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Abstract

Trial history biases in decision-making tasks are thought to reflect systematic updates of decision variables,

therefore their precise nature informs conclusions about underlying heuristic strategies and learning

processes. However, random drifts in decision variables can corrupt this inference  by mimicking the

signatures of systematic updates. Hence, identifying the trial-by-trial evolution of decision variables requires

methods that can robustly account for such drifts. Recent studies (Lak’20, Mendonça‘20) have made

important advances in this direction, by proposing a convenient method to correct for the influence of slow

drifts in decision criterion, a key decision variable. Here we apply this correction to a variety of updating

scenarios, and evaluate its performance. We show that the correction fails for a wide range of commonly

assumed systematic updating strategies, distorting one’s inference away from the veridical strategies

towards a narrow subset. To address these limitations, we propose a model-based approach for

disambiguating systematic updates from random drifts, and demonstrate its success on real and synthetic

datasets. We show that this approach accurately recovers the latent trajectory of drifts in decision criterion

as well as the generative systematic updates from simulated data. Our results offer recommendations for

methods to account for the interactions between history biases and slow drifts, and highlight the advantages

of incorporating assumptions about the generative process directly into models of decision-making.

Introduction

Animals’ choices in perceptual decision-making tasks often display a dependence on the recent history of

stimuli, choices, and outcomes. This dependence is thought to arise from systematic updating of decision

variables from trial to trial. These updates may reflect ongoing learning (Dayan and Daw 2008), for instance

an agent learning to perform a perceptual categorization task might update its beliefs about the prior

probabilities of the different categories (Yu and Cohen 2008; Zhang, Huang, and Yu 2014), the category

boundary separating them (Drugowitsch et al. 2019; Mendonça et al. 2020), or the values of the available

actions (Lak, Okun, et al. 2020; Lak, Hueske, et al. 2020; Pisupati et al. 2021). Alternatively, systematic

updates may reflect heuristic strategies adopted by decision-makers due to resource constraints or

mismatched objectives (Gigerenzer and Gaissmaier 2011; Abrahamyan et al. 2016; Gardner 2019). For

example, a reward-seeking agent might be prone to repeating rewarded actions and avoid unrewarded
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ones, i.e. follow a win-stay lose-switch strategy, similarly high costs of motor switching may encourage an

agent to repeat previously chosen actions, yielding stay biases. These learning processes and heuristic

strategies are often identified by the distinct patterns of choices they predict.

In addition to these systematic updates, decision variables may drift randomly from trial to trial (Dutilh et al.

2012; Lak, Hueske, et al. 2020; Ashwood et al. 2020; Cowley et al. 2020; Hennig et al. 2021; Roy et al.

2021; Lyamzin et al. 2021). These “unsystematic” drifts may arise from history-independent fluctuations in

internal states such as attention, arousal and motivation, or from other unknown sources of noise (Renart

and Machens 2014). However, despite their history independence, unsystematic drifts may nevertheless

produce correlations in choices that obscure the effect of systematic updates and thereby complicate their

inference (Lak, Hueske, et al. 2020; Sugawara and Katahira 2021).

An important recent study (Lak, Hueske, et al. 2020) considered the challenge posed by unsystematic drifts

in one key decision variable, the decision criterion, i.e. the threshold for choosing one alternative over the

other. The authors showed that a slow drift in criterion produces an apparent history dependence that

mimics the signatures of updates from a systematic learning process. Hence, in order to remove the

influence of these slow drifts, they proposed a model-free (MF) correction (Lak, Hueske, et al. 2020), similar

in spirit to an approach employed by (Mendonça et al. 2020). They reasoned that slow drifts would produce

correlations in choices across multiple successive trials. Thus behavior in a given trial would be correlated

with both immediately previous and immediately future trials, giving the appearance that experience in the

current trial would not just influence future choices (a causal process), but would also spuriously influence

past choices (an acausal, therefore not biologically plausible process). Hence, they posited that the effect of

slow drifts of decision criterion can be removed by subtracting the influence of the current trial on past

choice (the acausal component) from the influence of the current trial on future choice. The simplicity of this

correction is appealing and has already invited other authors to use it on their datasets. Indeed, recently the

International Brain Laboratory reported that their dataset displayed win-stay lose-stay behavior, but when

they accounted for possible slow drifts using the MF correction, they revealed instead a win-stay lose-switch

strategy (The International Brain Laboratory et al. 2021).

While Lak et al. 2020 demonstrated convincingly that the MF correction can remove the influence of random

slow drifts, they did so in the absence of any systematic updates of decision-variables. It remains to be

shown if the MF correction is robust to the presence of learning or other heuristic strategies. If the MF

correction indiscriminately removes correlations across choices, including those expected from systematic

trial-by-trial updating of decision-relevant variables, that would considerably undermine its usefulness.
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Here, using simulations we show that the proposed model-free (MF) correction fails in the presence of

systematic trial-by-trial updating, yielding potentially misleading conclusions about the nature of underlying

behavioral strategies. We show that the correction erroneously removes the effect of trial-by-trial updates

that produce correlations across choices, thereby misidentifying a variety of update strategies as belonging

to a narrow subspace of win-stay lose-switch or win-switch lose-stay biases. We advocate for an alternate,

model-based approach for disambiguating systematic updates from random drifts, and demonstrate the

success of this approach by fitting synthetic data. Finally, we apply the two approaches to real data from

rodents (Brunton et al. 2013) and demonstrate that whereas the model-based approach proposed here

preserves individual variability in systematic history biases across animals (while removing the influence of

slow drifts), the previous model-free approach collapses this variability into a small subset of apparent

strategies. Our results highlight the importance of evaluating assumptions underlying model-free

corrections, and offer arguments for incorporating assumptions about the generative process directly into

model fitting.

Results

Correction in action

We begin by reproducing the results from Lak, Hueske, et al. 2020 that the proposed model-free (MF)

correction removes spurious choice correlations that are introduced by slow drifts in decision criterion. We

consider a generative model in which the stimulus affects the choice of an agent in accordance with signal

detection theory (see Methods, Figure 1A). On any given trial , the agent compares a noisy perceptual

sample, centered around the true stimulus with logistic noise ( scale ) to a decision criterion , and

makes a rightward choice if the sample exceeds the criterion and leftward choice otherwise. Therefore,

probability of making a rightward choice is given by the following logistic function:

The decision criterion of this observer varies from trial-to-trial relative to a fixed baseline due to

unsystematic variations arising from random drift :

This drift in decision criterion (Figure 1B) was simulated according to the following autoregressive

process (discrete time Ornstein-Uhlenbeck process):

where is an i.i.d sequence of standard Gaussian random variables and sets the standard deviation of

the Gaussian noise. The decay rate was fixed to a small value ( ) to slightly dampen the pure

Brownian motion thereby reducing the odds of the criterion drifting too far from the true boundary.
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We assume that there is no learning or systematic trial-by-trial updating of any decision-related variables. In

spite of that, the slowly drifting criterion produces correlations in the agent’s choices across trials, such that

when the psychometric curve is conditioned on previous trial’s outcome and choice, it appears that the

agent is following a small win-stay larger lose-stay strategy (Figure 1C)-- in other words, it appears that

subjects use the experience of a trial’s outcome to affect future trials, when in fact reward outcomes do not

affect the decision process at all. The psychometric curves following both correct and incorrect rightward

choices are biased towards rightward choices and vice versa following leftward choices. We summarize

these apparent history effects by taking the difference between conditioned psychometric curves following

right and left wins/losses. Therefore, following correct trials the history bias is given according to:

where if the trial is a win and is otherwise (PC refers to post-correct). And to compute the

bias following error trials (PE) we instead condition on trial being an incorrect trial or :

This metric is positive if the behavior has a stay bias and is negative when there is a tendency to switch.

Even though the drift in criterion is independent of the previous trial’s outcome, the stay bias appears

previous outcome-dependent - its magnitude is smaller following correct choices than erroneous choices

(Figure 1D, solid lines). This effect arises because the agent is more prone to errors and more likely to have

a persistent choice bias when the criterion has drifted further away from the true boundary.

Further, we examine how recent sensory history affects future choices under such a generative model and

observe that again, the slow drifts in criterion produce the semblance of systematic trial-by-trial updating

(Figure 1E, F; replication of Figure 2, figure supplement 1 from Lak et al., 2020). It appears as though the

agent's choice on the current trial is modulated by the previous trial’s stimulus difficulty (Figure 1E).

Following correct trials the agent has a higher propensity to repeat the correct response to the previous

trial’s category if the previous trial was difficult. In contrast if the past trial was an error the bias is higher

following an easy trial (not shown). We summarize these apparent stimulus history biases following

rewarded trials for each pair of previous and current stimuli (Figure 1F, left panel). The bias is computed by

subtracting the psychometric curve computed from all trials from the psychometric curves conditioned on the

previous trial’s stimulus strength (similar to Lak et al., 2020):
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Next, we apply the MF correction to this synthetic data. The MF correction exploits the idea that the effect of

slow drifts should be similar for at least a small stretch of trials (n>=2) and any influence of future rewards

on past choices is acausal, likely due to slow drifts and needs to be removed. (Mendonça et al. 2020)

proposed the variant of the correction for choice-outcome biases and (Lak, Hueske, et al. 2020) for stimulus

history biases. We describe and test the efficacy of both these variants here. For post-correct (PC) history

bias, the MF correction entails subtracting the (spurious) bias due to trial on the past trial from

the bias due to trial on the future trial :

Post-error history bias is corrected for slow drifts in a similar manner. The MF correction for stimulus history

effects stipulates that the effect of slow drifts in decision criterion can be removed by performing an

equivalent operation on inferred stimulus history bias:

When applied to synthetic data, the MF correction removes these apparent choice history effects caused by

the drifting criterion and successfully recovers the systematic component of past choice’s influence on

subsequent choice i.e. no influence (Figure 1D, dashed lines). Similarly, specious stimulus history effects

could be successfully removed by applying the MF correction (Figure 1F, right panel).
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Figure 1: Correction for removing influences of slow drift in psychometric parameters on choice data (as proposed in Lak
‘20)

A) Generative model of choices based on signal detection theory: Each trial’s choice c is made by comparing a noisy sample

of that trial’s stimulus s to a slowly drifting criterion (drift in the criterion represented by z, trials indexed by t)
B) Trajectory of the slow drift in criterion over a period of 5000 trials revealing extended periods of consistent choice bias.

Insets: psychometric curves for the trials highlighted in grey when choices are on average unbiased (left) and biased (right)

C) Psychometric curves (fraction of rightward choices as a function of the current trial’s stimulus strength) conditioned on the

previous trial’s choice and outcome, displaying an apparent win-stay lose-stay bias. Colors indicate previous outcome

(green - win, red - loss) and lightness indicates previous choice (dark - right, light - left)

D) History bias, measured as the difference between conditioned psychometric curves following right and left wins (green) or

losses (red). Solid lines indicate observed history bias, displaying an apparent small win-stay, larger lose-stay effect.

Dashed lines indicate history bias after applying the MF correction, which removes the spurious choice correlation created

by slow drift.
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E) Psychometric curves conditioned on the previous trial’s stimulus when the previous trial was rewarded. Curves display an

apparent dependence on past stimulus strength, and have bigger shifts following hard trials compared to easy trials. Colors

indicate previous stimulus category (violet - rightward, amber - leftward) and lightness indicates strength of the stimulus

(dark - high stimulus strength or easy trials, light - low stimulus strength or hard trials)

F) (Left) Stimulus history bias, measured as the difference between psychometric curves conditioned on previous stimulus

and average psychometric curve. Biases are larger following hard trials (color gradient along x-axis) and disproportionately

affect the performance on hard trials (color gradient along y-axis). Color indicates the direction of induced bias (blue -

towards right, red - towards left) (Right) Stimulus history biases after applying the MF correction, which removes the

spurious dependence due to slow drifts in decision criterion.

Correction in misaction

In the past section, the generative model lacked active trial-by-trial updating and hence the correlations in

choice were entirely due to the slow drift in decision criterion. Next we consider a more complex scenario,

one in which the decision variables are systematically updated from trial-to-trial due to ongoing learning or

other heuristic strategies in addition to the random drifts in decision criterion, and we determine how the MF

correction performs under these circumstances.

Previous studies have shown that a large subset of possible learning strategies can be approximated by

logistic regression models that directly represent the influence of reward and choice history on future

choices (Katahira 2015; Miller et al. 2019). For this reason, in this study we explore the space of possible

choice and outcome history effects instead of examining the correction’s effect in the presence of individual

learning algorithms. We parametrically vary the bias induced by past choice ( ) and outcome ( ) and study

the effect of MF correction both in the presence and absence of slow drifts ( ) of decision criterion (Figure

2A). We find that while the MF correction can correctly recover a symmetric win-stay lose-switch history

dependence, it fails to recover the generative history-dependence in other scenarios.

In order to simulate choices from this family of generative models, we update the randomly drifting decision

criterion every trial based on the recently observed choice and outcome from the previous trial.

Therefore, on any trial the decision criterion is given by:

where , , and are indicator variables denoting successes or failures on the previous trial (

) following rightward and leftward choices (RC refers to right correct, LC left correct, RE right error

and LE left error). and determine how much previous trial’s outcome modulates the criterion (

following correct trials and following error trials). As before, is the fixed baseline and denotes

unsystematic variations arising from random drift.
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First, we simulate data with a symmetric win-stay lose-switch rule, such that positive outcomes or correct

trials bias the agent towards repeating the choice that led to them, and negative outcomes do the opposite

i.e. , and (Figure 2B, C, first column, solid lines). When, in addition to

win-stay lose-switch, the decision criterion slowly drifts over trials ( ), the systematic lose-switch rule

is obscured and the choice behavior seems to have no updating following error trials (Figure 2B, C, first

column, dotted lines). Moreover, the slope of the psychometric curve (also referred to as perceptual

sensitivity) appears shallower.

We apply the MF correction to this data and examine the observed and corrected history biases with and

without an underlying slow random drift in the decision criterion of the generative process. In the absence of

slow drifts, as expected, the MF correction (dotted lines) does not change our estimate of history biases and

we recover the generative win-stay lose-switch bias (Figure 2D, first column). But even in the presence of

slow drifts, the MF correction successfully nullifies its contaminating influence on history bias and we

approximately recover the generative win-stay lose-switch bias (Figure 2E, first column).

Next, we consider a scenario in which the magnitude of biases following wins (i.e.. rewarded trials) versus

losses (unrewarded trials) are asymmetric. We eliminate the bias induced by negative outcomes and study

win-stay lose-nothing ( ; Figure 2B,C second column). Here the slow drift masks the true

post-error biases and instead accentuates stay biases. In the absence of slow drift, we can directly observe

the generative bias, therefore in principle the MF correction should not affect our estimate of history biases.

But instead we observe that the MF correction distorts our estimate of history biases, skewing them towards

win-stay lose-switch like updating (Figure 2D second column). In the presence of slow drift too, the MF

correction is unable to recover the generative systematic history bias (Figure 2E, second column solid vs

dashed) and instead inaccurately estimates a stay bias following wins and a switch bias following losses.

When there is no dependence on previous outcomes, and the bias following both correct and error trials are

towards the previous choice i.e. a win-stay lose-stay bias ( ; Figure 2B, C third column),

slow drifts in decision criterion exacerbate the stay effects following error trials. In synthetic data generated

without any drifts in decision criterion but with stay bias in effect, the MF correction spuriously infers a

win-stay lose-switch strategy (Figure 2D, third column). A similar failure in recovering the generative

parameters is observed in the presence of slow drifts (Figure 2E third column).

Next we examine the effect of the MF correction when the data is generated from an outcome independent

switch rule i.e. win-switch lose-switch ( ; Figure 2B,C last column). In this case too,

slow drift obscures the true post-error effects and overlays a stay bias on it. Again, we find that the MF
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correction fails to recover generative biases both in the presence and absence of slow drifts - it instead

returns a win-switch lose-stay like bias (Figure 2D,E last column).
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Figure 2: Correction fails to recover generative parameters when decision variables are actively updated from trial-to-trial
A) Generative model in which the current trial’s choice ct is influenced by the previous choice ct-1 and previous outcome ot-1, in

addition to the current trial’s stimulus st and a slow drift in criterion zt . In some scenarios, the previous outcome does not

influence the choice on the next trial e.g. win-stay lose-stay or win-switch lose-switch.

B) Psychometric curves post rewarded trials, conditioned on previous trial’s choice for a model with win-stay, lose-switch

(column 1), win-stay lose-nothing (column 2), win-stay lose-stay (column 3) and win-switch lose-switch (column 4) biases.

Solid lines represent psychometric curves without slow drift and dotted lines with slow drift. Addition of slow drift gives rise

to worse perceptual sensitivity.

C) Same as B but for trials following losses or unrewarded trials. Addition of slow drift masks lose-switch effects and overlays

a stay bias across all updating strategies.

D) History biases following wins (green) and losses (red) without slow drifts in criterion. Solid: generative systematic history

biases, dashed: estimates from MF correction. MF correction nearly recovers the true generative post win history biases

(dashed vs solid green line) across different updating strategies. For post loss biases (dashed vs solid red line), the MF

correction has no effect for win-stay lose-switch bias (column 1), but produces spurious lose-switch effects for win-stay

lose-nothing (column 2) and win-stay lose-stay (column 3) biases. For win-switch lose-switch (column 4) bias the correction

returns a lose-stay bias.

E) Same as D but for history biases following wins (green) and losses (red) with slow drifts in criterion. The correction fails to

recover the generative history biases (dashed vs solid lines) in this case as well.

A model-based solution

The foregoing analysis demonstrates that the proposed MF correction produces inaccurate results when the

systematic trial-to-trial updating of history bias deviates from a symmetric win-stay lose-switch strategy. The

correction assumes that correlations in choice arise from processes unrelated to deterministic trial-by-trial

updating - an assumption that is untrue for many learning or heuristic algorithms. This could be remedied by

explicitly estimating the contributions of both slow drifts and systematic updates to choice behavior.

Here we describe one such approach for the simulations discussed in the previous section. We infer the

parameters governing behavior by fitting the choices to the generative model at hand: a signal detection

theory observer with logistic noise, systematic trial-history dependent biases and drifts in criterion (Figure

3A, see Methods). We fit the parameters of the model to choices using the

Expectation Maximization algorithm with a Laplace approximation of the posterior over the latent state

(drifting variable; Macke 2011, Macke et al. 2015) as implemented in the ssm library.

We simulate data from an agent that follows a win-stay lose-stay strategy and has random drifts in its

decision criterion (similar to Figure 2, third column). The MF correction is ineffective in recovering the

generative parameters in this case. The model successfully captures trends in the data (Figure 3B: Fits

(dashed-dotted lines) plotted alongside observed choice and outcome conditioned psychometric curves

from the simulated data (solid lines)). We next examine if the model is able to tease apart the relative

influences of slow drift and trial history bias on choice behavior and indeed, the inferred most likely trajectory
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of the latent drifting variable (Figure 3C, grey line) closely tracks the true simulated drift (Figure 3C, black

line). Furthermore, the model correctly infers the true parameters governing the systematic component of

the behavior. We demonstrate this by simulating choices in the absence of slow drifts with both the

generative parameters and estimated parameters. The previous choice and outcome conditioned

psychometrics from the generative and estimated parameters show good correspondence (Figure 3D).

Additionally, this method helps recover the true perceptual sensitivity, which is otherwise confounded by the

drifting biases (as in Figure 2B,C).

Figure 3: Fitting the model helps disambiguate systematic history biases from effects of slow drift
A) Schematic of the model with parameters highlighted in pink. (Top right) Logistic distribution of noisy samples perceived by a

subject for a given true stimulus (dotted line). The probability of the current trial’s choice being rightward/leftward

(shaded blue, bottom right) is given by the mass to the right/left of the criterion (solid black line), which evolves

according to the equations shown in the box (left - is drift in criterion, is an indicator variable for the previous trial’s

choice, outcome).

B) Psychometric curves from simulated data (solid lines) shown alongside fits (dashed-dotted lines) to a model containing

both history biases and slow drifts in criterion

C) Inferred slow drifts from model fits (grey) compared to the true generative slow drift (black) showing good correspondence

D) Inferred history biases from model fits (dashed-dotted lines) compared to the true history biases (solid lines) showing good

correspondence. Note: these are hypothetical psychometric curves that would have been observed in the absence of slow

drift, and hence not directly observable from the data as in B)
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Comparing the model-free correction and the model-based approach

Next, we compare the history biases estimated by the two approaches with synthetic as well as real data.

We simulate choices for a variety of possible post-correct and post-error biases (Figure 4A-C, squares) in

addition to random drifts in decision criteria and evaluate the results obtained by applying the MF correction

and by model-fitting. We summarize these history effects by plotting the choice bias observed post-correct

trials against post-error trials at the point of indifference. First, we show that consistent with our previous

simulations - presence of slow drifts exaggerates stay biases in the data (Figure 4A, dots) especially

following error trials, and obscures the true underlying update strategy (Figure 4A, squares). Application of

the MF correction does not selectively remove the influence of slow drifts, rather it warps all the history

effects to lie along the diagonal represented by win-switch lose-stay and win-stay lose-switch strategies

(Figure 4B, dots). In contrast, the model-based inference of systematic updates successfully removes the

influence of slow drifts and reveals the underlying strategy for all considered settings (Figure 4C, dots vs

squares).

Next, we analyze choice data from 19 rats participating in a two-alternative auditory evidence-accumulation

task (data from Brunton et al, 2013; see Methods for more details). In this study, even though successive

trials were independent of each other, the rat subjects showed varying extents of win-stay and lose-switch

biases (Figure 4D). The application of MF correction to this dataset, squashes the variability in history

biases across all rats and returns a homogenous win-stay lose-switch bias (Figure 4E). Whereas, the model

fits retain the individual variability while alleviating the stay effects in post-error bias that are caused by slow

drifts (Figure 4F).
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Figure 4:
A) Biases measured by the difference between conditioned psychometric curves following left and right wins (x-axis) or losses

(y-axis) at the point of indifference (stimulus strength at which probability of choosing either option is equal). Squares

denote the biases caused by systematic trial by trial updates, and dots denote the observed biases when slow drifts are

present. Colors represent unique parameter settings.

B) Distribution of biases after applying MF correction

C) Distribution of inferred history biases from fits to a model that includes slow drift and trial-by-trial updating.

D) Distribution of observed history biases from 19 rats (Brunton 2013 dataset). symbols denote individual rats.

E) Distribution of biases after applying correction from Lak et al. ‘20. MF correction distorts the distribution, uniformly

producing equal degrees of win-stay and lose-switch biases.

F) Distribution of inferred history biases from fits to a model that includes slow drift and trial-by-trial updating. The distribution

is shifted relative to A), but individual rats retain their relative position and asymmetries between post-correct and post-error

updating.

Discussion

Nonstationarities in decision-relevant variables, if overlooked, can bias one’s estimates of psychophysical

parameters and obscure strategies that underlie behavior (Fründ, Haenel, and Wichmann 2011). Previous

work (Lak et al 2020) has shown that unaccounted for slow drifts in decision criterion could obscure

trial-by-trial updates produced by active learning, and proposed a correction to remove its influence (Figure

1).  Here we investigate the performance of this correction under a range of different generative models, and

demonstrate that it fails to selectively remove the influence of slow drifts in the presence of systematic

trial-by-trial updates of decision variables (Figure 2). Moreover, applying the correction corrupts the

estimates of trial-history influences, biasing them towards a small subset of possible strategies. To mitigate

these shortcomings, we propose an alternate approach of explicitly modeling slow fluctuations in the

decision-making process (Figure 3). We demonstrate that this model-based approach can successfully

disambiguate systematic updates from non-specific drifts, hence preserving the structure of individual

variability in behavioral strategies (Figure 4).

Non-specific drifts in decision variables may arise from fluctuations in internal states such as attention,

arousal and motivation, or from other internal sources of noise (Renart and Machens 2014). Hence, some

authors have used neural measurements to gauge their dynamics (Ridderinkhof, Nieuwenhuis, and Bashore

2003; Eichele et al. 2008; Cowley et al. 2020). Of particular interest is the work of Cowley and colleagues

who leverage slow drifts in stimulus encoding in visual and prefrontal cortex to explain fluctuations in

behavior and pinpoint the affected decision-variable.

Even in the absence of such detailed measurements, it may be possible to account for unsystematic

influences by modelling the noisy dynamics of unobserved variables, as we have done in this manuscript for
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the decision criterion (see Smith et al. 2004 for formative work). This approach has also been used to

identify systematic and random contributions to action value learning (Findling et al. 2019), allowing for the

decomposition of errors into noise-driven and choice-driven components.

In general, it is likely that multiple decision variables drift over time, or that systematic updates occur over

longer timescales, in which case it is important to incorporate those assumptions into the model. While the

model we suggest can be readily extended to estimate additional forms of dynamics, other authors have put

forward alternate approaches. Previous studies have proposed regression models to infer the trajectory of

psychometric parameters over trials, regularizing their estimates with empirically determined priors (Bak et

al. 2016; Kattner, Cochrane, and Green 2017; Bak and Pillow 2018; Roy et al. 2018). In another study

authors consider a generative model in which the latent state which governs the setting of psychometric

parameters undergoes discrete changes (Ashwood et al. 2020). In parallel, some generative models might

allow for the use of filtering methods to recover signal from the observations. Indeed, previous studies have

shown that low-pass filtering the sequence of choices using a moving average filter can adequately help

estimate the slow drifts in bias (Cowley et al. 2020; Mochol, Kiani, and Moreno-Bote 2020) without inducing

the kind of biases induced by the MF correction. The relative utility of these different approaches (state

space models, regression, filtering, corrections) would depend on the desired level of explanatory power,

number of data samples and efficiency of the inference algorithms among other factors. In any case, studies

would benefit from explicit comparison between different hypothesized generative models.

Outside the realm of trial-based behavior many exciting advances have been made in inferring the dynamics

underlying naturalistic behaviour (Wiltschko et al. 2015; Eyjolfsdottir et al. 2016; Sharma et al. 2018;

Calhoun, Pillow, and Murthy 2019). In the future, it would be interesting to bring these advances into the

study of learnt perceptual behaviour and develop inference strategies for more sophisticated generative

models. Exploring the origins and logic of slow fluctuations inferred with such models might help advance

our understanding of the principles that underlie behaviour and learning.

Methods

Simulation Details

We simulated a signal detection theory observer that compares a noisy sample of the stimulus (range 0 to 1,

corrupted by logistic noise) to a decision criterion, making a rightward choice if the sample exceeds the

criterion and leftward choice otherwise.

The decision criterion of this observer varies from trial to trial relative to a fixed baseline , due to

unsystematic variations arising from random drift and systematic variations based on the choice and
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outcome of the previous trial . The drift in decision criterion over trials was simulated

according to the following autoregressive process (discrete time Ornstein-Uhlenbeck process):

where is an i.i.d sequence of standard Gaussian random variables. Throughout the study the decay rate

was fixed to a small value ( ) to prevent the criterion from drifting too far from the true boundary

and the standard deviation of the Gaussian noise, was set at when applicable. The systematic

variations based on previous choice and outcome took the form of an additive bias to the decision criterion.

The bias was following rightward/leftward choices and positive outcomes, and

following rightward /leftward choices and negative outcomes.

Therefore, the decision criterion on any trial was given by the following equation:

where denotes an indicator variable for a particular combination of previous choice and

outcome . The baseline value was set to produce an equal proportion of leftward and rightward

choices when stimulus carried no information i.e. stimulus strength of 0.5.

Finally, choice on trial depended upon the stimulus strength on the current trial , and the decision

criterion . The probability of making a rightward choice was given by the logistic function:

We simulated 40000 trials at a time, and the plotted psychometric functions were fit using the logistic

regression function from the scikit-learn module in Python (Pedregosa et al. 2011).

History Bias and Correction

History bias post-correct/error at each stimulus strength is computed as the difference between the

probability of going right following rightward and leftward correct/error trials. Therefore, the history bias

following correct trials is given by

. And similarly,

following error trials history bias is computed as

.
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To correct for the influence of slow drifts, we subtract the acausal bias due to the past trial on the choice

preceding it from the bias due to the past trial on current choice (Lak et al., 2020 and Mendonca

et al., 2020) , i.e. following a rewarded trial the corrected bias for each stimulus strength was computed

according to:

The corrected bias following error trials was similarly computed, but by conditioning on previous error trials

i.e. .

Model-based fitting

We denote the choice on trial as such that if the choice is towards right and

otherwise. The choice on any given trial is formed by comparing the value of a noisy perceptual sample

(centered around the true stimulus with logistic noise) to the category boundary or criterion , which we

assume is time-varying and is modulated by trial-history. If the value of the sample exceeds the criterion, a

rightward choice is made. Therefore, conditioned on the drifting criterion and the stimulus the choice of an

agent on any given trial is given by a Bernoulli distribution with mean

where determines the sensitivity of an agent to the perceptual stimulus .

We assume that the drift in criterion evolves according to a random walk with step size , we

assume that the mean and variance of the initial state are known :

The decision criterion is the summation of a fixed baseline , the drift, and trial-history influences:

where , , and are indicator variables denoting successes or failures on the previous trial (

) following rightward and leftward choices. and determine how much previous trial’s choice

and outcome modulate the criterion.

This model for choice behavior is essentially a linear dynamical system with Bernoulli emissions. Therefore,

to infer the parameters of this latent variable model we use an
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expectation-maximization algorithm, similar to those described before (Smith and Brown 2003, Macke et al.

2011, Macke et al. 2015). For the E-step, we require the log of posterior distribution over the

latent drift given the observed pattern of choices and our current estimate of the parameters :

where . Owing to Bernoulli observations this distribution is not

available in closed-form but is concave, so we approximate it with a multivariate Gaussian distribution

(Laplace approximation) where is a vector of size and is set to maximize

the posterior and is of size and is set to the inverse Hessian of the

log posterior evaluated at i.e.

The M-step updates parameters by optimizing the expected total data log-likelihood with respect to the

parameters

We update the parameters using L-BFGS except which we update analytically. We use the ssm package

(Linderman et al. 2020) in Python for this inference.

Dataset studied

We analyze the trial-history effects of nineteen rats (50223 ± 21915 trials per rat) performing an evidence

accumulation task, originally published in Brunton et al. 2013. In this task, the subjects were presented with

two simultaneous streams of randomly-timed discrete pulses of evidence (clicks), one from a speaker to

their left and the other to their right, for a predetermined duration. The subjects were required to maintain

fixation throughout the entire stimulus, failure to do so led to a violation trial. At the end of the stimulus, the

subjects had to orient towards the side which played the greater number of clicks to obtain a water reward.

The discrimination difficulty was controlled on each trial by varying the ratio of the generative Poisson rates

of the two click streams. Successive trial’s difficulty and rewarded side were independently sampled. Since

the animals neither made a choice nor received an outcome on violation trials, we ignore them while

computing trial-history effects.

Data and Code availability

The code and data associated with this manuscript is available here: https://doi.org/10.24433/CO.8821874.v1

as a standalone executable.
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