in	 distinct	 relations	 between	 trajectories	 and	275	

residual	dynamics.	For	example,	in	the	saddle-point	and	line-attractor	models,	the	condition-276	

averaged	trajectories	for	the	two	choices	diverge	along	a	direction	that	is	closely	aligned	with	277	

the	eigenvector	associated	with	the	largest	EV	in	the	residual	dynamics	(Fig.	1a,	left-most	278	

panels;	 horizontal	 direction;	 Fig.	 2e).	 Similarly,	 in	 the	 funnel	 and	 rotation	 models,	 the	279	

condition-averaged	 trajectories	 rotate	 in	 the	plane	 containing	 residual	dynamics	with	EV	280	

close	to	1	(Fig.	1b,	 left-most	panels;	Fig.	2e),	or	EV	with	 large	angular	phase	(Fig.	1b,	 left	281	

panels;	Fig.	2g).	When	such	relations	are	absent,	two	scenarios	are	possible.	First,	the	neural	282	

trajectories	 may	 mostly	 be	 driven	 by	 a	 strong	 input	 (Fig.	 1b,2e,	 point-attractor	 model:	283	

trajectories	rotate,	whereas	residual	dynamics	is	decaying	and	non-rotational).	Second,	the	284	

recurrent	 dynamics	 may	 implement	 strong	 non-normal	 amplification,	 where	 population	285	

trajectories	can	display	pronounced	excursions	along	directions	that	are	largely	orthogonal	286	

to	the	eigenvectors	associated	with	the	largest	EV82,85,96,97.	While	the	latter	scenario	is	ruled	287	

out	 by	 the	 properties	 of	 the	 residual	 dynamics	 (Fig.	 4g,h,	 SV≤1;	 no	 non-normal	288	

amplification),	the	former	is	not.	289	
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We	 quantified	 the	 relationship	 between	 residual	 dynamics	 and	 the	 condition-averaged	290	

trajectories	in	PFC	(Fig.	5)	as	the	subspace	angle	between	the	eigenvectors	of	the	residual	291	

dynamics	 and	 the	 four	 activity	 subspaces	 that	 we	 defined	 based	 on	 condition-averaged	292	

trajectories	(Fig.	3).	To	reveal	relationships	of	the	kind	predicted	by	some	of	the	decision	and	293	

movement	models,	we	sorted	subspace	angles,	based	either	on	the	magnitude	(Fig.	5a,b	left	294	

half	of	x-axis)	or	rotation	frequency	of	the	associated	EV	(Fig.	5a,b,	right	half	of	x-axis).	For	295	

each	magnitude	and	angular	phase,	we	also	determined	whether	 the	measured	subspace	296	

angles	 were	 significantly	 smaller	 (i.e.	 “aligned”)	 or	 larger	 (“mis-aligned”)	 than	 expected	297	

based	on	randomly	chosen	directions	within	the	dynamics	subspace	(Fig.	5,	crosses).		298	

During	the	saccade	epoch,	subspace	angles	with	the	jPC	planes	showed	no	dependency	on	299	

either	the	rotation	frequency	or	the	magnitude	of	the	associated	EV	in	both	monkeys	(Fig.	300	

5a-d,	 bottom).	 In	 fact,	 the	mean	 subspace	 angle	 obtained	 for	 any	given	EV	magnitude	 or	301	

rotation	 frequency	 closely	 matched	 that	 expected	 from	 the	 null	 distribution	 (Fig.	 5a-d,	302	

bottom;	 vertically	 aligned	green	 and	 purple	points	 on	 the	 left	 and	 right).	 The	prominent	303	

rotations	 in	 the	 condition-averages	 during	 the	 saccade	 epoch	 (Fig.	 3d)	 are	 thus	 not	304	

Fig.	5.	Relationship	between	residual	dynamics	and	average	dynamics.	

Overlap	between	the	eigenvectors	of	the	residual	dynamics	and	the	four	activity	subspaces	defined	as	in	Fig	3c-d	(choice,	time,	
jPC12,	 and	 jPC34	planes;	see	 legends),	 in	monkeys	T	 (a-b)	and	V	 (c-d)	during	 the	decision	and	movement	 epochs	 (top	and	
bottom).	Overlap	is	defined	as	the	subspace	angle	between	a	particular	eigenvector	(real-valued	EV)	or	pair	of	eigenvectors	
(complex-valued	EV)	and	a	given	plane.	Subspace	angles	for	both	choices	and	task-configurations	are	averaged	within	bins	
defined	based	on	EV	magnitude	or	rotation	frequency	(left	and	right	halves	of	the	x-axis;	errorbars:	normal	95%	confidence	
intervals).	To	determine	whether	eigenvectors	within	a	bin	are	significantly	aligned	or	misaligned	with	a	given	plane	(crosses;	
close	to	subspace	angles	of	0	and	90)	we	compared	the	corresponding	subspace	angles	to	null	distributions	obtained	from	
randomly	sampled	directions	in	the	dynamics	subspace	(vertically	arranged	purple	and	green	ticks,	on	the	left	and	right	of	
each	plot,	see	Methods).	Measured	and	null	distributions	for	two	example	bins	are	shown	in	a	(inset,	top).	a-b,	subspace	angles	
with	the	choice	and	time	planes	(a)	and	the	jPC12	and	jPC34	planes	(b),	in	monkey	T.	c-d,	same	as	a-b,	for	monkey	V.		
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preferentially	 aligned	 with	 eigenvectors	 associated	 with	 EV	 of	 large	magnitude	 or	 large	305	

rotation	 frequency.	 This	 finding	 is	 inconsistent	 with	 the	 predictions	 of	 the	 rotation	 and	306	

funnel	models,	and	instead	suggests	a	prominent	role	of	inputs	in	driving	saccade-related	307	

activity	(Fig.	1b,	point	attractor).		308	

On	 the	 other	 hand,	 the	 subspace	 angles	 were	 related	 to	 the	 properties	 of	 the	 residual	309	

dynamics	 during	 the	 decision-epoch,	 although	 the	 observed	 relations	 differed	 across	310	

animals.	In	monkey	V,	the	choice	plane	is	best	aligned	with	the	eigenvectors	of	the	largest	311	

magnitude	EV	 (Fig.	 5c	 top,	 left	 half	 of	 x-axis;	 green	 points),	 consistent	with	 a	 role	 of	 the	312	

recurrent	 dynamics	 in	 generating	 choice	 responses.	 This	 relation	 is	 less	 pronounced	 in	313	

monkey	T	(Fig.	5a	top,	left	half	of	x-axis;	green	points),	for	which	the	residual	dynamics	was	314	

better	aligned	with	 the	 time-plane,	 capturing	choice-independent	variance,	 than	with	 the	315	

choice	 plane	 (Fig.	 5a	 top,	 left	 half	 of	 x-axis;	 purple	 points).	 Nonetheless,	 a	 pronounced	316	

relation	 between	 residual	 dynamics	 and	 condition-averaged	 responses	 was	 apparent	 in	317	

monkey	T,	although	of	an	unexpected	kind.	The	subspace	angles	with	the	time-plane	(Fig.	5a	318	

top,	right	half	of	x-axis;	purple	points)	and	the	jPC12	plane	(Fig.	5b	top,	right	half	of	x-axis;	319	

green	points)	showed	a	strong	dependence	on	EV	rotation	 frequency,	suggesting	that	 the	320	

rotational	structure	of	the	trajectories	in	those	planes	during	the	decision	epoch	reflects	the	321	

influence	of	rotational	recurrent	dynamics.	322	

In	both	monkeys,	the	properties	of	residual	dynamics	(Fig.	4)	and	its	relation	to	condition-323	

averaged	trajectories	(Fig.	5)	thus	suggest	that	recurrent	dynamics	substantially	contributes	324	

to	shaping	the	condition-averaged	trajectories	measured	 in	PFC	only	during	the	decision-325	

epoch	 (Fig.	 3c).	 The	 large	 excursions	 in	 the	 trajectories	 observed	 during	 the	movement	326	

epoch	(Fig.	3d)	instead	seem	more	consistent	with	the	influence	of	strong	external	inputs11.		327	

Interpreting	local	residual	dynamics	in	distributed	cortical	circuits	

These	above	conclusions,	however,	are	based	on	a	comparison	to	simplified	models	of	neural	328	

dynamics,	for	which	inputs	and	recurrent	contributions	are	well	defined	(Fig.	1).	Biological	329	

circuits	tend	to	be	modular,	i.e.	are	subdivided	into	areas,	with	both	local	recurrence	within	330	

areas,	as	well	as	long-range,	feedforward	or	feedback	connections	between	areas98,99.	At	the	331	

level	of	any	single	area,	a	clear	distinction	between	inputs	and	recurrent	dynamics	may	then	332	

be	challenging,	raising	the	question	of	how	residual	dynamics	should	be	interpreted	when	333	

computations	are	distributed	across	many	areas.		334	
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To	address	this	question,	we	consider	simulations	of	a	two-area,	non-linear,	recurrent	neural	335	

network	previously	proposed	to	explain	the	interplay	of	posterior	parietal	cortex	(PPC)	and	336	

PFC	during	decision-making	and	working-memory48.	The	network	 implements	both	 local	337	

recurrence	within	each	area	(PPC	and	PFC),	as	well	as	long-range	connectivity	between	the	338	

two	areas.	PPC	 is	 assumed	 to	be	upstream	of	PFC,	 as	 it	 alone	receives	an	 input	encoding	339	

external	 stimuli.	 Here	 we	 consider	 only	 a	 limited	 set	 among	 all	 possible	 network	340	

configurations.	First,	the	strength	of	local	recurrence	is	set	to	be	equal	in	both	areas.	Second,	341	

when	feedback	connections	from	PFC	to	PPC	are	present,	their	strength	equals	those	of	the	342	

feedforward	connections	from	PPC	to	PFC.		343	

Simulated	 responses	 of	 a	 random-dots	 task	 show	 choice-dependent	 and	 condition-344	

independent	components,	both	in	PPC	and	PFC	(Fig.	6a,d;	choice	and	time	modes).	The	EV	of	345	

the	residual	dynamics,	estimated	 locally	 in	PPC	or	PFC,	are	typically	 time-dependent	(Fig.	346	

6b,e,	Extended	Data	Fig.	9).	 In	particular,	 the	dynamics	can	change	 from	stable	(EV<1)	to	347	

Fig.	6.	Local	residual	dynamics	in	multi-area	networks	of	perceptual	decision	making.	

Each	network	consists	of	two	interconnected	modules	(PPC	and	PFC),	whereby	a	module	mimics	an	RNN	with	a	given	level	of	
local	recurrence.	PPC	 is	driven	by	an	external	 input,	and	feedback	connections	 from	PFC	to	PPC	are	either	absent	(a-c)	or	
present	 (d-f).	 a,	 Connectivity	 (top)	 and	 average	 trajectories	 (bottom)	 for	 an	 example	 network	 with	 weak	 feedforward	
connectivity	between	areas	(top,	thin	arrow)	and	strong	local	recurrence	(thin	arrows).	Condition-averaged	trajectories	are	
shown	separately	for	each	area	for	two	choices	(blue:	choice	1,	red:	choice	2).	Trajectories	are	visualized	in	a	subspace	spanned	
by	the	choice	mode,	explaining	variance	due	to	choice,	and	a	time	mode,	explaining	condition-independent	variance.	b,	Time-
varying	EV	magnitude	of	the	local	residual	dynamics	estimated	from	residuals	in	PPC	(left)	or	PFC	(right)	for	choice	1,	in	the	
example	network	in	a.	The	external	input	is	turned	on	400ms	after	the	start	of	the	trial	(gray	dashed	line).	EV	magnitudes	in	
PFC	are	strongly	reduced	upon	shuffling	the	 feedforward	output	of	PPC	across	trials	(blue	dashed	curves).	c,	Maximum	EV	
magnitude	(measured	across	time)	for	residuals	projected	onto	the	choice	modes	in	PPC	(left)	or	PFC	(right),	as	a	function	of	
the	strengths	of	local	recurrence	(black	to	gray:	small	to	large	recurrence)	and	between-area	connections	(x-axis).	Errorbars	
indicate	95	percentile	bootstrap	confidence	intervals.	The	dashed	circle	marks	the	example	network	shown	in	a-b.	d-e,	Same	
conventions	as	in	a-c,	but	for	networks	with	between-area	feedback.	

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 20, 2021. ; https://doi.org/10.1101/2021.07.19.452951doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.19.452951
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 16	

unstable	 (EV>1)	 after	 the	 input	 is	 turned	 on,	 reflecting	 the	 non-linear	 nature	 of	 these	348	

networks.		349	

To	 assess	 the	 interaction	 of	 local	 recurrence	 and	 long-range	 connections,	 we	 focus	 on	350	

residuals	dynamics	estimated	along	the	choice	mode	in	each	area	(Fig.	6c,f,	Extended	Data	351	

Fig.	9).	By	design,	the	choice	modes	define	the	“communication	subspace”	between	PPC	and	352	

PFC	in	these	networks20,48—the	feedforward	and	feedback	connections	between	areas	are	353	

constructed	such	that	activity	along	the	choice	mode	 in	one	area	drives	activity	along	the	354	

choice	mode	in	the	other	area	(Extended	Data	Fig.	9).	We	summarize	the	residual	dynamics	355	

in	each	network	with	the	peak	magnitude	of	the	EV	along	the	choice	mode	achieved	within	a	356	

trial	(Fig.	6c,f,	Extended	Data	Fig.	9).	357	

In	networks	 lacking	 feedback	between	areas,	 the	residual	dynamics	 in	PPC	naturally	only	358	

reflects	the	local	recurrence,	whereby	the	largest	EV	gradually	increases	with	stronger	local	359	

recurrence.	(Fig.	6c,	PPC).	The	residual	dynamics	in	PFC	closely	resembles	that	in	PPC	(Fig.	360	

6c,	PFC),	but	this	resemblance	conceals	a	critical	difference	between	the	two	areas.	In	PPC,	361	

the	residual	dynamics	reflects	the	properties	of	the	local	recurrent	dynamics.	The	same	is	362	

not	true	in	PFC,	where	any	EV>1	mostly	reflects	recurrent	dynamics	implemented	upstream,	363	

in	PPC.	Indeed,	if	the	output	of	PPC	is	“shuffled”	to	remove	any	temporal	correlations,	while	364	

retaining	 its	 time-varying	 mean,	 the	 EV	 estimated	 in	 PFC	 fall	 below	 1,	 indicating	 that	365	

recurrent	dynamics	in	PFC	is	actually	decaying	in	these	networks	(Fig.	6b,	dashed).	We	refer	366	

to	this	effect	as	an	“inflation”	of	the	EV	in	PFC,	due	to	the	correlated	input	from	PPC.	367	

Such	an	inflation	of	local	residual	dynamics	can	occur	whenever	trial-by-trial	variability	in	368	

the	 inputs	 into	 an	 area	 displays	 correlations	 across	 time,	 as	 can	 be	 the	 case	 when	 the	369	

upstream	areas	themselves	implement	recurrent	dynamics	(Extended	Data	Figs.	10,11).	This	370	

effect	implies	that	the	EV	magnitudes	we	estimated	in	PFC	(Fig.	4)	set	an	upper	limit	to	the	371	

“true”	values	one	would	observe	based	on	local	PFC	recurrence	alone.	Notably,	not	just	the	372	

magnitude	of	the	estimated	EV	can	be	inflated,	but	also	their	rotation	frequency	(Extended	373	

Data	Fig.	10b,d).	Estimated	EV	with	 large	rotation	 frequency	could	thus	reflect	rotational	374	

dynamics	occurring	locally,	or	that	are	implemented	in	areas	upstream	to	the	recorded	area	375	

(Extended	Data	Fig.	10d,e).		376	

In	networks	with	long-range	feedback,	the	residual	dynamics	in	PPC	and	in	PFC	reflects	both	377	

the	 strength	 of	 local	 recurrence	 and	 of	 long-range	 connections,	 whereby	 reduced	 local	378	

recurrence	can	be	entirely	compensated	by	increased	global	feedback	(Fig.	6f).	Unlike	in	the	379	

feedforward	networks,	where	the	choice	results	entirely	from	dynamics	unfolding	locally	in	380	

PPC,	here	the	choice	dynamics	reflects	a	process	distributed	across	both	areas.		381	
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Overall,	these	simulations	show	that	local	residual	dynamics	in	an	area	cannot	be	assumed	382	

to	only	reflect	local	recurrence	in	that	area,	as	very	different	combinations	of	local	and	long-383	

range	connectivity	can	result	in	virtually	indistinguishable	residual	dynamics	at	the	level	of	384	

single	areas	(Fig.	6a,d	vs.	b,e).	At	the	same	time,	these	analyses	also	demonstrate	that	local	385	

residual	dynamics	can	resolve	recurrent	computations	implemented	outside	of	the	recorded	386	

area,	as	long	as	they	are	unfolding	within	the	output	subspace	of	an	upstream	area.		387	

Global	residual	dynamics	resolves	local	and	global	recurrent	computations	

The	 simulations	 in	Fig.	 6	 imply	 that	 the	 properties	 of	 recurrent	 dynamics	 in	 PFC	 can	 be	388	

constrained,	but	are	not	unambiguously	revealed,	by	 local	estimates	of	residual	dynamics	389	

(see	Discussion).	However,	we	 find	that	detailed	 insights	 into	the	 interaction	of	 local	and	390	

long-range	recurrence	are	possible	when	considering	the	global	residual	dynamics,	which	is	391	

estimated	from	recordings	across	all	areas	in	a	network.	392	

We	estimated	global	residual	dynamics	from	the	concurrent,	pooled	responses	simulated	in	393	

PPC	 and	 PFC,	 for	 the	 two	 example	 networks	with	 long-range	 feedforward	 and	 feedback	394	

connections	(Fig.	7).	EV	magnitudes	are	qualitatively	similar	in	the	two	networks,	with	one	395	

EV	unstable	 (EV>1),	one	persistent	 (EV≈1),	 and	 the	others	decaying	 (EV<1;	Fig.	7a).	The	396	

number	 of	 global	 EV	 does	 not	 robustly	 distinguish	 between	 networks,	 as	 it	 reflects	 a	397	

somewhat	arbitrary	cutoff	in	the	dimensions	to	include	in	the	dynamics	subspace	(excluded	398	

dimensions	effectively	have	EV=0).		399	

Critically,	the	alignment	between	the	eigenvectors	of	the	global	EV	and	the	local	task-activity	400	

subspaces	can	distinguish	between	the	two	networks.	As	above	(Fig.	5),	we	quantified	the	401	

alignment	as	the	angle	between	the	estimated	global	eigenvectors	and	the	local	choice	and	402	

time	modes	in	PPC	and	PFC	(Fig.	7b;	gray:	feedforward,	black:	feedback).	Eigenvectors	can	403	

be	either	“shared”	across	areas,	or	“private”	 to	an	area,	depending	on	whether	they	have	404	

substantial	projections	(i.e.	angle<90)	onto	modes	in	both	areas	or	only	a	single	area.	For	405	

example,	 EV1	 is	 shared	 in	 both	 networks,	 albeit	 to	 different	 degrees,	 whereas	 EV2	 is	406	

consistently	private	to	PPC.	While	several	global	eigenvectors	are	aligned	differently	with	407	

the	PPC	and	PFC	modes	in	the	two	networks	(Fig.	7b,	EV1	and	EV3),	such	differences	are	not	408	

evident	at	the	level	of	local	residual	dynamics	(Fig.	7c).	409	

Global	 residual	 dynamics	 can	 distinguish	 between	 the	 two	 networks	 because	 variability	410	

evolves	differently	within	and	across	areas	depending	on	the	connectivity	between	areas.	To	411	

explore	the	possible	nature	of	these	differences,	we	first	consider	the	effect	of	perturbations	412	

in	 two	 simple	models	 implementing	 time-independent,	 linear	 dynamics	 (Fig.	 7d),	 which	413	

mimics	key	properties	of	the	inferred	global	dynamics	(Fig.	7b).	We	considered	activity	that	414	

is	only	two-dimensional,	whereby	the	two	cardinal	dimensions	represent	the	choice	modes	415	

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 20, 2021. ; https://doi.org/10.1101/2021.07.19.452951doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.19.452951
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 18	

in	PPC	and	PFC,	respectively	(Fig.	7d).	The	two	models	differ	in	the	arrangement	of	the	two	416	

eigenvectors	 of	 the	 dynamics,	 but	 not	 in	 the	 magnitudes	 of	 the	 associated	 EV.	 In	 the	417	

“feedforward”	model,	an	unstable	eigenvector	projects	mostly	onto	the	PPC	choice	mode,	418	

while	a	stable	eigenvector	is	aligned	with	the	PFC	choice	mode	(Fig.	7d,	top;	EV1	and	EV3;	419	

similar	to	the	corresponding	gray	points	in	Fig.	7b).	In	the	feedback	model,	both	the	unstable	420	

and	stable	eigenvectors	have	large	projections	onto	the	PPC	and	PFC	choice	modes	(Fig.	7d,	421	

bottom;	EV1	and	EV4;	similar	to	the	corresponding	black	points	in	Fig.	7b).	422	

	

Fig.	7.	Global	residual	dynamics	resolves	local	and	between-area	recurrent	contributions.	

a,	Time-varying	EV	magnitudes	of	the	global	residual	dynamics	for	the	example	networks	in	Fig.	6a	(top)	and	Fig.	6d	(bottom).	
Global	 residuals	 are	 obtained	 by	 pooling	 observations	 from	 both	 areas	 for	 a	 single	 choice	 condition	 (here	 choice	 1).	 b,	
Alignment	between	the	eigenvectors	of	the	global	residual	dynamics	and	the	choice	mode	(horizontal	axis)	or	the	time	mode	
(vertical	axis).	Alignment	is	defined	as	the	angle	between	the	corresponding	directions	and	is	shown	separately	for	the	example	
feedforward	(gray)	and	feedback	(black)	networks.	Angles	of	0	and	90	deg	indicate	perfect	alignment	and	complete	lack	of	
overlap,	respectively.	As	in	Fig.	6a,d,	the	choice	and	time	modes	are	defined	locally	in	PPC	(top)	or	PFC	(bottom).	Angles	are	
shown	for	a	single	time	late	in	the	trial.	Arrows	mark	large	differences	in	alignment	between	the	two	example	models.	Marker	
size	 is	 proportional	 to	EV	magnitude.	Bootstrap	 confidence	 intervals	 (95th	 percentile)	 for	 the	angles	are	smaller	 than	 the	
marker	sizes.	c,	Analogous	to	b,	but	for	the	eigenvectors	of	the	local	residual	dynamics	(see	Fig	6b,e)	estimated	separately	based	
on	PPC	responses	(top)	or	PFC	responses	(bottom).	d,	Effect	of	local	perturbations	in	two	simple	models	implementing	linear	
dynamics	that	mimic	key	features	of	the	estimated	global	dynamics	in	a,b.	Two-dimensional	dynamics	evolve	in	a	subspace	
spanned	 by	 the	 PPC	 and	 PFC	 choice	modes	 (PPCc	 and	 PFCc).	 An	 unstable,	 global	 eigenvector	 is	 shared	 across	 areas;	 the	
corresponding	eigenvector	projects	equally	onto	PPCc	and	PFCc	in	the	feedback	model	(bottom),	but	predominantly	onto	PPCc	
in	the	feedforward	model	(top;	analogous	to	EV1	in	b).	A	quickly	decaying	eigenvector	is	shared	in	the	feedback	model	(EV4,	
bottom)	but	is	largely	private	to	PFC	in	the	feedforward	model	(EV3,	top;	analogous	to	the	corresponding	EV	in	b).	Activity	is	
perturbed	along	the	PPCc	and	PFCc	axes	(black	circles,	left;	see	labels)	and	then	evolves	based	on	the	dynamics	determined	by	
the	respective	EV	(white	circles,	left).	The	right	column	shows	the	norm	of	activity	within	each	area	(i.e.	projected	onto	PPCc	or	
PFCc)	for	the	different	perturbation	types	(perturb	PPCc	or	PFCc)	and	models.	
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We	mimicked	 a	 local	 perturbation	 either	 in	 PPC	 or	 PFC	 by	 initializing	 activity	 along	 the	423	

corresponding	choice	mode	(Fig.	7d,	left;	black	points),	and	then	letting	activity	evolve	based	424	

on	the	linear	dynamics	determined	by	the	respective	EV	(Fig	7d,	left;	white	points).		425	

These	simple	models	exemplify	how	the	arrangement	of	global	eigenvectors	determines	the	426	

directionality	 of	 the	 communication	 between	 areas.	 In	 the	 feedforward	 model,	 a	 PPC	427	

perturbation	 causes	 expanding	 activity	 in	 PPC	 that	 propagates	 to	 PFC,	 whereas	 a	 PFC	428	

perturbation	decays	in	PFC,	and	does	not	propagate	to	PPC	(Fig.	7d,	top,	right	column).	This	429	

unidirectional	communication	results	 from	non-normal	dynamics,	as	EV1	 is	shared,	while	430	

EV3	 is	 private	 to	 PFC	 (Fig.	 7d,	 top;	 EV1	 not	 orthogonal	 to	 EV3).	 In	 the	 feedback	 model,	431	

perturbations	 in	 either	 PPC	 and	 PFC	 propagate	 to	 the	 other	 area	 (Fig.	 7d,	 bottom,	 right	432	

column).	Such	bidirectional	communication	results	from	normal	dynamics,	and	the	fact	that	433	

both	EV1	and	EV4	are	shared	equally	between	PPC	and	PFC.	434	

Notably,	the	existence	of	bidirectional	communication	is	also	reflected	in	the	activity	of	the	435	

perturbed	 area.	 Somewhat	 counter-intuitively,	 activity	 in	 the	 area	 that	 was	 perturbed	436	

initially	decays,	and	expands	only	later;	activity	in	the	unperturbed	area	does	not	show	this	437	

dip	 (Fig.	 7d,	 feedback;	 PPC	 and	 PFC	 activity	 in	 right	 panels).	 This	 dip	 in	 activity	 occurs	438	

because	any	local	perturbation	is	only	partially	aligned	with	the	shared,	unstable	direction	439	

(EV1).	 Initially,	 activity	 in	 the	 perturbed	 area	 then	 mostly	 reflects	 the	 rapidly	 decaying	440	

component	of	activity	along	the	second,	global	eigenvector	(EV4).	441	

Inferring	global	dynamics	with	local	causal	perturbations	

We	directly	verified	the	insights	from	these	simple	linear	models	by	simulating	the	effect	of	442	

causal	 perturbations	 in	 the	 example	 two-area	 networks	 (Fig.	 8).	 We	 applied	 local	443	

perturbations,	either	in	PPC	or	PFC,	by	“injecting”	an	activity	pattern	corresponding	either	444	

to	 the	 choice	 mode	 or	 the	 time	 mode	 in	 each	 area.	 For	 each	 trial,	 we	 applied	 a	 brief	445	

perturbation	at	one	of	six	different	times	after	stimulus	onset,	and	then	let	the	activity	evolve	446	

under	the	influence	of	the	recurrent	dynamics	and	the	input.	We	visualize	the	effect	of	a	given	447	

perturbation	as	the	time-varying	norm	of	the	population	activity	in	PPC	and	PFC	for	a	brief	448	

time-window	following	the	onset	of	the	perturbation,	averaged	over	many	trials	(Fig.	8b-c,e-449	

f;	 a	 group	of	 three	 connected	 points;	 analogous	 to	 Fig.	 7d).	The	 effects	of	 a	 perturbation	450	

depend	on	the	time	at	which	it	was	applied	(Fig.	8b-c,e-f,	compare	time-courses	within	each	451	

panel),	reflecting	the	time-varying	dynamics	in	these	networks	(Fig.	7a).		452	

For	 perturbations	 applied	 late	 in	 the	 trial,	 when	 dynamics	 is	 unstable	 (Fig.	 7a,	 EV>1),	453	

perturbations	of	the	choice	modes	result	in	activity	that	largely	matches	the	dynamics	of	the	454	

simple	 models	 above	 (Fig.	 7d).	 In	 the	 feedforward	 network,	 PPC	 perturbations	 lead	 to	455	

expanding	activity	in	PPC	and	PFC	(Fig.	8b,c;	top-left,	green),	whereas	PFC	perturbations	lead	456	
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to	decaying	activity	in	PFC	(Fig.	8c,	bottom-left)	and	no	activity	in	PPC	(Fig.	8b,	bottom-left).	457	

In	the	feedback	network,	PPC	and	PFC	perturbations	lead	to	a	dip	in	activity	in	the	perturbed	458	

area	(Fig.	8e,	top-left	and	Fig.	8f,	bottom-left)	and	to	expanding	activity	in	the	non-perturbed	459	

area	(Fig.	8f,	top-left	and	Fig.	8e,	bottom-left),	as	in	the	corresponding	simple	model	(Fig.	7d,	460	

feedback).	 All	 these	 effects	 are	 specific	 to	 perturbation	 along	 the	 choice	 modes—461	

perturbations	 along	 the	 time-mode,	 in	 either	 area,	 result	 in	 very	 different,	 consistently	462	

decaying	dynamics	(Fig.	8b-c,e-f;	purple	color).	463	

Fig.	8.	Residual	dynamics	explains	the	effects	of	targeted	causal	perturbations.	

Simulated	responses	to	brief	perturbations	for	the	two	example	networks	in	Fig.	6,7	(small	circles)	are	compared	to	predictions	
based	on	residual	dynamics	(a-c	and	d-f:	network	without	and	with	feedback	between	areas).	Perturbations	are	applied	locally	
in	each	area,	along	the	choice	or	time	mode	(green	and	purple	circles)	at	one	of	six	times	in	the	trial	(the	first	point	of	each	
curve	in	b-c	and	e-f).	Predictions	are	based	either	on	the	local	residual	dynamics	in	the	simulated	area	(gray	curves;	b,e:	PPC;	
c,f:	PFC)	or	on	the	global	residual	dynamics	(black	curves).	a,	Schematic	of	the	location	and	type	of	perturbations	shown	in	b	
and	c	for	the	network	without	feedback.	b,	Simulated	impulse	responses	in	PPC	for	perturbations	in	PPC	(top)	or	PFC	(bottom)	
along	 the	 respective	 choice	 (left)	 and	 time	modes	 (right)	 compared	 to	 the	 corresponding	predictions	 based	 on	 local	 PPC	
residual	dynamics	(gray)	or	global	residual	dynamics	(black).	The	norm	of	the	impulse	response	(y-axis)	is	shown	against	time	
in	the	trial	(x-axis).	The	last	two	points	on	each	curve	correspond	to	responses	for	the	two	time-steps	following	the	offset	of	
each	perturbation.	c,	 Analogous	 to	b,	 but	 for	 responses	 in	PFC.	d-f,	 Analogous	 to	a-c,	 but	 for	 the	network	with	 feedback.	
Predictions	based	on	the	global,	but	not	the	local,	residual	dynamics	capture	the	qualitative	features	of	the	simulated	impulse		
responses,	i.e.	decay,	expansion,	or	decay	followed	by	expansion	(e.g.	c,	top-left;	c,	bottom-left;	e,	top-left).		
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These	varied	effects	of	causal	perturbations	can	be	predicted	quite	accurately	based	entirely	464	

on	our	estimates	of	the	global	residual	dynamics	(Fig.	7a-b).	The	predicted	time-course	of	465	

activity	 following	 a	 perturbation	 at	 least	 qualitatively	matches	 the	 simulated	 one,	 for	 all	466	

types	of	perturbations	(Fig.	8b-c,e-f,	black).	Predictions	based	on	local	estimates	of	residual	467	

dynamics	fare	much	worse	overall,	but	the	failures	are	nonetheless	informative	about	the	468	

underlying	 network	 (Fig.	 8b-c,e-f,	 gray).	 For	 example,	 the	 inflation	 of	 local	 PFC	 residual	469	

dynamics	in	the	feedforward	network	(Fig.	6b)	leads	to	the	erroneous	prediction	that	PFC	470	

perturbations	result	in	expanding,	rather	than	decaying,	PFC	activity	(Fig.	8c,	bottom-left,	471	

gray).	 In	 the	 feedback	model,	predictions	based	on	 local	residual	dynamics	 instead	fail	 to	472	

account	for	the	dip	in	activity	in	the	perturbed	area	(Fig.	8e,	top-left,	Fig.	8f,	bottom-left)	and	473	

underestimate	the	increase	in	activity	in	the	unperturbed	area	(gray;	Fig.	8f,	top-left,	Fig.	8e,	474	

bottom-left).	Both	failures	reflect	the	existence	of	a	global,	shared	unstable	direction,	which	475	

local	residual	dynamics	cannot	adequately	capture.	476	

Discussion 
It	 has	 long	 been	 recognized	 that	 trial-by-trial	 variability	 in	 neural	 activity	 can	 provide	477	

insights	into	population-level	computations12–22.	Residual	dynamics	amounts	to	a	complete,	478	

quantitative	description	of	the	dynamics	of	trial-by-trial	variability	at	the	level	of	a	neural	479	

population.	Residual	dynamics	tightly	relates	to	the	recurrent	computations	implemented	in	480	

the	underlying	neural	circuits,	and	is	capable	of	resolving	fine	differences	in	dynamics	across	481	

state-space	locations	and	time.	This	fine	resolution	allows	one	to	describe	dynamics	that	are	482	

globally	 non-linear100,101,	 through	 a	 series	 of	 local	 approximations.	 Unlike	 past	 statistical	483	

approaches	 that	directly	model	single-trial	dynamics68,69,71,	 residual	dynamics	 completely	484	

discounts	the	component	of	neural	responses	that	is	repeatable	across	trials	of	a	given	task	485	

condition.	As	a	result,	 residual	dynamics	can	be	estimated	with	more	easily	 interpretable	486	

models	than	the	dynamics	of	the	full,	single-trial	neural	responses.	487	

The	 properties	 of	 global	 residual	 dynamics,	 based	 on	 recordings	 distributed	 across	 a	488	

network	of	inter-connected	areas,	can	potentially	resolve	contributions	of	local,	within-area	489	

recurrence	and	long-range,	between-area	connections	(Fig.	7).	The	resulting	description	of	490	

dynamics	in	terms	of	modes	(i.e.,	eigenvectors)	that	are	shared	across	areas98,	or	private	to	491	

a	single	area,	appears	plausible	based	on	the	past	identification	of	communication-	and	null-492	

subspaces	 between	 areas20,102,103—an	 eigenvector	 that	 is	 shared	 between	 two	 areas	 lies	493	

within	 their	 communication	 subspace,	whereas	 one	 that	 is	 private	 lies	 outside	 of	 it,	 and	494	

potentially	within	 the	 null-space	 of	 either	 area.	 Global	 residual	dynamics,	 however,	 goes	495	

beyond	a	static	description	based	on	such	subspaces,	as	it	can	capture	also	the	dynamics	of	496	

the	responses	(Fig.	8)	resulting	from	unidirectional	or	bidirectional	communication	between	497	
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areas	 (Fig.	 7d,	 top	 vs.	 bottom).	 Local	 residual	 dynamics	 in	 a	 single	 area,	 of	 the	 kind	we	498	

describe	for	PFC,	instead	cannot	readily	distinguish	between	local	and	global	contributions	499	

to	observed	neural	responses.	Any	recurrent	dynamics	unfolding	within	the	communication	500	

subspace	of	two	areas	will	be	reflected	in	the	local	dynamics	of	both	areas,	irrespective	of	501	

the	directionality	of	 the	communication	between	the	areas	(feedforward	or	 feedback,	Fig.	502	

6c,f).		503	

Nonetheless,	even	our	local	estimates	of	PFC	residual	dynamics	provide	constraints	on	the	504	

properties	of	recurrent	dynamics	in	PFC,	and	on	the	nature	of	the	computations	underlying	505	

decision-making	and	movement	generation.	For	one,	the	largest	estimated	time	constants	506	

provide	an	upper	bound	on	the	time-constants	of	the	local	recurrent	dynamics	in	PFC	(Fig.	507	

4e;	324ms	and	510ms	in	monkeys	T	and	V;	medians),	as	any	upstream	contribution	to	PFC	508	

responses	would	have	inflated	these	estimates	(Fig.	6b;	Extended	Data	Fig.	10,11).	Recurrent	509	

dynamics	in	PFC	is	thus	slow98,104,	but	stable	throughout	the	decision	and	movement	epochs.	510	

This	 finding	 does	 not	 rule	out	 that	 the	 decision-process	 leading	 to	 the	monkeys’	 choices	511	

involves	unstable	or	 line-attractor	dynamics	 (Fig.	1a),	but	 those	dynamics	would	have	 to	512	

unfold	 in	 areas	 upstream	 of	 PFC80,105,	 and	 at	 least	 partly	 outside	 their	 communication	513	

subspace	with	PFC.	The	estimated	time-constants	would	reflect	the	dynamics	of	the	decision-514	

process	if	that	process	unfolded	either	in	PFC	alone,	or	within	its	communication	subspace	515	

with	other	areas	(as	for	all	networks	in	Fig.	6).	In	such	scenarios,	our	estimates	would	imply	516	

a	 leaky	 decision-process,	 whereby	 late	 evidence	 affects	 choice	more	 strongly	 than	 early	517	

evidence.	 In	 practice	 though,	 monkeys	 are	 thought	 to	 terminate	 the	 accumulation	 of	518	

evidence	early	in	the	trial,	when	a	decision-threshold	is	reached106,	which	would	reduce	the	519	

behavioral	effects	of	any	leaks	in	the	accumulation.	Notably,	a	recent	study	hypothesized	that	520	

the	termination	of	evidence	accumulation	coincides	with	the	onset	of	rotational	dynamics	in	521	

PFC	107.	In	our	study,	condition-independent,	rotational	dynamics	during	the	decision-epoch	522	

also	stands	out,	as	in	monkey	T	it	is	the	component	of	the	recorded	activity	that	can	be	best	523	

explained	 as	 resulting	 from	 recurrent	 computations	 (Fig.	 5).	 Irrespective	 of	 the	 possible	524	

contributions	of	PFC	to	the	process	underlying	the	monkeys’	choices,	 this	 finding	may	be	525	

indicative	of	a	broader	role	for	PFC	in	governing	transitions	between	cognitive	states107,108,	526	

e.g.	the	transition	from	an	uncommitted	to	a	committed	state.	527	

Around	 the	 time	 of	 the	 saccade,	 PFC	 residual	 dynamics	 is	 quickly	 decaying,	 largely	 non-528	

rotational,	 and	 only	 weakly	 non-normal,	 implying	 that	 PFC	 does	 not	 implement	529	

rotational45,46,	 funnel47,61,	 or	 strongly	 non-normal82,85	 recurrent	 dynamics	 of	 the	 kind	530	

previously	proposed	to	explain	movement	activity	in	cortex.	Rotational	and	funnel	dynamics	531	

are	also	unlikely	to	be	implemented	in	an	upstream	area	driving	PFC	movement	responses	532	

through	a	communication	subspace,	since	the	signatures	of	those	dynamics	would	then	also	533	
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appear	in	PFC	residuals	(Fig	6,	Extended	Data	Fig.	10).	Strong	non-normal	dynamics	in	an	534	

upstream	 area,	 however,	 could	 explain	 the	 residual	 dynamics	 and	 condition-averages	535	

observed	in	PFC.	Non-normal	systems	can	generate	large	activity	transients	along	directions	536	

with	only	a	small	projection	onto	the	activity	subspace	containing	the	slowest	dynamics97.	If	537	

the	output	from	such	an	upstream	area	was	partially	aligned	with	the	activity	transients,	but	538	

orthogonal	 to	 the	 slow	dynamics,	 it	 could	 drive	 strong	 “input-driven"	movement-related	539	

activity	in	PFC	without	revealing	the	signatures	of	the	strongly	non-normal	dynamics	that	540	

created	 it.	 Notably,	 the	 apparent	 absence	 of	 rotations	 in	 PFC	 recurrent	 dynamics	 during	541	

saccades	does	not	rule	out	that	such	dynamics	occurs	in	premotor	and	motor	areas	involved	542	

in	hand-reaches43,45.	The	neural	mechanisms	underlying	saccades	and	reaches	may	well	be	543	

distinct,	 considering	 the	 substantial	 differences	 in	 the	 anatomy	 of	 the	 involved	544	

structures88,89.	545	

A	 complementary	 approach	 to	 distinguishing	 between	 the	 above	 interpretations	 of	 PFC	546	

function,	 beyond	 characterizing	 global	 residual	 dynamics,	would	 involve	 combining	 local	547	

estimates	of	residual	dynamics	with	targeted	causal	perturbations11,23–30.	Residual	dynamics	548	

naturally	leads	to	predictions	of	the	consequences	of	such	perturbations,	and	failures	of	the	549	

predictions	can	be	diagnostic	of	the	underlying	long-range	connectivity	(Fig.	8).	Most	useful	550	

in	 this	 respect	 are	 small	 perturbations	 that	probe	 the	 intrinsic	manifold	 explored	 by	 the	551	

neural	variability27,31,32.	552	

Residual	 dynamics	 and	 the	 structure	 of	 variability	 may	 also	 speak	 to	 specific	 biological	553	

constraints	at	play	in	neural	circuits.	The	observation	of	eigenvalues	that	are	smaller,	but	554	

close	 to	 1	 during	 the	 decision-epoch	 is	 consistent	 with	 the	 underlying	 neural	 circuit	555	

operating	near	a	critical	regime,	resulting	in	large	variability	and	sensitivity	to	inputs109–112.	556	

Variability	at	the	level	of	single	neurons	is	transiently	reduced	at	the	time	of	stimulus	and	557	

movement	onset	(Extended	Data	Fig.	12),	potentially	reflecting	the	widespread	quenching	of	558	

variability	 across	 cortex	 in	 response	 to	 task	 events13,113,114.	 Near-critical	 dynamics,	 non-559	

normality,	and	variability	quenching	are	thought	to	emerge	naturally	in	balanced	excitation-560	

inhibition	(E-I)	networks115–117.	A	disruption	of	E-I	balance	by	the	onset	of	an	input	could	561	

potentially	lead	to	contracting	dynamics,	and	thus	reduced	variability.	Notably,	the	observed	562	

reduction	in	variability	in	PFC	coincides	with	contracting	dynamics	at	movement	onset,	but	563	

not	at	stimulus	onset	(Extended	Data	Fig.	12),	suggesting	that	such	E-I	networks	may	have	564	

to	be	adapted	to	fully	capture	the	interactions	of	internal	dynamics,	inputs,	and	variability	565	

we	observed	in	PFC.	566	
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Extended Data Figures 

	
Extended	Data	Fig.	1:	Residual	and	effective	dynamics	in	models	of	decisions	and	movement	578	

a,	Variability	in	responses	across	trials	from	the	same	task	condition	are	interpreted	as	perturbations	away	from	the	condition-579	
averaged	trajectory.	The	evolution	of	these	perturbations	reflects	the	properties	of	the	underlying	recurrent	dynamics	(flow	580	
field,	same	conventions	as	in	Fig	1a).	Inset	on	right	shows	a	magnified	view	of	the	condition-averaged	trajectory	(red,	choice	581	
2)	and	corresponding	single	trials	(dark	gray)	simulated	from	the	saddle	point	model.	Residual	vectors	at	each	time	(shown	in	582	
purple	 for	 a	 single	 trial	 and	 time)	 are	 computed	 by	 subtracting	 the	 condition-averaged	 response	 at	 that	 time	 from	 the	583	
corresponding	 single-trial	 response	 (purple	 equation).	 Time-varying	 dynamics	 matrices	 (𝑨')	 of	 a	 linear	 time-varying,	584	
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autonomous	state-space	model	(black	equations,	top-right)	are	fit	to	the	residuals.	These	matrices	approximate	the	dynamics	585	
in	distinct	’local’	regions	of	state	space	(e.g.	dashed	boxes)	and	are	indexed	according	to	time	and	condition.	b-c,	Components	586	
of	the	dynamics	for	the	models	of	decisions	(b)	and	movement	(c)	for	an	example	reference	time	(blue	dot)	along	the	condition-587	
averaged	trajectory	for	choice	1.	Same	conventions	as	in	Fig	2a.	Dynamics	are	shown	for	a	local	state-space	region	close	to	the	588	
corresponding	initial	condition	(boxes	in	Fig.	1a,	b;	left).	For	all	models,	the	estimated	effective	and	residual	dynamics	(columns	589	
5	and	6)	closely	match	the	true	effective	and	residual	dynamics	(columns	3	and	4).	 In	these	models,	 the	residual	dynamics	590	
(column	4)	reflects	only	the	recurrent	dynamics	(column	1),	but	is	not	identical	to	it.	For	one,	the	fixed	point	of	the	residual	591	
dynamics	by	definition	is	located	at	the	location	of	the	reference	state	(the	blue	dot),	which	in	general	does	not	match	the	592	
position	of	fixed	points	of	the	recurrent	dynamics	(e.g.	the	red	circle	in	the	first	row	and	first	column,	corresponding	to	the	593	
position	of	the	unstable	fixed	point	in	the	saddle	point	model).	The	position	of	fixed	points	of	the	recurrent	dynamics	can	only	594	
be	inferred	if	the	external	inputs	are	known,	a	requirement	that	is	not	fulfilled	in	many	experimental	settings.	For	another,	595	
consistent	drifts	resulting	from	the	recurrent	dynamics	(e.g.	the	drift	along	the	limit	cycle	in	the	funnel	model)	are	not	reflected	596	
in	the	residual	dynamics.	Such	drifts	are	“subtracted”	from	the	variability	in	the	computation	of	residuals.		 	597	
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Extended	Data	Fig.	2:	Schematic	of	analysis	pipeline	598	
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Schematic	 depicting	 the	 complete	 data	 analysis	 pipeline	 for	 inferring	 residual	 dynamics	 from	 noisy	 neural	 population	599	
recordings.	 The	 pipeline	 involves	 four	 key	 sequential	 steps.	 Step	 1:	 session	 alignment;	 involves	 pooling	 single	 trials	 from	600	
different	recording	sessions	in	order	to	increase	the	statistical	power	of	the	analyses	Step	2:	dynamics	subspace	estimation;	601	
involves	using	‘aligned’	single-trial	neural	residuals	to	obtain	estimates	of	a	dynamics	subspace	(Udyn)	that	effectively	contains	602	
the	residual	dynamics;	Step	3:	residual	latent	state	estimation;	involves	using	the	first	stage	of	a	two	stage	least	squares	(2SLS)	603	
approach	to	estimate	a	 ‘denoised’	 latent	residual	state;	and	Step	4:	dynamics	estimation;	uses	the	denoised	residual	 latent	604	
states	(obtained	in	step	3)	for	the	second	stage	of	the	2SLS,	in	order	to	estimate	the	time-varying	residual	dynamics	matrices	605	
(At).	 	606	
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Extended	Data	Fig.	3:	Residual	dynamics	of	simulated,	time-varying,	linear	dynamical	systems.	607	

a-c,	Validation	of	the	estimation	procedure	on	simulations	of	time-varying,	linear	dynamical	systems.	Simulations	are	based	608	
on	a	latent	variable	dynamical	system	with	3	latent	dimensions	and	20	observed	dimensions.	Residual	responses	are	generated	609	
using	a	gaussian	(circle	markers:	fixed	latent	noise	variance;	square	markers:	latent	noise	variance	switches	mid-way	through	610	
the	trial)	or	poisson	(triangle	markers)	observation	process.	In	all	simulations,	the	properties	of	the	dynamics	switch	midway	611	
through	the	simulated	time	window,	from	slowly	decaying	to	quickly	decaying	(a);	from	non-rotational	to	rotational	(b);	or	612	
from	normal	to	non-normal	(c).	As	in	Fig.	4b-d,	we	characterize	dynamics	with	the	magnitude	of	the	eigenvalues	(left),	the	613	
rotational	frequency	(middle),	and	the	singular	values	(right).	Markers	correspond	to	the	estimated	residual	dynamics,	black	614	
curves	 to	 the	ground-truth	 values.	The	 estimated	 residual	 dynamics	 accurately	matches	 the	ground-truth	 for	 all	 types	 of	615	
dynamics	and	observation	models,	before	and	after	the	switch,	and	also	reveals	the	time	of	the	switch.	We	observed	this	match	616	
even	when	the	latent	noise	variance	of	gaussian	observations	was	switched	at	the	same	time	as	the	eigenvalues/eigenvectors	617	
of	the	dynamics	(square	markers),	demonstrating	that	estimates	of	residual	dynamics	are	robust	to	changes	in	latent	noise	618	
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variance	(see	also	Extended	Data	Fig.	11a-b	vs	e-f).	d,	Analogous	to	c,	but	 for	residual	dynamics	(circles)	estimated	using	619	
ordinary	least	squares	(OLS)	instead	of	two-stage	least	squares	(2SLS)	as	in	c.	Results	are	only	shown	for	data	simulated	using	620	
a	gaussian	observation	process.	Unlike	the	2SLS	estimates,	 the	OLS	estimates	are	strongly	biased,	 i.e.	 the	magnitude	of	 the	621	
eigenvalues	and	the	singular	values	are	consistently	underestimated.	These	biases	are	expected—they	arise	because	both	the	622	
regressors	and	the	dependent	variables	are	corrupted	by	observation	noise	(see	Methods).	The	2SLS	instead	produces	unbiased	623	
estimates,	as	the	first	stage	of	2SLS	results	in	a	denoising	of	the	regressors	(see	also	Extended	Data	Fig.	8).	e,	Parameters	of	the	624	
latent	 noise	 and	 observation	 noise	 for	 the	 simulations	 in	a-d	 were	 chosen	 to	 approximately	match	 the	 variability	 in	 the	625	
measured	PFC	responses.	The	variability	in	the	measured	responses	were	quantified	in	terms	of	four	statistics	(l0,	l1,	l1/l0	and	626	
pvar,	x-axis;	see	Methods).	Histograms	indicate	the	respective	values	of	these	statistics	in	the	neural	data	(one	data	point	per	627	
task	configuration,	choice	condition	and	monkey;	see	Extended	Data	Fig.	4).	The	open	markers	(top,	same	conventions	as	a-c)	628	
indicate	the	values	of	the	statistics	in	the	simulations	for	each	of	the	three	models.	 	629	
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Extended	Data	Fig.	4:	Behavioral	task	and	configurations.	630	

a,	Psychometric	curves	for	all	experimental	sessions	in	both	monkeys	(left:	Monkey	T,	right:	Monkey	V),	showing	the	fraction	of	631	
saccades	to	choice	1	as	a	function	of	the	signed	motion	coherency.	Each	gray	data	point	is	computed	from	trials	belonging	to	a	632	
single	experiment	(see	Methods).	The	employed	values	of	signed	coherency	varied	slightly	across	experiments,	in	an	attempt	to	633	
achieve	a	comparable	overall	performance	in	each	experiment.	Black	curves	show	logistic	functions	fitted	separately	to	data	634	
points	from	a	given	task	configuration	(different	markers;	see	legends	in	b)	and	evaluated	at	logarithmically	spaced	levels	of	635	
coherency	(positions	of	the	white	markers	along	the	x-axis).	b,	Definition	of	task	configurations.	We	assigned	each	experiment	636	
to	one	of	four	target	configurations	based	on	the	angular	position	of	the	targets	(blue:	choice	1;	red:	choice	2).	The	positions	of	637	
the	targets	is	similar,	but	not	identical,	for	experiments	assigned	to	the	same	task	configuration.	(left:	Monkey	T,	right:	Monkey	638	
V).	The	number	of	 experiments	belonging	 to	 each	 configuration	are	 indicated	on	 top	of	 each	panel.	Estimates	of	 residual	639	
dynamics	(Fig.	4)	are	obtained	separately	for	each	configuration,	after	aligning	the	neural	activity	from	experiments	belonging	640	
to	a	given	configuration	(see	Extended	Data	Fig.	5).		 	641	

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 20, 2021. ; https://doi.org/10.1101/2021.07.19.452951doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.19.452951
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 32	

	

Extended	Data	Fig.	5:	Alignment	of	neural	population	responses	from	different	experiments	642	

Validation	of	 our	 session	alignment	procedure,	 Step	1	of	 the	analysis	pipeline	 (Extended	Data	Fig.	 2).	We	aligned	neural	643	
population	responses	of	all	experiments	belonging	to	the	same	task	configuration	and	then	pooled	the	aligned	single	trial	644	
responses	across	experiments	before	computing	the	residuals	used	 in	estimating	the	dynamics.	The	outcome	of	the	session	645	
alignment	procedure	is	a	set	of	20	‘aligned’	modes	for	each	experiment,	defined	such	that	the	activity	of	each	mode	has	the	646	
same	dependency	on	time	and	choice	across	experiments.	a,	Cumulative	variance	explained	in	condition-averaged	population	647	
responses	as	a	function	of	the	number	of	aligned	modes	in	both	monkeys	(left:	Monkey	T,	right:	Monkey	V).	We	show	the	mean	648	
across	experiments	of	the	cumulative	variance	explained	for	each	task	configuration	(symbols	as	in	Extended	Data	Fig.	4b).	649	
Error-bars	 indicating	twice	the	standard	error	of	 the	mean	are	mostly	smaller	than	the	markers.	The	cumulative	variance	650	
explained	by	the	first	20	aligned	modes	for	all	164	experiments	in	Monkey	T	and	80	experiments	in	Monkey	V	showed	a	strong	651	
positive	trend	with	number	of	trials	(inset,	bottom)	and	a	weak	negative	trend	with	the	number	of	units	(inset,	top).	b,	Activity	652	
of	 the	 first	 20	aligned	modes	 (numbered	 from	 top-left	 to	bottom-right)	 for	 config-3	 in	monkey	T	 (15,524	 trials	across	41	653	
experiments)	ordered	according	to	the	amount	of	variance	explained.	Activity	is	defined	as	the	projection	of	the	population	654	
condition	averages	onto	each	mode.	The	projection	was	computed	separately	across	experiments	for	choice	1	and	choice	2	655	
(blue	and	red)	with	responses	aligned	either	to	stimulus	onset	or	saccade	onset	(black	arrows).	The	resulting	projections	were	656	
then	averaged	across	experiments	(shading:	twice	the	standard	error	of	the	mean	across	experiments).	c,	Same	data	as	in	b	657	
but	showing	the	time-course	of	each	aligned	mode	(numbered	from	1	to	20)	for	each	individual	experiment	(y-axis)	separately	658	
for	the	two	choice	conditions	(choice	1	and	choice	2,	top	and	bottom	sub-panels).	Differences	in	the	activation	of	a	given	mode	659	
across	experiments	(i.e.	across	rows	in	each	sub-panel)	are	much	smaller	than	the	differences	in	the	activations	across	modes	660	
(i.e.	across	sub-panels),	demonstrating	the	success	of	the	alignment	procedure.	d,	Absolute	value	of	the	projection	(y-axis)	of	661	
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the	8	basis	vectors	(dim-1	through	dim-8;	red	to	blue)	that	span	the	dynamics	subspace	(𝑼678,	estimated	 in	Step	2	of	 the	662	
analysis	 pipeline;	 Extended	Data	 Fig.	 2)	 onto	 the	20	 aligned	modes,	 indicating	 the	 relative	 alignment	 of	 the	aligned	 and	663	
dynamics	subspace.	The	dynamics	subspace	is	computed	separately	for	each	task	configuration	(symbols	as	in	Extended	Data	664	
Fig.	4)	in	each	monkey	(left:	Monkey	T,	right:	Monkey	V)	and	projects	most	strongly	onto	the	first	few	aligned	components	(i.e	665	
large	projection	values	for	smaller	aligned	mode	number).	The	dynamics	subspace	thus	largely	overlaps	with	the	subspace	of	666	
activity	that	capture	most	of	the	task-related	variance	in	the	responses.	e,	Evaluation	of	the	alignment	procedure	for	all	task	667	
configurations	 (columns)	 in	both	animals	 (rows).	Each	 element	of	 the	matrix	 is	 obtained	 from	 the	 correlation	 coefficient	668	
between	 the	 time-courses	 of	 two	 aligned	 modes	 (i.e.	 positions	 along	 horizontal	 and	 vertical	 axes).	 We	 show	 the	median	669	
correlation	coefficient	across	all	pairs	of	dissimilar	experiments.	Values	close	to	1	along	the	diagonal	and	close	to	0	off-diagonal	670	
indicate	that	the	time-courses	are	much	more	similar	across	experiments	than	across	modes,	indicating	successful	alignment.671	
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	672	

Extended	Data	Fig.	6:	Estimated	residual	dynamics	for	neural	data	from	a	single	unaligned	session	673	

Residual	dynamics	estimated	using	neural	data	for	a	single	choice	condition	(choice-1,	875	trials)	from	a	single	experiment	in	674	
monkey	T.	This	experiment	has	the	largest	number	of	trials	among	all	sessions	in	monkey	T.	Conventions	as	in	Fig	4b-d.	We	675	
estimated	 the	 residual	 dynamics	 directly	 from	 high-dimensional	 residual	 observations	 that	 corresponded	 to	 square-root	676	
transformed,	 binned	 spike-count	 vectors	 (dimensionality	=	number	of	units;	 170	 for	 this	 session),	without	performing	 the	677	
session	alignment	(step	1	in	Extended	Data	Fig.	2).	Overall,	the	properties	of	the	residual	dynamics	estimated	from	this	single	678	
session	are	similar	to	those	obtained	after	pooling	trials	across	sessions	(Fig	4b-d,	8	dimensional),	suggesting	that	the	main	679	
features	 of	 the	 residual	 dynamics	 (Fig.	 4)	 are	 not	 affected	 by	 the	 alignment	 procedure.	 The	 lower	 dimensionality	 of	 the	680	
estimated	residual	dynamics	(4	dimensions,	blue	to	cyan;	compared	to	8	dimensions	in	Fig.	4a-d)	most	likely	is	a	consequence	681	
of	the	smaller	number	of	available	trials	in	the	single	session	compared	to	the	aligned	sessions.	The	resulting	smaller	statistical	682	
power	makes	is	harder	to	estimate,	in	particular,	the	faster	decaying	eigenmodes	of	the	dynamics.	 	683	
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Extended	Data	Fig.	7:	Cross-validation	of	hyper-parameters	used	for	estimating	residual	dynamics	684	

a-c,	Representative	results	of	the	cross-validation	procedure	used	to	determine	the	various	hyper-parameters	of	the	analysis	685	
pipeline	(see	Extended	Data	Fig.	2)	for	neural	data	from	a	single	task	configuration	in	monkey	T	(config-3,	see	Extended	Data	686	
Fig.	4).	a,	Cross-validated	hankel	matrix	reconstruction	error	(Ehankel;	circle:	mean	over	20	repeats	of	hold-out	cross	validation;	687	
error	bars:	1	s.e.m)	plotted	as	a	function	of	the	rank	of	the	hankel	matrix	(r,	step	2	in	Extended	Data	Fig.	2)	for	residuals	from	688	
the	two	epochs	(left:	decision;	right:	movement)	and	two	choices	(blue:	choice	1;	red:	choice	2).	The	reconstruction	error	for	689	
each	of	the	20	repeats	was	computed	by	assigning	a	random	50%	of	the	trials	as	a	"training"	set	and	the	rest	as	a	"test"	set.	b,	690	
5-fold	cross-validated	mean	squared	error	(circles:	mean	over	5	folds;	error	bars:	1	s.e.m)	of	the	denoised	residual	predictions	691	
obtained	from	the	 first	stage	of	 the	two-stage	 least	squares	regression	(2SLS;	step	3	 in	Extended	Data	Fig.	2),	plotted	as	a	692	
function	 of	 the	 hyper-parameters:	 d	 (dimensionality	 of	 dynamics	 subspace);	 and	 l	 (number	 of	 past	 lags).	 For	 each	 cross-693	
validation	fold,	a	single	mean	squared	error	measure	was	computed	by	pooling	the	denoised	predictions	across	time	points	in	694	
both	epochs	(left:	choice	1;	right:	choice	2).	c,	5-fold	cross-validated	mean	squared	error	(circle:	average	across	5	’repeats’	of	695	
the	5-fold	cross	validation;	error	bars:	2	standard	deviations	across	repeats)	of	 the	residual	predictions	obtained	from	the	696	
second	stage	of	the	2SLS	regression	(step	4	in	Extended	Data	Fig.	2),	plotted	as	a	function	of	the	smoothness	hyper-parameter	697	
𝛼	for	different	epochs	(left:	decision;	right:	movement)	and	choice	(choice	1	and	2).	Both	the	train	(orange)	and	test	(gray)	698	
error	are	shown.	d,	Summary	showing	the	optimal	value	for	the	dimensionality	d	and	lag	l	(step	3	in	Extended	Data	Fig.	2)	for	699	
all	task	configurations	and	monkeys	(symbols	as	in	Extended	Data	Fig.	4b).	A	dimensionality	of	8	and	a	lag	of	3	was	deemed	700	
optimal	 for	 both	 monkeys	 and	 task	 configurations	 (used	 in	 Fig	 4).	 e,	 Summary	 showing	 the	 optimal	 smoothness	 hyper-701	
parameter	𝛼	(step	4	in	Extended	Data	Fig.	2)	for	all	task	configurations	and	monkeys.	Final	values	of	𝛼	were	chosen	to	be	the	702	
same	across	monkeys	in	Fig.	4	(decision	epoch:	𝛼	=	200;	movement	epoch:	𝛼	=	50)	despite	a	small	degree	of	variability	across	703	
the	two	monkeys.	Same	conventions	as	in	d.		 	704	
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Extended	Data	Fig.	8:		Effect	of	bin	size	on	the	estimated	residual	dynamics	705	

We	estimated	the	residual	dynamics	 for	different	choices	of	bin	size,	 to	 identify	the	smallest	bin	size	resulting	 in	unbiased	706	
estimates.	In	the	discrete	time	formulation	of	a	linear	dynamical	system,	like	the	one	we	use	here,	re-binning	of	the	responses	707	
trivially	results	in	a	scaling	of	the	estimated	eigenvalues	of	the	residual	dynamics.	To	compensate	for	this	rescaling,	here	we	708	
“mapped”	the	estimated	eigenvalues	onto	a	common,	reference	bin	size	(see	Methods,	Effects	of	bin	size).	In	the	absence	of	709	
statistical	 biases,	 the	 resulting	 “re-binned	 eigenvalue”	 would	 be	 independent	 of	 bin	 size.	 a,	 Re-binned	 eigenvalues	 for	710	
simulations	of	a	time-invariant,	latent-variable	(3	latent	dimensions),	LDS	model	(reference	bin	size	=	40ms)	as	a	function	of	711	
bin-size	(dashed	line:	ground	truth;	black	curve:	estimate).	Estimates	of	the	residual	dynamics	are	biased	for	small	bin	sizes,	712	
but	become	unbiased	when	bin	size	is	sufficiently	large.	b,	Estimated	re-binned	eigenvalues	(reference	bin	size	=	15ms)	as	a	713	
function	of	bin	size	for	all	configurations	in	monkey	T.	Columns	correspond	to	the	8	distinct	eigenmodes	of	the	estimated	8-714	
dimensional	residual	dynamics	(left	to	right,	largest	to	smallest	EV),	rows	correspond	to	task	configurations	(top	to	bottom,	715	
config-1	to	4;	Extended	Data	Fig.	4b).	Here	the	re-binned	eigenvalues	were	computed	separately	for	each	choice	(red	vs	blue)	716	
and	averaged	in	small	temporal	windows	specific	to	each	epoch:	0.2-0.4s	relative	to	stimulus	onset	(solid	lines)	and	-0.15	to	717	
0.25s	relative	to	saccade	onset	(dashed	lines).	All	main	analyses	of	recorded	neural	responses	are	based	on	a	bin	size	of	45ms,	718	
for	which	estimates	of	residual	dynamics	appear	to	converge	to	an	asymptote.	Note	that	the	re-binned	eigenvalues	for	a	bin	719	
size	of	45ms	are	larger	than	the	corresponding	eigenvalues	reported	in	other	figures	(e.g.	Fig.	4b),	because	the	former	were	720	
mapped	onto	a	reference	bin	size	of	15ms.		 	721	
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Extended	Data	Fig.	9:	Time-varying	local	residual	dynamics	for	all	multi-area	networks		722	

We	estimated	local	residual	dynamics	separately	in	PPC	or	PFC	of	the	two-area	network	models,	as	in	Fig.	6	(PPC:	a,c;	PFC:	723	
b,d).	We	 estimated	 either	 2-dimensional	 dynamics	 based	 on	 the	 residuals	 in	 a	 given	 area,	 resulting	 in	 two	 time-varying	724	
eigenvalues	(cyan	and	blue	curves,	analogous	to	Fig.	6b,e);	or	1-dimensional	dynamics	based	on	the	projection	of	the	residuals	725	
onto	the	choice	mode	in	each	area	(Fig.	6a,d),	resulting	in	a	single	time-varying	eigenvalue	(black	curves).	The	maximum	value	726	
of	the	black	curve	in	each	sub-panel	is	shown	in	Fig.	6c,f.	a,	Local	residual	dynamics	in	PPC	for	the	networks	without	feedback	727	
from	PFC	to	PPC	(Fig.	6c,	left),	for	increasing	strength	of	local	recurrence	(bottom	to	top)	and	between-area	connectivity	(left	728	
to	right).	b,	Local	residual	dynamics	in	PFC,	same	networks	as	in	a	(Fig.	6c,	right).	c,	Local	residual	dynamics	in	PPC	for	the	729	
networks	with	 feedback	from	PFC	to	PPC	(Fig.	6f,	 left),	same	conventions	as	 in	a.	d,	Local	residual	dynamics	 in	PFC,	same	730	
networks	as	in	c	(Fig.	6f,	right).	For	networks	with	strong	local	recurrence	and	strong	between-area	connections,	the	neural	731	
population	activity	falls	into	one	of	two	point-attractors	before	the	end	of	the	trial,	resulting	in	a	drop	in	the	eigenvalues.	The	732	
two	point	attractors	implement	the	commitment	to	a	choice	by	the	network.	 	733	
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Extended	Data	Fig.	10:	Inflation	of	local	residual	dynamics	in	a	linear	two-area	dynamical	system		734	

We	systematically	explored	the	effect	of	correlated	input	variability	on	estimates	of	residual	dynamics	in	a	two-area,	linear	735	
dynamical	system.	The	input	area	implements	2d	isotropic	recurrent	dynamics	characterized	by	parameters	𝜆;,	𝜏; ,	and	𝜔;	736	
(eigenvalue,	time-constant,	rotation	frequency).	Activity	in	the	input	area	is	externally	driven	by	uncorrelated	noise.	Values	of	737	
𝜆;	closer	to	1	result	in	longer	auto-correlation	times	in	the	variability	of	activity	in	the	input	area.	This	activity	provides	the	738	
input	into	the	recorded	area,	which	implements	2d	isotropic	recurrent	dynamics	with	parameters	𝜆>,	𝜏>,	𝜔>.	Residual	dynamics	739	
at	 steady-state	 is	 estimated	 from	activity	 of	 the	recorded	area.	At	 steady	state,	 estimates	 can	be	derived	analytically	 (see	740	
Supplementary	Math	Note	B).	Because	of	temporally	correlated	input	variability,	the	properties	of	the	residual	dynamics	(𝜆?@A,	741	
𝜏?@A,	𝜔?@A)	 in	general	do	not	match	those	of	 the	recurrent	dynamics	 in	 the	recorded	area.	a-b,	 Inflation	of	eigenvalues.	a,	742	
Schematic	of	the	model	(top)	and	recurrent	dynamics	in	each	area	(bottom,	flow	fields).	Recurrent	dynamics	is	stable	and	non-743	
rotational	in	both	areas.	b,	Residual	dynamics	(𝜆?@A)	in	the	recorded	area	as	a	function	of	recurrent	dynamics	in	the	recorded	744	
area	(𝜆>,	x-axis)	and	in	the	input	area	(𝜆;,	gray	lines).	The	eigenvalues	of	the	residual	dynamics	are	inflated,	i.e.	𝜆?@A	is	larger	745	
than	𝜆>	for	(all	gray	lines	above	the	green	line).	Larger	𝜆;	(longer	input	auto-correlations)	lead	to	stronger	inflation.	For	𝜆>	=	746	
0	 (no	 recurrent	dynamics	 in	 the	 recorded	area)	𝜆?@A	 =	𝜆;	 (gray	 circles).	c-d,	 Inflation	of	 rotation	 frequency.	c,	 Recurrent	747	
dynamics	 is	 rotational	 in	 the	 input	area,	 but	stable	and	non-rotational	 in	 the	 recorded	area.	d,	 Residual	dynamics	 in	 the	748	
recorded	 area,	 expressed	 as	 the	magnitude	 of	 the	 eigenvalue	 (𝜆?@A,	 top)	 and	 the	 rotation	 frequency	 (𝜔?@A,	 bottom).	 The	749	
eigenvalues	of	the	residual	dynamics	are	generally	inflated	(top),	but	the	relation	with	𝜆>	is	non-monotonic	and	depends	on	750	
𝜔;.	The	residual	dynamics	is	rotational	(bottom,	𝜔?@A	>	0)	even	though	the	recurrent	dynamics	in	the	recorded	area	is	not	(𝜔>=	751	
0).	The	inflation	of	rotation	frequency	is	reduced	for	increasing	𝜆>.	e-f,	Equivalence	of	upstream	and	local	recurrent	dynamics.	752	
e,	Analogous	to	c,	but	dynamics	is	switched	between	input	and	recorded	area.	f,	Analogous	to	d,	but	for	the	dynamics	in	e.	The	753	
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residual	dynamics	is	identical	to	that	in	d.	In	general,	residual	dynamics	in	the	recorded	area	reflects	the	combined	effect	of	754	
local	and	upstream	recurrent	dynamics.		 	755	
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Extended	Data	Fig.	11:	Explanation	of	input	driven	inflation	in	residual	dynamics	756	

To	gain	an	intuitive	understanding	of	inflation	of	eigenvalue	magnitude,	we	consider	simulations	of	two-area	linear	dynamical	757	
systems	similar	to	those	in	Extended	Data	Fig.	10a.	For	simplicity,	here	we	simulate	stable	1d-dynamics	in	each	area,	whereby	758	
variability	of	the	input	into	the	recorded	area	is	either	correlated	(c-d)	or	uncorrelated	(a-b,	e-f),	and	has	fixed	(a-b,	c-d)	or	759	
time-dependent	 latent	 noise	 variance	 (e-f).	The	 variability	 injected	 into	 the	 input	 area	 is	 always	 uncorrelated.	 Recurrent	760	
dynamics	in	the	recorded	area	is	identical	in	all	simulations.	a,	Model	parameters	for	the	case	of	uncorrelated	input	(𝜆;	=	0).	b,	761	
Contributions	 to	activity	 x	 in	 the	 recorded	area	at	steady-state.	Activity	 x(t)	 (x-axis)	 is	 propagated	 through	 the	 recurrent	762	
dynamics	(left,	y-axis)	and	added	to	the	noise	e(t)	(middle,	y-axis)	to	obtain	activity	x(t+1)	at	time	t+1	(right,	y-axis).	The	noise	763	
e(t)	corresponds	to	activity/output	of	the	input	area,	and	is	shaped	by	dynamics	determined	by	𝜆;.	Points	in	the	scatter	plots	764	
correspond	to	different	simulated	trials.	Estimating	the	eigenvalue	of	the	residual	dynamics	in	the	absence	of	observation	noise	765	
amounts	to	measuring	the	slope	of	the	regression	line	relating	x(t)	to	x(t+1)	(right,	gray	line).	In	this	case,	this	slope	is	identical	766	
to	that	obtained	if	the	latent	noise	had	not	been	added	to	the	activity	(left,	gray	line),	meaning	that	residual	dynamics	correctly	767	
reflects	the	effect	of	the	recurrent	dynamics	in	the	recorded	area	(slope	<	0,	reflecting	𝜆>	<	0;	left).	c,	Model	parameters	for	the	768	
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case	of	correlated	input	(𝜆;	>	0	for	t	>	0;	𝜆;	=	0	at	other	times).	d,	Analogous	to	b,	but	for	the	model	in	c.	Here	activity	and	noise	769	
are	shown	at	two	times	in	the	trial:	early,	when	steady-state	is	not	yet	reached	(top)	and	late,	at	steady-state	(bottom).	At	both	770	
times,	residual	dynamics	is	inflated,	i.e.	the	regression	slope	between	x(t)	and	x(t+1)	(right)	is	larger	than	that	obtained	by	771	
applying	only	the	recurrent	dynamics	(left),	indicating	inflation	of	the	eigenvalues.	Inflation	occurs	because	the	noise	itself	is	772	
correlated	with	activity	in	the	recorded	area	(middle,	slope	>	0),	an	effect	that	results	indirectly	from	the	correlation	between	773	
e(t)	and	e(t-1).	At	steady	state,	even	the	inflated	residual	dynamics	is	still	stable	(bottom-right,	slope	<	1;	see	also	Extended	774	
Data	10b).	However,	immediately	after	the	onset	of	the	correlated	input,	residual	dynamics	erroneously	reveals	an	instability	775	
(top-right,	slope	>	1).	e,	Parameters	for	the	case	of	uncorrelated	noise	but	time-varying	noise	variance.	The	variance	of	the	776	
noise	injected	into	the	input	area	is	increased	at	time	t	=	0,	from	𝜎DE'@8'	=	10-6	to	10-5.	f,	A	change	in	noise	variance	does	not	777	
result	in	inflation	of	the	residual	dynamics,	neither	early	nor	late	after	the	change	(right,	top	and	bottom;	same	slope	as	on	the	778	
left;	see	also	Extended	Data	Fig.	3a-c,	squares).	 	779	
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Extended	Data	Fig.	12:	Quenching	of	variability	in	single	PFC	neurons	780	

Trial-by-trial	variability	in	single	neurons	is	transiently	reduced	at	the	onset	of	specific	task-events.	We	quantified	single	neuron	781	
variability	as	the	time-varying	mean-matched	Fano-factor	computed	by	pooling	each	recorded	unit	(100ms	long	time	bins),	782	
across	all	 experiments	 in	a	monkey	 (empty	 circles;	 dashed	 curve:	95%	normal	 confidence	 intervals;	 left:	Monkey	T,	right:	783	
Monkey	V).	In	both	monkeys,	the	mean-matched	Fano	factor	undergoes	a	transient	reduction	locked	to	the	onset	of	the	stimulus	784	
and	the	onset	of	the	saccade.	The	reduction	in	variability	around	the	time	of	saccade	onset	coincides	with	a	contraction	of	the	785	
eigenvalues	of	 the	residual	dynamics	(Fig.	4b,e),	suggesting	that	more	quickly	decaying	dynamics	may	underlie	variability	786	
quenching	at	that	time.	A	contraction	of	eigenvalues,	however,	does	not	appear	necessary	to	explain	variability	quenching,	as	787	
an	analogous	contraction	is	not	observed	at	the	time	of	stimulus	onset,	despite	the	consistent	reduction	in	variability	at	stimulus	788	
onset.		 	789	
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